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Abstract

Epidemiological processes leave a fingerprint in the pattern of genetic structure of virus populations. Here, we provide a new
method to infer epidemiological parameters directly from viral sequence data. The method is based on phylogenetic analysis
using a birth—death model (BDM) rather than the commonly used coalescent as the model for the epidemiological trans-
mission of the pathogen. Using the BDM has the advantage that transmission and death rates are estimated independently
and therefore enables for the first time the estimation of the basic reproductive number of the pathogen using only sequence
data, without further assumptions like the average duration of infection. We apply the method to genetic data of the HIV-1

epidemic in Switzerland.

Key words: epidemiology, phylogenetics, Bayesian inference.

Introduction

RNA viruses are characterized by short generation time and
high mutation rates. Therefore, even over relatively short
time spans epidemiological processes (i.e., transmission, re-
covery, and death) are expected to leave signals in the ge-
netic structure of viral sequences sampled from the host
population. Bayesian phylogenetic methods are commonly
used for viruses to infer epidemiological processes from
genetic data (Pybus et al. 2001; Drummond et al. 2003;
Grenfell et al. 2004; Pomeroy et al. 2008). These meth-
ods require the specification of a process that generates
the phylogenetic trees, which is commonly the coalescent
(Kingman 1982; Griffiths and Tavare 1994; Drummond et al.
2002).

The coalescent is an appropriate choice for many appli-
cations. However, in the context of virus transmission, it is
primarily used for its mathematical convenience rather than
the accurate reflection of the underlying transmission pro-
cess. In particular, there are two main shortcomings of the
coalescent as a model of epidemiological transmission. First,
the coalescent can detect changes over time in the number
of infected people (i.e, population size changes) but not
whether such changes are due to a change in transmission
rates or a change in death or recovery rates. However, the
separate estimation of transmission and death/recovery is
key in order to determine central epidemiological quantities
such as the basic reproductive number (Anderson and May

1979, 1992). Thus, if the coalescent is used in a phylogenetic
study, an independent estimate of the death/recovery rate
(or the transmission rate) is required for estimating quan-
tities such as the basic reproductive number. Second, the
coalescent is appropriate only if the number of sampled in-
fected hosts is small compared with the total infected host
population size. This is a problematic assumption forimpor-
tant diseases such as HIV, where we have particularly dense
sampling.

A more appropriate choice for the tree-generating pro-
cess is the birth—death model (BDM; Kendall 1948; Feller
1968). This model has neither of the two shortcomings of
the coalescent. It explicitly assumes a separate transmission
(i.e., birth) and death rate. Moreover, it can be applied to sit-
uations of sparse or dense sampling because sampling pro-
portion is treated in the model as a separate parameter.

The BDM has been used in phylogenetic analysis for infer-
ring species phylogenies (Patané et al. 2009; Couvreur et al.
2010; Fernandez-Mazuecos and Vargas 2010; Weksler et al.
2010), including scenarios of incomplete sequence sam-
pling. However, the sampled sequences were assumed to be
from one pointin time (Maddison et al. 2007; FitzJohn et al.
2009; Stadler 2009). In viral epidemics, sequences are typi-
cally sampled over a long time span. Hence, after an initial
application of the BDM to viral sequences from one single
time point (Holmes et al. 1995), focus shifted towards as-
suming the coalescent (Nee et al. 1995), as coalescent-based
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methodology became available allowing for sequences be-
ing sampled sequentially through time (Rambaut 2000), al-
lowing for changing population sizes through time (Pybus
et al. 2000; Drummond et al. 2005), and accounting for
phylogenetic uncertainty by using a Bayesian framework
(Drummond et al. 2002).

Here, we develop a Bayesian method of phylogenetic
analysis for sequentially sampled viral sequence data based
on the BDM in order to infer key epidemiological parame-
ters directly from viral sequence data. To this end, we extend
previous work (Stadler 2010) to solve the BDM for sequen-
tially sampled viral sequences. We generalize the BDM such
that it specifically reflects aspects of viral transmission, de-
termine the accuracy in parameter inference using simula-
tions, and in particular, show that the BDM estimates are
more accurate than the coalescent estimates. The basic re-
productive number can be estimated very accurately using
the BDM, whereas the transmission rate correlates with the
death rate and its estimate is thus less accurate. We apply
the new BDM method to data from the HIV-1 epidemic in
Switzerland and further validate the accuracy of estimates
on the basis of other epidemiological estimates.

Materials and Methods

Framework for the Inference of Epidemiological
Parameters

In its most general form, a birth—death process is a stochas-
tic description of populations, in which individuals can be
born or die at any time point. We use this framework to de-
scribe the process of epidemiological transmission. A birth
event corresponds to the infection of an individual. A death
event corresponds to an individual becoming noninfectious,
which can be due to several events such as death, treatment,
or behavioral changes of an individual.

We model an epidemic as follows: An infected individual
starts a new epidemic at time t,, in the past. Each infected
individual transmits with a constant rate A\ (transmission
rate) and becomes noninfectious with a constant rate u
(becoming noninfectious rate). To capture the process of
infected individuals being sampled (i.e., included into the
data set), we introduce a sampling rate 1. As sampling in
human infectious diseases is typically linked to treatment
or behavioral changes, we assume that a sampled individ-
ual becomes noninfectiousimmediately after the sampling.
Thus, the term ) is formally equivalent to a death term.

