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The GLP-1R agonist liraglutide limits hepatic
lipotoxicity and inflammatory response in mice
fed a methionine-choline deficient diet

EMMANUEL SOMM1, SOPHIE A. MONTANDON1, URSULA LOIZIDES-MANGOLD, NADIA GAÏA,
VLADIMIR LAZAREVIC, CLAUDIO DE VITO, ELODIE PERROUD,
MARIE-LUCE BOCHATON-PIALLAT, CHARNA DIBNER, JACQUES SCHRENZEL, and
FRANÇOIS R. JORNAYVAZ

GENEVA, SWITZERLAND

Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disorder
related to type 2 diabetes (T2D). The disease can evolve toward nonalcoholic stea-
tohepatitis (NASH), a state of hepatic inflammation and fibrosis. There is presently no
drug that effectively improves and/or prevents NAFLD/NASH/fibrosis. GLP-1 recep-
tor agonists (GLP-1Ra) are effective in treating T2D. As with the endogenous gut
incretins, GLP-1Ra potentiate glucose-induced insulin secretion. In addition, GLP-
1Ra limit food intake and weight gain, additional beneficial properties in the context
of obesity/insulin-resistance. Nevertheless, these pleiotropic effects of GLP-1Ra
complicate the elucidation of their direct action on the liver. In the present study,
we used the classical methionine-choline deficient (MCD) dietary model to investi-
gate the potential direct hepatic actions of the GLP-1Ra liraglutide. A 4-week infu-
sion of liraglutide (570 mg/kg/day) did not impact body weight, fat accretion or
glycemic control in MCD-diet fed mice, confirming the suitability of this model for
avoiding confounding factors. Liraglutide treatment did not prevent lipid deposition
in the liver of MCD-fed mice but limited the accumulation of C16 and C24-cer-
amide/sphingomyelin species. In addition, liraglutide treatment alleviated hepatic
inflammation (in particular accumulation of M1 pro-inflammatory macrophages)
and initiation of fibrosis. Liraglutide also influenced the composition of gut micro-
biota induced by the MCD-diet. This included recovery of a normal Bacteroides pro-
portion and, among the Erysipelotrichaceae family, a shift between Allobaculum
and Turicibacter genera. In conclusion, liraglutide prevents accumulation of C16
and C24-ceramides/sphingomyelins species, inflammation and initiation of fibrosis
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in MCD-diet-fed mice liver, suggesting beneficial hepatic actions independent of
weight loss and global hepatic steatosis. (Translational Research 2021; 227:75�88)

Abbreviations: ALT = Alanine aminotransferase; AST = Aspartate aminotransferase; BAT =
Brown adipose tissue; Cer = Ceramide; CerS = Ceramide synthase; DIO = Diet-induced obe-
sity; FFA = Free fatty acid; GLP-1 = Glucagon like peptide-1; GLP-1Ra = GLP-1 receptor agonist;
HCC = Hepatocellular carcinoma; HOMA = Homeostasis model assessment; HSC = Hepatic
stellate cell; LC = Long chain; LC-MS = Liquid chromatography�mass spectrometry; Lira = Lira-
glutide; MCD = Methionine-choline deficient; MUFA = Monounsaturated fatty acid; NAFLD =
Nonalcoholic fatty liver disease; NASH = Nonalcoholic steatohepatitis; NGS = Next generation
sequencing; PUFA = Polyunsaturated fatty acid; SFA = Saturated fatty acid; SM = Sphingomye-
lin; T2D = Type 2 diabetes; TNF-a = Tumor necrosis factor alpha; VLC = Very long chain; WAT =
White adipose tissue

Keywords: Glucagon like peptide-1 receptor agonist; Nonalcoholic fatty liver disease; Nonal-
coholic steatohepatitis; Methionine-choline deficient diet; inflammation; Type 2 diabetes; Cer-
amide; microbiota

AT A GLANCE COMMENTARY
Emmanuel S, et al.

Background

Nonalcoholic fatty liver disease (NAFLD) and

steatohepatitis (NASH) are common hepatic dis-

orders related to type 2 diabetes (T2D). Presently,

no drug effectively improves and/or prevents

NAFLD/NASH/liver fibrosis. GLP-1 receptor

agonists (GLP-1Ra) are effective in treating T2D

but their direct action on the liver remains elusive.

Translational Significance

We presently show that infusion of the GLP-1Ra

liraglutide prevents accumulation of C16 and C24-

ceramides/sphingomyelins species, inflammation

and initiation of fibrosis in liver from mice on a

methionine-choline deficient diet, suggesting bene-

ficial hepatic actions independent of weight loss

and global hepatic steatosis. GLP-1Ra may present

added-value in hepatic complications of T2D.

