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Abstract

The focus of this thesis is twofold. First, it delivers a new look at existing simulation-
based methods for statistical inference in parametric problems. Emphasis is placed on
finite sample theoretical properties and computational efficiency. In particular, a simple
and computationally efficient method for inference is proposed. It is shown that exact
inference may be claimed in theory in some situations even though sample size is kept
fixed. Numerical examples demonstrate the wide applicability of this method. Second, a
general class of flexible models for dependent random phenomena is studied. Emphasis is
placed on problems of point estimations due to the presence of outliers or because of the
underlying computational burden. To tackle these issues, a new multi-step robust and
computationally efficient estimator is proposed. Asymptotic properties are studied along
with illustrative examples.





Résumé

Cette thèse comporte deux parties. Premièrement, elle délivre un nouveau regard sur
différentes méthodes par simulations développées pour faire de l’inférence statistique
sur des problèmes paramétriques. Le focus est porté sur les propriétés théoriques en
échantillon fini et les problèmes computationnelles. En particulier, une méthode simple et
computationnellement éfficiente est proposée. Il est démontré qu’il est possible d’obtenir
une inférence exacte dans certaines situations tout en gardant la taille d’échantillon
fixe. Des examples numériques illustrent le vaste champ d’application de cette méthode.
Deuxièmement, une classe générale de modèles pour des variables aléatoires dépendantes
est étudié. Les sujets principaux sont les problèmes d’estimation ponctuelles dûs à
la présence de données aberrantes ou à cause de problèmes computationnelles. Afin
d’adresser ces questions, un nouvel estimateur robuste et computationnellement efficient
est proposé. Ses propriétés asymptotiques sont étudiées. Des examples viennent illustrer
ces résultats.
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Introduction

The initial goal of this thesis was to develop an estimator both robust to outliers and
computationally feasible when modeling multivariate data with copula models. While
pursuing this objective, many discoveries have been made, enlarging thereby significantly
the scope of study. This manuscript presents a substantial part of these findings in two
separate chapters:

1. The proposal of a multi-purpose finite-sample inferential framework.

2. A framework for multi-step robust estimators tailored to copula models.

These two chapters may be read as stand-alone and separate research papers. However,
they have many common grounds, which are duly noticed along the chapters. A common
philosophy that underlies both chapters is the computational feasibility of the methods.
The numerical aspect of the proposed methodologies is indeed a permanent motivation for
both chapters. In a broad sense, what is understood by feasible is that, for a given method
requesting numerical resources, a user should be able to make inference about unknown
quantities of a parametric probabilist model within a reasonable time. Of course, this
reasonability depends upon the computational power at the user’s disposal, the software
implementation and the limit in time fixed by, or imposed to, the user and is therefore
intrisincally subjective. Nonetheless, computational feasibility is highlighted on many
occasions, it is especially appreciated under the lights brought by alternative methods.
A third and final chapter combining useful theoretical results for the two other chapters
ends the thesis.

Chapter 1 has the widest scope of application. It proposes a new look at existing
simulation-based methods by demonstrating in the most general setting where apparently
separated methods are in fact equivalent, and where they are not. Capitalizing on this
comparison, a computationally efficient method is proposed for which the finite sample
and asymptotic properties are studied. In particular, it is shown that exact inference
may be claimed when the sample size is fixed under strong but commonly encountered
situations. Walkthrough and numerical examples demonstrate the applicability of the
method.

Chapter 2 is a research paper specific to parametric multivariate dependence models.
A general class of data generating process is studied leading to the proposition of an esti-
mating procedure. The interest is guided by situations where estimating the dependence
is a complex problem requiring multi-steps procedures. A special emphasis is on estima-
tors that are robust to outliers. The asymptotic properties of the proposed method are
examined as well as recommendation of practical implementation. The concept of robust-
ness is theoretically formalized with the influence function. It permits to appreciate not
only the proposed procedure, but also the robustness of other estimators. This chapter
ends with simulation studies and an application to the mobility of income in time.
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This thesis has also been frequently ponctuated by opportunities to work on a variety
of research projects. These opportunities materialize in the following list of publications
and advanced manuscripts:

� Guerrier, S., Orso, S., Victoria-Feser, M.-P. “Inference for Index Functionals”. In:
Econometrics, 6(2), 22, April 2018. https://doi.org/10.3390/econometrics6020022

� Branca, M., Orso, S., Molinari, R., Xu, H., Guerrier, S., Zhang, Y., Mili, N. “Is
Non-Metastatic Cutaneous Melanoma Predictable through Genomic Biomakers?”
In: Melanoma Research, 28(1):21–29, February 2018.
https://doi.org/10.1097/CMR.0000000000000412

� Guerrier, S., Mili, N., Molinari, R., Orso, S., Avella-Medina, M. and Ma, Y. “A
Predictive Based Regression Algorithm for Gene Network Selection”. In: Frontiers
in Genetics, 7:97, 2016. https://doi.org/10.3389/fgene.2016.00097

� Montet, X., Hofmeister, J., Burgmeister, S., Orso, S., Mili, N., Guerrier, S., Victoria-
Feser, M.-P., Muller., H. “Lung Nodule Classification by Data Mining and Artificial
Intelligence”. Submitted to Nature Medecine.

L Guerrier, S., Karemera, M., Orso, S., Victoria-Feser, M.-P. “On the Properties of
Simulation-based Estimators in High Dimensions”. Working paper.
https://arxiv.org/abs/1810.04443.

L Orso, S., Clausen, P., Guerrier, S., Skaloud, J. “Estimation of Inertial Sensor
Stochastic Characteristics under Varying Environmental Conditions”. Working pa-
per.

The first paper deals with inference problem concerning inequality indices in welfare
economics. In particular, it is demonstrated that in the situation where the data gen-
erating mechanism is a parametric model, only a subset of the parameters needs to be
estimated in order to conduct inference on a targeted index. It relates to the present
manuscript by the methodology employed. The three following papers are unrelated to
this thesis. In the oldest, an heuristic algorithm is developed for selecting input variables
based on their predictive capacity. The two other published or submitted papers high-
light the particular interest that such methodology found in gene selection and radiomic
problems. The two last research manuscripts are advanced working papers. On a theoret-
ical ground, the document entitled “On the Properties of Simulation-based Estimators in
High Dimensions” exposes the capicity of a simulation-based methods to correct for bias
in a general paradigm of estimation. This study is closely related to the present thesis.
The other working paper is unrelated to the thesis, it develops a method to include ex-
ternal variables in the modelisation of the stochastic signals issued from inertial sensors.
Nowadays, this is considered as an important problem for navigation system.

https://doi.org/10.3390/econometrics6020022
https://doi.org/10.1097/CMR.0000000000000412
https://doi.org/10.3389/fgene.2016.00097
https://arxiv.org/abs/1810.04443


List of notation

d
=: equality in distribution
p→: convergence in probability
 : convergence in distribution
o,O: order symbols
op,Op: stochastic order symbols

B(c, r),Bc(c, r): open, closed ball of center c and radius r
E: expectation

Cov: covariance
argmin, argzero: arguments of minima, roots

diag: diagonal of a matrix
rank: rank of a matrix
trace: trace of a matrix





1

SwiZs: Switched Z-estimators

On peut tromper mille fois une personne, on peut tromper une fois mille person-
nes, mais on ne peut pas tromper mille fois mille personnes.

– Emile, La Cité de la Peur

1.1 Introduction

The algorithmic principle of the bootstrap method is quite simple: reiterate the mech-
anism that produces an estimator on pseudo-samples. But when it comes to estimators
that are numerically complicated to obtain, the bootstrap is less attractive to use due
to the numerical burden. If one estimator is hard to find, reiterating compounds this
issue. Paraphrasing Emile in the French comedy La Cité de la Peur : we can implement
the bootstrap when the estimator is simple to obtain or we can compute a numerically
complex point estimator, but it is too computationally cumbersome to do both.

Although this limitation is purely practical and tends to be reduced by the ever in-
creasing computational power at our disposal, everyone would agree that it is nonetheless
attractive to have a method that frees the user from the computational burden, or at
least provides an answer within a reasonable time. In this chapter, we explore a special
case of the efficient method of moments ([GT96]) that encompasses both the computation
of numerically complex estimators and of a “bootstrap distribution” at a reduced cost.
The idea deviates from the algorithmic principle of the bootstrap: the proposed method
no longer attempts at reproducing the sample mechanism that lead to an estimator, but
instead, tries to find every estimators that may have produced the observed sample, or
more often, some statistics on the sample.

The idea is not new though, several methods follow this pattern. The indirect infer-
ence method ([GMR93; Smi93]) similarly attempts at finding the point estimate that lead
to statistics obtained from simulated samples as close as possible to the same statistics
on the observed sample. Mostly used in econometric and financial contexts, indirect in-
ference has been successfully applied to the estimation of stable distribution ([GRV11]),
stochastic volatility models ([Mon98; LC09]), financial contingent claims ([PY09]), dy-
namic panel models ([GPY10]), dynamic stochastic equilibrium models ([DGR07]), con-
tinuous time models ([GT10]), diffusion processes ([BSZ98]); but it has also been used in
queueing theory ([HF04]), robust estimation of generalized linear latent variable mod-
els ([MVF06]), robust income distribution ([Gue+18b]), high dimensional generalized
linear model and penalized regression ([Gue+18a]). Often presented as the Bayesian
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counterpart of the indirect inference, the approximate Bayesian computation ([Tav+97;
Pri+99]) aims at finding the values that match the statistics computed on simulated
samples and the statistics on the observed sample, with a certain degree approximation.
The method has however grown in a different context of applications. For example, it
has been successfully employed in population genetics ([BZB02]), in ecology ([Bea10]),
in evolutionary biology ([Cor+08; Wil+10]). Less popular, R.A. Fisher’s fiducial infer-
ence (see for instance [Fis22; Fis30; Fis33; Fis35; Fis56]) and related methods such as
the generalized fiducial inference ([Han09; Han13; Han+16]), D.A.S. Fraser’s structural
inference ([Fra68], see also [DSZ73]), Dempster-Shafer theory ([Sha76; Dem08]) and in-
ferential models ([ML13; ML15; Mar15]) follow a similar pattern, the main idea being to
find all possible values that permit to generate simulated sample as close as possible to
the observed sample, but without specifying any prior distribution.

Regardless of the difference in philosophy of the aforementioned methods, they have
in common that they are usually very demanding in computational resources when im-
plemented for non-trivial applications. This is a major difference with the approach we
endorse in this chapter. By letting the statistics be the solution of an estimating function
of the same dimension as the quantity of interest, we demonstrate that it is possible to
bypass the computation of the same statistics on simulated sample by directly estimating
the quantity of interest within the estimating function, resulting thereby in a potential
significant gain in computational time. In Section 1.3, we demonstrate in finite sample
that under some weak conditions the estimators resulting from our approach is equivalent
to the estimators one would have obtained using certain forms of indirect inference, ap-
proximate Bayesian computation or fiducial inference approaches, whereas it is different
than parametric bootstrap estimators, except in the case of a location parameter. This
section innovates on two aspects. First, it implicates that our approach can be employed
in practice to solve problems that relate to indirect inference, approximated Bayesian com-
puation and fiducial inference in a computationally efficient manner. Second, it proves
or disproves formally the link between the aforementioned methods, and this in the most
general situation as the results remain true for any sample size.

Constructing tests or confidence regions that controls over the error rates in the
long-run is probably one of the most important problem in statistics ever since at least
Neyman-Pearson famous article [NP33]. Yet, the theoretical justification for most meth-
ods in statistics is asymptotic. The bootstrap for example, despite its simplicity and
its widespread usage is an asymptotic method ([Hal92]); for the other methods, see for
example [Fra+18] for approximate Bayesian computation, [GMR93] for indirect inference
and [Han+16] for generalized fiducial inference. There are in general no claim about the
exactness of the inferential procedures in finite sample (see [Mar15] for one of the ex-
ceptions). In Section 1.4, we study theoretically the frequentist error rates of confidence
regions constructed on the distribution issued from our proposed approach. In particu-
lar, we demonstrate under some strong, but frequently encountered, conditions that the
confidence regions have exact coverage probabilities in finite sample. Asymptotic justifi-
cation is nonetheless provided in Section 1.5. In addition, we bear the comparison with
the asymptotic properties of indirect inference method to conclude that, surprisingly,
both approaches reach the same conclusion but under distinct conditions. Some leads are
evoked, but we lack to elucidate the fundamental reason behind such discrepancy.

Although the proposed method is first and foremost computational, surprisingly in
some situations explicit closed-form solutions may be found. We gather a non-exhaustive
number of such examples, some important, in Section 1.6. The numerical study in Sec-
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tion 1.7 ends this chapter. We study via Monte Carlo simulations the coverage probabil-
ities obtained from our approach and compare with others on a variety of problems. We
conclude that in most situations, exact coverage probability computed within a reasonable
computational time can be claimed with our method.

1.2 Setup

Let N (N+) be the sets of all positive integers including (excluding) 0. For any positive
integer n, let Nn be the set whose elements are the integers 0, 1, 2, . . . , n; similarly N

+
n =

{1, 2, . . . , n}.
We consider a sequence of random variables {xi : i ∈ N

+
n }, possibly multivariate, to

follow an assumely known distribution Fθ, indexed by a vector of parameters θ ∈ Θ ⊂ IRp.
We suppose that it is easy to generate artificial samples x∗ from Fθ. Specifically, we
generate the random variable x with a known algorithm that associates θ and a random
variable u. We denote the generating mechanism as follows:

x = g(θ,u).

The random variable u follows a known model Fu that does not depend on θ. Using this
notation, the observed sample is x0 = g(θ0,u0) and the artificial sample is x∗ = g(θ,u∗),
where u0 and u∗ are realizations of u.

Example 1.1 (Normal). Suppose x ∼ N(θ, 1), then four examples of possible generating
mechanism are:

1. g(θ,u) = θ + u where u ∼ N(0, 1),

2. g(θ,u) = θ +
√

2 erf−1(2u − 1) where u ∼ U(0, 1) and erf(z) = 2√
π

∫ z
0 e

−t2
dt is the

error function,

3. g(θ,u) = θ +
√

−2 ln(u1) cos(2πu2) where u = (u1,u2)T , u1 ∼ U(0, 1) and u2 ∼
U(0, 1),

4. g(θ,u) = θ + u2

√
−2 ln(u3)

u3
where u = (u1,u2,u3), u3 = u1 + u2, u1 ∼ U(0, 1),

u2 ∼ U(0, 1).

A possible counter-example is the following: g(θ,u) = u − θ where u ∼ N(2θ, 1). Clearly
x = g(θ,u), but this g is not adequate because the distribution of u depends on θ.

We now define the estimators we wish to study.

Definition 1.2 (SwiZs). We consider the following sequence of estimators:

π̂n ∈ Πn = argzero
π∈Π

1

n

n∑

i=1

φ (g (θ0,u0i) ,π) = argzero
π∈Π

Φn (θ0,u0,π) ,

θ̂(s)
n ∈ Θ(s)

n = argzero
θ∈Θ

1

n

n∑

i=1

φ (g (θ,u∗
si) , π̂n) = argzero

θ∈Θ

Φn (θ,u∗
s, π̂n) ,

where φ is an estimating function and s ∈ N
+
S . The estimators π̂n are referred as the

auxiliary estimators. Any sequence of estimators {θ̂(s)
n : s ∈ N

+
S } is called Switched Z-

estimators, or in short, SwiZs. The collection of the solutions is Θn = ∪s∈N
+
S
Θ(s)

n .
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Remark 1.3. The SwiZs in the Definition 1.2 may arguably be viewed as a special case of
the Efficient Method of Moment (EMM) estimator proposed by [GT96]. Indeed, to have
an EMM estimator the only modification to the Definition 1.2 is

θ̂
(s)
EMM,n ∈ Θ

(s)
EMM,n = argzero

θ∈Θ

1

H

H∑

h=1

Φn (θ,u∗
sh, π̂n) ,

where H ∈ N
+. Ergo, the SwiZs and EMM coincide whenever H = 1. Note that in

general the EMM is defined with H large and S = 1.

1.3 Equivalent methods

As already remarked, the SwiZs does not appear to be a new estimator. The SwiZs in fact
offers a new point of view to different existing methods as it federates several techniques
under the same hat. In this Section, we show the equivalence or disequivalence of the
SwiZs to other existing methods, for any sample size n, to conclude that the distribution
obtained by the SwiZs is (approximatively) a Bayesian posterior, and thereby that it is
valid for the purpose of inference.

The EMM and the indirect inference estimator of [Smi93; GMR93] are known to have
the same asymptotic distribution when dim(π) = dim(θ) (see Proposition 4.1 in [GM96]).
In the next result, we demonstrate that the SwiZs and a certain form of indirect inference
estimator are equivalent for any n.

Definition 1.4 (indirect inference estimators). Let π̂n and {uj : j ∈ N} be defined as in
the Definition 1.2. We consider the following sequence of estimators, for s ∈ N

+
S :

π̂
(s)
II,n(θ) ∈ Π

(s)
II,n = argzero

π∈Π

Φn (θ,u∗
s,π) , θ ∈ Θ,

θ̂
(s)
II,n ∈ Θ

(s)
II,n = argzero

θ∈Θ

d
(
π̂n, π̂

(s)
II,n(θ)

)
, π̂n ∈ Πn, π̂

(s)
II,n ∈ Π(s)

n ,

where d is a metric. We call {θ̂
(s)
II,n : s ∈ N

+
S } the indirect inference estimators. The

collections of solutions are denoted ΠII,n = ∪s∈N
+
S
Π

(s)
II,n and ΘII,n = ∪s∈N

+
S
Θ

(s)
II,n.

Remark 1.5. In Definition 1.4, we are implicitly assuming that Θ contains at least one
of, possibly many zeros, of the distance between the auxiliary estimators on the sample
and the pseudo-sample. Therefore, the theory is the same for any measure of distance
that we denote generically by d.

Remark 1.6. The indirect inference estimators in Definition 1.4 is a special case of the
more general form

θ̂
(s)
II,B,m ∈ Θ

(s)
II,B,m = argzero

θ∈Θ

d

(
π̂n,

1

B

B∑

b=1

π̂
(s)
II,b,m(θ)

)
,

B ∈ N
+, m ≥ n. In Definition 1.4 we fixed B = 1 and m = n. [GMR93] considered two

cases: first, B large, m = n and S = 1, second, B = 1, m large and S = 1. For both
cases, the ℓ2-norm was used as the measure of distance (see the preceding remark).

Assumption 1.7 (uniqueness). For all (θ, s) ∈ Θ × NS, argzeroπ∈Π Φn(θ,us,π) has a
unique solution
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Theorem 1.8 (Equivalence SwiZs/indirect inference). If Assumption 1.7 is satisfied, then
the following holds for any s ∈ N

+
S :

Θ(s)
n = Θ

(s)
II,n.

Theorem 1.8 is striking because it concludes that a certain form of EMM, the SwiZs,
and indirect inference estimators (as in Definition 1.4) are actually the very same estima-
tors, not only asymptotically, but for any sample size, and under a very mild condition.
Indeed, Assumption 1.7 requires the roots of the estimating function to be well separated
so there exists a unique solution. This requirement is unrestrictive and it is typically
satisfied. One may even wonder what would be the purpose of an estimating function for
which Assumption 1.7 would not hold. In this spirit, Assumption 1.7 may be qualified as
the “minimum criterion” for choosing an estimating function.

Even if the optimizer is perfect, Theorem 1.8 does not imply that the exact same values
are found using the SwiZs or the indirect inference estimators, but that they belong to the
same set of solutions, and thereby that they share the same statistical properties. Hence,
Theorem 1.8 offers us two different ways of computing the same estimators. Simple
calculations however show that the SwiZs is computationally more attractive. Indeed,
if we let k denotes the cost evaluation of Φn, l the numbers of evaluations of Φn for
obtaining an auxiliary estimator or the final estimator, then the SwiZs has a total cost
of roughly O(2kl) whereas it is O(kl + kl2) for the indirect inference estimator, so a
reduction in order of O(kl2). This computational efficiency of the SwiZs accounts for the
fact that it is not necessary to compute π̂II,n, and thus avoids the numerical problem of the
indirect inference estimator of having an optimization nested within an optimization. This
discrepancy is also, quite surprisingly, reflected in the theory we develop in Section 1.4
for the finite sample properties and in Section 1.5 for the asymptotic properties.