Our BDM is a forward in time description of the epidemi-
ological process, and the sampling rate 1) allows to specify
the sampling intensity; thus, the number and time of sam-
pling points is arandom outcome of the process. In contrast,
the coalescentis a model backward in time where the num-
ber of samples is assumed to be very small compared with
the population size (however, the precise sampling fraction
cannot be specified), and the analysis is conditioned on the
number and time of the sampling points.

Bayesian BDM Method
In Bayesian phylogenetic inference using a Markov chain
Monte Carlo (MCMC) approach, the idea is to sample
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FIG. 1. Example of a transmission tree on the left with the black dots
being the sampled individuals (m = 5); the corresponding sampled
tree is displayed on the right. The time of origin is tor = Xo.

trees and parameters from the posterior distribution
f[T,n,0|data] where “data” are alignment of sequences
sampled through time, 6 are the parameters of the se-
quence evolution model, 7} are the parameters of the tree-
generatingmodel, and 7 is the transmission tree describing
the epidemiological relationships of the sampled sequences
in the alignment. By Bayes’ theorem, the posterior distribu-
tion is equivalent to

fldata| T O[T nlf [nlf [6]

fIT,n,0|data] = Fldat]

The quantity f[data| T, 6] is the probability density of the
sequences having evolved on a tree 7. This likelihood can
be computed efficiently with Felsenstein’s pruning algo-
rithm (Felsenstein 2004). f [T || is the probability density of
the tree given the tree-generating model parameters. This
density is known if the coalescent is assumed as the tree-
generating model. A prior distribution is assumed for the
probability densities of the parameters, f[n] and f[6)]. The
quantity f [data] is the normalizing constantand can be dis-
regarded when sampling from the posterior (it is constant
for all trees and parameters as the data are fixed).

In our approach, we assume the BDM instead of the coa-
lescentas a tree-generating model, thatis, = (\, 1, ¥, tor ).
The BDM generates a transmission tree. The “sampled tree”
T is obtained from the transmission tree by suppressing all
edges without sampled descendants, see figure 1and Stadler
(2010) for more details. In order to do Bayesian phylogenetic
inference usingan MCMC approach, the probability density
ofasampled tree under the BDM, f[T |\, 14, 1, to], has to be
derived.

Calculation of f[ T |\ 1,1, tor]

For calculating the probability density of a sampled tree, we
need some notation (see also fig. 1). Let the sampled tree T
have m sampled leaves. Let x, = t,, be the time of origin
of the process. Let x; > -+ > x,,_, be the m — 1 bifur-
cation times in the sampled tree where time is measured as
the distance to the present. Lety; > --- > y,, be them
sampling times (i.e., times of the leaves).

In order to calculate f[ 7|\, i, 1, tor], we define g, (t) to
be the probability density that the infectious individual cor-
responding to edge e at time t in the past gives rise to the
transmission tree between t and the present as observed in
T.Then, g (tor) = fIT |\ 1, Y, to| (see fig. 2). In order to
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FIG. 2. Illustrating the derivation of the Master equation for g.(t). e
is an edge of the tree, and g (t) is the probability density that the in-
fected individual corresponding to edge e at time t gives rise to the
observed transmission tree, that is, a tree with two sampled individ-
uals, at time y4 and ys, and the transmission at time si. The Master
equation for g (t) is derived via going small time steps At back in
time.

derive a formula for g, (t ), we need the probability that an
infectious individual has no sampled descendants for a time
span of lengtht, py(t ). The probability py(t ) is calculated in
Stadler (2010):

e " (1—a)—(1+a)
A+ un+ '([} + ¢4 et (1)1 (11¢)

polt) = 2\ '
a = [VA—p—v¢)2+4ry,
S
G = ——.
Cq

We derive the probability density for g, (t) with a Mas-
ter equation approach. Let At be a very small time step. An
event (in our case, transmission, becoming noninfectious, or
sampling) happening with a rate & means that in a small
time interval At, the probability of the event happening
once is a/At; the event happening several times has prob-
ability of order O (At?) (here, we do not calculate the exact
probability of several events happening during one time in-
terval, as this probability will tend to 0 and thus cancel out,
as shown below).

We calculate the probability density g (t + At), that s,
the probability density that the individual e at time t + At
gives rise to the the transmission tree between t + At
and the present as observed in 7, assuming we know g, (t)
(see fig. 2). Recall that time is measured as a distance to
the present, so with an additional time step At, we move
further into the past, and the tree likelihood is thus cal-
culated going backward in time. The infected individual at
time t + At can either undergo no event or transmit dur-
ing time At (becoming noninfectious would not yield the

observed transmission tree). The equation for g, (t + At) is
therefore

g(t +At) = (1= (A4 p+1)At — 0 (At))g.(t)
+ AAt2po(t)ge () + O (At?),

where 1) 1 — (A + p + ) At — O (At?) is the proba-
bility that the individual corresponding to edge e at time
t + At does not undergo an event during time At, 2) AAt
is the probability that the individual corresponding to edge
e infects one individual during time At, and 2p,(t) is the
probability that one of the two infected individuals has no
sampled descendants between time t and time 0, and 3)
O (At?) summarizes the terms when more than one trans-
mission event happens during time At. We transform this
equation to

ge(t + At) —ge(t)
At

= —(A 4 p+1)g(t) + 2Apo(t)g.(t) + O (At),

which yields in the limit At — 0 the Master equation for

8e (t)'