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most

common hepatic disorder in industrialized countries.1,2

Obesity and type 2 diabetes (T2D) are frequent causes of

NAFLD.1,2 Nevertheless, NAFLD can occur in lean

patients due to various factors, including overconsump-

tion of specific nutrients (such as fructose or cholesterol),

accumulation of visceral fat, genetic predisposition, dysli-

pidemia, or lipodystrophy.1,2 A significant proportion of

patients with NAFLD develop a state of hepatic inflam-

mation [nonalcoholic steatohepatitis, NASH], which can

lead to fibrosis and cirrhosis, potentially resulting in hepa-

tocellular carcinoma.3 Whilst lifestyle changes, including

a modification in eating habits, weight loss or physical

activity, have beneficial effects on liver steatosis, there is

currently no efficient long-term treatment available to

improve and/or avoid the development and progression

of NAFLD, NASH, and fibrosis.1-3

Studying NAFLD is challenging in humans due to the

invasive nature of liver biopsies and the slow progression

rate of the disease. This situation has led to the develop-

ment of many animal models,4 of which the methionine

and choline deficient (MCD) diet is most frequently

used.4 The MCD diet is rich in sucrose and devoid of

methionine and choline, 2 nutrients required for mito-

chondrial b-oxidation and very-low density lipoprotein

synthesis in the liver.5,6 As a consequence, the MCD diet

induces hepatic steatosis, inflammation, and fibrosis with-

out weight gain.4 In addition, MCD diet-fed mice present

liver-specific, but not global, insulin-resistance.7

Introduced about 15 years ago, GLP-1Ra are consid-

ered effective drugs for the treatment of T2D, with the

advantage of limiting hypoglycemia. As does endogenous

GLP-1 secreted by the enteroendocrine L-cells in the

intestine, GLP-1Ra primarily potentiate glucose-induced

insulin secretion.8 In addition, GLP-1Ra protect pancre-

atic islets, reduce food intake, and stimulate energy

expenditure,8 all additional beneficial outcomes in the

context of obesity/insulin-resistance. Interestingly, in

vitro studies suggest that GLP-1Ra act directly on hepato-

cytes to limit endoplasmic reticulum stress,9 activate

AMP-activated protein kinase,10-12 dampen lipogenesis10

or interact with the insulin signaling pathways.11-13 Nev-

ertheless, the pleiotropic effects of GLP-1Ra on the pan-

creas and hypothalamus complicate the elucidation of

their direct action on the liver in vivo. In fact, the anti-

steatotic action of GLP-1Ra has been mainly observed in

situations of weight loss and/or insulin sensitization in

both animal models14-20 and humans.21,22
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To investigate the liver-specific action of GLP-1Ra,

we infused liraglutide to mice fed with the MCD diet,

hypothesizing that liraglutide might improve NAFLD/

NASH by reducing steatosis, inflammation and fibrosis

independently of weight loss.

MATERIAL AND METHODS

Animals, diets, treatments. All experimental protocols

were performed in accordance with the Swiss animal

welfare laws. Fourteen-week-old C57BL/6J male mice

(Charles River Laboratories) were acclimatized for 1

week in standard conditions (22˚C, 12h-light/12h-dark

cycle, free access to water and food). Thereafter, mice

were fed with a regular chow diet (RM3, SDS; Chow

group) or a MCD diet (A02082002BR, Research Diets;

MCD and MCD/Lira groups) for 7 weeks. During the

last 4 weeks of the experiment, mice were either

infused with isotonic saline solution (Chow and MCD

groups) or with liraglutide (0.1 ml/h of Victoza, Novo

Nordisk [6 mg liraglutide/ml]; MCD/Lira group) via

micro-osmotic pumps (Model 1004D, Alzet). Food

intake and body weight were monitored weekly during

the experiment. A schematic representation of the

study protocol is illustrated in Fig 1. At the end of the

experiment, mice were fasted 4 hours, anesthetized

with isoflurane and immediately sacrificed. The

osmotic pumps were retrieved and emptying was

checked to confirm liraglutide release. Blood samples

were collected, and organs were dissected and weighed

before fixation or cryopreservation in liquid nitrogen.

Blood analyses. Blood samples were collected in

EDTA-coated tubes and plasma was stored at �80˚C.

Plasma levels of glucose, ALT, AST, total cholesterol, tri-

glycerides and free fatty acids were assessed using a Cobas

C111 robot and appropriate reagents (Roche Diagnostics).

Plasma levels of insulin were measured using an ultrasensi-

tive mouse insulin ELISA kit (Mercodia).

Gene expression. Total RNA was isolated from 50 to

100 mg liver samples using TRI Reagent Solution

(ThermoFisher). Five hundred ng of total RNA were

reverse transcribed using the PrimeScript RT reagent

kit (Takara) and gene expression levels were assessed

by quantitative PCR using the Power SYBR Green

master mix (Thermofisher) and a Light-Cycler 480

(Roche Diagnostics). Normalization was done using

the 40S ribosomal protein S29 (RPS29) gene.

Histology, morphometry, pathological score. Liver and

the distal part of the intestine (ileum) were either fixed

overnight in 10% formalin before dehydration and

embedded in paraffin or immediately embedded in

OCT medium (Cell path LTD) and frozen on dry ice

before storage at �80˚C. Paraffin-embedded sections

were stained with hematoxylin-eosin (H&E), Sirius

red, Periodic Acid Schiff’s solutions and Ki67 antibody

using classical procedures. Frozen sections were

stained with Oil red O solution using classical proce-

dures. Pictures were acquired using a VS120 micro-

scope (Olympus). Steatosis and fibrosis quantifications

were achieved with Oil red O and Sirius red labeled

slides using the area measurement tool of the ImageJ

software (NIH). For fibrosis quantification, vessels,

exhibiting a massive confounding collagen staining,

were excluded from the analysis which represents only

collagen fibers emerging in the liver parenchyma. Two

independent liver lobes per animal were used for these

quantifications. Ileal villi and crypt sizes were mea-

sured on H&E stained sections with the strait segment

tool of ImageJ software. The pathological score,

including steatosis and activity (ballooning and lobular

inflammation) was evaluated by a trained pathologist

(CDV) blinded to the diets as previously described.23

Chow diet Chow diet + NaCl

MCD diet MCD diet + NaCl

MCD diet MCD diet + Liraglutide

Osmotic
pumps

3 weeks 4 weeks

Diet-induced
liver defects

Treatment

Chow

MCD

MCD/LiraC57BL/6 mice

Fig 1. Schematic representation of the study protocol. Fourteen-week-old C57BL/6J male mice were fed with