At first glance, the SwiZs may appear similar to the parametric bootstrap (see the
Definiton 1.9 below). If we strengthen our assumptions and think of the auxiliary estima-
tor as an unbiased estimator of θ, it is natural to think of the SwiZs and the parametric
bootstrap as being equivalent. In any cases, both methods use the exact same ingredients,
so we may wonder whether actually they are the same. The next result demonstrates that
in fact, they will be seldom equivalent.

Definition 1.9 (parametric bootstrap). Let π̂n and {uj : j ∈ N} be defined as in Defini-
tion 1.2. We consider the following sequence of estimators:

θ̂
(s)
Boot,n ∈ Θ

(s)
Boot,n = argzero

θ∈Θ

Φn (π̂n,u
∗
s,θ) , s ∈ N

+
S .

The collection of the solutions is ΘBoot,n = ∪s∈N
+
S
Θ

(s)
Boot,n.

Remark 1.10. For the solutions Θ
(s)
Boot,n in Definition 1.9 to be nonempty, the parametric

bootstrap requires that Πn ⊂ Θ. The SwiZs has not such requirement.

Assumption 1.11. The zeros of the estimating functions are symmetric on (θ,π), that
is

Φn(θ,us,π) = Φn(π,us,θ) = 0.

Theorem 1.12 (equivalence SwiZs/parametric bootstrap). If and only if Assumption 1.11
is satisfied, then it holds that

Θ(s)
n = Θ

(s)
Boot,n.
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Assumption 1.11 is very restrictive, so Theorem 1.12 suggests that in general the SwiZs
and the parametric bootstrap are not equivalent. This may appear as a surprise as only the
argument θ and π are interchanged in the estimating function. Then, if they are different,
the question of which one should be preferred naturally arises. We do not attempt at
answering this question, but we rather prefer to stimulate debates by giving motivations
for using the SwiZs. Popularized by [Efr79], the bootstrap has been a long-standing
technique for (frequentist) statistician, it is relatively straightforward to implement and
has a well-established theory (see for instance [Hal92]). On the other hand, although the
idea of the SwiZs has been arguably around for decades (see the comparison with the
fiducial inference at the end of this section), we lack evidence of its widespread usage, at
least not under the form presented here. When facing situations where π̂n is an unbiased
estimator of θ0, compared to the parametric bootstrap, the SwiZs is more demanding for
the implementation and is generally less numerically efficient (see Section 1.7) suggesting
that solving Φn(θ,π) in θ is computationally more involved than in π. However, in all the
other situations where for example π̂n may be an (asymptotically) biased estimator of θ0,
a sample statistic or a consistent estimator of a different model, the parametric bootstrap
cannot be invoked directly, at least not with the same form as in Definition 1.12. Indeed,
the parametric bootstrap requires π̂n to be a consistent estimator of θ0. Therefore, when
considering complex model for which a consistent estimator is not readily available at
a reasonable cost, the SwiZs may be computationally more attractive. The rest of this
section aims at demonstrating that the distribution of the SwiZs is valid for the purpose of
inference, whereas the following section theorizes the inferential properties of the SwiZs
in finite sample for which Sections 1.6 and 1.7 gather evidences. But before, having
emphasized their differences, we would like to share a rather common problem on which
the parametric bootstrap and the SwiZs are equivalent.

The condition under which the SwiZs and the parametric bootstrap are equivalent
(Assumption 1.11) is very strong and generally not met. There is one situation however
where this condition holds, if the inferential problem is on the parameter of a location
family as formalized in the next Proposition 1.13.

Proposition 1.13 (equivalence SwiZs/parametric bootstrap in location family problems).
Suppose that x is a univariate random variable identically and independently distributed

according to a location family, that is x
d
= θ + y, where θ ∈ IR is the location parameter.

If the auxiliary parameter is estimated by the sample average and x is symmetric around

0, that is x
d
= −x, then

Θ(s)
n = Θ

(s)
Boot,n.

The conditions which satisfies Proposition 1.13 are restrictive. Indeed, they are satis-
fied for location families for which the centered random variable is symmetric. Proposi-
tion 1.13 holds for example with a Gaussian, a Student, a Cauchy and a Laplace random
variables (variance and degrees of freedom known), but not, for example, for a gener-
alized extreme value, a skewed Laplace and a skewed t random variables (even with
non-location parameters being fixed). The proof uses an average as the auxiliary estima-
tor, but it should be easily extended to other estimator of location such as the trimmed
mean. Proposition 1.13 is illustrated with a Cauchy random variable in Example 1.51 of
Section 1.6.

Although the parametric bootstrap and the SwiZs will lead rarely to the same esti-
mators, in spite of the similitude of their forms, the next result demonstrates that the
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distribution of the SwiZs corresponds in fact to (some sort of) a Bayesian posterior. Like-
wise the indirect inference, the approximate Bayesian computation (ABC) techniques
were proposed to respond to complex problems. The two techniques are often presented
to be respectively the frequentist and the Bayesian approaches to a same problem and
have even been mixed sometimes (see [DPL15]). We now show under what conditions
the SwiZs and the ABC are equivalent, but before, we need to give more precision on
what type of ABC. Often dated back to [DG84], the ABC has evolved and covers now a
broad-spectrum of techniques such as rejection sampling (see e.g. [Tav+97; Pri+99]), the
Markov chain Monte Carlo (see e.g. [Mar+03; BCS07]), the sequential Monte Carlo sam-
pling (see e.g. [SFT07; Bea+09; Ton+09]) among others (see [Mar+12] for a review). The
equivalence between the SwiZs and the ABC is demonstrated with a rejection sampling
presented in the next definition. However, the note of [Sis+10] suggests that this result
may be extended to Markov chain Monte Carlo and sequential Monte Carlo sampling
algorithms. We leave such rigorous demonstration for further research.

Definition 1.14 (Approximate Bayesian Computation (ABC) estimators). Let π̂n and

{uj : j ∈ N} be defined as in Definition 1.2. Let π̂
(s)
II,n(θ) be defined as in Definition 1.4.

We consider the following algorithm. For a given ε ≥ 0, for a given infinite sequence
{us : s ∈ N

+
S }, for a given infinite sequence of empty sets {Θ

(s)
ABC,n(ε) : s ∈ N

+
S }, for a

given prior distribution P of θ, repeat (indefinitely) the following steps:

1. Generate θ⋆ ∼ P.

2. Compute π̂
(s)
II,n (θ⋆).

3. If the following criterion is satisfied

d
(
π̂n, π̂

(s)
II,n(θ⋆)

)
≤ ε,

add θ⋆ to the set Θ
(s)
ABC,n, i.e. Θ

(s)
ABC,n(ε) = Θ

(s)
ABC,n(ε) ∪ {θ⋆}.

For a given s ∈ N
+
S , we denote by θ̂

(s)
ABC,n(ε) an element of Θ

(s)
ABC,n(ε). The collection of

the solutions is denoted ΘABC,n(ε) = ∪s∈N+Θ
(s)
ABC,n(ε).

Remark 1.15. The ABC algorithm presented in Definition 1.14 is a specific version
of the simple accept/reject algorithm proposed by [Tav+97; Pri+99], where the auxiliary
estimators are the solution of an estimating function and the dimensions of π and θ are
the same.

Definition 1.16 (posterior distribution). The distribution of the infinite sequence {θ̂
(s)
ABC,n(ε) :

s ∈ N
+
S } issued from Definition 1.14 is referred to as the (ε, π̂n)-approximate posterior

distribution. If ε = 0, we have the π̂n-approximate posterior distribution. If π̂n is a
sufficient statistic, we have the ε-approximate posterior distribution. If both ε = 0 and π̂n

is sufficient, then we simply refer to the posterior distribution.

Remark 1.17. In Definition 1.16, we mention two sources of approximation to the pos-
terior distribution, ε and π̂n. There is actually a third source of approximation stemming
from the number of simulations S, if indeed S < ∞. Since it is common to every methods
presented, it is left implicit.
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Assumption 1.18 (existence of a prior). For every s ∈ N
+
S and for all n, there exists a

prior distribution P such that

lim
ε↓0

Pr
(
d
(
π̂n, π̂

(s)
II,n(θ⋆)

)
≤ ε

)
= 1, θ⋆ ∼ P.

Theorem 1.19 (Equivalence SwiZs/ABC). If Assumptions 1.7 and 1.18 are satisfied,
then the following holds:

Θ(s)
n = lim

ε↓0
Θ

(s)
ABC,n(ε).

From Theorem 1.19 and Definition 1.16, we have clearly established that the distribu-
tion obtained by the SwiZs is a π̂n-approximate posterior distribution. Yet, the conclusion
reached by Theorem 1.19 is surprising at two different levels: first, Theorem 1.19 implies
the possibility of obtaining an π̂n-approximate posterior distribution without specifying
explicitly a prior distribution by using the SwiZs, second, whereas, for each s ∈ N

+
S , it

would in general require a very large number of sampled θ⋆ for the ABC to approach an
π̂n-approximate posterior distribution (ε = 0), it is obtainable by the SwiZs at a much
reduced cost. Indeed, for a given s ∈ N

+
S , it demands in general a considerable number

of attempts to sample a θ⋆ that satisfies the matching criterion with an error of ε ≈ 0,
whereas it is replaced by one optimization for the SwiZs, so it may be more computa-
tionally efficient to use the SwiZs. Note also that in the situation where one has a prior
knowledge on θ, the SwiZs may be modified, for example, by including an importance
sampling weight, in the same fashion that the ABC would be modified when the prior
distribution is improper (see e.g. [DMDJ06]). However, for some problems, the optimiza-
tions to obtain the SwiZs distribution may be numerically cumbersomes and the ABC
may prove itself a facilitating alternative (for example [FP12] argued in this direction for
some of their examples when comparing the indirect inference and the ABC).

Switching between the SwiZS and the ABC algorithms for estimating a posterior
poses the fundamental and practical question of which prior distribution to use. Assump-
tion 1.18 stating that a prior distribution exists is very reasonable and widely accepted
(although a frequentist fundamentalist may argue differently), but the result of Theo-
rem 1.19 brings at least three questions: which prior distribution satisfies both the SwiZs
and the ABC at the same time, whether the prior distribution under which Theorem 1.19
holds is unique and whether there is an “optimal” prior in the numerical sense (that would
produce θ⋆ satisfying “rapidly” the matching criteria as defined at the point 3 of Defi-
nition 1.14). We do not answer these questions because, firstly, the numerical problems
we face in Section 1.7 are achievable quite efficiently by the SwiZs, secondly, they would
deserve much more attention than what we are able to conduct in the present. Thus, we
content ourselves by mentioning only briefly studies made on this direction. In order to
approach this topic, we first need to present an ultimate technique.

The possibility of obtaining an (approximate) Bayesian posterior without specifying
explicitly a prior distribution on the parameters of interest inescapably links the SwiZs to
R.A. Fisher’s controversial fiducial inference (see for instance [Fis22; Fis30; Fis33; Fis35;
Fis56]). Here we keep the SwiZs neutral and do not aim at reanimating any debate. It
is delicate to give an unequivocal definition of the fiducial inference as it has changed
on many occasion over time (see [Zab92] for a comprehensive historical review) and we
rather give the presentation with the generalized fiducial inference proposed by [Han09]
(see also [Han13; Han+16]) which includes R.A. Fisher’s fiducial inference. Other efforts
to generalize R.A. Fisher’s fiducial inference include Fraser’s structural inference ( [Fra68],
see also [DSZ73]), the Dempster-Shafer theory ( [Sha76; Dem08], see also [ZL11]) refined
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later with the concept of inferential models ([ML13; ML15]). As argued by [Han09],
Fraser’s structural inference may be viewed as a special case of the generalized fiducial
inference where the generating function g has a specific structure. The concept of infer-
ential models is similar to the generalized fiducial inference in appearance but they differ
in their respective theory. The departure point of the inferential models is to conduct
inference with the conditional distribution of the pivotal quantity u given x0 after the
sample has been observed. It is argued that keeping u ∼ Fu after the sample has been
observed makes the whole procedure subjective ([ML15]), but the idea is essentially a gain
in efficiency of the estimators. Also this idea is sound (see Lemma 1.30 in the next sec-
tion), we do not see how it can be applied for the practical examples we use in Section 1.7,
and more fundamentally, we do not understand how such conditional distribution may be
built without some form of prior (and arguably subjective) knowledge on u0. We therefore
leave such consideration for further research and limit the equivalence to the generalized
fiducial inference given in the next definition.

Definition 1.20 (Generalized fiducial inference). The generalized fiducial distribution is
given by

θ̂
(s)
GFD,n ∈ Θ

(s)
GFD,n = argzero

θ∈Θ

d (x,g (θ,u∗
s)) .

Remark 1.21. The generalized fiducial distribution in Definition 1.20 is slightly more
specific than usually defined in the literature. In Definition 1 in [Han+16], it is given by

lim
ε↓0

[
argmin

θ∈Θ

‖x − g (θ,u∗
s)‖

∣∣∣∣min
θ

‖x − g (θ,u∗
s)‖ ≤ ε

]
,

for any norm. Here, in addition, we assume that Θ contains at least one of, possibly
many, zeros.

If we let the sample size equals the dimension of the parameter of interest, n = p,
then it is obvious from their definitions that the generalized fiducial distribution and the
indirect inference estimators are equivalent. We formalize this finding for the sake of the
presentation.

Assumption 1.22. The followings hold:

i. π̂n = x;

ii. π̂II,n(θ) = g(θ,u).

Proposition 1.23. If Assumption 1.22 is satisfied, then the following holds:

Θ
(s)
II,n = Θ

(s)
GFD,n.

Also the link between the indirect inference and the generalized fiducial inference seems
self-evident, it was, at the best of our knowledge, never mentioned in the literature. It
may be explained by the two different goals that each of these methods target, that may
respectively be loosely summarized as finding a point-estimate of a complex problem and
making Bayesian inference without using a prior distribution. Having established this
equivalence, the connection with the SwiZs is direct from Theorem 1.8 and formalize in
the next proposition.
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Proposition 1.24. If Assumptions 1.7 and 1.22 are satisfied, then the following holds:

Θ(s)
n = Θ

(s)
GFD,n.

In the light of Proposition 1.24, the SwiZs may appear equivalent to the generalized
fiducial inference under a very restrictive condition. Indeed, the only possibility for As-
sumption 1.22 to hold is that the sample size must equal the dimension of the problem.
But we would be willing to concede that this apparent rigidity is thiner as one may pro-
pose to use sufficient statistics with minimal reduction on the sample, thereby leaving n
greater than p, and Proposition 1.23 would still hold. Such situation however is confined
to problems dealing with exponential families as demonstrated by the Pitman-Koopman-
Darmois theorem, so in general, when n is greater than p and the problem at hand is
outside of the exponential family, the SwiZs and the generalized fiducial inference are not
equivalent.

Although the link between the generalized fiducial inference and the indirect inference
has remained silent, the connection with the former to the ABC has been much more
emphased. Indeed, the algorithms proposed to solve the generalized fiducial inference
problems are mostly borrowed from the ABC literature (see [HLL14]). Therefore, the
discussion we conducted above on the numerical aspects of the SwiZs and the ABC still
holds here, the SwiZs may be an efficient alternative to solve the generalized fiducial
inference problem.

The generalized fiducial inference is also linked by [Han+16] to what may be called
“non-informative” prior approaches (see [KW94] for a broad discussion of this concept).
More specifically, it appears that some distribution resulting from the generalized fiducial
inference corresponds to the posterior distribution obtained by [Fra+10] based on a data-
dependent prior proportional to the likelihood function in the absence of information.
This result enlarges the previous vision brought by [Lin58] that concluded that R.A.
Fisher’s fiducial inference is “Bayes inconsistent” (in the sense that the Bayes’ theorem
cannot be invoked) apart from problems on the Gaussian and the gamma distributions.
[Lin58]’s results relied on a narrower definition of fiducial inference than brought by the
generalized fiducial inference, so whether the generalized fiducial inference has become
Bayes consistent for broader problems nor [Fra+10] approach with an uninformative prior
is Bayes inconsistent remains an open question. But most importantly, the strong link
between the generalized fiducial inference and this non-informative prior approach reveals
the common goal towards which of these approaches tends, which might be stated as
tackling the individual subjectivism in the Bayesian inference that has been one of the
major subject of criticism ever since at least [Fis22].

Last but not least, we complete the loop by the following Corollary which is a conse-
quence of Theorems 1.8, 1.12 and 1.19, and Propositions 1.23 and 1.24.

Corollary 1.25. We have the followings:

i. If Assumptions 1.7 and 1.18 are satisfied, then Θ
(s)
II,n = limε↓0 Θ

(s)
ABC,n(ε);

ii. If Assumptions 1.7, 1.18 and 1.11 are satisfied, then Θ
(s)
Boot,n = limε↓0 Θ

(s)
ABC,n(ε);

iii. If Assumptions 1.7 and 1.11 are satisfied, then Θ
(s)
II,n = limε↓0 Θ

(s)
Boot,n(ε);

iv. If Assumptions 1.7, 1.11 and 1.22 are satisfied, then Θ
(s)
Boot,n = limε↓0 Θ

(s)
GFD,n(ε);

v. If Assumptions 1.7, 1.18 and 1.22 are satisfied, then Θ
(s)
ABC,n = limε↓0 Θ

(s)
GFD,n(ε).



1.4. Exact frequentist inference in finite sample 15

1.4 Exact frequentist inference in finite sample

Having demonstrated that the distribution of the SwiZs sequence, for a single experiment,
is approximatively a Bayesian posterior, we now turn our interest to the long-run statis-
tical properties of the SwiZs. Our point of view here is frequentist, that is we suppose
that we have an indefinite number of independent trials with fixed sample size n and
fixed θ0 ∈ Θ. For each experiment we compute an exact α-credible set, as given in the
Definition 1.27 below, using the SwiZs independently: the knowledge acquired on an ex-
periment is not used as a prior to compute the SwiZs on another experiment. The goal of
this Section is to demonstrate under what conditions the SwiZs leads to exact frequentist
inference when the sample size is fixed.

Definition 1.26 (sets of quantiles). Let Fθ̂n|π̂n
be a π̂n-approximate posterior cumulative

distribution function. We define the following sets of quantiles:

1. Let Q
α

=
{
θ̂n ∈ Θn, α ∈ (0, 1) : Fθ̂n|π̂n

(θ̂n) ≤ α
}

be the set of all θ̂n for which Fθ̂n|π̂n

is below the threshold α.

2. Let Qα =
{
θ̂n ∈ Θn, α ∈ (0, 1) : Fθ̂n|π̂n

(θ̂n) ≥ 1 − α
}

be the set of all θ̂n for which
Fθ̂n|π̂n

is above the threshold 1 − α.

Definition 1.27 (credible set). Let Fθ̂n|π̂n
be a π̂n-approximate posterior cumulative dis-

tribution function. A set Cπ̂n is said to be an α-credible set if

Pr
(
θ̂n ∈ Cπ̂n|π̂n

)
≥ 1 − α, α ∈ (0, 1), (1.1)

where
Cπ̂n = Θn \

{
Q

α1
∪Qα2

}
, α1 + α2 = α.

If we replace “≥” by the equal sign in (1.1), we say that the coverage probability of Cπ̂n

is exact.

Definition 1.27 is standard in the Bayesian literature (see e.g. [Rob07]). Note that
an α-credbile set can have an exact coverage only if the random variable is absolutely
continuous. Such credible set is referred to as an “exact α-credible set”.

The next result gives a mean to verify the exactness of frequentist coverage of an exact
α-credible set.

Proposition 1.28 (Exact frequentist coverage). If a π̂n-approximate posterior distribu-
tion evaluated at θ0 ∈ Θn is a realization from a standard uniform variate identically
and independently distributed, Fθ̂n|π̂n

(θ0) = u, u ∼ U(0, 1), then every exact α-credible
set built from the quantiles of Fθ̂n|π̂n

leads to exact frequentist coverage probability in the
sense that Pr (Cπ̂n ∋ θ0) = 1 − α (unconditionally).

Proposition 1.28 states that if the cumulative distribution function (cdf), obtained
from the SwiZs, variates (across independent trials!) uniformly around θ0 (fixed!), so does
any quantities computed from the percentiles of this cdf, leading to exact coverage in the
long-run. The proof relies on Borel’s strong law of large number. Although this result may
be qualified of unorthodox by mixing both Bayesian posterior and frequentist properties, it
arises very naturally. Replacing π̂n-approximate posterior distribution by any conditional
distribution on π̂n in Proposition 1.28 leads to the same result. This proposition is similar
in form to the concept of confidence distribution formulated by [SH02] and later refined
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by [SXS+05; XSS11; XS13]. The confidence distribution is however a concept entirely
frequentist and could not be directly exploited here. The general theoretical studies on the
finite sample frequentist properties are quite rare in the literature, we should eventually
mention the study of [Mar15], although the theory developped is around inferential models
and different than our, the author uses the same criterion of uniformly distributed quantity
to demonstrate the frequentist properties.