%) = (At )g(t) +2Apo(t)e ().
Let the edge e last between time sy and sq, withsg >t > s,
(see also fig. 2). Note that at time s;, there are two descend-
ing branches (transmission event with rate A) or no de-
scending branches (sampling event with rate v). Thus, we
have the initial value at t = s;:

Age, (51)ge,(s1) ife has two descendant
g (s1) = edges e;, e,

P if e has no descendant edges.

Following Stadler (2010), we can solve the differential equa-
tion for g, (t ) and obtain

f[T A H ’(Z}r tor = XO] = & (tor)

1

— )\m71]:[
i=0

oy LT vatn)
O

where
qt) =2(1—c)+e (1 — ) + e (1+c)

We implemented the Bayesian inference procedure to
estimate the parameters of the BDM (using eq. 1) in the
software package BEAST (Drummond and Rambaut 2007),
replacing the previously used coalescent. We assume that
the process is stopped after the last sampled leave, that is,
Ym = 0, this has the advantage that we reduce the number
of parameters by one.

Our BDM is a modification of the framework in Stadler
(2010): The previous model in Stadler (2010) allows sam-
pling through time and sampling of present-day individuals
(this is relevant when the considered individuals are extinct
and extant species, rather than infected hosts). Further, a
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sampled individual remained infectious. Modifying the pre-
vious model such that there is no sampling of present-day
individuals, and assuming that infected individuals become
noninfectious when being sampled, yields the model in this
paper.

A natural generalization of the model presented here,
and the model presented in Stadler (2010) is to assume that
a sampled individual becomes noninfectious immediately
after the sampling with probability r and remains infectious
after sampling with probability 1 — r. Under this general
model, m sampled individuals may have no sampled de-
scendantsand k sampled individuals may have sampled de-
scendants. The likelihood of the tree becomes

FITIM bty = xg] = NP (351 — )
< I1 o5 LT w0+ = nplan)

The current version of Beast cannot use the generalized
method, as it cannot account for the k sampled individu-
als having sampled descendants but requires instead all the
sampled individuals being leaves. Thus, we cannot do data
analysis yet with this general model.

Inferring Parameters from Simulated Data Sets

We simulated trees under the BDM and then analyzed
these trees using the Bayesian BDM method implemented
in BEAST (Drummond and Rambaut 2007) in order to val-
idate whether we can accurately re-estimate parameters of
the BDM. There are two stages in the simulation process:

Stage 1:

In Stage 1, we simulate trees under the BDM model
for fixed A = 823 x 1074 u/\ = 0.11, and
1) = 2.78 x 10~ (which were the mean estimates
obtained from empirical data, see below). We ran an
MCMC in Beast without data, which samples trees
from the prior (i.e,, the BDM model). We used 100
tips without sequence data to simulate the tip times
(except the most recent tip whose time is 0), the
tree (includingall internal nodes and topology), and
the time of origin to;. MCMC chain length was set up
to 100, 000, 000.

Stage 2:

We picked up ten trees from the sample produced
from Stage 1 respectively at the state 100,000,000,
90,000,000, ..., 10,000,000 and created ten new
MCMC simulations by fixing the tree. In the ten
new MCMC simulations, we estimated A, 1, ¢, and
tor and calculated Ry = A/(u + ) for the ten
chosen trees. MCMC chain length was set up to
100,000,000.

To increase the reliability of our tests, we looped 10 times
from Stage 1 to Stage 2 and thus re-estimated A, 14, ¥, to
based on 100 random trees.

We also simulated sets of ten trees with ten tips to com-
pare the accuracy of the method when having several small
trees instead of one big tree.
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FIG. 3. The time of sampling of the data in the ten subepidemics
(black) together with the estimated time of origin tor for each subepi-
demic using our Bayesian BDM method. Case (i): Red is the time of ori-
gin estimated under the assumption that the epidemiological parame-
ters A, i, 1 are the same in all subepidemics; Case (ii): blue is the time
of origin estimated when the parameters may vary between subepi-
demics independently.

Inferring Parameters from Swiss HIV-1 Sequence Data
We use sequence data of the HIV polymerase gene from the
Swiss HIV Cohort study (SHCS, The Swiss HIV Cohort Study
2010), a cohort where more than 16, 000 Swiss HIV-infected
persons are enrolled covering at least 45% of all Swiss
HIV-infected individuals. In order to exclude biases due to
migration, we determined Swiss transmission clusters in
which no migration occurred. We built a maximum likeli-
hood tree using all available Swiss HIV pol sequences plus
the same number of randomly selected foreign sequences.
We defined a cluster in the tree to be a Swiss cluster if it
contains at least 80% Swiss sequences and has bootstrap
support of at least 70%. This procedure follows the analysis
in Kouyos et al. (2010), with the only two differences that
we 1) considered only clusters with a bootstrap support of
>70%, and that 2) the phylogenetic tree was inferred on
the basis of the general time reversible + GAMMA model
(instead of the general time reversible with per site rate
categories [GTRCAT] model).