either a regular chow diet or a methionine-choline deficient (MCD) diet for 3 weeks to initiate liver defects mim-

icking human NASH. During the four last weeks of the experiment, mice were infused either with saline solution

(Chow and MCD groups) or with liraglutide (6 mg/ml, 0.1 ml/h) (MCD/Lira group) via micro-osmotic pumps.
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Lipidomic analysis. Lipid extraction and lipidomic

analyses were performed as previously described.24,25

Lipids were isolated from 20 mg of liver tissue. After

extraction, the organic lipid containing phase was dried

in a vacuum concentrator (CentriVap, Labconco). Lip-

ids were then dissolved in chloroform/methanol and

divided into 3 aliquots. One aliquot was treated by

alkaline hydrolysis to enrich for sphingolipids26 and

the other 2 aliquots were used for glycerophospholipids

and phosphorus assay, respectively. Mass spectrometry

analysis for the identification and quantification of

phospho- and sphingolipid species was performed on a

TSQ Vantage Triple Stage Quadrupole Mass Spec-

trometer (Thermo Fisher Scientific) equipped with a

robotic nanoflow ion source (Nanomate HD, Advion

Biosciences), using multiple reaction monitoring. Each

individual ion dissociation pathway was optimized

with regard to collision energy. Lipid concentrations

were calculated relative to the relevant internal stand-

ards and normalized to the phosphate content of each

lipid extract to account for variability in the amount of

starting material and to correct for sample loss during

the extraction procedure.

Microbiota analysis. DNA extraction. DNA was

extracted from about 30 mg colon content using

Quick-DNA Fecal/Soil Microbe Miniprep Kit (Zymo).

Purified DNA was quantified using the Qubit dsDNA

BR Assay Kit (Thermo Fisher Scientific) and stored at

�20˚C. Two negative controls were performed by

extracting DNA using the same extraction procedure

but omitting the addition of colon content.

Amplicon Sequencing. The V3�4 region of the bac-

terial 16S rRNA genes (Escherichia coli positions

341�805) was amplified using 1 ng of DNA extracted

from colon content samples or 5 mL of the DNA extract

obtained from negative controls in a 25 mL volume of

ZymoBIOMICS PCR PreMix (Zymo Research) contain-

ing each of 0.4 mM forward primer 5’-barcode-

CCTACGGGNGGCWGCAG-3’ and reverse primer 5’-

barcode-GACTACHVGGGTATCTAATCC-3’ tagged

with 8-nt barcodes at their 5’ends (Fasteris, Plan-les-

Ouates, Switzerland). The PCRs were carried out with

an initial denaturation at 95˚C for 3 minutes, followed

by 30 cycles of denaturation at 95˚C for 30 seconds,

annealing at 51˚C for 30 seconds, and extension at

72˚C for 60 seconds, and a final extension at 72˚C for

10 minutes. Duplicate PCRs of each sample were

combined and run (1 mL) on a 2100 Bioanalyzer (Agi-

lent Technologies) for quality analysis and quantifica-

tion. The sequencing library was constructed using

the MetaFast protocol (Fasteris, Plan-les-Ouates,

Switzerland). The sequencing was carried out for

2£ 300 cycles on an Illumina MiSeq instrument using

MiSeq Reagent Kit v3.

Bioinformatics analysis. Libraries were demultiplexed

using the Fasteris internal software. No mismatches

were allowed in a barcode and a maximum of 2 mis-

matches were allowed per 16S primer sequences. Trim-

momatic v.0.3227 was used to remove Illumina adapters

and to trim reads, by cutting them once the average

quality within the 4-base window fell below a quality

score of 15. Reads with a final length <60 bases were

discarded. Forward and reverse reads were further qual-

ity-filtered and paired-end-joined with PEAR v.0.9.1128

using the following settings: maximum assembly length

(�m) 470; minimum assembly length (�n) 390; mini-

mum overlap (�v) 20; minimum read size after trim-

ming (�t) 240; P value (�P) 0.0001; maximal

proportion of uncalled bases (�u) 0; and quality score

threshold in trimming (�q) 33. The merged sequences

were subjected to the UPARSE pipeline (USEARCH

v.8.1.1861)29 for clustering into operational taxonomic

units (OTUs) at 97% identity. Taxonomic assignment of

the representative OTUs was performed using

MOTHUR v.1.39.530 classify.seqs command (with

method =wang, �cutoff = 80) and the EzBioCloud 16S

rRNA gene sequence database31 downloaded on 4 Janu-

ary 2018. We removed OTUs that (1) had an average

relative abundance higher in the negative controls than

in colon content samples or (2) had <90% identity to

reference prokaryotic EzBioCloud 16S sequences as

revealed by USEARCH (-usearch_global -id 0.9

-query_cov 0.99).32 Normalization of OTU counts

for sequencing depth (110,000) was performed using

the “rrarefy” command from the R vegan package.