Remark 1.29. In Proposition 1.28, we use a standard uniform variable as a mean to
verify the frequentist properties. With the current statement of the proposition, other dis-
tributions with support in [0, 1] may be candidates to verify the exactness of the frequentist
coverage. However, if we restrain the frequentist exactness to be Pr(Cπ̂n ∋ θ0) = 1 − α,
Pr(Qα2

∋ θ0) = α2 and Pr(Q
α1

∋ θ0) = α1, for α = α1 +α2, then the uniform distribution
would be the only candidate.

In the light of Proposition 1.28, we now give the conditions under which the dis-
tribution of the sequence {θ̂(s)

n : s ∈ N
+}, Fθ̂n|π̂n

, leads to exact frequentist coverage
probabilities. We begin with a lemma which is essential in the construction of our argu-
ment.

Lemma 1.30. If the mapping π 7→ Φn has unique zero in Π and the mapping θ 7→ Φn

has unique zero in Θ, then the following holds

θ0 = θ̂n = argzero
θ∈Θ

Φn (θ,u0, π̂n) .

The idea behind Lemma 1.30 is that if one knew the true pivotal quantity u0 that
generated the data, then one could directly recover the true quantity of interest θ0 from
the sample. Of course, both u0 and θ0 are unknown (otherwise statisticians would be an
extinct species!), but here we are exploiting the idea that, for a sufficiently large number
of simulations S, at some point we will generate us “close enough” to u0. This idea is
reflected in the following assumption.

Assumption 1.31. Let Θn ⊆ Θ be the set of the solutions of the SwiZs in the Defini-
tion 1.2. We have the following:

θ0 ∈ Θn.

The following functions are essential for convenient data reduction.

Assumption 1.32 (data reduction). We have:

i. There exists a Borel measurable surjection such that b(u) has the same dimension
as x.

ii. There exists a Borel measurable surjection such that h◦b(u) has the same dimension
as θ.

Remark 1.33. The function b allows to work with a random variable of the same di-
mension as the observed variable. Indeed we have

x
d
= g(θ,u)

d
= g ◦ (idΘ ×b)(θ,u)

d
= g(θ,v),

where v = b(u) has the same dimension as x and idΘ is the identity function on the set
Θ. On the other hand, the function h allows us to deal with random variables of the same
dimension as θ, and thus π.
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Remark 1.34. In Assumption 1.32, by saying the functions h and b are Borel measurable,
we want to emphasis thereby that after applying these functions we still work with random
variables, which is essential here.

To fix ideas, we consider the following example:

Example 1.35 (Explicit form for h and b). As in Example 1.1, suppose that x =
x1, · · · , xn is identically and independently distributed according to N(θ, σ2), where σ2

is known, and consider the generating function g ∈ G

g(θ,u, σ2) = θ + σ
√

−2 ln(u1) cos(2πu2),

where u1i, u2i, i = 1, · · · , n, are identically and independently distributed according to

U(0, 1). Letting v ≡ b(u) =
√

−2 ln(u1) cos(2πu2), we clearly have that v ∼ N(0, In) is a
random variable of the same dimension as x. Now, if we consider h as the function that
averages its argument, we have w ≡ h ◦ b(u) = 1/n

∑n
i=1 vi, so by properties of Gaussian

random variable we have that w has a Gaussian distribution with mean 0 and variance
1/n. Since w is a scalar, it has the same dimensions as θ.

Example 1.35 shows explicit forms for functions in Assumption 1.32. It is however not
requested to have an explicit form as we will see. Indeed, under Assumption 1.32, we can
construct the following estimating function:

Φn (θ,u∗,π) = ϕp (θ,w,π) ,

where w = h ◦ b(u∗) is a p-dimensional random variable. The index p in the estimating
function ϕp aims at emphasing that w has the same dimensions as θ and π, which is
essential in our argument. Since the sample size n and dimension p are fixed here, it is
disturbing. For some fixed θ1 ∈ Θ and π1 ∈ Π, it clearly holds that:

π̂n = argzero
π∈Π

Φn (θ1,u
∗,π) = argzero

π∈Π

ϕp (θ1,w,π) ,

θ̂n = argzero
θ∈Θ

Φn (θ,u∗,π1) = argzero
θ∈Θ

ϕp (θ,w,π1) .

Assumption 1.36 (characterization of ϕp). Let Θn ⊆ Θ and Wn be open subsets of IRp.
Let π̂n be the unique solution of Φn(θ0,u0,π). Let ϕπ̂n(θ,w) ≡ ϕp(θ,w, π̂n) be the map
where π̂n is fixed. We have the followings:

i. ϕπ̂n ∈ C1 (Θn ×Wn, IR
p) is once continuously differentiable on (Θn ×Wn) \ Kn,

where Kn ⊂ Θn ×Wn is at most countable,

ii. det (Dθϕπ̂n(θ,w)) 6= 0, det (Dwϕπ̂n(θ,w)) 6= 0 for every (θ,w) ∈ (Θn ×Wn) \Kn,

iii. lim‖(θ,w)‖→∞ ‖ϕπ̂n(θ,w)‖ = ∞.

Assumption 1.37 (characterization of ϕp II). Let Θn ⊆ Θ, Wn and Πn ⊆ Π be open
subsets of IRp. Let ϕθ1(w,π) ≡ ϕp(θ1,w,π) be the map where θ1 ∈ Θ is fixed. Let
ϕw1(θ,π) ≡ ϕp(θ,w1,π) be the map where w1 ∈ Wn is fixed. We have the followings:

i. ϕθ1 ∈ C1 (Wn × Πn, IR
p) is once continuously differentiable on (Wn × Πn) \ K1n,

where K1n ⊂ Wn × Πn is at most countable,
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ii. ϕw1 ∈ C1 (Θn × Πn, IR
p) is once continuously differentiable on (Θn × Πn) \ K2n,

where K2n ⊂ Θn × Πn is at most countable,

iii. det (Dwϕθ1(w,π)) 6= 0, det (Dπϕθ1(w,π)) 6= 0 for every (w,π) ∈ (Wn × Πn)\K1n,

iv. det (Dθϕw1(θ,π)) 6= 0, det (Dπϕw1(θ,π)) 6= 0 for every (θ,π) ∈ (Θn × Πn) \K2n,

v. lim‖(w,π)‖→∞ ‖ϕθ1(w,π)‖ = ∞,

vi. lim‖(θ,π)‖→∞ ‖ϕw1(θ,π)‖ = ∞.

Theorem 1.38. If Assumptions 1.32 and 1.31 and one of Assumptions 1.36 or 1.37 are
satisfied, then the followings hold:

1. There is a C1-diffeomorphism map a : Wn → Θn such that the distribution function
of θ̂n given π̂n is

∫

Θn

fθ̂n|π̂n

(
θ̂n|π̂n

)
dθ =

∫

Wn

f (a(w)|π̂n) |J(w|π̂n)| dw,

where

J(w|π̂n) =
det (Dθϕπ̂n(a(w),w))

det (Dwϕπ̂n(a(w),w))
.

2. For all α ∈ (0, 1), every exact α-credible set built from the percentiles of the distri-
bution function have exact frequentist coverage probabilities.

Theorem 1.38 is very powerful as it concludes that the SwiZs (Assumptions 1.32, 1.31
and 1.36) and the indirect inference estimators (Assumption 1.32, 1.31 and 1.37) have
exact frequentist coverage probabilities in finite sample. Our argument is based on the
possibility of changing variables from θ̂n to w, but also from w to θ̂n (hence the diffeomor-
phism). This argument may appear tautological, but this is actually because we are able
to make this change-of-variable in both directions that the conlcusion of Theorem 1.38 is
possible (see the parametric bootstrap in Examples 1.52 and 1.54 for counter-examples).
The result is very general because we do not suppose that we know explicitly the esti-
mators θ̂n and π̂n, neither the random variable w. Because of their unknown form, we
employ a global implicit function theorem for our proof which permits to characterize the
derivative of these estimators through their estimating function. One of the conclusion
of the global implicit function theorem is the existence of a unique and global invertible
function a. It seems not possible to reach the conclusion of Theorem 1.38 with a local
implicit function theorem (usually encountered in textbooks), but it may be of interest
for further research as some conditions may accordingly be relaxed.

Although powerful, Theorem 1.38’s conditions are restrictive or difficult to inspect,
but not hard to believe as we now explain. First, the existence of the random variable
w depends on the possibility to have data reduction as expressed in Assumption 1.32.
We do not need to know explicitly w and w does not need to be unique, so essentially
Assumption 1.32 holds for every problem for a which a maximum likelihood estimator
exists (see e.g. [HMC05], Theorem 2 in Chapter 7); see also [FFS10; ML15] for the
construction of w by conditioning. Yet, it remains unclear if this condition holds in the
situations when the likelihood function does not exist. The indirect inference and ABC
literatures are overflowing with examples where the likelihood is not tractable, but one
should keep in mind that such situation does not exclude the existence of a maximum
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likelihood, it is simply impractical to obtain one. Second, Assumption 1.31 states that
the true value θ0 belongs to the set of solutions. This condition can typically only be
verified in simulations when controlling all the parameters of the experiment, although
it is not critical to believe such condition holds when making a very large number of
simulations S. We interpret the inclusion of the set of solutions to Θ as follows: once
θ0 ∈ Θ is fixed, it is not necessary to explore the whole set Θ (that would require S to
be extremly large), but an area sufficiently large of Θ such that it includes θ0. Third,
Assumptions 1.36 and 1.37 are more technical and concerns the finite sample behavior of
the estimating functions of, respectively, the SwiZs and the indirect inference estimators.
Although we cannot conclude that Assumption 1.36 is weaker than Assumption 1.37, it
seems easier to deal with the former.

Assumption 1.36 (i) requires the estimating function to be once continuously differ-

entiable in θ and w almost everywhere. The estimators θ̂n and π̂n are not known in an
explicit form, but they can be characterized by their derivatives using an implicit function
theorem argument. Since θ and w appears in the generating function g, this assumption
may typically be verified with the example at hand using a chain rule argument: the esti-
mating function must be once continuously differentiable in the observations represented
by g, and g must be once continuously differentiable in both its arguments. Discrete
random variables are automatically ruled out by this last requirement, but this should
not appear as a surprise as exactness of the coverage cannot be claimed in general for
discrete distribution (see e.g. [Cai05]). The smoothness requirement on the estimating
function excludes for example estimators based on order statistics. In general, relying on
non-smooth estimating function leads to less efficient estimators and less stable numerical
solutions, but they may be an easier estimating function to choose in situations where it
is not clear which one to select. Although, non-smooth estimating functions and discrete
random variables are dismissed, the condition may nearly be satisfied when considering
a n large enough. Assumption 1.37 (i, ii) requires in addition the estimating equation to
be once continuously differentiable in π.

Assumption 1.36 (ii), as well as Assumption 1.37 (iii, iv), essentially necessitate the
estimating function to be “not too flat” globally. It is one of the weakest condition to have
invertibility of the Jacobian matrices. Usually only one of the Jacobian has such require-
ment for an implicit function theorem, but since we are targeting a C1-diffeomorphism,
we strenghten the assumption on both Jacobians. Once verified the first derivative of the
estimating function as explained in the preceding paragraph, the non-nullity of determi-
nant may be appreciated, it typically depends on the model and the choosen estimating
function. An example for which this condition is not globally satisfied is when consider-
ing robust estimators as the estimating function is constant on an uncountable set once
exceeding some threeshold. This consideration gives raise to the question on whether
this condition may be relaxed to hold only locally, condition which would be satisfied
by the robust estimators, but Example 1.61 with the robust Lomax distribution in the
Section 1.7 seems to indicate the opposite direction.

Assumption 1.36 (iii), as well as Assumption 1.37 (v, vi), is a necessary and sufficient
condition to invoke Palais’ global inversion theorem ([Pal59]) which is a key component
of the global implicit function theorem of [Cri17] we use. It can be verified in two steps
by, first, letting g diverges in the estimating function, and then letting θ and w diverges
in g. Once again, robust estimators do not fulfill this requirement as their estimating
functions do not diverge with g but rather stay constant.

Theorem 1.38 is derived under sufficient conditions. In its actual form, although



20 1. SwiZs: Switched Z-estimators

very general, it excludes some specific estimating functions and non-absolutly continuous
random variable. It is of both practical and theoretical interest to develop results for a
wider-range of situations. Such considerations are left for further research.

We finish this section by considering a special, though maybe common, case where
the auxiliary estimator is known in an explicit form. Suppose π̂n = h(x0) where h is a
known (surjective) function of the observations (see Assumption 1.32). We can define a
(new) indirect inference estimator as follows:

θ̂
(s)
II,n ∈ Θ

(s)
II,n = argzero

θ∈Θ

d [h(x0),g(θ,ws)] . (1.2)

Remark 1.39. The estimator defined in Equation 1.2 is a special case of the indirect
inference estimators as expressed in Definition 1.4, and thus of the SwiZs by Theorem 1.8,
where the auxiliary estimators π̂n and π̂II,n are known in an explicit form.

Assumption 1.40 (characterization of g). Let Θn ⊆ Θ, Wn be subsets of IRp and Kn ⊂
Θn ×Wn be at most countable. The followings hold:

i. g ∈ C1 (Θn ×Wn, IR
p) is once continuously differentiable on (Θn ×Wn) \Kn,

ii. det(Dθg(θ,w)) 6= 0 and det(Dwg(θ,w)) 6= 0 for every (θ,w) ∈ (Θn ×Wn) \Kn,

iii. lim‖(θ,w)‖→∞‖g(θ,w)‖ = ∞.

Proposition 1.41. If Assumptions 1.32, 1.31 and 1.40 are satisfied, then the conclusions
(1) and (2) of Theorem 1.38 hold. In particular, the distribution function is:

∫

Θn

fθ̂n|π̂n
(θ|h(x0)) dθ =

∫

Wn

f (a(w)|h(x0)) |J(w|h(x0))| dw,

where

J(w|h(x0)) =
det (Dθg(a(w),w))

det (Dwg(a(w),w))
.

The message of Proposition 1.41 is fascinating: once the auxiliary estimator is known
in an explicit form, the conditions to reach the conclusion of Theorem 1.38 simplify
accounting for the fact that the implicit function theorem is no longer necessary. The
discussion we have after Theorem 1.38 still holds, but the verification process of the
conditions is reduced to inspecting the generating function.

1.5 Asymptotic properties

When n → ∞, different assumptions than in Section 1.4 may be considered to derive the
distribution of the SwiZs. By Theorem 1.8, the SwiZs in Definition 1.2 and the indirect
inference estimators in Definition 1.4 are equivalent for any n. Yet, due to their different
forms, the conditions to derive their asymptotic properties differ, at least in appearance.
We treat both the asymptotic properties of the SwiZs and the indirect inference estimators
in an unified fashioned and highlight their differences. We do not attempt at giving the
weakest conditions possible as our goal is primarly to demonstrate in what theoretical
aspect the SwiZs is different from the indirect inference estimators. The asymptotic
properties of the indirect inference estimators were already derived by several authors in
the literature, and we refer to [GM96], Chapter 4, for the comparison.
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The following conditions are sufficient to prove the consistency of any estimator θ̂(s)
n

in Defintions 1.2 and 1.4. When it is clear from the context, we simply drop the suffix
and denote θ̂n for any of these estimators.

Assumption 1.42. The followings hold:

i. The sets Θ,Π are compact,

ii. For every π1,π2 ∈ Π, θ ∈ Θ and u ∼ Fu, there exists a random value An = Op(1)
such that, for a sufficiently large n,

‖Φn(θ,u,π1) − Φn(θ,u,π2)‖ ≤ An ‖π1 − π2‖ ,

iii. For every θ ∈ Θ, π ∈ Π, the estimating function Φn (θ,u,π) converges pointwise
to Φ(θ,π).

iv. For every θ ∈ Θ, π1,π2 ∈ Π, we have

Φ (θ,π1) = Φ (θ,π2) ,

if and only if π1 = π2.

Assumption 1.43 (SwiZs). The followings hold:

i. For every θ1,θ2 ∈ Θ, π ∈ Π and u ∼ Fu, there exists a random value Bn = Op(1)
such that, for sufficiently large n,

‖Φn(θ1,u,π) − Φn(θ2,u,π)‖ ≤ Bn ‖θ1 − θ2‖ ,

ii. For every θ1,θ2 ∈ Θ, π ∈ Π, we have

Φ (θ1,π) = Φ (θ2,π) ,

if and only if θ1 = θ2.

Assumption 1.44 (IIE). The followings hold:

i. For every θ1,θ2 ∈ Θ, there exists a random value Cn = Op(1) such that, for suffi-
ciently large n,

‖π̂II,n(θ1) − π̂II,n(θ2)‖ ≤ Cn ‖θ1 − θ2‖ ;

ii. Let π(θ) denotes the mapping towards which π̂II,n(θ) converges pointwise for every
θ ∈ Θ. For every θ1,θ2 ∈ Θ, we have

π(θ1) = π(θ2),

if and only if θ1 = θ2.

Theorem 1.45 (consistency). Let {π̂n} be a sequence of estimators of {Φn(π)}. For

any fix θ ∈ Θ, let {π̂II,n(θ)} be the sequence of estimators of {Φn(θ,π)}. Let {θ̂n} be a
sequence of estimators of {Φn(θ)}. We have the following:

1. If Assumption 1.42 holds, then any sequence {π̂n} converges in probability to π0 and
any sequence {π̂II,n(θ)} converges in probability to π(θ);
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2. Moreover, if one of Assumptions 1.43 or 1.44 holds, then any sequence {θ̂n} con-
verges in probability to θ0.

Theorem 1.45 demonstrates the consistency of θ̂n under two sets of conditions. As-
sumptions 1.42 and 1.44, or the conditions that are implied by these Assumptions, are
regular in the literature of the indirect inference estimators (see [GM96], Chapter 4).
More specifically, the mapping θ 7→ π, usually referred to as the “binding” function (see
e.g. [GMR93]) or the “bridge relationship” (see [JT04]), is central in the argument and is
required to have a one-to-one relationship (Assumption 1.44 (ii)). Surprisingly, in The-
orem 1.45, such requirement may be substitued by the bijectivity of the deterministic
estimating function with respect to θ (Assumption 1.43 (ii)). Whereas the bijectivity of
π(θ) can typically only be assumed (if θ 7→ π was known explicitly, then one would not
need to use the indirect inference estimator unless of course one would be willing to lose
statistical efficiency and numerical stability for no gain), there is more hope for Assump-
tion 1.43 (ii) to be verifiable. Since both Assumptions 1.43 and 1.44 leads to the same
conclusion, one would expect some strong connections between them. Since π(θ) may be
interpreted as the implicit solution of Φ(θ,π(θ)) = 0, it seems possible to link both As-
sumptions with the help of an implicit function theorem, but it typically requires further
conditions on the derivatives of Φ that are not necessary for obtaining the consistency
results, and we thus leave such considerations for further research.

Proving the consistency of an estimator relies on two major conditions (see Lemma 3.1):
the uniform convergence of the stochastic objective function and the bijectivity of the
deterministic objective function (Assumption 1.42 (iv), Assumption 1.43 (ii), Assump-
tion 1.44 (ii)). This second condition is referred to as the identifiability condition. It
can sometimes be verified, or sometimes it is only assumed to hold, but it is typically
appreciated in accordance with the chosen probabilistic model. Discrepancy among ap-
proaches mainly occurs on the demonstration of the uniform convergence. Here we rely on
a stochastic version of the classical Arzelà-Ascoli theorem (see Lemma 3.3), see [Vaa98] for
alternative approaches based on the theory of empirical processes. To satisfy this theorem,
we require the parameter sets to be compact (Assumption 1.42 (i)), the stochastic objec-
tive function to converges pointwise (Assumption 1.42 (iii)) and the stochastic objective
function to be Lipschitz (Assumption 1.42 (ii), Assumption 1.43 (i), Assumption 1.44
(i)). Note that the last requirement is in fact for the objective function to be stochasti-
cally equicontinuous, requirement verified by the Lipschitz condition (see Lemma 3.4), see
also [PP94] for a broad discussion on this condition and alternatives. Some authors pro-
posed to relax the compactness condition, see for example [Hub67], but this is generally
not a sensitive issue in practice. The pointwise convergence of the stochastic objective
function may be appreciated up to further details depending on the context. For identi-
cally and independently distributed observations, typically the weak law of large numbers
may be employed, thus requiring the stochastic objective function to have the same finite
expected value across the observations. Other law of large numbers results may be used
for serially dependent processes (see the Chapter 7 of [Ham94]) and for non-identically
distributed processes (see [And88]), each results having its own conditions to satisfy.