The ten largest clusters (subepidemics) contain between
12 and 34 individuals, which have been sampled between
1995 and 2008. The sampling times of the sequences are
summarized in figure 3.

From the subepidemics, we estimated transmission and
sequence evolution parameters based on the pol sequences,
using our Bayesian BDM method. To model the sequence
evolution, we partitioned the alignment into two classes
of sites: The first class consisted of all first and second
codon positions and the second class was made up of
third codon positions. Each class was modeled with an in-
dependent Hasegawa-Kishino-Yano + I' model, allowing
for a class-specific transition/transversion bias (k), a class-
specific shape parameter () describing rate heterogeneity
across sites, and a class-specific mean rate of evolution. The
prior distribution on the two shape parameters was an ex-
ponential distribution with a mean of 1. The prior on the
K parameters was a Gamma distribution with a shape of
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Table 1. Accuracy of re-estimating Ro, A, 1, ¥, A — . — 1 under the BDM, and A — it — 1 under the coalescent with an exponential growth prior.

True Value 1 Tree (100 Tips) 10 Trees (10 tTips)

Rop =225 Mean 1.81 3.02
Relative error 0.20 0.35
Relative bias —0.20 0.35
HPD interval width 1.75 2.75
95% HPD accuracy 94% 100%

A =823 x107* Mean 15.73 x 10— 9.38 x 104
Relative error 0.91 0.14
Relative bias 0.91 0.14
HPD interval width 29.08 x 10—4 4.69 x 104
95% HPD accuracy 100% 91%

=088 x 10—* Mean 8.94 x 10— 1.06 x 10—*
Relative error 9.15 0.21
Relative bias 9.15 0.21
HPD interval width 29.73 x 104 3.28 x 10~
95% HPD accuracy 100% 100%

P =278 x 1074 Mean 2.04 x 1074 230 x 1074
Relative error 0.27 0.19
Relative bias —0.27 —0.17
HPD interval width 3.03 x 10—4 1.72 x 10—4
95% HPD accuracy 92% 79%

X — i — =457 x 10~4 Mean 4.75 x 10—4 6.02 x 10—
Relative error 0.14 0.33
Relative bias 0.04 0.32
HPD interval width 3.67 x 10~ 3.93 x 10~
95% HPD accuracy 97% 68%

A—p—1=457 x10~* Mean 5.27 x10~4 6.24 x10™*

exponential growth tree prior Relative error 0.25 0.41

Relative bias 0.15 0.36
HPD interval width 2.13 x10~* 3.37 x10~*
95% HPD accuracy 55% 52%

0.05 and a scale of 40. In addition, a lognormally distributed
uncorrelated relaxed clock model (Drummond et al. 2006)
was used to model rate variation across lineages. The S pa-
rameter of the lognormal relaxed clock had an exponential
prior with a mean of 1/3. We ran the MCMC chain for 200
million generationsand neglected the first 10% of output as
the burn-in.

We analyzed the subepidemics under two different as-
sumptions: 1) We assume that the epidemiological pa-
rameters A, i, and v are the same in all ten subepi-
demics but leave the time of origin t, variable and 2)
we assume that all subepidemic can have different pa-
rameters A, 4, %, and t,. The runs converged in both
Case (i) and Case (ii). The effective sampling size (ESS)
was usually several thousands and the minimum ESS
was 282.

Results

We implemented the Bayesian inference procedure to
estimate the parameters of the BDM in the software pack-
age BEAST (Drummond and Rambaut 2007). From the es-
timates obtained with this new method, we can determine
the total number of infections caused by an individual over
the time during which it is infectious. This number is equiv-
alent to the basic reproductive number R,y and is given by

the ratio of the birth and death rates:
B A
pY

Thus, our Bayesian BDM method offers a possibility to esti-
mate a key epidemiological parameter using only sequence
data.

Ro

Estimates Obtained for Simulated Data

The estimated values for Ry, A, 14, 1 from the 100 simulated
trees are shown in table 1. The relative error for a parameter
p was defined as

=
(=1
o

p—pl

-
I

4
‘w‘

relative_error = ———, (2)
100

where p was the true value of p and p was the mean of p.
The relative bias was defined as

o
o
S
<>
oI |
I

relative_bias = t;T (3)

The 95% highest probability density (HPD) accuracy is
the percentage of trees with 95% HPD intervals containing
the true value (where a 95 % HPD interval is defined as the
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FIG. 4. The estimated mean R, together with the 95% HPD for the 100
simulated trees (true Ry = 2.29).

shortest interval, which contains 95% of the posterior prob-
ability).

The estimation of Ry was accurate; the true R, was con-
tained in the 95% HPD in 94 of the 100 trees. The HPDs for
each treeare plotted in figure 4. The accuracy of all estimates
(Ro, A, 1, 10, and A — o — 1p) is given in table 1. Further,
the table contains the result of the re-estimation of the net
growth A — p — 9 based on the same 100 simulated trees
but using the coalescent with an exponential growth prior
instead of the BDM method for re-estimation.