Sequencing data were submitted to the European

Nucleotide Archive (ENA; www.ebi.ac.uk/ena;

study number: PRJEB36797).

Statistical analyses. Statistical analyses of the data

using 1-way ANOVA was performed using the Graph-

Pad Prism version 7.02 software. Graphs represent

mean + standard error of the mean (SEM). Clustered

heat map was generated in R using the heatmap.2 func-

tion of the “gplots” package. A P value< 0.05 was

considered statistically significant.

RESULTS

Liraglutide does not change energy homeostasis or

carbohydrate metabolism in mice on an MCD diet. First,

we investigated the metabolic action of liraglutide in

the nutritional context of the MCD-diet. Previous stud-

ies have shown that GLP-1Ra, like liraglutide, reduce

food intake in rodents.33 Here, we confirmed that mice

fed an MCD-diet eat approximately 30% less than

mice fed a chow diet (Fig 2A). Nevertheless, liraglutide

did not potentiate the anorexic effect of the MCD-diet.
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In fact, MCD diet-fed mice infused with liraglutide ate

the same amount of food as those infused with saline

solution (Fig 2A). Similarly, body weight (Fig 2B), epi-

didymal white adipose tissue mass (Fig 2C), interscap-

ular brown adipose tissue mass (Fig 2D), glycemia

(Fig 2E), and insulinemia (Fig 2F) were all signifi-

cantly decreased by the MCD-diet consumption but

unaffected by liraglutide administration. The homeo-

stasis model assessment index, considered as a good

marker of whole body insulin sensitivity, was greatly

improved in the MCD-diet group but unchanged by lir-

aglutide (Chow: 28.9 § 1.8, MCD: 2.5 § 0.5, MCD/

Lira: 4.3 § 1.4, P= 0.22 for MCD/Lira vs MCD

groups). Taken together, these results showed that lira-

glutide infusion did not impact energy homeostasis or

basal glycemic control in mice on the MCD-diet,

allowing us to investigate directly the hepatic action of

liraglutide independently of potentially confounding

metabolic effects.

Liraglutide changes hepatic lipid composition

qualitatively but not quantitatively. Relative liver weight

was not statistically different between Chow, MCD

and MCD/Lira groups (Fig 3A). Circulating levels of

alanine aminotransferase (Fig 3B), aspartate amino-

transferase (Fig 3C) and free fatty acids (Fig 3D),

increased significantly by the MCD-diet, were not fur-

ther modified by liraglutide treatment. Similarly, hypo-

cholesterolemia (Fig 3E) and hypotriglyceridemia

(Fig 3F) were comparable in MCD diet-fed mice

infused with saline solution or liraglutide. As expected,

histological hepatic sections stained with H&E and

Oil-red O revealed that livers of MCD diet-fed mice

displayed significant steatosis and lobular inflamma-

tion, while their hepatocytes presented only mild bal-

looning (Fig 3G, J). Lipids, representing more than

20% of the liver area in MCD diet-fed mice (Fig 3G,

H), mostly accumulated as single droplets (ie, macro-

steatosis; Fig 3G, I). Liraglutide infusion did not quan-

titatively affect hepatosteatosis in MCD diet-fed mice

(Fig 3G�J), in accordance with unchanged gene

expression of central regulators of lipid metabolism

(Fig 3K). Nevertheless, lipid species differ in terms of

lipotoxicity.34,35 To evaluate potential changes in lipid

composition, we analyzed the hepatic content of over

900 lipid species by targeted mass spectrometry. Hier-

archical clustering analysis based on fold-change com-

pared to the Chow group (Fig 4A) highlighted lipid

species significantly changed between the MCD and

the MCD/Lira groups. Interestingly, the marked

increases in C16 and C24-ceramide (Fig 4B) and sphin-

gomyelins (Fig 4C) levels observed in the liver of

MCD diet-fed mice were partly alleviated in the liver

of MCD diet-fed mice treated with liraglutide. Differ-

ent biochemical pathways (de novo ceramide biosyn-

thesis vs degradation of sphingomyelin into ceramide)

converge toward the generation of ceramide (Fig 4D).
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Fig 2. Liraglutide infusion does not modify energy homeostasis or carbohydrate metabolism in mice fed a MCD

diet. (A) Food intake before and after saline/liraglutide infusion (g per day). (B) Body weight at the end of the

experiment (after 7 weeks of chow/MCD-diet consumption and 4 weeks of saline/liraglutide infusion) (g). (C)

Epididymal white adipose tissue (eWAT) mass (g). (D) Brown adipose tissue (BAT) mass (g). (E) Circulating

glucose levels (mmol/L). (F) Circulating insulin levels (ng/mL). Results are expressed as the mean § SEM.

n = 9�12 male mice per group. One-way ANOVA: *P value for MCD or MCD/Lira vs Chow< 0.05, #P value

for MCD/Lira vs MCD< 0.05.
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Gene expression of key enzymes involved in ceramide

production was increased in MCD diet-fed mice com-

pared to mice fed with a chow diet (Fig 4E). Further-

more, gene expression of Sptlc2, cerS4, and cerS6 was

downregulated by liraglutide, suggesting a broad effect

on sphingolipid metabolism.