We now turn our interest to the asymptotic distribution of an estimator θ̂n. Likewise
the consistency result, the following sufficient conditions, are separated to outline the
difference between the SwiZs and the indirect inference estimators.

Assumption 1.46. The followings hold:

i. Let Θ◦,Π◦, the interior sets of Θ,Π, be open and convex subsets of IRp,
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ii. θ0 ∈ Θ◦ and π0 ∈ Π◦,

iii. Φn ∈ C1 (Θ◦ × Π◦, IRp × IRp) when n is sufficiently large,

iv. For every θ ∈ Θ◦,π ∈ Π◦, DπΦn(θ,u,π), DθΦn(θ,u,π) converge pointwise to
DπΦ(θ,π) ≡ K(θ,π), DθΦ(θ,π) ≡ J(θ,π),

v. K ≡ K(θ0,π0),J ≡ J(θ0,π0) are nonsingular,

vi. n1/2Φn(θ0,u,π0) N (0,Q), ‖Q‖∞ < ∞.

Assumption 1.47 (SwiZs II). For every π1,π2 ∈ Π◦, θ ∈ Θ◦ and u ∼ Fu, there exists
a random value En = Op(1) such that, for sufficiently large n,

‖DθΦn(θ,u,π1) −DθΦn(θ,u,π2)‖ ≤ En ‖π1 − π2‖ .

Assumption 1.48 (IIE II). The followings hold:

i. π̂II,n ∈ C1(Θ◦, IRp) for sufficiently large n;

ii. For every θ ∈ Θ◦, Dθπ̂II,n(θ) converges pointwise to Dθπ(θ).

Theorem 1.49 (asymptotic normality). If the conditions of Theorem 1.45 are satisfied,
we have the following additional results:

1. If Assumption 1.46 holds, then

n1/2 (π̂n − π0) N
(
0,K−1QK−T

)
,

and
n1/2 (π̂II,n(θ) − π(θ)) N

(
0,K−1QK−T

)
;

2. Moreover, if Assumption 1.47 or 1.48 holds, then

n1/2
(
θ̂n − θ0

)
 N

(
0, 2J−1QJ−T

)
.

Theorem 1.49 gives the asymptotic distribution of both the auxiliary estimator and
the estimator of interest. The conditions to derive the asymptotic distribution of the
auxiliary estimator as expressed in Assumption 1.46 is regular for most estimators in the
statistical literature. The proof of the first statement relies on the possibility to apply a
delta method (see Lemma 3.8), which requires the estimating function to be once contin-
uously differentiable (Assumption 1.46 (i), (ii) and (iii)). The case where this condition
is not met is typically when θ0 is a boundary point of Θ. Not devoid of interest, this case
is atypical and deserve to be treated on its own, this situation is therefore excluded by
Assumption 1.46 (ii). In contrast, relaxing the smoothness requirement on the estimating
function has received a much larger attention in the literature (see [Hub67; NM94; Vaa98]
among others). Here we content ourselves with the stronger smooth condition on the
estimating function (Assumption 1.46 (iii)), maybe because it is largely admitted, but
also maybe because the smoothness of the estimating function is already required when
n is finite by Theorem 1.38 to demonstrate the exact coverage probabilities, a situation
that encourages us to consider smooth estimating function in the practical examples. The
conditions for the Jacobian matrices to exist (Assumption 1.46 (iv)) and to be invertible
(Assumption 1.46 (v)) are regular ones. The last condition is that a central limit theorem
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is applicable on the estimation equation (Assumption 1.46 (vi)). This statement is very
general and its validity depends upon the context. For identically and independently
distributed observations, one typically needs to verify Lindeberg’s conditions ([Lin22]),
which essentially requires that the two first moments exist and are finite. The require-
ments are similar if the observations are non-identically observed (see e.g. [Bil12]). The
conditions are also similar for stationary processes (see e.g. [Wu11], for a review). Note
eventually that, also as minor as it might be, the delta method (which is essentially a
mean value theorem) largely in use in the statistical literature has recently been shown to
be wrongly used by many for vector-valued function ([Fen+13]), this flaw has been taken
into account in the present (see Lemma 3.8 for more details).

The proof of the second statement of Theorem 1.49 on the asymptotic distribution of
the estimator of interest is more specific to the indirect inference literature. Compared
to the proof of the first statement, it requires in addition that, for n large enough, the
binding function to be asymptotically differentiable with respect to θ for the indirect
inference estimator (Assumption 1.48) or the derivative of the estimating function with
respect to θ to be stochastically Lipschitz for the SwiZs (Assumption 1.47). For the same
arguments we presented after the consistency Theorem 1.45, it may be more practical
to verify Assumption 1.47 as the verification of Assumption 1.48 is impossible, at least
directly, as the binding function is unknown. This is actually not entirely true as one may
express the derivative of the binding function by invoking an implicit function theorem,
the condition then may be verified on the resulting explicit derivative. The proof we use
under Assumption 1.48 uses this mechanism, the derivative of the binding function is thus
given by

Dθπ(θ) = −K−1J,

for every θ in a neighborhood of θ0 (see the proof in Appendix for more details). It is only
by using this implicit function theorem argument that the exact same explicit distribution
for both the SwiZs and the indirect inference estimators may be obtained. The same idea
may be used then to find the derivative of π̂II,n(θ) and verify Assumption 1.48. Note
eventually that [GM96] have an extra condition not required here (but that would as
well be required) because they include a stochastic covariate with their indirect inference
estimator.

Having demonstrated the asymptotic properties of one of the SwiZs estimators, θ̂(s)
n ,

s ∈ N
+
S , we finish this section by giving the property of the average of the SwiZs sequence.

The mean is an interesting estimator on its own and it is often considered as a point
estimate in a Bayesian context.

Proposition 1.50. Let θ̄n be the average of {θ̂(s)
n : s ∈ N

+
S }. If the conditions of Theo-

rem 1.49 are satisfied, then it holds that

n1/2
(
θ̄n − θ0

)
 N

(
0, γJ−1QJ−T

)
,

where the factor γ = 1 + 1/S.

The discussion of the proof and the condition to obtain Theorem 1.49 are also valid
for Proposition 1.50. The only point that deserves further explanations is on the factor
γ. This factor accounts for the numerical approximation of the π̂n-approximate posterior
when S is finite. It is not surprising though for someone familiar with the indirect inference
literature. What may appear unclear is how this factor pass from 2 for one the SwiZs
estimate in Theorem 1.49 to γ < 2 for the mean in Proposition 1.49. If the {θ̂(s)

n :
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s ∈ N
+
S } are independent, then it is well-known from the properties of the convolution

of independent Gaussian random variables that γ should equal 2. In fact, the pivotal
quantities {us : s ∈ N

+
S } are indeed independent, but each of the {θ̂(s)

n : s ∈ N
+
S } shares

a “common factor”, namely π̂n, and thus this common variability may be reduced by
increasing S. Note eventually that the average estimator in Proposition 1.50 has the same
asymptotic distribution as the two indirect inference estimators considered by [GMR93]
(given that the dimension of θ and π matches and that our implicit function theorem
argument is used).

1.6 Examples

In this section, we illustrate the finite sample results of the Section 1.4 with some ex-
amples for which explicit solutions exist. Indeed, for all the examples, we are able to
demonstrate analytically that the SwiZs’ π̂n-approximate posterior distribution follows a
uniform distribution when evaluated at the true value θ0, and thus concluding by Propo-
sition 1.28 that any confidence regions built from the percentiles of this posterior have
exact coverage probabilities in the long-run. In addition, and maybe more surprisingly,
for most examples we are able to derive the explicit posterior distribution that the SwiZs
targets. This message is formidable, one may not even need computations to characterize
the distribution of θ̂n given π̂n, but as one may foresee, these favorable situations are
limited in numbers. Lastly, we illustrate Proposition 1.13 on the equivalence between the
SwiZs and the parametric bootstrap with a Cauchy random variable in Example 1.51 to
conclude that they are indeed the same. Since the SwiZs and the parametric bootstrap
are seldom equivalent (see the discussion after Theorem 1.12), we also demonstrate the
nonequivalence of the two methods in the case of uniform random variable with unknown
upper bound (Example 1.52) and a gamma random variable with unknown rate (Exam-
ple 1.54). The considerations of this section are not only theoretical but also practical as
we treat the linear regression (Example 1.56) and the geometric Brownian motion when
observed irregularly (Example 1.59), two models widely use.

Example 1.51 (Cauchy with unknown location). Let xi ∼ Cauchy(θ, σ), σ > 0 known,
i = 1, . . . , n, be identically and independently distributed. Consider the generating func-
tion g(θ, u) = θ + u where u ∼ Cauchy(0, σ) and the average as the (explicit) auxiliary
estimator, π̂n = x̄. We have

π̂II,n(θ) =
1

n

n∑

i=1

g(θ, ui) = θ + w,

where w = 1
n

∑n
i=1 ui. By the properties of the Cauchy distribution, we have that w ∼

Cauchy(0, σ), that is the average of independent Cauchy variables has the same distribu-

tion of one of its components. Let θ̂n be the solution of d(π̂n, θ̂n + w) = 0, hence we have

the explicit solution θ̂n = π̂n −w. Note that by symmetry of w around 0 we have w
d
= −w,

so θ̂n = π̂n + w. We therefore have that

Pr
(
θ̂n ≤ θ0|π̂n

)
= Pr (π̂n + w ≤ θ0|π̂n)

= Pr (θ0 − w0 + w ≤ θ0|θ0, w0)

= Pr (w ≤ w0) ∼ U(0, 1),
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and by Proposition 1.28 the coverage obtained on the percentiles of the distribution of
θ̂n|π̂n are exact in the long-run (frequentist).

The distribution of θ̂n|π̂n can be known in an explicit form. From the solution of θ̂n,
we let w = a(θ) = π̂n + θ. Following Proposition 1.41, we have

fθ̂n
(θ|π̂n) = fw (a(θ)|π̂n)

∣∣∣∣∣

∂
∂θ
g(θ, w)

∂
∂w
g(θ, w)

∣∣∣∣∣ .

Since g(θ, w) = θ + w, the scaling factor is 1 and θ̂n|π̂n ∼ Cauchy(π̂n, σ).
Eventually, we illustrate Theorem 1.12, more specifically Proposition 1.13, by show-

ing that the parametric bootstrap is equivalent. The bootstrap estimators is θ̂Boot,n =
1
n

∑n
i=1 g(π̂n, ui) = π̂n + w. It follows immediately that θ̂n = θ̂Boot,n and both estimators

are equivalently distributed.

Example 1.52 (uniform with unknown upper bound). Let xi ∼ U(0, θ), i = 1, . . . , n, be
identically and independently distributed. Consider the generating function g(θ, u) = uθ
where u ∼ U(0, 1) and the (explicit) auxiliary estimator maxi xi. Clearly, maxi xi =
θmaxi ui. Denote w = maxi ui so the auxiliary estimator on the sample is π̂n = w0θ0.
Now define the estimator θ̂n to be the solution such that d(π̂n, θ̂w) = 0. An explicit solution

exists and is given by θ̂n = θ0w0

w
. We therefore have that

Pr
(
θ̂n ≤ θ0|π̂n

)
= Pr

(
θ0w0

w
≤ θ0|θ0, w0

)
= Pr

(
w−1 ≤ w−1

0

)
∼ U(0, 1),

and by Proposition 1.28 the coverage obtained on the percentiles of the distribution of θ̂n

are exact in the frequentist sense.
We can even go further by expliciting the distribution of θ̂n given π̂n. Let define the

mapping a(θ) = θ0w0

θ
. By the change-of-variable formula we obtain:

fθ̂n
(θ|π̂n) = fw(a(θ)|π̂n)

∣∣∣∣∣
∂

∂θ
a(θ)

∣∣∣∣∣ .

The maximum of n standard uniform random variables has the density fw(w) = nwn−1.
The derivative is given by ∂a(θ)/∂θ = −θ0w0/θ

2. Note that by Proposition 1.41 we
equivalently have

∂
∂θ
g(θ, w)

∂
∂w
g(θ, w)

∣∣∣∣
w=a(θ)

=
w

θ

∣∣∣∣
w=θ0w0/θ

=
θ0w0

θ2
.

Hence, we eventually obtain:

fθ̂n
(θ|π̂n) =

nπ̂n
n

θn+1
, π̂n = θ0w0.

Note that π̂n is a sufficient statistic. Therefore we have obtained that the posterior distri-
bution of θ̂n given π̂n is a Pareto distribution parametrized by π̂n, the minimum value of
the support, and the sample size n, as the shape parameter.

In view of the preceding display, it is not difficult to develop a similar result for the
parametric bootstrap (see the Definition 1.9). The bootstrap estimator solution is simple,

it is given by θ̂Boot,n = maxi uiπ̂n = θ0w0w. We thus obtain

Pr
(
θ̂Boot,n ≤ θ0|π̂n

)
= Pr (θ0w0w ≤ θ0|θ0, w0) = Pr

(
w ≤ w−1

0

)
,
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so it cannot be concluded that Fθ̂Boot,n|π̂n
(θ0) follows a uniform distribution and we cannot

invoke Proposition 1.28. Note that however we cannot exclude that the parametric boot-
strap leads to exact coverage probability in virtue of Proposition 1.28 (see Remark 1.29).
The parametric bootstrap is well-known to be inadequate in such problem. This fact may
be made more explicit as we give now the distribution of the parametric bootstrap estima-
tors. Let define the mapping w = b(θ̃) = θ̃

θ0w0
. Note that b(θ0) = 1/w0 6= w0. We obtain

by the change-of-variable formula

fθ̂Boot,n

(
θ̃|π̂n

)
= fw

(
b(θ̃)|π̂n

) ∣∣∣∣∣
∂

∂θ̃
b(θ̃)

∣∣∣∣∣ =
nθ̃n−1

π̂n
n

.

This distribution is known to be the power-function distribution, a special case of the
Pearson Type I distribution (see [JKB94]). More interestingly, we have the following
relationship between the parametric bootstrap and the SwiZs estimates:

θ̂Boot,n
d
=

1

θ̂n

.

Ultimately, note that the support of the distribution of θ̂Boot,n is (0, π̂n) whereas it is
(π̂n,+∞) for the SwiZs, so both distributions never cross! Since π̂n is systematically
bias downward the true value θ0, the coverage of the parametric bootstrap is always null.
We illustrate this fact in the next figure.

Example 1.53 (exponential with unknown rate parameter). Let xi ∼ E(θ), i = 1, . . . , n,
be identically and independently distributed. Consider the generating function g(θ, u) = u

θ
,

where u ∼ Γ(1, 1), and the inverse of the average as auxiliary estimator, denoted x̄−1.
Clearly we have x̄−1 = θ/w, where w =

∑n
i=1 ui/n, so π̂n = θ0/w0. The solution of

d(π̂n, θ/w) = 0 in θ is denoted θ̂n, it is given by θ̂n = θ0w/w0 = wπ̂n. We therefore have

Pr
(
θ̂n ≤ θ0|π̂n

)
= Pr (w ≤ w0) ∼ U(0, 1).

It results from Proposition 1.28 that any intervals built from the percentiles of the dis-
tribution of θ̂n has exact frequentist coverage. The distsribution can be found in explicit
form. We have by the additive property of the Gamma distribution that w ∼ Γ(n, 1/n)
(shape-rate parametrization). It immediately results from the change-of-variable formula
that

θ̂n|π̂n ∼ Γ

(
n,

n∑

i=1

xi

)
.

Note that π̂n is a sufficient statistic so the obtained distribution is a posterior distribution.

This last example on an exponential variate can be (slightly) generalized to a gamma
random variable as follows.

Example 1.54 (gamma with unknown rate parameter). Consider the exact same setup
as in Example 1.53 with the exception that xi ∼ Γ(α, θ) and u ∼ Γ(α, 1), where α > 0
is a known shape parameter. Following the same steps as in Example 1.53 we find the
following posterior distribution:

θ̂n|π̂n ∼ Γ

(
αn,

n∑

i=1

xi

)
.
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We also have that any intervals built from the percentiles of the posterior have exact
frequentist coverage probabilities.

In view of this display and Example 1.53, we can derive the distribution of the para-
metric bootstrap. The estimator is obtained as follows:

θ̂Boot,n =
n

∑n
i=1 g(π̂n, ui)

=
π̂n

w
,

where w ∼ Γ (nα, 1/n). It follows by the inverse of gamma variate and the change-of-
variable formula that

θ̂Boot,n ∼ Γ−1

(
nα,

n∑

i=1

xi

)
,

so θ̂Boot,n
d
= 1/θ̂n. Since π̂n = θ0/w0, we can also conclude that the parametric bootstrap

is not uniformly distributed:

Pr
(
θ̂Boot,n ≤ θ0|π̂n

)
= Pr

(
θ0

w0w
≤ π̂n|θ0, w0

)
= Pr

(
1

w
≤ w0

)
.

The posterior distribution we obtained for the SwiZs in the last example coincides
with the fiducial distribution [see Table 1 VM15], [see Example 21.2 KS61]. This corre-
spondance is not surprising in view of the discussion held after Proposition 1.24. Indeed
the gamma distribution is a member of the exponential family and we use a sufficient
statistics as the auxiliary estimator, so the SwiZs and the generalized fiducial distribution
are equivalent.

We now turn our attention to more general examples where θ is not a scalar.

Example 1.55 (normal with unknown mean and unknown variance). Let xi ∼ N(µ, σ2)
be identically and independently distributed and consider g(µ, σ2, u) = µ + σu where

u ∼ N(0, 1). Take the following auxiliary estimator, π̂n = (x̄, ks2)
T

= h(x), where
x̄ = 1

n

∑n
i=1 xi, s

2 =
∑n

i=1 (xi − x̄)2 and k ∈ IR is any constant. Note for example that
k < 0, so the auxiliary estimator of the variance may be negative. Indeed the SwiZs accepts
situation for which Π ∩ Θ = ∅, it is clearly not the case of the parametric bootstrap for
example (see Remark 1.10). We have that

w = h(u) =




1
n

∑n
i=1 ui

∑n
i=1

(
ui − 1

n

∑n
j=1 uj

)2


 .

An explicit solution exists for d(π̂n, g(µ, σ
2,w)) = 0 in (µ, σ2) and is given by

θ̂n =

(
µ̂
σ̂2

)
=

(
x̄0 − σ̂w1

s2
0

w2

)
= a(w).

Note that x̄0 = µ0 + σ0w0,1 and s2
0 = σ2

0w0,2. We obtain the following

Pr
(
θ̂n ≤ θ0

)
= Pr




µ0 + σ0w0,1 − σ0w1

√
w0,2

w2

σ2
0

w0,2

w2


 ≤

(
µ0

σ2
0

)


= Pr



( w1√

w2
1

w2

)
≤



w0,1√
w0,2
1

w0,2




 ∼ U(0, 1).
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Therefore, by Proposition 1.28, any region built from the percentiles of the posterior dis-
tribution of θ̂n has exact frequentist coverage. This posterior distribution has a closed
form.

Note that w1 ∼ N(0, 1/n). Once realized that ui − 1
n

∑n
j=1 uj ∼ N(0, (n − 1)/n), it is

not difficult to obtain that w2 ∼ Γ(n/2, n/2(n−1)), a gamma random variable (shape-rate
parametrization). It is straightforward to remark that

µ̂|(σ̂2, π̂n) ∼ N

(
x̄0,

σ̂2

n

)
, σ̂2 ∼ Γ−1

(
n

2
,

s2
0n

2(n− 1)

)
,

where Γ−1 represents the inverse gamma distribution. The joint distribution is known in
the Bayesian literature as the normal-inverse-gamma distribution (see [Koc07]). We thus
have the following joint distribution

θ̂n|π̂n ∼ N-Γ−1

(
x̄0, n,

n

2
,

s2
0n

2(n− 1)

)
.

The distribution of µ̂ unconditionnaly on σ̂2 is a non-standardized t-distribution with n
degrees of freedom,

µ̂|π̂n ∼ t

(
x̄0,

s2
0n

n− 1
, n

)
.

The results on the normal distribution (Example 1.55) can be generalized to the linear
regression.