The parameter estimates for Ry, A, 1, ¥, and A — p —
1) using the Bayesian BDM method were reliable: 95% HPD
intervals contained the true parameters in more than 90%
of the cases. In particular, the true A — p4 — 1) was contained
in the 95% HPD intervalin 97% of the cases. However, when
using the coalescent and estimating A\ — 1 — 1, the 95%
HPD intervals contained the true parameter in only 55% of
the cases.

Using 10 trees with 10 tips instead of 1 tree with 100 tips
yielded similar results. The improvement obtained when us-
ing ten trees is that the HPD interval width for A, i, and v
become significantly smaller; however, the 95% accuracy for
the net growth A — 1 — 1 drops to 68% (from 97%).

We further investigated correlations of parameters and
recovered that A is positively correlated with p + 1, see
figure 5. Thus, the method can estimate the ratio A / (u+1)
accurately but cannot determine well A and p + % sepa-
rately. This explains the large HPD intervals f\or A 1, 1, while
having a confined HPD interval for Ry = pran
Estimates Obtained for HIV-1 in Switzerland
We applied our Bayesian BDM method to HIV-1 sequence
data from the SHCS (The Swiss HIV Cohort Study 2010).
As explained in the Materials and Methods section, we
focused our analysis on ten Swiss HIV-1 subepidemics in
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order to exclude biases due to migration from outside of
Switzerland. In Case (i), we assumed the same epidemio-
logical parameters A, j1, 1 in the ten subepidemics, and in
Case (i), we allowed for different parameters in the ten
subepidemics.

In Case (i), we obtain the following mean estimates: trans-
mission rate A = 8.23 x 10~*/day (or 0.30/year); becom-
ing noninfectious rate ;4 = 9.46 X 10> /day; sampling rate
1 = 2.78 X 10~*/day. The 95% HPD intervals are given in
table 2. As the average time until becoming noninfectiousis
%w, we observe an average time of infectiousness of 7.74

4.39,10.99] years. From the estimates of )\, 1, 1, we calcu-

late the mean posterior Ry = 2.29 with a 95% HPD interval
[1.61,3.05] (see table 2). The times of origin t,, of the ten
different subepidemics are between 1987 and 1994 (see also
fig. 3).

In Case (ii), the estimates lie in the same range as for the
analysis of Case (i) (i.e., the 95% HPD intervals largely over-
lap). The estimated mean rates and R, for all analyses to-
gether with the 95% HPD intervals are given in table 2. The
mean times of origin of the ten subepidemics are shown in
figure 3.

The 95% HPD intervals for Case (ii) are much wider than
for Case (i), due to less data being available for the estima-
tion of the epidemiological parameters. Further, we note
that in Case (ii) compared with Case (i), the mean of A
and p is always larger. This bias can partially be explained
through correlations in parameter estimates. We observe
from the simulations and the data that \ correlates linearly
with p + 1, see figure 5. Determining why larger A and p
values are estimated for smaller data sizes needs to be inves-
tigated in future simulation studies. For the present work, it
isimportant that the biases vanish when considering Ry.

In Case (ii), we obtain different R, estimates for the
different subepidemics. These differences could be due to a
variety of factors such as transmission group, the size of the
epidemic, the time of origin of the subepidemic, or stochas-
tic fluctuations.

The subepidemics studied here are dominated by dif-
ferent transmission groups (Kouyos et al. 2010). In par-
ticular, the subepidemics here are characterized either by
predominant transmission between men having sex with
men (MSM) or by predominant transmission between
mixed groups of heterosexuals (HET) and intravenous drug
users (IDU). The composition of the subepidemics accord-
ing to transmission group are shown in table 3. The subepi-
demics 3,6, and 9 are dominated by HET and IDU. The
other subepidemics are dominated by MSM. The mean Rg
in the HET/IDU subepidemics shows no trend to be lower
or higher than the mean Ry in the MSM subepidemics: The
three HET/IDU subepidemics have 1st, 5th, and 10th largest
mean R, of the ten mean R,. This is confirmed by statisti-
cal analysis: A nonparametric test (runs statistic, Hogg and
Craig 1994) does not reject the null hypothesis, that Ry is the
same in the HET/IDU and MSM transmission groups, with a
P value of 0.58.

We test whether the size of the subepidemic correlates
with the R, by regressing the size of the subepidemic against
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FIG. 5. Correlation between X and y + . On the top panels, the posterior distribution of estimates obtained from the empirical analyses is shown
(left: Case (i); right: Case (ii) subepidemic 1). On the bottom left panel, the mean estimates from the empirical data analyses are shown (Case (i)
analysis in red, Case (i) analyses in blue). On the bottom right panel, the posterior distribution of estimates obtained from a simulated tree are
plotted. The black lines indicate the mean estimates obtained in the empirical Case (i) analysis, which were further used in the simulation study.

Ro. The absence of a significant correlation (Pearson corre-
lation 0.07, P value 0.84) suggests that size is not a major de-
terminant of Ry (see also fig. 6). Moreover, this also suggests
that our estimate of R, is not affected by the fact that we
only include subepidemics with sample size of 12 and larger
in our analysis.