Beyond their structural function, the degree of fatty

acid saturation of lipid species also impacts the hepatic

status.36-38 To analyze the degree of fatty acid satura-

tion/desaturation, we measured the levels of phospholi-

pids harboring (1) only 1 double bond in both fatty acyl

chains combined (considered as monounsaturated fatty

acids, MUFA); (2) between 2�6 double bonds in their 2

fatty acyl chains (considered as polyunsaturated fatty

acids, PUFA); and (3) no double bonds in their 2 fatty

acyl chains (considered as saturated fatty acids, SFA).

Hepatic PUFA lipids showed a trend to decrease in

MCD/Lira mice compared to chow diet-fed mice while

MUFA lipids were similarly decreased in the MCD and

MCD/Lira groups compared to the Chow group

(Fig 4F). Saturated fatty acid containing lipids were spe-

cifically decreased in the MCD/Lira group compared to

the Chow and MCD groups (Fig 4F). Among qualitative

changes in lipid composition, the length of the fatty acid

chain is another important feature for cell membrane

permeability/fluidity.35 Phospholipids with long chains

(LC), harboring a combined carbon number of 28�34 in

both fatty acyl chains, were reduced in both the MCD

and MCD/Lira groups (Fig 4G). In contrast, phospholi-

pids with very long chains (VLC), harboring 38�44 car-

bons, remained unchanged in the Chow, MCD, and

MCD/Lira groups (Fig 4G).

Liraglutide limits inflammation and initiation of fibrosis in

mice on an MCD-diet. To further explore the pathology

of hepatic inflammatory infiltrates in the MCD/Lira

and the MCD groups of mice, we extended the analysis

to expression of immune cell markers by means of

quantitative real-time PCR. In the liver, macrophages

are considered key players, even initiators, of the

inflammatory process and are classified according to
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their tissue of origin or their activation state.39,40

Molecular markers of both liver-resident Kupffer cells

(F4/80, Tlr4, Tlr9) and monocyte-derived macrophages

(Ly6c, Ccr2) were all overexpressed in the MCD group

and normalized in the MCD/Lira group (Fig 5A). Simi-

larly, markers of classically activated (pro-inflamma-

tory) M1 macrophages (Cd14, Tnfa) were up-regulated

in the MCD group and significantly reduced in the

MCD/Lira group (Fig 5A). In contrast, no difference

was observed between the MCD and the MCD/Lira

group regarding the expression of alternatively acti-

vated (anti-inflammatory) M2 macrophage markers

(Arg1, Cd206, Retnla, Cd163; Fig 5A). Markers of

myeloid dendritic cells (Cd11c, MHCII, Cd86; Fig 5,

B) and activated hepatic stellate cells (Acta1 and Vim,

involved in the deleterious epithelial-mesenchymal

transition, Fig 5C) were significantly reduced by lira-

glutide treatment. In accordance, the expression of sev-

eral pro-fibrogenic genes was lower in the MCD/Lira

group compared to the MCD group (Fig 5D), including

Timp1, Serpine1, Mmp13. Even more strikingly,

Tgfb1 and genes encoding collagen proteins showed

the same basal levels of expression in the MCD/Lira as

in the Chow group (Fig 5D). Our experimental set-up

(7 weeks of MCD-diet consumption) allowed initiating

but not observing a massive fibrosis. Nevertheless, his-

tological staining of hepatic sections with Sirius red

showed that the administration of liraglutide reduced

the number and the size of collagen fibers in livers of

MCD diet-fed mice (Fig 5E). Quantitatively, MCD

diet-fed mice exhibited a 7-fold increase in the Sirius

red positive area of liver parenchyma compared to

mice fed a chow diet (Fig 5F). Per comparison, MCD

diet-fed mice treated with liraglutide exhibited a signif-

icantly attenuated 4-fold increase in Sirius red positive

area compared to chow diet-fed mice (Fig 5F).

Liraglutide impacts the gut-liver axis.As an enterokine,

GLP-1 production is regulated by the gut
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microbiota.41,42 In turn, GLP-1R agonism can modify

intestinal bacteria populations.14,43 In this context, we

analyzed and compared the changes in gut microbiota

composition in our 3 experimental groups based on

sequencing of 16S rRNA gene amplicons. The overall

bacterial diversity, measured by the Shannon diversity

index, was lower in MCD diet-fed mice, whether treated

or not treated with liraglutide (3.37 § 0.46 and 2.98 §
0.23, respectively) than in control mice (4.70 § 0.33).

At the phylum level, MCD-diet consumption increased

the relative proportion of Firmicutes and massively

decreased that of Bacteroidetes (Fig 6A). Among Firmi-

cutes, MCD-diet promoted an overall increase in the rel-

ative abundance of the family Erysipelotrichaceae,

mostly due to the increase in genera Turicibacter and

Allobaculum while the genus ASBT decreased (Fig 6B,

C). MCD-diet was also associated with increased rela-

tive proportions of Clostridiaceae (notably represented

by Clostridium), Lactobacillaceae (Lactobacillus) and

Peptostreptococcaceae (Romboutsia) and reduced pro-

portions of Lachnospiraceae (Eisenbergiella, Clostridium

g21, and KE159538; Fig 6C). The global decrease in

Bacteroides under MCD-diet was mainly due to a drop

in the relative abundance of the family S24-7 and genera

belonging to it.