Example 1.56 (linear regression). Consider the linear regression model y = Xβ + ǫ

where ǫ ∼ N(0, σ2In) and dim(β) = p. Suppose the matrix XT X is of full rank. A natural
generating function is g(β, σ2,X) = Xβ + σu where u ∼ N(0, In) (see Example 1.1 for
other suggestions). Take the ordinary least squares as the auxiliary estimator so we have
the following explicit form:

π̂n =

(
π̂1

π̂2

)
=



(
XT X

)−1
XT y0

kyT
0 Py0


 ,

where P = In − H is the projection matrix, H = X
(
XT X

)−1
XT is the hat matrix,

y0 denotes the observed responses and k ∈ IR is any constant. Note that P and H
are symmetric idempotent matrices and that PX = 0. An explicit solution exists for

θ̂n = (β̂T σ̂2)
T
. To find it, we use the indirect inference estimator, which by Theorem 1.8

is the equivalent to the SwiZs estimator. Using y
d
= Xβ + σu, we have

π̂II,n(θ) =

(
π̂1(θ)
π̂2(θ)

)
=



(
XT X

)−1
XT (Xβ + σu)

kσ2uT Pu


 .

Since π̂2(θ) depends only on σ2, solving d(π̂2, π̂2(θ)) = 0 in σ2 leads to

σ̂2 =
yT

0 Py0

uT Pu
.

On the other hand, solving d(π̂1, π̂1(θ)) = 0 in β leads to

β̂ =
(
XT X

)−1
XT (y0 + σ̂u) .



30 1. SwiZs: Switched Z-estimators

Since y0 = Xβ0 + σ0u0, we obtain the following:

Pr
(
θ̂n ≤ θ0

)
= Pr

(
β̂ ≤ β0, σ̂

2 ≤ σ2
0

)

= Pr

((
XT X

)−1
XT (Xβ0 + σ0u0 + σ̂u) ≤ β0,

(Xβ0 + σ0u0)
T P (Xβ0 + σ0u0)

uT Pu
≤ σ2

0

)

= Pr

((
XT X

)−1
XT (σ0u0 − σ̂u) ≤ 0,

σ2
0uT

0 Pu0

uT Pu
≤ σ2

0

)

= Pr


 XT u√

uT Pu
≤ XT u0√

uT
0 Pu0

,
1

uT Pu
≤ 1

uT
0 Pu0


 ∼ U(0, 1).

Note that at the third equality we use the fact that u
d
= −u since u is symmetric around 0.

The last development, together with Proposition 1.28, demonstrates that any region built
on the percentiles of the distribution of θ̂n leads to exact frequentist coverage probabilities.
The distribution of θ̂n can be obtained in an explicit form.

Since P is symmetric and idempotent, it is well known that uT Pu ∼ χ2
n−p [see Theorem

5.1.1 MP92]. Hence we obtain that

β̂|(σ̂2, π̂n) ∼ N

(
π̂1, σ̂

2
(
XT X

)−1
)
, σ̂2|π̂n ∼ Γ−1

(
n− p

2
,
yT

0 Py0

2

)
.

As shown in Example 1.55, it follows that the joint distribution of θ̂n conditionally on π̂n

is a normal-inverse-gamma distribution

θ̂n|π̂n ∼ N-Γ−1

((
XT X

)−1
XT y0,

(
XT X

)−1
,
n− p

2
,
yT

0 Py0

2

)
,

and the distribution of β̂, unconditionally on σ̂2, is a multivariate non-standardized t
distribution with n− p degrees of freedom

β̂|π̂n ∼ t

((
XT X

)−1
XT y0,

yT
0 Py0

n− p

(
XT X

)−1
, n− p

)
.

In this last example on the linear regression, we employed the OLS as the auxiliary
estimator, which is known to be an unbiased estimator. In fact, it is not a necessity to
have unbiased auxiliary estimator. The next example illustrate this point.

Example 1.57 (ridge regression). Consider the same setup as in Example 1.56, y =
Xβ + ǫ, ǫ ∼ N(0, σ2In) and rank(XT X) = p. Take the ridge estimator as the auxiliary
estimator, so for the regression coefficients we have

π̂R
1 =

(
XT X + λIp

)−1
XT y0,

for some constant λ ∈ IR. Consider the squared residuals as an estimator of the variance,
so after few manipulations, we obtain

π̂R
2 = kyT

0 PλPλy0,

where Pλ ≡ In − Hλ, Hλ ≡ X
(
XT X + λIp

)−1
XT , k ∈ IR is any constant. Note that

Pλ is symmetric but not idempotent. As in Example 1.56, let’s use the indirect inference

estimator with y
d
= Xβ + σu. We obtain

π̂R
II,n(θ) =

(
π̂R

1 (θ)
π̂R

2 (θ)

)
=



(
XT X + λIp

)−1
XT (Xβ + σu)

k(Xβ + σu)T PλPλ (Xβ + σu)


 .
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Let β̃ denotes the solution of d(π̂R
1 , π̂

R
1 (θ)) = 0 in β. We have the explicit solution given

by

β̃ =
(
XT X

)−1
XT (y0 − σ̃u) .

Using β̃ in π̂R
2 (θ) leads to

π̂R
2 (θ̃) = k(Hy0 − σ̃Pu)T PλPλ (Hy0 − σ̃Pu) ,

where H ≡ X
(
XT X

)−1
X and P ≡ In − H. We have the followings: HHλ = Hλ,

PPλ = P and PH = 0. Finding σ̃2 such that d(π̂R
2 , π̂

R
2 (θ̃)) = 0 gives

σ̃2uT Pu + yT
0 HPλPλHy0 − yT

0 PλPλy0 = 0,

which leads to the following solution:

σ̃2 =
yT

0 Py0

uT Pu
.

Therefore, σ̃2 is the same as σ̂2 we found in Example 1.56, and we directly have that
β̃ = β̂. As a consequence, the distribution of θ̃ is exactly the same as θ̂n in Example 1.56
and the frequentist coverage probabilities are exact.

From Example 1.55 on the normal distribution, the derivation to closely related dis-
tribution is straightforward, as we see now with the log-normal distribution.

Example 1.58 (log-normal with unknown mean and unknown variance). Let xi ∼
log -N(µ, σ2) be identically and independently distributed and consider g(µ, σ2, u) = eµeσu

where u ∼ N(0, 1). If we take the maximum likelihood estimator as the auxiliary estimator,
we have

π̂n =

(
π̂1

π̂2

)
=




1
n

∑n
i=1 ln(xi)

∑n
i=1

(
ln(xi) − 1

n

∑n
j=1 ln(xj)

)2




The solution is the following

θ̂n =

(
µ̂
σ̂2

)
=

(
π̂1 − σ̂w1

π̂2

w2
,

)

where w1 = 1
n

∑n
i=1 ui and w2 =

∑n
i=1 (ui − 1

n

∑n
j=1 uj)

2
. It is the same solution as Ex-

ample 1.55, hence the posterior distribution of θ̂n is normal-inverse-gamma and any α-
credible region built on this posterior have exact frequentist coverage.

Having illustrated the theory for random variable that are identically and indepen-
dently distributed, we now show a last example on time series data. Note that (variations
of) this example is numerically studied in [GMR93].

Example 1.59 (irregularly observed geometric Brownian motion with unknown drift and
unknown volatility). Consider the stochastic differential equation

dyt = µytdt+ σytdWt,

where {Wt : t ≥ 0} is a Wiener process and θ = (µ σ2)
T

are the drift and volatility
parameters. An explicit solution to Itô’s integral exists and is given by

yt = y0 exp
[(
µ− 1

2
σ2
)
t+ σWt

]
.
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Suppose we observe the process at n points in time: t1 < t2 < . . . < tn, ∀i ti ∈ IR+. Define
the difference in time by ∆i = ti −ti−1, so we have n−1 time differences. Note that all the
time differences are positive, ∆i > 0, and we allow the process to be irregularly observed,
∆i 6= ∆j, i 6= j. Instead of working directly with the process {yti

: i ≥ 1}, it is more
convenient to work with the following transformation of the process {xti

= ln(yti
/yti−1

) :
i ≥ 2}. Indeed, we have

xti
=
(
µ− 1

2
σ2
)

∆i + σ
(
Wti

−Wti−1

)
.

By the properties of the Wiener process, we have Wti
−Wti−1

∼ N(0,∆i) and Wti
−Wti−1

is independent from Wtj
− Wtj−1

for i 6= j. Hence the vector x = (xt2 . . . xtn)T is
independentely but non-identically distributed according to the joint normal distribution

x ∼ N

((
µ− 1

2
σ2
)

∆, σ2Σ
)
,

where ∆ = (∆2 . . . ∆n)T and Σ = diag(∆). Note that ∆ = Σ1n−1, where 1n−1 is a
vector of n− 1 ones, and ∆T 1n−1 = ∆T/2∆1/2 since all the ∆ are positives.

We consider the following auxiliary estimators:

π̂n =

(
π̂1

π̂2

)
=

(
xT

0 1n−1

xT
0 Σ−1x0

)
.

Since x
d
= (µ − σ2/2)∆ + σΣ1/2z, where z ∼ N(0, In−1), we obtain the following indirect

inference estimators (or equivalently SwiZs),

π̂1(θ) =
[(
µ− 1

2
σ2
)

∆ + σΣ1/2z
]T

1n−1 =
(
µ− 1

2
σ2
)

∆T/2∆1/2 + σzT ∆1/2,

and

π̂2(θ) =
[(
µ− 1

2
σ2
)

∆ + σΣ1/2z
]T

Σ−1
[(
µ− 1

2
σ2
)

∆ + σΣ1/2z
]

=
(
µ− 1

2
σ2
)2

∆T/2∆1/2 + 2σ
(
µ− 1

2
σ2
)

zT ∆1/2 + σ2zT z.

Solving d(π̂1, π̂1(θ̂)) = 0 in µ̂ gives

µ̂ =
1

2
σ̂2 − σ̂zT ∆1/2

(
∆T/2∆1/2

)−1
+ xT

0 1n−1

(
∆T/2∆1/2

)−1
. (1.3)

Now solving d(π̂2, π̂2(θ̂)) = 0 in σ̂2 and substituing µ̂ by the above expression in (1.3) leads
to

σ̂2 =
xT

0 Qx0

zT Pz
,

where P = In−1 − ∆1/2
(
∆T/2∆1/2

)−1
∆T/2 is symmetric and idempotent, and Q = Σ−1 −

1n−1

(
∆T/2∆1/2

)−1
1T

n−1. By the properties of the rank of a matrix, we have rank(P) =

trace(P) = n − 2. Note that by independence zT ∆1/2 d
= z(∆T/2∆1/2), where z is a
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single standard normal random variable. Similarly to the example on the linear regression
(Example 1.56), we obtain the explicit distributions

µ̂|
(
π̂n, σ̂

2
)

∼ N

(
1

2
σ̂2 + xT

0 1n−1

(
∆T/2∆1/2

)−1
, σ̂2

(
∆T/2∆1/2

)−1
)
,

σ̂2|π̂n ∼ Γ−1

(
n− 2

2
,
xT

0 Qx0

2

)
.

As with Example 1.56, this findings suggest that θ̂n|π̂n is jointly distributed according to
a normal-inverse-gamma distribution. However, σ̂2 appears in the mean of µ̂|(π̂n, σ̂

2) so
such conclusion is not straightforward. We leave the derivation of the joint distribution
and the distribution of µ̂ unconditionnal on σ̂2 for further research.

We now demonstrate that the π̂n-approximate posterior distribution of θ̂n leads to exact
frequentist coverage probabilities. Once realized that Σ−1 = Σ−1/2Σ−1/2, Σ1/21n−1 = ∆1/2,
and ∆T Σ−1 = 1n−1, it is not difficult to show that ∆T Q∆ = 0, ∆T QΣ1/2 = 0 and
Σ1/2QΣ1/2 = P. Since x0 = (µ0 − σ2

0/2)∆ + σ0Σ
1/2z0, we obtain

σ̂2 = σ2
0

zT
0 Pz0

zT Pz
= σ2

0

w0

w
,

µ̂ =
σ2

0

2

w0

w
− σ0

√
w0

w
z + µ0 − 1

2
σ2

0 + σ0z0.

Therefore,

Pr
(
µ̂ ≤ µ0, σ̂

2 ≤ σ2
0

)
= Pr

(
σ2

0

2

w0

w
− σ0

√
w0

w
z + −1

2
σ2

0 + σ0z0 ≤ 0,
w0

w
≤ 1

)

= Pr

(
k0

w
− z√

w
≤ k0

w0

− z0√
w0

, w−1 ≤ w−1
0

)
∼ U(0, 1),

where k0 = σ0
√
w0/2. Thus, any region on the joint distribution of θ̂n leads to exact

frequentist coverage by Proposition 1.28.

1.7 Simulation study

The main goal of this section is threefold. First, we illustrate the results of the Sec-
tion 1.4 on the frequentist properties in finite sample of the SwiZs in the general case
where no solutions are known in explicit forms, as opposed to the Section 1.6, and thus
requiring numerical solutions. In order to achieve this point, we measure at different
levels the empirical coverage probabilities of the intervals built from the percentiles of
the π̂n-approximate posterior obtained by the SwiZs. Note that for dim(θ) > 1, we only
considered marginal intervals to avoid a supplementary layer of numerical nuisance, the
coverage probabilities are not concerned by this choice, only the length of the intervals.
Second, we elaborate on the verification of the conditions of Theorem 1.38 with the exam-
ples at hand. As already motivated, the emphasis is on the estimating function. It seems
easier to verify Assumption 1.36 than Assumption 1.37, since only one of them is neces-
sary to satisfy Theorem 1.38, we concentrate our efforts on the former. We also brighten
the study up to situations where Assumption 1.36 does not entirely hold or cannot be
verified to measure its consequences empirically. Third, we give the general idea on how
to implement the SwiZs. Indeed, anyone familiar with the numerical problem of solving
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a point estimator such as the maximum likelihood estimator has a very good idea on how
to obtain the auxiliary estimator π̂n. Solving the estimating function for the parameters
of interest is very similar, it requires the exact same tools but has the inconvenient of
needing further analytical derivations and implementations details. As already remarked,
the parametric bootstrap does not possess such inconvenient. The counterpart is that
the SwiZs may lead to exact coverage probabilities. The motto “no pain, no gain” is
particularly relevant here. For this purpose, the parametric bootstrap is proposed as the
point of comparison for all the examples of this section. We measure the computational
time as experienced by the user in order to appreciate the numerical burden. In case both
the SwiZs and the parametric bootstrap have very similar coverage probabilities, we also
quantify the length of the intervals as a mean of comparison.

As a subsidiary goal of this section, we study the point estimates of the SwiZs. In-
deed, the indirect inference is also a method for reducing the small sample bias of an
initial (auxiliary) estimator, even in situations where it may be “unnatural” to call such
method, as for example, when a maximum likelihood estimator may be easily obtained
(see [Gue+18b]). Since the SwiZs is a special case of indirect inference, it would be inter-
esting to gauge the ability of the SwiZs to correct the bias. We explore the properties of
the mean and the median of the SwiZs. This choice is arbitrary but largely admitted.

There are common factors in the implementation of all the examples of this section so
we start by mentioning them by category. For the design, we use M = 10, 000 independent
trials so we can appreciate the coverage probabilities up to the fourth digit. We evaluate
numerically the π̂n-approximate posterior distribution of the SwiZs and the parametric
bootstrap distribution based on S = 10, 000 replicates. We measure the coverage prob-
abilities at 50%, 75%, 90%, 95% and 99% levels. Although sometimes we do not report
all of them for more clarity of the presentation, they are however shown in Appendix
for more transparency. For the implementation, we write our code in C++ with the help
of the Armadillo ([SC16]), the Eigen ([GJ+10]) and the Boost ([Boo18]) libraries. Since
the statistical community uses mainly R in academia ([R C17]), we were able to use the
C++ implementation within R thanks to the Rcpp ([EB17]), the RcppArmadillo ([ES14]),
the RcppEigen ([BE13]) and the BH ([EEK16]) packages. For the numerical optimiza-
tion, instead of solving directly the root of the estimating function, we try to find the
minimum of the squared ℓ2-norm of the estimating function. This is a more practical
solution and permits to use quasi-Newton routines (see the Chapter 11 of [NW06] for a
broader discussion). Note that taking the norm of the estimating function is a trick also

used when proving the consistency of π̂n and θ̂n. All the optimizations are conducted by
the Limited memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton routine proposed
by [Noc80; LN89], more specifically, we employ the C implementation made available
by [ON10] and accessible for R user through the RcppNumerical ([Qiu+18]) package.
The optimization are performed with the default values. The starting values for solving
the auxiliary estimator are obtained using the differential evolution algorithm of [SP97]

and made available to R user by the RcppDE ([RS16]) package. For finding θ̂n, we simply
use π̂n as the starting values. There are constraints on the parameters of most models
we considered in this section. We use variable transformation when necessary for the
parameters to comply to these constraints. All the numerical evaluation are performed at
the Baobab cluster of the University of Geneva on 16 parallelized threads. The variation
in time due to the different type of nodes treating our demand in the cluster has not
been taken into account in the reported time because, first, it appeared to be minor, and
second, the SwiZs and the comparative methods are performed simultaneously so they
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would be equivalently concerned.
We select five different scenarii. First, we start with a toy example by considering a

standard Student’s t-distribution with unknown degrees of freedom (Example 1.60). Al-
though the Student distribution is ubiquitous in statistics since at least Gosset’s Biometrika
paper ([Stu08]), there are no simple tractable way to construct an interval of uncertainty
around the degrees of freedom. In addition, the degrees of freedom is a parameter that
gauges the tail of the distribution and is not particularly easy to handle. The existence
of the moments of this distribution depends upon the values that this parameter takes.
We take a particular interest in small values of this parameter for which, for example the
variance or the kurtosis are infinite.

Example 1.60 (standard t-distribution with unknown degrees of freedom). Let xi ∼ t(θ),
i = 1, · · · , n, be identically and independently distributed with density

f(xi, θ) =

(
1 +

x2
i

θ

)− θ+1
2

√
θB

(
1
2
, θ

2

) , (1.4)

where θ represents the degrees of freedom and B is the beta function. We consider the
likelihood score function as the estimating function and we take the MLE as the auxiliary
estimator. In this situation, Θ and Π are equivalent, and thus, there are no reasons to
disqualify the parametric bootstrap. Substituing θ by π in the Equation 1.4, taking then
the derivative with respect to π of the log-density leads to the following

Φn(θ,u, π) = ψ
(
π + 1

2

)
− ψ

(
π

2

)
− 1

n

n∑

i=1

ln

(
g(θ,ui)

2 + 1

π

)
+

1

n

n∑
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g(θ,ui)
2 − 1

g(θ,ui)
2 + π

,

where ψ is the digamma function. We now verify Assumption 1.36 so Theorem 1.38 can
be invoked. Suppose Assumption 1.32 holds so we can write the following scalar-valued
function

ϕπ̂n(θ, w) =
1

2
ψ

(
π̂n + 1

2

)
− 1

2
ψ

(
π̂n

2

)
− 1

2
ln

(
g(θ, w)2 + 1

π̂n

)
+

1

2

g(θ, w)2 − 1

g(θ, w)2 + π̂n

,

where π̂n is fixed. The first derivative with respect to θ is given by

∂

∂θ
ϕπ̂n(θ, w) = g(θ, w)

∂

∂θ
g(θ, w)




π̂n − 1
(
g(θ, w)2 + π̂n

)2 − 1

g(θ, w)2 + 1


 . (1.5)

Substituing (∂/∂θ)g by (∂/∂w)g gives the first derivative with respect to w. The deriva-
tive exists everywhere so Kn = ∅. Therefore, if the generating function g(θ, w) is once
continuously differentiable in both its arguments then Assumption 1.36 (i) is satisfied.

The determinant here is | ∂
∂θ
ϕπ̂n(θ, w)|. It will be zero on a countable set of points:

if g(θ, w) = 0, if (∂/∂θ)g(θ, w) = 0 or if the rightest term of the Equation 1.5 is 0.
Substituing (∂/∂θ)g by (∂/∂w)g gives the same analysis. Hence, the determinant of the
derivatives of the estimating function is almost everywhere non-null and Assumption 1.36
(ii) is satisfied.