In order to investigate if the Ry is differentin old and new
subepidemics, we plot the estimated mean time of origin of
each subepidemic against the estimated mean R, (see fig. 7).
Although the R, decreases for younger clusters, the corre-
lation is nonsignificant (Pearson correlation —0.49, P value
0.15).

Clearly, the variation in Ry in the different subepidemics
could also be explained by further factors such as differences
in behavior within different subepidemics independent of
transmission group or the founder strains of the subepi-
demics having varying virulence (Alizon et al. 2010). How-
ever, in the absence of any such data, we cannot test for the

role of these factors. Finally, it should be noted that the dif-
ferencesin Ry could also be simply due to chance given that
the 95% HPD intervals overlap in most cases.

Validation of HIV-1 Estimates

To verify that our estimates are compatible with other data
regarding the Swiss HIV epidemic, we compared the esti-
mates obtained from our analysis with estimates obtained
through other methods.

First, the mean probability of an infected individual hav-
ing been sampled before dying, ﬁ, is estimated with our
method to be 77.6% (95% HPD [44.7, 100.0]). This is in very
good agreement with the recent Swiss HIV Cohort report
(The Swiss HIV Cohort Study 2010), where it is estimated
that 75% of all Swiss HIV infected which developed AIDS are
enrolled in the Swiss Cohort.

The expected number of secondary infections caused by
an infected individual over a year is 365 X A = 0.30 with
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Table 2. Mean Ry, A\, p, 1 estimates with 95% HPD intervals for the ten Swiss HIV subepidemics.

Ro A
Mean 95% HPD Mean 95% HPD
Case (i) 2.29 [1.61, 3.05] Case (i) 8.23 [6.62, 10.17]
1 2.95 [1.01, 6.82] 1 10.93 [3.58, 24.52]
2 1.74 [0.92, 3.03] 2 13.00 [4.12, 31.18]
3 1:06 [0.64, 1.50] 3 18.47 [5.38, 41.70]
4 1.57 [0.83, 2.67] 4 31.55 [9.72, 72.86]
Case (ii) 5 2.92 [0.93, 7.46] Case (ii) 5 11.56 [3.69, 27.90]
6 1.88 [0.90, 3.68] 6 21.32 [5.72, 48.83]
7 2.85 [1.01, 6.81] 7 17.18 [4.45, 41.34]
8 1.26 [0.52,2.21] 8 16.34 [3.57, 37.46]
9 3.00 [0,77, 7.82] 9 22.06 [5.20, 51.37]
10 1.70 [0.60, 3.28] 10 20.71 [4.04, 49.71]
12 v
Mean 95% HPD Mean 95% HPD
Case (i) 0.95 [0.00, 2.80] Case (i) 2.78 [1.84, 3.78]
1 5.88 [0.00, 19.93] 1 0.67 [0.01, 1.71]
2 7.33 [0.00, 26.19] 2 1.95 [0.17, 3.87]
3 11.63 [0.00, 37.37] 3 6.16 [1.03, 1128]
4 18.26 [0.00, 61.33] 4 5.65 [0.72, 11.48]
Case (ii) 5 6.19 [0.00, 22.97] Case (ii) 5 0.95 [0.00, 2.59]
6 11.93 [0.00, 39.13] 6 293 [0.08, 6.29]
7 8.96 [0.00, 33.20] 7 1.15 [0.04, 2.80]
8 10.14 [0.00, 32.79] 8 4.46 [0.22, 9.49]
9 11.83 [0.00, 40.59] 9 1.73 [0.01, 5.33]
10 11.99 [0.00, 41.10] 10 333 [0.19, 7.19]

NoTE.—Case (i) assumes the same epidemiological parameters A, u, 7 in all subepidemics; Case (ii) allows the parameters to vary between the subepidemics

1,...,10. The rates )\, p, %) are stated in units 10~% /day.

95 % HPD [0.24, 0.37] (table 2). This parameter has been esti-
mated from transmission clusters using the SHCS (The Swiss
HIV Cohort Study 2010) together with the Zurich primary
HIV infection study (Metzner et al. 2010) to be 1.8 (95% con-
fidence interval [0.5, 5.8]) for people infectingin the chronic
phase (Rieder et al. 2010). Their confidence interval is not
overlapping with our confidence interval, which might be
due to real transmission differences in the different data
sets (recall that simulations show a 100% accuracy for our
confidence interval, table 1).

Thus, we applied our Bayesian BDM method to the
largest transmission cluster found in Rieder et al. (2010). For
this cluster, we obtained a mean estimate of 365 X A = 1.14

Table 3. Number of individuals in the ten considered Swiss HIV
subepidemics.