The main effects of liraglutide administration in the

MCD nutritional context was the relative increase in

Allobaculum vs Turicibacter and the normalization of

the Bacteroides content (Fig 6C). Extending the investi-

gations to the gut environment, we observed that gross

ileal morphology was markedly impacted by the MCD

diet. Villi and crypts were significantly shorter in MCD

diet-fed mice compared to chow diet-fed mice (Fig 6D,

E). Absolute and relative numbers of proliferative

(Ki67-positive) cells were significantly reduced in MCD

diet-fed mice whilst liraglutide treatment partially

restored the relative proportion of proliferative cells

(Fig 6F, G). Finally, the MCD-diet reduced the number

of goblet (mucus-producing) cells by 2-fold, which was

attenuated by liraglutide infusion (Fig 6H, I).

DISCUSSION

Liraglutide is an efficient antidiabetic drug, recently

approved to treat obesity.44 However, the clinical
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impact of liraglutide on NAFLD/NASH remains elu-

sive. Some studies reported an anti-steatotic action in

diabetic patients,22,45-51 but this was not confirmed by

other studies.52,53 In vivo rodent studies also reported

anti-steatotic activity of GLP-1Ra, but most often sec-

ondary to weight loss or insulin sensitization in situa-

tions of positive energy balance, such as in ob/ob

mice,14 diet-induced obese (DIO) mice14-16 and DIO-

rats.17-20 In vitro studies suggested that GLP-1Ra exert

diverse actions on hepatocytes, including prevention of

endoplasmic reticulum stress,9 activation of AMP-acti-

vated protein kinase,10-12 inhibition of lipogenesis10 or

modulation of insulin signaling.11-13

The MCD diet has long been considered a gold stan-

dard to study nutritional NASH. This diet also causes

an increase in energy expenditure linked to suppression

of hepatic expression of stearoyl-coenzyme A desatur-

ase-1 (SCD-1), the enzyme that catalyzes the rate-lim-

iting step in the formation of MUFAs.54 As MCD diet-

fed mice did not respond to peripheral signals (hypoli-

pidemia, hypoglycemia, hypoinsulinemia, hypoleptine-

mia) aimed at increasing their food intake,7,54-55 they

developed NASH in a state of negative energy balance

and weight loss.

Here, we observed that liraglutide does not influence

body weight and glycemic parameters in the MCD-diet

context, allowing us to dissociate its direct hepatic

action from confounding, indirect metabolic effects.

First, we observed no change in hepatic neutral lipid

storage in response to liraglutide infusion in MCD diet-

fed mice. Partitioning of lipid droplets (macro vs micro

steatosis) as well as gene expression of lipid enzymes

and transporters were also unaffected by liraglutide.

Together, these data indicate no direct lipid-lowering

action of liraglutide in the liver of this lean NASH

model, suggesting that the anti-steatotic action previ-

ously observed could be secondary to weight loss and/

or improved insulin sensitivity. Nevertheless, beyond

the total hepatic lipid content, enrichment in some lipid

species/intermediates is linked to liver insulin-resis-

tance and progression of NASH.56-59 Thus, we

extended our investigations to the hepatic lipid compo-

sition through LC-MS. This approach revealed that lir-

aglutide could limit the MCD-diet-induced

H&E

50 um

Chow MCD MCD/Lira

0

100

200

300

Vi
llu

s
he

ig
ht

(
m

)

*

0

50

100

150
Cr

yp
th

ei
gh

t(
m

)

* *

0

10

20

30

Nb
Ki

67
+

ce
lls

/c
ry

pt

* *

0

5

10

15

G
ob

le
tc

el
l/v

ill
us

*

#
*

0

5

10

15

20

%
G

ob
le

tc
el

l/v
il l

us #
*

Ki67

Chow MCD MCD/Lira

PAS

Chow MCD MCD/Lira
Chow
MCD
MCD/Lira

C

D

E

F

G

H

I

A

B

Erysipelotrichaceae

0

1 0

2 0

3 0

4 0

5 0

R
el

at
iv

e
ab

u
n

d
an

ce
(%

)

*

T u r ic ib a c te r
0

1 0

2 0

3 0

4 0

5 0

*

*

A llo b acu lu m

#

p
=

0
.0

5

0

5

1 0

1 5

2 0

*
*

A S T B

p
=

0
.0

6

Lactobacillaceae

0

1 0

2 0

3 0

4 0

5 0

*

*

L ac to b a c illu s

Bacteroidaceae

0

1

2

3

4

*

B a c te ro id e s

#

Clostridiaceae

0

2 0

4 0

6 0

R
el

at
iv

e
ab

u
n

d
an

ce
(%

)

*

*

C lo s trid iu m

Lachnospiraceae

0

2

4

6

* *

C lo s trid iu m g 21
0

2

4

6

8

p
=

0
.0

7

*
E ise n b e rg ie lla

*

Peptostreptococcaceae

0

2

4

6

* *

R o m b o u ts ia

p
=

0
.0

6

0

1 0

2 0

3 0

4 0

* *

K E 1 5 9 5 3 8 _ g

0 5 0 1 0 0

Chow

MCD

MCD/
Lira

Relative abundance (%)