Eventually, we clearly have that

lim
|g|→∞

|ϕπ̂n(θ, w)| = +∞.
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As a consequence, given that lim‖(θ,w)‖→∞|g(θ, w)| = ∞, Assumption 1.36 (iii) is satisfied.
In the light of these findings, the choice of generating function is crucial and there

are many candidates [see e.g. Dev86]. The inverse cumulative distribution function is a
natural choice, but a numerically complicated one in this case. Indeed, following the Boost
C++ library [Boo18], it can be obtained by

g1(θ, u1) = sign
(
u1 − 1

2

)(
θ(1 − z)

z

)1/2

,

where u1 ∼ U(0, 1) and z is equal to the incomplete beta function inverse parametrized by
θ and depending on u1. An alternative choice, numerically and analytically simpler, is to
consider Bailey’s polar algorithm [Bai94], which is given by

g2(θ,u2) = u2,1

√√√√ θ

u2,2

(
u

−2/θ
2,2 − 1

)
,

where u2,2
d
= u2

2,1 +u2
2,3 if u2,2 ≤ 1 and u2,1, u2,3 ∼ U(−1, 1). Clearly g2(θ,u2) is once con-

tinuously differentiable in each of its arguments and the limit is lim(θ,u2,1,u2,2)→(∞,1,1)|g2(θ, u2,1, u2,3)| =
∞. Hence, even if w is unknown, these results strongly suggests that the conditions of
Theorem 1.38 hold, and as a conclusion, any intervals built on the percentiles of the dis-
tribution of θ̂n given π̂n have exact frequentist coverage.

The coverage probabilities in the Table 1.1 below are computed for three different values
of θ0 = {1.5, 3.5, 6} and a sample size of n = 50. When θ0 = 1.5, the variance of a
Student’s random variable is infinite and the skewness and kurtosis of the distribution are
undefined. When θ0 = 3.5, the variance is finite and the kurtosis is infinite. When θ0 = 6,
the first five moment exists.

The SwiZs is accurate at all the confidence levels with a maximum discrepancy of 1.39%
in absolute value. This is very reasonable considering the numerical task we perform. In
comparison, the parametric bootstrap has a minimum discrepancy of 0.87% for an average
of 4.44%. The SwiZs is also more efficient, it dominates the parametric bootstrap with a
median interval length systematically smaller. The parametric bootstrap is however about
six times faster than the SwiZs to compute the intervals. The comparison is not totally
fair in disfavor of the SwiZs as we were able here to use directly the log-likelihood for
the parametric bootstrap, which is numerically simpler to evaluate than the estimating
functions. We also bear the comparison with the bias-corrected and accelerated (BCa)
resampling bootstrap of [ET94]. Performances of this bootstrap scheme are comparable to
the parametric bootstrap. Finally, when considered in absolute value, 0.2 second do not
seem to be a hard effort for obtaining interval which is nearly exact and shorter.

Second, we consider a more practical case with the two-parameters Lomax distribution
([Lom54]) (Example 1.61), also known as the Pareto II distribution. This distribution has
been used to characterise wealth and income distributions as well as business and actuarial
losses (see [KK03] and the references therein). Because of this close relationship to the
application, we also measure the coverage probabilities of the Gini index, the value-at-risk
and the expected shortfall, quantities that may be of interest for the practitioner. The
maximum likelihood estimator has been shown in [GFG13] to suffer from small sample
bias when n is relatively small and the parameters are close to the boundary of the
parameter space. We add their proposal for bias adjustment to the basket of comparative
methods. To keep the comparison fair, we use a similar simulation scenario to the ones
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SwiZs parametric bootstrap BCa bootstrap
θ0 α ĉ Ī s̄ ĉ Ī s̄ ĉ Ī s̄

1.5 50% 50.66% 0.5129 0.1622 49.13% 0.5794 0.0358 47.69% 0.4906 0.0333
75% 75.39% 0.8839 73.27% 1.0504 71.64% 0.8607
90% 90.15% 1.2861 87.03% 1.6734 86.64% 1.2815
95% 94.68% 1.5540 91.42% 2.1935 91.82% 1.5800
99% 98.84% 2.1052 96.05% 3.8820 97.13% 2.2714

3.5 50% 50.08% 1.7594 0.2010 47.65% 2.8832 0.0349 44.94% 1.8716 0.0322
75% 74.62% 3.2780 70.36% 6.6243 68.80% 3.7372
90% 90.39% 5.2129 84.50% 20.665 84.36% 6.5202
95% 94.85% 6.8416 89.63% 240.11 90.62% 9.6584
99% 98.73% 10.788 95.11% 3104.1 95.60% 29.011

6 50% 48.61% 4.2027 0.2093 46.54% 11.463 0.0342 44.29% 4.6886 0.0305
75% 74.39% 8.3688 68.34% 245.75 69.99% 12.245
90% 89.56% 16.087 80.83% 2586.4 87.45% 41.335
95% 94.61% 26.250 85.06% 3376.8 93.05% 515.51
99% 98.90% 361.28 95.55% 4827.0 95.94% 2261.8

Table 1.1: ĉ: estimated coverage probabilities, Ī: median interval length, s̄: average time
in seconds to compute the intervals for one trial.

they proposed, which were also motivated by their closeness to situations encountered
in practice. Situations where the Lomax distribution is employed has been shown to
suffer from influential outliers ever since at least [VFR94b], we therefore consider, in a
second time, the weighted maximum likelihood ([FS94]) as the auxiliary estimator to gain
robustness. Interestingly, the weighted maximum likelihood estimator is generally not a
consistent estimator (see [DM02; MVF06]) so the parametric bootstrap cannot be invoked
directly, whereas, on the countrary, the SwiZs may be employed without any particular
care.

Example 1.61 (two-parameters Lomax distribution). Let xi ∼ Lomax(θ), i = 1, · · · , n,
θ = (b, q), be identically and independently distributed with density

f(xi,θ) =
q

b

(
1 +

xi

b

)−q−1

, xi > 0, (1.6)

where b, q > 0 are shape parameters. We consider the likelihood score function as the
estimating function and we take the MLE as the auxiliary estimator. The parameter
sets Θ and Π are equivalent with this setup, and thus, the parametric bootstrap may be
employed. Substituing θ by π in the Equation 1.6, taking then the derivative with respect
to π of the log-density leads to the following

Φn(θ,u,π) =




1
π2

−∑n
i=1 log

(
1 + g(θ,ui)

π1

)

− 1
π1

+ (π2+1)
π1

∑n
i=1

g(θ,ui)
π1+g(θ,ui)


 .

We now verify Assumption 1.36 so Theorem 1.38 can be invoked. Suppose Assump-
tion 1.32 on the existence of a random variable with the same dimensions as θ holds,
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and let denote it by w = (w1 w2)
T . Now assume that we can re-express the estimating

function as follows

ϕπ̂n(θ,w) =




1
π̂2

− log
(
1 + g(θ,w1)

π̂1

)

(π̂2+1)g(θ,w2)
π̂2

1+π̂1g(θ,w2)
− 1

π̂1


 ,

where π̂n is fixed. The Jacobian matrix with respect to θ is given by

Dθϕπ̂n(θ,w) =



κ1(θ)Dθg(θ, w1)

κ2(θ)Dθg(θ, w2)


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where

κ1(θ) =
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π̂1 + g(θ, w1)

κ2(θ) =
π̂2

1 (π̂2 + 1)

(π̂2
1 + π̂1g(θ, w2))

2 .

Note that π̂n and g(θ,w) are strictly positive, so κ1(θ) < 0 and κ2(θ) > 0. Substituing
Dθg by Dwg leads to the Jacobian matrix with respect to w, given by

Dwϕπ̂n(θ,w) =



κ1(θ) ∂

∂w1
g(θ, w1) 0

0 κ2(θ) ∂
∂w2

g(θ, w2)


 .

We see by inspection that the derivatives are defined everywhere and Kn = {∅}. If Dθg
and Dwg exist and are continuous, then Assumption 1.36 (i) is satisfied.

The determinants are given by

det (Dθϕπ̂n(θ,w)) = κ(θ,w)

[
∂

∂a
g(θ, w1)

∂

∂b
g(θ, w2) − ∂

∂a
g(θ, w2)

∂

∂b
g(θ, w1)

]

det (Dθϕπ̂n(θ,w)) = κ(θ,w)
∂

∂w1

g(θ, w1)
∂

∂w2

g(θ, w2),

where κ(θ,w) = κ1(θ)κ2(θ) and κ(θ,w) < 0. The only scenarii where these determinants
are zero are whether all the partial derivatives are zero, or if (∂/∂a)g(θ, w1)(∂/∂b)g(θ, w2) =
(∂/∂a)g(θ, w2) (∂/∂b)g(θ, w1). Since the Lomax random variables are absolutely continu-
ous, it is impossible for the generating function to be flat on θ and on w, except maybe in
extreme cases. Therefore, situations where the determinants are zero are countable, and
Assumption 1.36 (ii) is satisfied.

Suppose the generating function satisfies the following property:

lim
‖(θ,w1)‖→∞

g(θ, w1) = ∞.

Since the limit of the natural logarithm tends to infinity when its argument diverges, we
clearly have that

lim
‖(θ,w)‖→∞

‖ϕπ̂n(θ,w)‖ = +∞,

and as a consequence, Assumption 1.36 (iii) is satisfied.
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It remains to demonstrate that a generating function satisfies the above properties. A
natural and computationally easy choice for the generating function is the inverse cdf, it
is given by

g(θ, u) = b+ bu−1/q, u ∼ U(0, 1).

Clearly the generating function is once continuously differentiable in each (b, q, u). The
only possibilities for the partial derivatives of g to be zero are whether q = {+∞} or
u = {0}. The generating function tends to infinity when b diverges whereas it remains
constant when q or u diverges. All these findings strongly suggest that Theorem 1.38 is
applicable here, and as a conclusion that any intervals built on the percentiles of the SwiZs
distribution lead to exact frequentist coverage probabilities.

However, the situation is less optimistic with the weighted maximum likelihood. Indeed,
the estimating function is typically modified as follows:

Φ̃n (θ,u,π) = w(θ,u,π, k)Φn (θ,u,π) ,

where w(θ,u,π, k) is some weight function typically taking values in [0, 1] that depends
upon a tuning constant k. Usual weight functions are Huber’s type ([Hub+64]) and Tukey’s
biweighted function ([BT74]); see [Ham+11] for a textbook on robust statistics. For an
estimating function to be robust, the weight function either decreases to 0 or remains
constant for large values of x. As a consquence, at least two out of the three hypothesis
of Assumption 1.36 do not hold. Indeed, the determinants will be zero on an uncountable
set and lim‖(θ,w)‖→∞ Φ̃n < ∞.

For the simulations, we set θ0 = (2 2.3)T and use n = {35, 50, 100, 150, 250, 500} as
sample sizes. As already mentioned, this setup is close to the ones proposed in [GFG13],
and we thus add their proposal for correcting the bias of the maximum likelihood estimator
to the basket of the compared methods. The bias-adjustment estimator is given by

θ̂
(s)
BA,n = π̂n − B(π̂n)A(π̂n) vec (B(π̂n)) ,

where
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and

B−1(π) = n



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 .

All the detailed results of simulation are in Appendix 1.D.1. In Figure 1.1, we discover
that the SwiZs has very accurate coverage probabilities at all levels and all sample sizes
which seems in accordance with Theorem 1.38 and the subsequent verification analysis
for this example. For sample sizes greater or equal to 250, the parametric bootstrap and
the bias-adjustment proposal of [GFG13] meet the performance of the SwiZs at almost
every levels. However, below a sample of 150, the performance of the bias-adjustment are
catastrophic. This may only be explained by the following phenomenon: the maximum
likelihood is adjusted too severely for small values of n, and for a large proportion of the
time the resulting bias-adjusted estimator is out of the parameter space Θ. We report in
Table 1.2 our empirical findings. This phenomenon affects not only the coverage probabil-
ities but also the variation of this estimator (Figure 1.3) and the length of the confidence
intervals (Figure 1.2). Here we opted for discarding the inadmissible values (negative),
thereby reducing artificially the variance and the length of the confidence intervals of the
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Figure 1.1: Coverage probabilities of the SwiZs, the parametric bootstrap (Boot) and the
bias-adjustment (BA) proposal of [GFG13] for different sample sizes. On the left panel is
the coverage for the first estimator, and the second is on the right. The gray horizontal
dotted-lines indicate the perfect coverage probabilities. The closer to these lines is the
better.

bias-adjustment. All the other methods considered do not suffer from the positivity con-
strain on θ and thus we do not attempt to tackle this limitation of the bias-adjustment
method. The SwiZs has shorter uncertainty intervals than the parametric bootstrap,

n = 35 n = 50 n = 100 n = 150

38.78% 21.94% 3.02% 0.40%

Table 1.2: Empirical proportion of times the bias-adjusted maximum likelihood estimator
is jointly out of the parameter space Θ.

however it is more demanding in computational efforts (Figure 1.2). The computational
comparison is not entirely fair in disfavor of the SwiZs as here we take advantage that
the maximum likelihood estimator can be optimized directly on the log-likelihood, which
is numerically easier to evaluate than the likelihood scores that constitues the estimat-
ing function. An unexpected good surprise emerges from Figure 1.3 where it seems that
taking the median of the SwiZs leads to almost median unbiased point estimators. The
same may be said when using the weighted maximum likelihood as the auxiliary estimator
(Figure 1.5). However, using a robust estimator as the auxiliary parameter do not offer
interesting coverage probabilities in small samples (Figure 1.4), which seems to indicate
that Assumption 1.36 may not be easily relaxed. The parametric bootstrap unsurprisingly
fails completely when considering an inconsistent estimator. Eventually, the empirical
distributions in Figure 1.6 reminds us of the difficulty of estimating confidence regions.
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Figure 1.2: On the left panel: representation of the median interval lengths for a confidence
level of 95% for the SwiZs, the parametric bootstrap (Boot) and the bias-adjustment (BA)
proposal of [GFG13] for three different sample sizes. The ellipses are just a representation
and do not reflect the real shapes of the confidence regions. All the ellipses are on the
same scale. The centre of the ellipses is chosen for aesthetical reason and have no special
meaning. The y-axis corresponds to the median interval length of the first parameter, the
x-axis the one of the second parameter. The smaller the ellipse is, the better it is. On
the right panel: the average computational time in seconds of the SwiZs and the Boot for
the different sample sizes. Note that the computational time of the the BA (not on the
figure) is quasi-identical to the Boot. The lower is the better.
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Figure 1.3: On the left panel: the sum of absolute value of the median bias for the two
estimators divided by their respective true values for the mean of SwiZs distribution,
the median of the SwiZs distribution and the bias-adjustment (BA) proposal of [GFG13]
evaluated on the different sample sizes. On the right panel: likewise the left panel, but for
a different measure: the average of the median absolute deviation for the two estimators
divided by their respective true values. The lower is the better.
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Figure 1.4: Coverage probabilities for different sample sizes of the SwiZs (RSwiZs) and the
parametric bootstrap (RBoot) when taking the weighted maximum likelihood as auxiliary
estimator. On the left panel is the coverage for the first estimator, and the second is on
the right. The gray horizontal dotted-lines indicate the perfect coverage probabilities.
The closer to these lines is the better.
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Figure 1.5: On the left panel: the sum of absolute value of the median bias for the two
estimators divided by their respective true values for different sample sizes for the mean
of SwiZs distribution (RSwiZs: mean), the median of the SwiZs distribution (RSwiZs:
median) when considering the weighted maximum likelihood (WMLE) as the auxiliary
estimator. On the right panel: likewise the left panel, but for a different measure: the
average of the median absolute deviation for the two estimators divided by their respective
true values. The lower is the better.
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Figure 1.6: Empirical conditional distribution for a given π̂n and a sample size of n = 100
of the SwiZs, the parametric bootstrap (Boot), the bias-adjustment proposal of [GFG13]
(BA) when considering the maximum likelihood as the auxiliary estimator and the SwiZs
(RSwiZs) and the parametric bootstrap (RBoot) when considering the weighted maximum
likelihood as the auxiliary estimator. The black star represents θ0 = [2 2.3]T whereas the
red stars indicate the values of π̂n: the maximum likelihood estimator for SwiZs and Boot,
the bias-adjustment for BA and the weighted maximum likelihood estimator for RSwiZs
and RBoot. The “try square” at bottom-left-corner of each distribution has both sides of
length 2 and has its corner exactly at the (0, 0)-coordinate.
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Third, we investigate a linear mixed-model. These models are very common in statis-
tics as they incorporate both parameters associated with an entire population and pa-
rameters associated with individual experimental units facilitating thereby the study of,
for examples, longitudinal data, multilevel data and repeated measure data. Although
being widespread, the inference on the parameters remain a formidable task. We study
a rather simple model, namely the random intercept and random slope model when data
is balanced.

Example 1.62 (random intercept and random slope linear mixed model). Consider the
following balanced Gaussian mixed linear model expressed for the ith individual as

yi = (β0 + αi)1m + (β1 + γi)xi + ǫi, i = 1, · · · , n,
where ǫi, αi and γi are identically and independently distributed according to centered
Gaussian distributions with respective variances σ2

ǫ Im, σ
2
α and σ2

γ, m being the number
of replicates, the same for each individual, and 1m is a vector of m ones. The vector of

parameters of interest is θ =
(
β0, β1, σ

2
ǫ , σ

2
α, σ

2
γ

)T
. Let π = (π0, . . . , π4)

T be the corre-
sponding vector of auxiliary parameters. We take the MLE as the auxiliary estimator and
thus consider the likelihood score function as the estimating function. With this setup, the
parameter spaces Θ and Π are equivalent, and the parametric bootstrap may be employed.
Denote by N = nm the total sample size. The negative log-likelihood may be expressed as

ℓ (y,θ) = k +
1

2N

n∑

i=1

log (det (Ωi(θ))) + (yi − β01m − β1xi)
T Ωi

−1(θ)(yi − β01m − β1xi),

for some constant k and where Ωi(θ) = σ2
ǫ Im + σ2

α1m1T
m + σ2

γxix
T
i is clearly a symmetric

positive definite matrix. Taking the derivatives with respect to θ, then substituing θ by π

and yi by g(θ,ui) leads to

ΦN (θ,u,π) =




−1
N

∑n
i=1 zT (θ,ui,π)Ω−1

i (π)1m

−1
N

∑n
i=1 zT (θ,ui,π)Ω−1

i (π)xi

1
2N

∑n
i=1 trace

(
Ω−1

i (π) ∂
∂πj

Ωi(π)
)

−zT (θ,ui,π)Ω−1
i (π) ∂

∂πj
Ωi(π)

×Ω−1
i (π)z(θ,ui,π), j = 2, 3, 4




,

where z(θ,ui,π) = g(θ,ui)−π01m−π1xi (see also [Jia07] for more details on these deriva-
tions). The derivatives of Ωi(π) are easily obtained: (∂/∂π2)Ωi(π) = Im, (∂/∂π3)Ωi(π) =
1m1T

m and (∂/∂π4)Ωi(π) = xix
T
i . Since they do not depend on parameters, let denotes

(∂/∂πj)Ωi(π) ≡ Dij.
We now motivate the possibility to employ Theorem 1.38 by verifying Assumption 1.36.

First, we suppose that a random variable w of the same dimension as θ exists. Then, we
assume that the estimating function may be re-expressed as follows:

ϕπ̂N
(θ,w) =




−1
N

∑n
i=1 zT

i (θ, w0, π̂N)Ω−1
i (π̂N)1m

−1
N

∑n
i=1 zT

i (θ, w1, π̂N)Ω−1
i (π̂N)xi

1
2N

∑n
i=1 trace

(
Ω−1

i (π̂N)Dij

)

−zT
i (θ, wj, π̂N)Ω−1

i (π̂N)Dij

×Ω−1
i (π̂N)zi(θ, wj, π̂N), j = 2, 3, 4




,
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where zi(θ, wj, π̂N) = g(θ, wj) − π̂01m − π̂1xi, j = 0, 1, 2, 3, 4, and π̂N is fixed. The
Jacobian matrix with respect to θ is given by

Dθϕπ̂N
(θ,w) =




−1
N

∑n
i=1 DθgT (θ, w0)Ω−1

i (π̂N)1m

−1
N

∑n
i=1 DθgT (θ, w1)Ω−1

i (π̂N)xi

−1
N

∑n
i=1 DθgT (θ, wj)Ω

−1
i (π̂N)Dij

×Ω−1
i (π̂N)g(θ, wj), j = 2, 3, 4



.

Substituing DθgT by DwgT in the above delivers immediately the Jacobian matrix with
respect to w. Note that this second Jacobian is a diagonal matrix. Clearly, the differentia-
bility and continuity of ϕπ̂N

depends exclusively upon the differentiability and continuity
of g. Ergo, if Dθg and Dwg exist and are continuous, then Assumption 1.36 (i) holds.