Transmission Group 1 2 3 4 5 6 7 8 9 10

MSM 31 24 0 25 19 0o 15 9 0 9
HET 3 4 6 1 3 6 2 5 8 3
IDU 0 0 21 0 2 12 0 0 0 O
Other 0 0 0 0 1 0 0 0 3 0
Unknown 0 1 o 0 O o0 o0 O0 3 o
Foreign 2 1 0 0 O 1 0 0 0 1

NoTe.—The individuals are sorted with respect to transmission group: men having
MSM, HET, IDU, other, unknown, and non-Swiss individual (foreign). Note that the
foreign individuals were included to detect Swiss clusters, but they are excluded
when estimating the rates in the subepidemics.
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with 95 % HPD [0.31,2.66], which largely overlaps with but
is more confined than the previously estimated confidence
interval [0.5, 5.8] (Rieder et al. 2010).

Comparison of BDM Analysis to Classical Analysis Using
the Coalescent

Under the coalescent with exponential growth, the net
growth parameter A — 11 — 1) can be estimated. Recall that
based on the simulated trees, the net growth is estimated
more accurate under the BDM than under the coalescent
(97% vs. 55% HPD accuracy).

25 3.0

RO
2.0
1

T T T T
15 20 25 30

Number of samples in subepidemic

FIG. 6. Sample size of the ten subepidemics against the estimated
mean Ry value.
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FIG. 7. Estimated mean time of origin of the ten subepidemics against
the estimated mean R,.

To investigate the impact of model choice on empir-
ical data results, we analyzed the ten Swiss HIV subepi-
demics assuming the coalescent with exponential growth
and compared these results with the BDM analysis (Case [i]).
Under the coalescent, the mean exponential growth pa-
rameter was estimated to be 6.89 x 10~*/day. The 95%
HPD interval is [3.01 X 107%,11.09 x 107“]. Under the
BDM, we estimated for the exponential growth parameter
A — p— 1) amean of 4.51 x 10~% /day with 95% HPD inter-
val [3.20 X 107%,5.72 x 10]. The 95% HPD interval of the
BDM analysis is fully contained within the HPD interval of
the coalescent analysis meaning that the BDM analysis has
the power to provide more confined HPD intervals. Further,
recall that the BDM method is able to provide the param-
eters )\, 14, ¥ independently such that Ry can be calculated;
the coalescent only provides the net growth A — p — .

Discussion

Estimation of Key Epidemiological Parameters

Our study presents and applies a method to infer key epi-
demiological parameters directly from viral sequence data.
Various attempts have been made to use genetic sequences
in order to estimate epidemiological parameters. However,
none of these studies have been able to infer the basic re-
productive number Ry only from sequence data. R, of an
epidemic (Hepatitis C Virus, HCV) was estimated from viral
sequence data for the first time in Pybus et al. (2001). Be-
cause these authors used the coalescent as a transmission
model, they could not directly infer transmission and death
rates but instead required an independent estimate of aver-
age duration of infectiousness. In Volz et al. (2009) and Frost
and Volz (2010), transmission rates are introduced to the
coalescent framework, but an independent estimate is still
required for the duration of infectiousness in order to cal-
culate Rq.

Although assuming an estimate of the duration of infec-
tiousness may be appropriate for HCV, the estimation of the
time of infectiousness is fraught with difficulties for many
infections. In particular in HIV, the duration of infection is
highly variable between patients as the time until AIDS can
vary between 2 and 20 years. Moreover, the time span over

which a patientis (highly) infectious is debated (Yerly et al.
2001, 2007; Brenner et al. 2008; Hollingsworth et al. 2008;
Rieder et al. 2010). Given the uncertainties in estimating the
duration of infectiousness together with its variability and
given the observation that fixing the time of infectiousness
to different values yields different R, estimates (Pybus et al.
2001; Wallinga and Lipsitch 2007), such coalescent-based
methods to infer Ry for HIV have to be used with great care.

Our Bayesian BDM method overcomes these problems
essentially by independently estimating transmission and
death rates together with the transmission chain given se-
quentially sampled sequence data. Although our method
thus represents an advance over coalescent-based methods,
it also has certain shortcomings. In particular, being based
on a BDM, our approach assumes exponential growth of the
epidemic. To fully account for the population dynamics of
the epidemic would require a tree-generating model based
on more explicit epidemiological models (such as S|, SIR, or
SEIR models [S: susceptible, E: exposed, I infectious, R: re-
covered]; Keelingand Rohani 2008). Such models would not
only account for an initial exponential increase but also a
saturation phase as susceptible hosts are becoming limited.

For the application of our method to the HIV data from
Switzerland, we believe that saturation is not a major con-
cern. If the considered subepidemics had progressed beyond
the exponential phase, late edges in the trees would be ex-
pected to be long compared with early edges. Long late
edges should result in vanishing estimates for the becom-
ing noninfectious rate (Nee et al. 1994). The fact that we
obtain nonzero estimates for the becoming noninfectious
rates indicates that the subepidemics did not yet reach the
postexponential phase. We emphasize that the considered
subepidemics being in the exponential phase does not con-
tradict the Swiss epidemic as a whole beingin the postexpo-
nential phase.