Erysipelotrichaceae
Ruminococcaceae
Lachnospiraceae
Clostridiaceae
Lactobacillaceae
S24-7

Others

Chow MCD MCD/Lira Bacteroidetes
Firmicutes
Proteobacteria
Actinobacteria
Others

0

2 0

4 0

6 0

8 0

1 0 0

%
K

i6
7+

ce
lls

/c
ry

p
t

*
#

Fig 6. Liraglutide infusion impacts gut microbiota composition and epithelium proliferation in MCD diet-fed

mice. Relative abundance of predominant bacterial phyla (A) and families (B) of gut bacteria. (C) Differentially

abundant genera between the 3 groups of mice. Histological sections of ileum stained with hematoxylin and

eosin (D), Ki67 antibody (F) and Periodic Acid Schiff (H). (E) Quantification of ileal villus and crypt heights (in

mm). (G) Quantification of Ki67+ cells per crypt expressed as absolute or relative values. (I) Quantification of

goblet cells per villus expressed as absolute or relative values. Results are expressed as the mean § SEM. n = 6

male mice per group (panel A�C), n = 6�7 male mice per group (panel D-I). One-way ANOVA: *P value for

MCD or MCD/Lira vs Chow< 0.05, #P value for MCD/Lira vs MCD< 0.05.

Translational Research
Volume 227 Somm et al 83

https://doi.org/10.1016/j.trsl.2020.07.008


accumulation of C16 and C24-ceramides/sphingomye-

lins, confirming previous studies implicating these lipid

intermediates in metabolic disorders. In fact, CerS2+/�

mice presenting high C16-ceramides levels are prone

to diet-induced steatohepatitis and insulin resistance.60

CerS6 deficiency61 or silencing,62 which reduces C16-

ceramides levels, allows DIO resistance and improve-

ment in insulin sensitivity and hepatic steatosis. Differ-

ent pharmacological interventions have also shown a

concomitant reduction in ceramide species and amelio-

ration of NASH. Antagonism of peripheral can-

nabinoid�1 receptor reversed the HFD-induced

increase in CerS6 expression and ceramide C16:0 syn-

thase activity.63 Myriocin, an inhibitor of ceramide

synthesis, reduced C16 and C24 ceramides in mice fed

a western diet, improving several metabolic parameters

including liver fibrosis.64 To our knowledge, the effect

of GLP-1Ra on hepatic ceramide accumulation has not

been previously reported. Furthermore, GLP-1Ra

Exendin-4 has been shown to prevent ceramide accu-

mulation in cardiac progenitor cells65 as well as in the

heart of Dgat�/� mice.66 Different biochemical path-

ways converge towards the generation of ceramide,

including de novo ceramide biosynthesis and degrada-

tion of sphingomyelin into ceramide.67 In our study,

concomitant upregulation of C16/C24-ceramide and

C16/C24-sphingomyelin species, as well as gene

expression patterns of Sptlc2 and CerS6, suggest that

different sphingolipid pathways are also involved in

both the MCD diet-induced ceramide enrichment and,

accordingly, ceramide suppression induced by liraglu-

tide. This observation is in accordance with studies

showing that sphingolipid metabolism leading to cer-

amide synthesis is upregulated in NAFLD.68,69

Ceramides play an important role in NASH via their

crosstalk with inflammatory mediators. Chronic

inflammation in the liver (in particular the rise in TNF-

a levels) can initiate ceramide production in hepato-

cytes and, in turn, ceramides can increase cytokine

secretion.70 In humans, sphingolipid species also corre-

late with hepatic inflammation, suggesting a role for

these metabolites during progression from steatosis to

NASH.71 Kupffer cells, the liver resident macrophages,

are early responders to hepatocyte injuries, driving

TNF-a production.72 This initial inflammatory event

seems to be targeted by liraglutide. In fact, the MCD

diet-induced overexpression of Kupffer cell markers

(F4/80, Tlr4) and Tnfa are, respectively, fully normal-

ized and consistently alleviated by liraglutide infusion.