These Jacobian matrices may have a null determinant under two circumstances: whether
the generating function g is flat on θ and/or w, and/or whether they are linearly de-
pendent. Since the Normal distribution is absolutely continuous, g may be flat only on
extreme cases. The Jacobian Dwϕπ̂N

is a diagonal matrix, so its determinant is null if
and only if one of its diagonal element is null. Since both the design and π̂N are fixed,
situations where Dθϕπ̂N

is linearly dependent may occur if the vectors (∂/∂θj)g(θ,w) =
k(∂/∂θj′)g(θ,w), j 6= j′, for some constant k ∈ IR. But because w is random, this situa-
tion is unlikely to occur, and, depending on g, Assumption 1.36 (ii) is plausible.

Eventually, it clearly holds that

lim
‖(θ,w)‖→∞

‖ϕπ̂N
(θ,w)‖ = ∞

if ‖g(θ,w)‖ → ∞ as ‖(θ,w)‖ → ∞, so Assumption 1.36 (iii) is satisfied given that g
fulfills the requirement.

Once again, the plausibility of Assumption 1.36 is up to the choice of the generating
function. A popular choice is the following:

g(θ,ui) = β01m + β1xi + Ci(θ)ui, ui ∼ N (0, Im) ,

where Ci(θ) is the lower triangular Cholesky factor such that Ci(θ)CT
i (θ) = Ωi(θ). It

is straightforward to remark that g is once continuously differentiable in β0, β1 and ui.
For the variances components, the partial derivatives of the Cholesky factor is given by
Theorem A.1 in [Sär13]:

∂

∂θj

Ci(θ) = Ci(θ)L

(
C−1

i (θ)
∂

∂θj

Ωi(θ)C−T
i (θ)

)
, j = 2, 3, 4,

where the function L returns the lower triangular and half of the diagonal elements of the
inputed matrix, that is:

Lij(A) =





Aij, i > j,
1
2
Aij, i = j,

0, i < j.

The partial derivatives of the covariance matrix are given by: (∂/∂σ2
ǫ )Ωi(θ) = Im, (∂/∂σ2

α)Ωi(θ) =
1m1T

m and (∂/∂σ2
γ)Ωi(θ) = xix

T
i . Hence, Ci(θ) is once differentiable. For the continuity

of the partial derivative of Ci(θ), note that Ci(θ) and C−1
i (θ) are once differentiable and

thus continuous. Indeed, (∂/∂θj)C
−1
i (θ) = −C−1

i (θ)[(∂/∂θj)Ci(θ)]C−1
i (θ). Eventually,
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(∂/∂θj)Ωi(θ) is constant in θ, and therefore continuous. Since matrix product preserves
the continuity, the Cholesky factor is once continuously differentiable. The partial deriva-
tives of g may be zero if the design is null or if the pivotal quantity is zero, two extreme
situations unlikely encountered. It is straightforward to remark that the estimating func-
tion diverges as θ and ui tends to infinity. All these findings make usage of Theorem 1.38
highly plausible.

Let us turn our attention to simulations. We set θ0 = (1, 0.5, 0.52, 0.52, 0.22)T and con-
sidered n = m = {5, 10, 20, 40} such that N = nm = {25, 100, 400, 1, 600}. The detailed
results of simulations may be found in the tables of Appendix 1.D.2. In Figure 1.7, we
can observe the outstanding performances of the SwiZs in terms of coverage probabilities,
which supports our analysis and the possibility of using Theorem 1.38. The parametric
bootstrap meets the performance of the SwiZs as the sample size increases, however, when
the sample size is small, it is off the ideal level for the variance components. The length
of the marginal intervals of uncertainty are comparable between the two methods, except
for the smallest sample size considered where it is anyway harder to interpret the size of
the interval of the parametric bootstrap since it is off the confidence level. We also bear
the comparison with profile likelihood confidence intervals which are based on likelihood
ratio test. The coverage probabilities are almost undistinguishable from the SwiZs whereas
interval lengths for variance components are the shortest. We interpret such good per-
formances as follows: first, as shown in Example 1.56 on linear regression, asymptotic
and finite sample distributions coincides in theory, coincidance that may be still hold in
the present case with balanced linear mixed model; second, larger intervals accounts for
the fact that no simulations are needed. A good surprise appears in Figure 1.8 where the
median of the SwiZs shows good performances in terms of relative median bias.

Fourth, we study inference in queueing theory models (see [Sho+18] for a monograph).
In particular, we re-investigate the M/G/1 model studied by [HF04; BF10; FP12]. Al-
though the underlying process is relatively simple, there is no known closed-form for the
likelihood function and inference is not easy to conduct.

Example 1.63 (M/G/1-queueing model). Consider the following stochastic process

xi =

{
vi, if σε

i ≤ σx
i−1,

vi + σε
i − σx

i−1, if σε
i > σx

i−1,

for i = 1, · · · , n, where σε
i =

∑i
j=1 εj, σ

x
i =

∑i
j=1 xj, vi is identically and independently

distributed according to a uniform distribution U(θ1, θ2), 0 ≤ θ1 < θ2 < ∞ and εi is
identically and independently distributed according to an exponential distribution E(θ3),
θ3 > 0. In queueing theory, random variables have special meaning, for the ith customer:
xi represents interdeparture time, vi is service time and εi corresponds to interarrival time.
Only the interdeparture times xi are observed, vi and εi are latent. All past information
influence the current observation and therefore this process is not Markovian. Finding an
“appropriate” auxiliary estimator is challenging as we now discuss.

In this context, semi-automatic ABC approaches by [BF10] and [FP12] use several
quantiles as summary statistics for the auxiliary estimator. This method cannot be em-
ployed here for the SwiZs because, first, the restriction that dim(θ) = dim(π) would be vio-
lated, and second, the quantiles are non-differentiables with respect to g and consequently,
as already discussed, Assumptions 1.36 and 1.37 would not hold. However, [HF04] present
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Figure 1.7: On the left panel: Representation of the coverage probabilities for different
sample sizes of the SwiZs, the parametric bootstrap (Boot) and the confindence intervals
based on the likelihood ratio test (Asymptotic) for the five estimators. The gray line
represents the ideal level of 95% coverage probabilitiy. On the right panel: median length
of the marginal intervals of uncertainty at a level of 95%. For graphical reason, the lengths
corresponding to σ̂2

α and σ̂2
γ on the right is downsized by a factor of 5 compared to the

lengths corresponding to the other estimators.



1.7. Simulation study 49

Cumulative relative median bias

#

# #
#

% %

% %

25 100 400 1600

0%

10%

20%

30%

Mean root mean squared error

#

#

#

#

%

%

%

%

25 100 400 1600

0

0.05

0.1

0.15

0.2

# %SwiZs: mean  SwiZs: median    MLESwiZs: mean  SwiZs: median    MLE

Figure 1.8: On the left panel: the sum of absolute value of the median bias for the five
estimators divided by their respective true values for different sample sizes for the mean of
SwiZs distribution (SwiZs: mean), the median of the SwiZs distribution (SwiZs: median)
and the maximum likelihood estimator (MLE). On the right panel: likewise the left panel,
but for a different measure: the average of root mean squared error for the five estimators.
For both panels, the lower is the better.

different choices and motivate a particular auxiliary model with the following closed-form:

f(xi,π) =





0, if xi ≤ π1,

(π2 − π1)
−1
[
1 − α exp

(
−π−1

3 (xi − π1)
)]
, if π1 < xi ≤ π2,

α
π2−π1

[
exp

(
−π−1

3 (xi − π2)
)

− exp
(
−π−1

3 (xi − π1)
)]
, if xi > π2,

where −1 ≤ α ≤ 1 is some constant. Motivations for this auxiliary model are based
on a graphical analysis of the sensitivity of π̂n(θ) with respect to θ and the root mean

squared errors performances of θ̂n on simulations. Unfortunately, Assumption 1.36 is not
satisfied with this choice. Indeed, by taking the likelihood scores of the auxiliary model as
the estimating equation, one can realize that the score relative to π2 is

Φn,2(θ,u,π) =





0, if g(θ,u) < π1,
1

π2−π1
, if π1 ≤ g(θ,u) < π2,

1
π2−π1

− π−1
3 eπ2/π3

eπ2/π3 −eπ1/π3
, if g(θ,u) ≥ π2,

hence, it does not depend on θ! This result implies directly that all the partial derivatives
with respect to θ and w are null and det(ϕπ̂n) = 0 for all (θ,w) ∈ (Θn ×Wn). Assump-
tion 1.37 is also violated and Theorem 1.38 cannot be invoked. Worse, the behaviour of
this score does not depend on n and the identifiability condition in Assumption 1.43 (ii)
does not hold since Φ2(θ1,π) = Φ2(θ2,π) for all (θ1,θ2) ∈ Θ, so using this auxiliary
model does not lead to a consistent estimator. It is however not clear whether Assump-
tion 1.44, the alternative to Assumption 1.43, holds or not because the quantities to verify
are unknown. Note however that in view of the equivalence theorem between the SwiZs
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and the indirect inference estimator (Theorem 1.8), it would appear as a contradiction for
Assumption 1.43 not to hold but Assumption 1.44 to be satisfied.

[HF04] idea is to select an auxiliary model where π̂n(θ) is both sensitive to θ and
efficient for a given θ. Since they justify their choice on a graphical analysis with simulated
samples, one may wonder whether the authors were unlucky or misleaded by the graphics
on this particular example. In fact, although π̂n(θ) is unknown in an explicit form, its
Jacobian may be derived explicitly by mean of an implicit function theorem, so for a given
θ1 ∈ Θ we have:

Dθπ̂n(θ1) = −
[
DπΦn (θ1,u,π)

∣∣∣∣
π=π̂n(θ1)

]−1

DθΦn (θ1,u, π̂n(θ1)) .

The Jacobian DπΦn is non zero. Yet, as already discussed, the second partial derivative
of Φn with respect to θ is null. Because only the second row of DθΦn has zero entries,
there is no reason to believe that Dθπ̂n(θ) has zero entries. Consequently, the authors
were not misleaded by the gaphics or unlucky, it is the criterion itself that is misleading.

We now face ourselves to the delicate task of choosing an auxiliary model which non-
only respects the constraint dim(θ) = dim(θ), but also makes Assumption 1.36 plausi-
ble. In view of this particular M/G/1 stochastic process, using the convolution between a
gamma with shape parameter n and unknown rate parameter and a uniform distributions
may be a “natural” choice, yet, terms computationally complicated to evaluate readily ap-
pear. We propose instead of using Fréchet’s three parameters extreme value distribution,
whose density is given, for i = 1, . . . , n, by:

f(xi,π) =
π1

π2

(
xi − π3

π2

)−1−π1

exp

{
−
(
xi − π3

π2

)−π1
}
, if xi > π3,

where π1 > 0 is a shape parameter, π2 > 0 is a scale parameter and π3 ∈ IR is a
parameter representing the location of the minimum. The relationship between π3 and θ1

as the minimum of the distribution seems natural and we thus further constrain here π3 to
be non-negative, so π > 0. However, the existence of a potential link between (θ2, θ3)T and
(π1, π2)T is not self-evident, but certainly that the shape (π1) and scale (π2) parameters
offer enough flexibility to “encompass” the distribution of the M/G/1 stochastic process as
illustrated in Figure 1.9. Note that the “closeness” between M/G/1 and Fréchet models
is also dependent on the parametrization. It remains to advocate this choice in the light
of Assumption 1.36. We take the maximum likelihood estimator of Fréchet’s distribution
as the auxiliary estimator and thus the likelihood score as the estimating function, which
is given by:

Φn (θ,u,π) =




−1
π1

+ 1
n

∑n
i=1 log

(
g(θ,ui)−π3

π2

) [
1 −

(
g(θ,ui)−π3

π2

)−π1
]

−π1

π2

1
n

∑n
i=1

[
1 −

(
g(θ,ui)−π3

π2

)−π1
]

−1
n

∑n
i=1

1+π1

g(θ,ui)−π3
+ π1

π2

1
n

∑n
i=1

(
g(θ,ui)−π3

π2

)−π1−1



.

Let us assume that a random variable w with the same dimension as θ exists such that
the estimating function may be expressed as follows:

ϕπ̂n (θ,w) =




−1
π̂1

+ log (z1)
[
1 − z1

−π̂1

]

− π̂1

π̂2

[
1 − z2

−π̂1

]

− (1+π̂1)z−1
3

π̂2
+ π̂1

π̂2
z3

−π̂1−1


 ,
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Figure 1.9: Histogram of a simulated M/G/1 stochastic process of size n = 104 on
which the density (solid line) of Fréchet distribution has been added. The true pa-
rameter is θ0 = [0.3 0.9 1]T , the auxiliary estimator we obtain here is approximately
π̂n = [0.02 0.60 2.05]T .
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where π̂n is fixed and zi ≡ g(θ,wi)−π̂3

π̂2
, i = 1, 2, 3. The Jacobian matrix with respect to θ is

give by:

Dθϕπ̂n (θ,w) =




DθT g(θ, w1)
[

z−1
1

π̂2

(
1 − z−π̂1

1

)
+ π̂1

π̂2
log (z1) z

−π̂1−1
1

]

DθT g(θ, w2)
[
− π̂2

1

π̂2
2
z−π̂1−1

2

]

DθT g(θ, w3)
[

(π̂1−1)
π̂2

2
z−2

3 − π̂1(π̂1+1)
π̂2

2
z−π̂1−2

3

]



.

Substituing DθgT by DwgT in the above equation gives the Jacobian matrix with respect
to w, a matrix which is diagonal. It is straightforward to remark that the differentiability
and continuity depends exclusively on the smoothness of g. Thus, if g is once continuously
differentiable in both θ and w, then Assumption 1.36 (i) holds.

Concerning the determinant of these Jacobian matrices, they may be null only on
unlikely situations: first, if g equals π̂3 then zi is zero for i = 1, 2, 3, second, if Dθg
or Dwg are zeros. The choice of g may be guided by this restriction so typically the
determinants may be null, but only on a countable set, and Assumption 1.36 (ii) is verified.
For Assumption 1.36 (iii), it is straightforward to remark that

lim
‖(θ,w)‖→∞

‖ϕπ̂n(θ,w)‖ ,

as long as lim‖(θ,w)‖→∞‖g(θ,w)‖ = ∞, since log(z1) would diverge. Depending on g,
Assumption 1.36 (iii) is satisfied.

Therefore, the plausibility of Assumption 1.36 is up to the choice of the generating
equation g. Here, the choice is quasi immediate as it is driven by the form of the process:

g(θ,ui) =

{
vi(θ), if σε

i (θ) ≤ σg
i−1(θ),

vi(θ) + σε
i (θ) − σg

i−1(θ), if σε
i (θ) > σg

i−1(θ),

where ui = (u1i, u2i)
T , uji ∼ U(0, 1), j = 1, 2, u1i and u2i are independent, vi(θ)

d
=

θ1 + (θ2 − θ1)u1i, σ
ε
i (θ) =

∑i
j=1 εj(θ), εj(θ) = −θ−1

3 log(u2j) and σg
i =

∑i
j=1 g(θ,uj).

Let Ei corresponds to the event {σε
i (θ) ≤ σg

i−1(θ)} and Ēi be the contrary. The partial
derivatives may be found recursively as follows:

∂

∂θ1

g(θ,ui) =





1 − u1i, if i = 1,
1 − u1i, if i > 1 and Ei,
1 − u1i −∑i−1

j=1
∂

∂θ1
g(θ,uj), if i > 1 and Ēi.

∂

∂θ2

g(θ,ui) =





u1i, if i = 1,
u1i, if i > 1 and Ei,
u1i −∑i−1

j=1
∂

∂θ2
g(θ,uj), if i > 1 and Ēi.

∂

∂θ3

g(θ,ui) =





0, if i = 1,
0, if i > 1 and Ei,
− 1

θ2
3

∑i
j=1 log(u2j) −∑i−1

j=1
∂

∂θ3
g(θ,uj), if i > 1 and Ēi.

∂

∂u1

g(θ,ui) =





θ2 − θ1, if i = 1,
θ2 − θ1, if i > 1 and Ei,
θ2 − θ1 −∑i−1

j=1
∂

∂u1
g(θ,uj), if i > 1 and Ēi.

∂

∂u2

g(θ,ui) =





0, if i = 1,
0, if i > 1 and Ei,
−θ−1

3

∑i
j=1

1
u2j

−∑i−1
j=1

∂
∂u2
g(θ,uj), if i > 1 and Ēi.
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SwiZs indirect inference parametric bootstrap

Average time [seconds] 0.97 134.18 197.15
Total time [hours] 2.7 372.5 547.4

Table 1.3: Average time in seconds to estimate a conditional distribution on S = 10, 000
points and total time in hours for the M = 10, 000 independent trials.

Clearly g is once continuously differentiable in both its arguments with non-zero deriva-
tives. Eventually, we have that vi(θ) goes to ∞ when θ1 → ∞, θ2 → ∞ and u1i → 1,
whereas εi(θ) tends to zero whenever θ3 → ∞ and u2i → 1. It is not clear whether
vi(θ) + σε

i (θ) − σg
i (θ) diverges or converges to 0 when ‖(θ,ui)‖ → ∞, but in any case

‖g(θ,ui)‖ tends to ∞ since vi(θ) diverges. As a consequence, Assumption 1.36 is highly
plausible and thus Theorem 1.38 seems invokable.

For the simulation, we set θ0 = [0.3 0.9 1]T and n = 100 as in [HF04]. We compare
the SwiZs with indirect inference in Definition 1.4 and the parametric bootstrap using the
indirect inference with B = 1 as the initial consistent estimator (see Definition 1.9). By
Theorem 1.8, the SwiZs and the indirect inference are equivalent, but as argued, the price
for obtaining the inidirect inference is higher so here we seek empirical evidence, and Ta-
ble 1.3 speaks for itself, the difference is indeed monstrous. The parametric bootstrap is
even worse in terms of computational time. It is maybe good to remind the reader that the
comparison is fair: all three methods benefits from the same level of implementation and
uses the very same technology. The complete results may be found in Appendix 1.D.3.
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Figure 1.10: On the left panel: Representation of the 95% coverage probability (ideal is
gray line) of the SwiZs, the indirect inference and the parametric bootstrap with indirect
inference as initial estimator. The closer to the gray line is the better. On the right panel:
Illustration of the median interval lengths at a target level of 95%. The shorter is the
better.

In Figure 1.10 we can realize that the SwiZs do not offer an exact coverage in this case,
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Figure 1.11: On the left panel: Median absolute bias of point estimators: mean and
median on the SwiZs and indirect inference distributions plus the indirect inference with
B = 1. On the right panel: same as left panel with a different measure: mean absolute
deviation. For both panel, the lower is the better.

it is even far from ideal for θ̂2. It is nonetheless better than the parametric bootstrap.
Especially the coverage of θ̂1 and θ̂3 are close to the ideal level. Considering the context
of this simulation: moderate sample size, no closed-form for the likelihood, the results
are very encouraging. A good surprise appears from Figure 1.11 where the SwiZs demon-
strates better performances of its point estimates (mean and median) compared to indirect
inference approaches in termes of absolute median bias and mean absolute deviation.

It is however not clear which one, if not both, we should blame for failure of missing
exact coverage probability between our analysis on the applicability of Theorem 1.38 to this
case or the numerical optimization procedure. The previous examples seem to indicate for
the latter. To this end, we re-run the same experiment only for the SwiZs (for pure op-
erational reason) by changing the starting values to be the true parameter θ0 to measure
the implication. Indeed, starting values are a sensitive matter for quasi-Newton routine
and since π̂n is not a consistent estimator of θ0, using it as a starting value might have a
persistent influence on the sequence {θ̂(s)

n : s ∈ N
+
S }. Results are reported in Table in Ap-

pendix 1.D.3. The coverage probabilities of θ̂1 and θ̂3 becomes nearly perfect, which shows
that indeed good starting values may reduce the numerical error in the coverage probabil-
ities. However, coverage probability for θ̂2 persistently shows result off the desired levels,
which seems rather to indicate a problem related to the applicability of Theorem 1.38.
Increasing the sample size to n = 1, 000 (see Table 1.19) makes the coverage of all three
parameters nearly perfect.

Fifth and last, we consider logistic regression. This is certainly one of the most widely
used statistical model in practice. This case is challenging at least on two aspects. First,
the random variable is discrete and the finite sample theory in Section 1.4 does not hold.
Second, the generating function is non-differentiable with respect to θ, therefore gradient-
based optimization routines cannot be employed. In what follows, we circumvent this
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inconvenient by smoothing the generating function. To this end, we start by introducing
the continuous latent representation of the logistic regression.