One study has been published that estimates R, in HIV
from sequence data (Volz et al. 2009) based on a modi-
fied coalescent model. Using a transmission tree inferred
from sequence data of HIV-infected individuals sampled at
one time point (1993) in the United States, the estimate
Ry = 2.29 is obtained, assuming a time of infectiousness
of 10 years. A few studies have been published that esti-
mate R, in HIV from epidemiological data (Bezemer et al.
2010; Nishiura 2010). These estimates were obtained from
the temporal changes of the incidence of the infection and
ad hoc estimates for the time of infectiousness. For example,
using data for the early HIV epidemic until 1984, the R, of
HIV in Western Europe was estimated to be between 3.5 and
4.1 (Nishiura 2010) using published estimates for the time
span of infectiousness and time-dependent infection inten-
sity (Hollingsworth et al. 2008). In Bezemer et al. (2010), the
R, for the MSM transmission group in the Netherlands was
estimated with a likelihood approach for different time peri-
ods showing temporal fluctuations (1980-1983: Ry = 2.39
[2.17,2.76]; 1984-1995: R, = 0.89 [0.85,0.93]; 1996—1999:
Ro = 0.76 [0.70, 0.86]; 2000-2003: Ry = 1.04 [0.98, 1.09]).

The actual reproductive number, R,, is defined as
the number of secondary infections caused by a single
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infected individual for the current frequency of susceptibles
(Amundsen et al. 2004), whereas R is defined as the num-
ber of secondary infections when the entire population is
still susceptible. Provided an epidemic is far from saturation,
then the estimates of R, can be used as a good approxima-
tion for R,,.

Assuming an average infectiousness period of 10 years, R,
for HIV in the United Kingdom was estimated to be lower
than 1 between 1995 and 2004, R, remained lower than 1
for HET and above 1 for MSM (White et al. 2006). An inde-
pendent study estimated for MSM in 1995 an R, of 0.55 in
Denmark, 0.85 in Norway, and 0.58 in Sweden (Amundsen
etal.2004). For IDU, R, was estimated to be 3.5 in Latvia and
21.7 in Lithuania in 2002 (assuming an average duration of
infectiousness of 11 years).

Taken together, the estimates of Ry and R, vary consider-
ably. This may be in part due to methodological difference
but likely also reflects differences in the epidemics in differ-
ent countries or different transmission groups. Our estimate
of Ry = 2.29 is thus broadly in agreement with these earlier
estimates. Note, in particular, that our estimates represent
time averages over the epidemic with some of the consid-
ered subepidemics ranging back to the 1980.

Comparing our parameter estimates to quantities esti-
mated by independent means from the Swiss HIV Cohort in
previous studies (Metzner et al. 2010; Rieder et al. 2010; The
Swiss HIV Cohort Study 2010) reinforces our confidence in
the method. Specifically, our estimated sampling probabil-
ity is in good agreement with previous estimates.

Analyzing the transmission in distinct subepidemics in
Switzerland, we did not find any significant correlation be-
tween R, and size of the subepidemic, or age of the subepi-
demic, or transmission group (HET/IDU versus MSM). The
absence of such correlation may be due in part to the limited
number of subepidemics that could be studied here. For ex-
ample, the association between age of the subepidemic and
R, shows a trend towards decreasing R, in younger subepi-
demics. However, the overall absence of significant associa-
tions suggests that neither size, age, nor transmission group
of the subepidemic are major explanatory factors of R.

A legitimate concern is that our method requires subepi-
demics that are large enough such that a substantial num-
ber of patientsare sampled. Therefore, our analysis is biased
towards larger subepidemics, which may in turn result from
larger Rg. However, as there is no correlation between the
size of the subepidemic and Rq in our study, there is no evi-
dence that our estimate R, overestimates the true R, in the
entire Swiss epidemic. Note, moreover, that a general bias
towards larger subepidemics is not a limitation just of our
method but more generally applies to all studies mentioned
here.

Tree-Generating Models in Bayesian Analyses

The Bayesian BDM method developed and applied here has
the advantage over previous methods (which are based on
the coalescent) that the underlying tree-generating model
reflects more accurately the epidemiological process of
disease transmission. This implies that the BDM method
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provides estimates of key epidemiological parameters,
whereas the coalescent only provides an estimate of the
net growth of an epidemic. Furthermore, our simulations
reveal an improved HPD accuracy for the net growth when
using the BDM method instead of the classic coalescent
method (97% vs. 55%). The Swiss HIV data analysis reveals
three times more confined HPD intervals for the net
growth when using the BDM method. Therefore, we
consider the Bayesian BDM method to be more accurate
and appropriate not only in cases where epidemiological
parameters are being inferred but also generally when
Bayesian methods are used for phylogenetic analysis of
epidemiological sequence data.

Our BDM can only account for the exponential growth
phase of an epidemic. Thus, the coalescent is still the only
framework under which postexponential epidemic dynam-
ics can be investigated. Having shown the advantages of the
BDM over the coalescent, this paper will hopefully stimulate
research to also use BDMs in order to describe the postex-
ponential phase of the epidemic.

The method was applied here specifically to HIV but can
be used to infer the epidemiology of other viral epidemics.
Moreover, it could be adjusted to infer a within-host basic
reproductive number R, based on sequence samples that
are obtained over the course of a viral infection in an individ-
ual patient; again, this would circumvent the requirement of
an independent estimate of the expected generation time.
Hence, our Bayesian BDM method represent a versatile tool
for phylogenetic analysis of viral sequence data.
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