Macrophage polarization is another important process

in the control of inflammation. In fact, depending on

multiple factors (for example presence of microbes or

damaged tissues), macrophages can oscillate between a

classically (pro-inflammatory/M1) activated state or an

alternatively (anti-inflammatory/M2) activated state.73

A previous study reported that liraglutide modulates

Kupffer cell polarization leading to an anti-inflamma-

tory-M2 status.74 Nevertheless, even if we presently

observe that liraglutide attenuates MCD-diet induced

expression of M1 macrophage markers, we did not

detect any enrichment in M2 macrophage markers in

our liraglutide-treated mice. Taken together, our

results show that liraglutide administration promotes

hepatic anti-inflammatory action in MCD-diet-fed

mice, in line with its anti-inflammatory properties

previously described in adiponectin/ApoE defi-

ciency,75 high-fat/high-cholesterol diets18,76 and dia-

betic patients.21,46,77-79

A prolonged pro-inflammatory status can trigger

fibrosis, a physio-pathological process with an imbal-

ance between extracellular matrix deposition and reab-

sorption. Importantly, the severity of hepatic fibrosis is

an independent predictor of disease evolution and mor-

tality.80 In addition to anti-inflammatory actions, we

observed that liraglutide presents an anti-fibrotic activ-

ity. In fact, the expression of the master regulator of

fibrosis initiation (Tgfb1) as well as downstream genes

mediating epithelial�mesenchymal transition and

extracellular matrix remodeling, all increased by the

MCD-diet consumption, were alleviated or fully nor-

malized by liraglutide administration. Histologically,

our experimental set-up (7 weeks of MCD-diet expo-

sure) allowed us to observe the early stage of collagen

accumulation. Collagen fiber deposits in liver paren-

chyma appear limited by approximately 40% in the lir-

aglutide-treated group. In accordance, a previous study

showed suppression of fibrotic phenotypes in MCD

diet-fed mice treated with the GLP-1Ra exenatide.81 In

humans, anti-fibrotic properties of liraglutide are still

debated. Liraglutide reduced liver fibrosis in obese

women with polycystic ovary syndrome82 and in some

cohorts of type 2 diabetic patients21,77 but not in

others.53 By what means liraglutide could dampen the

fibrosis initiation remains an open question. Activation

of hepatic stellate cells (HSCs) into proliferative, fibro-

genic myofibroblasts is a key step in hepatic fibrosis

progress both in experimental models and human liver

NASH.83 Interestingly, liraglutide can directly de-acti-

vate HSCs in vitro.84 Further work is now required to

evaluate the role of liraglutide on HSCs biology in

vivo, in particular regarding their proliferation, differ-

entiation and survival. In this way, it has been recently

shown that GLP-2R is expressed in HSCs and that

HSCs activation and fibrosis were increased in livers of

Glp2r�/� mice.85

Recently, signals from the gut were identified as

important contributors to the pathogenesis of liver dis-

orders.86,87 In particular, the relationship between gut
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microbiota and inflammatory status of the liver has

been widely studied. Our results showed modulation of

hepatic gene expression of Tlr4 and Tlr9 (involved in

the coupling between recognition of bacterial com-

pounds and production of pro-inflammatory cytokines),

which led us to analyze gut microbiota composition

through NGS in our different experimental groups. The

most impressive changes in gut microbiota composi-

tion, as a result of the MCD-diet consumption, were

the reduction in the Bacteroidales S24-7 family, Lach-

nospiraceae and Erysipelotrichaceae ASTB. In con-

trast, the MCD-diet led to massive increases in the

relative proportions of Clostridium, Turicibacter, Allo-

baculum, and Lactobacillus genera. These observations

only partially recapitulate changes previously reported

in the same nutritional context. A rise in Clostridium

and Turicibacter proportions were in agreement with a

previous study in MCD diet-fed mice.88 In contrast,

changes in the relative abundance of Lactobacillus

showed an inverse trend (increase) as compared to ear-

lier studies.89,90

Liraglutide treatment allowed for a full recovery of

the relative proportion of Bacteroides which was

decreased by the MCD-diet. Interestingly, several

interactions between Bacteroides species and the host

immune system have been reported,91-93 suggesting

that an adequate presence of this bacterial genus is

required in the microbiota in order to control the

inflammatory balance. Among the Erysipelotrichi fam-

ily, liraglutide treatment also favors the enrichment in

Allobaculum at the expense of Turicibacter. How these

microbiome changes contribute to the observed action

of liraglutide remains to be elucidated. In fact, techni-

cal limitations in the culture of anaerobic bacteria as

well as the absence of genera selective antibiotics hin-

der experimental fine-tuning of gut microbiota compo-

sition. Nevertheless, from a translational point of view,

it is interesting to note that the relative proportion of

Erysipelotrichi also correlates with the percentage

change in the liver fat content during low choline diet

consumption in human clinical studies.94 Of note, the

liraglutide-induced shift in gut microbiota composition

appears to be highly diet-dependent. In fact, in

response to liraglutide, the main changes observed in

HFD-fed mice (concerning Proteobacteria and Akker-

mansia muciniphila)14 are not observed in our MCD

diet-fed mice.

By expanding our investigations to the intestine,

which represents both a host/microbiota interface and

the tissue source of endogenous GLP-1, we observed

that liraglutide infusion does not restore villus or crypt

height in MCD diet-fed mice. However, liraglutide

increased the level of proliferative cells in the crypt, in

line with the reversible intestinotrophic action of

exendin-4 previously observed in rats95 and that of lira-

glutide in mice.96 This trophic action seems effective

under physiological conditions, but not under patho-

physiological conditions. In the ApcMin/+ mice model

of colon cancer, GLP-1Ra did not increase crypt cell

proliferation but rather stimulated crypt fission.97 The

preservation of mucus-producing cells, conferred by

liraglutide, in the MCD-diet deserves further investiga-

tion, in particular to understand if this process could

explain the observed change in gut microbiota.

In conclusion, liraglutide treatment led to a concomi-

tant decrease in deleterious ceramide/sphingomyelin

species, inflammation and initiation of fibrosis in the

liver of MCD diet-fed mice, independently of weight

loss and global liver steatosis. These results confirm a

direct beneficial hepatic action of the GLP-1Ra liraglu-

tide, with potential translational relevance for T2D

patients affected by NASH.
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