Example 1.64. Suppose we have the model

y = Xθ + ǫ,

where ǫ = (ǫ1, · · · , ǫn)T and ǫi, i = 1, · · · , n, are identically and independently dis-
tributed according to a logistic distribution with mean 0 and unity variance. This distribu-
tion belongs to symmetric location-scale families. It is similar to the Gaussian distribution
with heavier tails. The unknwon parameters θ of this model could be easily estimated by
the ordinary least squares:

π̂n =
(
XT X

)−1
XT y.

The corresponding estimating function is:

Φn (θ,u,π) = XT Xπ − XT g (θ,u) .

A straightforward generating function is g(θ,u) = Xθ + u where ui ∼ Logistic(0, 1).
Evaluating this function at π = π̂n leads to

Φn (θ,u, π̂n) = XT y − XT Xθ − XT u.

Solving the root of this function in θ gives the following explicit solution:

θ̂n =
(
XT X

)−1
XT (y − u) . (1.7)

Following Example 1.56 on linear regression, it is easy to show that inference based on
the distribution of this estimator leads to exact frequentist coverage probabilities.

Let us turn our attention to logistic regression. In this case, y is not observed. Instead,
we observe a binary random variable y, whose elements are:

yi =

{
1, Xiθ + ǫi ≥ 0,
0, Xiθ + ǫi < 0,

where Xi is the ith row of X. Saying it differently, this consideration implies that the
generating function is modified to the following indicator function:

g (θ, ui) = 1 {Xiθ + ui ≥ 0} .

Clearly, this change implies that Φn has a flat Jacobian matrix and Assumptions 1.36
and 1.37 do not hold. Moreover, this problem becomes numerically more invloved, espe-
cially if we want to pursue with a gradient-based optimization routine. As mentionned, in
practice we seek the solution of the following problem:

argmin
θ∈Θ

∥∥∥XT y − XT g(θ,u)
∥∥∥

2

2
≡ argmin

θ∈Θ

f(θ). (1.8)

Note that XT y is the sufficient statistic for a logistic regression (see Chapter 2 in [MN89]).
The gradient of f(θ) is

−Dθg(θ,u)X
[
XT y − XT g(θ,u)

]
.
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However, the Jacobian Dθg(θ,u) is 0 almost everywhere and alternatives are necessary
for using gradient-based methods. A possibility is to smooth g(θ,u) by using for example
a sigmoid function:

g(θ, ui) = lim
t→0

1

1 + exp (−(Xiθ+ui)/t)
.

The value of t tunes the approximation and the value of the gradient. However, from our
experience, large values of t, say t > 0.1, leads to poor results and small values, say t < 0.1,
leads to numerical instability. We thus prefer to use a different strategy by taking −f(θ) as
the gardient. This strategy corresponds to the iterative bootstrap procedure ([Gue+18b]);
see Section 2.4. In Figure 1.12, we illustrate the difference between these two approxi-
mations and the “ideal” distribution we would have obtained by observing the continuous
underlying latent process. Clearly, the loss of information induced from the possibility of

D
e
n
s
it
y

Distribution of a logistic regressor

0 1 2 3 4 5

ideal iterative bootstrap smoothing

Figure 1.12: Simulated SwisZ distribution of a single logistic regression with coefficient
θ = 2 and sample size of 10. “Ideal” is (1.7). “Smoothing” approximates the gradient
with a sigmoid function and t = 0.01. “Iterative bootstrap” uses −f(θ) as the gradient.

only observing a binary outcome results in an increase of variability. Nonetheless, the
difference is not enormous. Both approximations leads to similar distributions in terms
of shapes. We can notice a little difference in their modes. Since the iterative bootstrap
approximation is numerically advantageous, we use it in the next study.

For simulation, we setup θ0 = (0, 5, 5,−7,−7, 0, . . . , 0︸ ︷︷ ︸
15

)T and sample size n = 200. We

compare coverage probabilities of 95% confidence intervals obtained by the SwiZs and by
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SwiZs asymptotic

θ1 0.9442 0.9187
θ2 0.9398 0.8115
θ3 0.9382 0.8121
θ4 0.9432 0.7688
θ5 0.9450 0.7737
θ6 0.9397 0.9233
θ7 0.9357 0.9170
θ8 0.9398 0.9237
θ9 0.9391 0.9218
θ10 0.9400 0.9208
θ11 0.9424 0.9208
θ12 0.9375 0.9214
θ13 0.9368 0.9204
θ14 0.9389 0.9210
θ15 0.9400 0.9207
θ16 0.9400 0.9183
θ17 0.9361 0.9183
θ18 0.9449 0.9241
θ19 0.9412 0.9218
θ20 0.9427 0.9240

Table 1.4: 95% coverage probabilities of confidence intervals from the SwiZs and asymp-
totic theory.

asymptotic theory. We report results in Table 1.4. We can clearly see that the SwiZs have
the most precise confidence intervals for all coefficients with coverage close to the target
level of 95%.
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[Gue+18a] Stéphane Guerrier et al. “On the Properties of Simulation-based Estimators
in High Dimensions”. In: arXiv preprint arXiv:1810.04443 (2018).



1.7. Simulation study 61
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Appendix

1.A Technical results

Lemma 1.A.1. Let X and Y be open subsets of IRn. If f : X → Y is a C1-diffeomorphism,
then the Jacobian matrices of the maps x 7→ f and y 7→ f−1 are invertible, and the deriva-
tives at the points a ∈ X and b ∈ Y , are given by:

Dxf(a) =
[
Dyf−1|y=f(a)

]−1
, Dyf(b) =

[
Dxf |x=f−1(b)

]−1
.

Proof. By assumption, f is invertible, once continuously differentiable and f−1 is once
continuously differentiable.

We have f−1 ◦ f = idX , where idX is the identity function on the set X. Fix a ∈ X.
By the chain rule, the derivative at a is the following:

Dyf−1 (f(a))Dxf(a) = In,

where In is the identity matrix. Since Dyf−1 and Dxf are square matrices, we have:

det
(
Dyf−1(f(a))

)
det (Dxf(a)) = 1.

The determinants cannot be 0, there are either 1 or -1 for both matrices, ergo, the Jacobian
are invertible and we can write

Dxf(a) =
[
Dyf−1(f(a))

]−1
.

The proof for f ◦ f−1 = idY follows by symmetry.

Lemma 1.A.2. Let Θ and W be open subsets of IRp. If there exists a C1-diffeomorphic
mapping a : W → Θ, that is, w 7→ a is continuously once differentialbe in Θ×W and the
inverse map θ 7→ a−1 is continuously once differentiable in Θ × W , then the cumulative
distribution function of {θ̂(s)

n : s ∈ N} is given by:
∫

Θn

fθ̂n
(θ|π̂n) dθ =

∫

W
fw (a(w)|π̂n)

1

|det (Dwa(w))| dw,

provided that f is a nonnegative Borel function and Pr (π̂n 6= ∅) = 1.

Proof of Lemma 1.A.2. By assumption, w 7→ a is a C1-diffeomorphism so by Lemma 1.A.1
the Jacobian of a and a−1 are invertible. All the conditions of the change-of-variable for-
mula for multidimensional Lebesgue integral in [Bil12, Theorem 17.2, p.239] are satisfied,
so we obtain

∫

Θn

fθ̂n
(θ|π̂n) dθ =

∫

a−1(Θn)
fw

(
a−1(θ)|π̂n

)
det

(
Dθa−1(θ)

)
dθ

By Lemma 1.A.1, we have that Dθa−1 = [Dwa]−1. Taking the determinant ends the
proof.
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1.B Finite sample

Proof of Theorem 1.8. We proceed by showing first that Θ
(s)
II,n ⊂ Θ(s)

n , and second

that Θ
(s)
II,n ⊃ Θ(s)

n .

It follows from Assumption 1.7 that π̂n is the unique solution of argzeroπ∈Π Φn(θ0,u0,π),
ergo Πn in the Definition 1.2 is a singleton.

(1). Fix θ1 ∈ Θ
(s)
II,n. By Definition 1.4, it holds that

π̂n = π̂
(s)
II,n (θ1) , Φn

(
θ1,us, π̂

(s)
II,n(θ1)

)
= 0,

where π̂
(s)
II,n is the unique solution of argzeroθ∈Π Φn(θ1,us,π). Ergo, it holds as well that

Φn (θ1,us, π̂n) = 0,

implying that θ1 ∈ Θ(s)
n by Definition 1.2. Thus Θ

(s)
II,n ⊂ Θ(s)

n .

(2). Fix θ2 ∈ Θn. By Definition 1.2 we have

Φn (θ2,us, π̂n) = 0.

By Definition 1.4, we also have

Φn

(
θ2,us, π̂

(s)
II,n(θ2)

)
= 0,

where π̂
(s)
II,n(θ2) is the unique solution of argzeroπ∈Π Φn(θ2,us,π). It follows that π̂n =

π̂
(s)
II,n (θ2) uniquely, implying that θ2 ∈ Θ

(s)
II,n by Definition 1.4. Thus Θ

(s)
II,n ⊃ Θ(s)

n , which
concludes the proof.

Proof of Theorem 1.12. We proceed by showing first that (A) Θ(s)
n = Θ

(s)
Boot,n implies

(B) Φn(θ,us,π) = Φn(π,us,θ) = 0, then that (B) implies (A).

1. Suppose (A) holds. Fix θ1 ∈ Θ(s)
n and π̂n ∈ Πn. We have by the Definition 1.2

Φn (θ1,us, π̂n) = 0.

By (A), we also have that θ1 ∈ Θ
(s)
Boot,n so by the Definition 1.9

Φn (π̂n,us,θ1) = 0.

Since both estimating equations equal zero, we have

Φn (π̂n,us,θ1) = Φn (θ1,us, π̂n) = 0.

Hence (A) implies (B).

2. Suppose now that (B) holds. Fix θ1 ∈ Θ(s)
n and π̂n ∈ Πn so Φn(θ1,us, π̂n) = 0.

By (B), we have

Φn (θ1,us, π̂n) = Φn (π̂n,us,θ1) = 0,

so θ1 ∈ Θ
(s)
Boot,n and thus Θ(s)

n ⊂ Θ
(s)
Boot,n. The same argument shows that Θ(s)

n ⊃ Θ
(s)
Boot,n

which ends the proof.
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Proof of Proposition 1.13. Since π̂n = x̄ = 1
n

∑n
i=1 xi, the sample average, we can

write the following estimating equation

π̂n = argzero
π∈Π

(x̄ − π) = argzero
π∈Π

Φn (θ0,u0, π) ,

where x
d
= g(θ0, u0). Since x follows a location family, we have that x

d
= θ0 + g(0, u0)

d
=

θ0 + y.
The SwiZs is defined as

θ̂(s)
n = argzero

θ∈Θ
Φn (θ,us, π̂n) .

On the other hand, the parametric bootstrap estimator is

θ̂
(s)
Boot,n = argzero

θ∈Θ
Φn (π̂n,us, θ) .

Eventually, we obtain that

Φn

(
θ̂(s)

n ,us, π̂n

)
= θ̂(s)

n + ȳ − π̂n = 0,

Φn

(
π̂n,us, θ̂

(s)
n

)
= π̂n + ȳ − θ̂

(s)
Boot,n

= −π̂n + ȳ + θ̂
(s)
Boot,n

= Φn

(
θ̂

(s)
Boot,n,us, π̂n

)
= 0,

where we use the fact that ȳ
d
= −ȳ. Therefore, θ̂(s)

n = θ̂
(s)
Boot,n, or equivalently Φn (θ,us, π) =

Φn (π,us, θ) = 0, which ends the proof.

Proof of Theorem 1.19. Fix ε = 0. The Theorem 1.8 is satisfied so Θ(s)
n = Θ

(s)
II,n for

any s. It is sufficient then to prove Θ
(s)
ABC,n(0) = Θ

(s)
II,n for any s ∈ N

+
S . We proceed by

verifying that first Θ
(s)
ABC,n(0) ⊂ Θ

(s)
II,n, and second that Θ

(s)
ABC,n(0) ⊃ Θ

(s)
II,n.

(1). Fix θ1 ∈ Θ
(s)
ABC,n(0). By the Assumption 1.18, θ1 is also a realization from the

prior distribution P. By Definition 1.14, we have

d
(
π̂n, π̂

(s)
II,n(θ1)

)
= 0.

By Definition 1.4, θ1 ∈ Θ
(s)
II,n, thus Θ

(s)
ABC,n(0) ⊂ Θ

(s)
II,n.

(2). Fix θ2 ∈ Θ
(s)
II,n. By Definition 1.4, we have

d
(
π̂n, π̂

(s)
II,n(θ2)

)
= 0.

By Assumption 1.18 and Definition 1.14, θ2 ∈ Θ
(s)
ABC,n(0), ergo Θ

(s)
ABC,n(0) ⊃ Θ

(s)
II,n, which

ends the proof.

Proof of Proposition 1.28. Fix α1, α2 > 0 such that α1 + α2 = α ∈ (0, 1). Since we
consider an exact α-credible set Cπ̂n , we have

1 − α = Pr (θ ∈ Cπ̂n|π̂n)

= Pr
(
θ ∈ Θn \ {Q

α1
∪Qα2

}
)

= Pr
(
Fθ̂n|π̂n

(θ) ∈ (α1, 1 − α2)
)
.
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Consider the event E = {u ∈ (α1, 1 − α2)} taking value one with probability p if u is
inside the interval and 0 otherwise. Let u = Fθ̂n|π̂n

(θ0) so at each trial there is one

such event. Now consider indefinitely many trials, so we have {Ei : i ∈ N
+} where

E(Ei) = Pr(Ei = 1) = pi. Denote by N is the number of trials. The frequentist coverage
probability is given by

lim
N→∞

∑N
i=1 Ei

N
.

By assumption, u is an independent standard uniform variable, so the events are indepen-
dent and pi = 1−α for all i ≥ 1 and for every α ∈ (0, 1). It follows that {Ei : i ∈ N

+} are
identically and independently distributed Bernoulli random variables. The proof follows
by Borel’s strong law of large numbers (see [Wen91]).

Proof of Lemma 1.30. Fix u0. Fix θ1 ∈ Θ. By definition we have

π̂n = argzero
π∈Π

Φn (θ1,u0,π) .

By assumption, the following equation

Φn (θ1,u0, π̂n) = 0

is uniquely defined. Now fix π1 ∈ Π. By definition we have

θ̂n = argzero
θ∈Θ

Φn (θ,u0,π1) ,

and by assumption
Φn

(
θ̂n,u0,π1

)
= 0

is uniquely defined. It follows that θ1 = θ̂n if and only if π1 = π̂n.

Proof of Theorem 1.38. We gives the demonstration under the Assumptions 1.36
and 1.37 separately.

1. We proceed by showing that we have a C1-diffeomorphism which is unique so
Lemma 1.A.2 and Lemma 1.30 apply. We then demonstrate that the obtained cumulative
distribution function evaluated at θ0 ∈ Θ is a realization from a standard uniform random
variable. The conclusion is eventually reached by the Proposition 1.28.

Let π1 : Θn × Wn → Θn and π2 : Θn × Wn → Wn be the projections defined by
π1(θ,w) = θ and π2(θ,w) = w if (θ,w) ∈ Θn ×Wn. By Assumption 1.36 the conditions
of the global implicit function theorem of [Cri17, Theorem 1] are satisfied, so it holds
that there exists a unique (global) continuous implicit function a : Wn → Θn such that
a(w0) = θ0 and ϕπ̂n(w, a(w)) = 0 for every w ∈ W . In addition, the mapping is
continuously differentiable on Wn \ π2(Kn) with derivative given by

Dwa = −
[
Dθϕp|θ=a(w)

]−1
Dwϕp

for every w ∈ Wn \ π2(Kn). Clearly the map a is invertible with a continuous inverse.
Since the derivative Dwϕp is continuous and invertible for (θ,w) ∈ Θn × Wn \ Kn, we
immediately have that a is a C1-diffeomorphism with deriative of the inverse given by

Dθa−1 = −
[
Dwϕp|w=a−1(θ)

]−1
Dθϕp
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for θ ∈ Θn \ π1(Kn). The conditions of Lemma 1.A.2 are satisfied and we obtain the
cumulative distribution function

Fθ̂n|π̂n
=
∫

Wn

fw

(
a−1(θ)|π̂n

) det (Dθϕp)

det (Dwϕp)
dw = Fw|π̂n ,

proving point (i). Since π̂n is the unique zero of Φn(θ0,u0,π), and hence of ϕp(θ0,w0,π),
and θ = a(w) is the unique zero of ϕp(θ,w, π̂n), we have by Lemma 1.30 that θ0 = a(w0),
and therefore that w0 = a−1(θ0). In consequence, evaluating the above distribution at θ0

leads to
Fθ̂n|π̂n

(θ0) = Fw|π̂n(w0) = u ∼ U(0, 1),

that is, the distribution evaluated at θ0 is a realization from a standard uniform random
variable. The conclusion follows by the Proposition 1.28.

2. Fix θ0 ∈ Θn and w0 ∈ Wn. Fix π̂n ∈ Πn, the point such that ϕp(θ0,w0, π̂n) =
0. Let π1 : Wn × Πn → Wn and π2 : Wn × Πn → Πn be the projections such that
π1(w,π) = w and π2(w,π) = π if (w,π) ∈ Wn × Πn. By Assumption 1.37 ((i), (iii),
(v)), the Theorem 1 in [Cri17] is satisfied, as a consequence it holds that ϕθ0 admits a
unique global implicit function πθ0 : Wn → Πn such that ϕθ0(w,πθ0(w)) = 0 for every
w ∈ Wn, πθ0(w0) = π̂n, and πθ0 is once continuously differentiable on Wn \ π1(K1n) with
derivative given by

Dwπθ0 = −[Dπϕθ0 ]−1Dwϕθ0 .

Clearly w 7→ πθ0 is a homeomorphism. Since Dwϕθ0 is continuous and invertible on
Wn ×Π\K1n, we have that πθ0 is a C1-diffeomorphism with differentiable inverse function
on Π \ π2(K1n) given by Lemma 1.A.1:

Dππ−1
θ0

= [Dwπθ0 ]−1 = −[Dwϕθ0 ]−1Dπϕθ0 .

Let π3 : Θn × Πn → Θn and π4 : Θn × Πn → Πn denotes the projections such that
π3(θ,π) = θ and π4(θ,π) = π. By using the same argument presented above, the
Assumption 1.37 ((ii), (iv), (vi)) permits us to have an implicit C1-diffeomorphism πw0 :
Θn → Πn with the following continuous derivatives:

Dθπw0 = −[Dπϕw0 ]−1Dθϕw0 , θ ∈ Θ \ π3(K2),

Dππ−1
w0

= −[Dθϕw0 ]−1Dπϕw0 , π ∈ Π \ π4(K2).

Now define the function ξ(θ) = π−1
θ0

◦ πw0(θ). It is trivial to show that this mapping
θ 7→ ξ is a C1-diffeomorphism. We have from the preceding results and the chain rule
that

Dθξ = [Dw0ϕθ0 ]−1Dπϕθ0 [Dπϕw0 ]−1Dθϕw0 .

We make the following remarks. First, note that all these derivatives are square ma-
trices of dimension p × p. Second, we have that Dπϕθ0(w0, π̂n) = Dπϕp(θ0,w0, π̂n) =
Dπϕw0(θ0, π̂n) soDπϕθ0 [Dπϕw0 ]−1 = Ip. Third, it holds thatDwϕθ0(w0, π̂n) = Dwϕπ̂n(θ0,w0)
and Dθϕw0(θ0, π̂n) = Dθϕπ̂n(θ0,w0). As a consequence, we obtain that

det (Dθξ) =
det (Dθϕπ̂n(w0,θ0))

det (Dwϕπ̂n(w0,θ0))
.

Using Lemma 1.A.2 ends the proof of point (i) in Theorem 1.38. From the above display,
we have that the relation πθ0(w0) = π̂n = πw0(θ0) is uniquely defined, so ξ(θ0) =
π−1

θ0
(π̂n) = w0. Since ξ is a diffeomorphism, then ξ−1(w0) = θ0, which finishes the

proof.
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Proof of Proposition 1.41. This is a special case of the Theorem 1.38. Let define
ϕπ̂n(w,θ) = h(x0) − g(θ,w), where h(x0) = π̂n is fixed. Following the proof of The-
orem 1.38, we have by assumption that a : Wn → Θn is a C1-diffeomorphism with
derivatives

Dwa = −
[
Dθg|θ=a(w)

]−1
Dwg, w ∈ Wn \ π2(Kn),

Dθa−1 = −
[
Dwg|w=a−1(θ)

]−1
Dθg, θ ∈ Θn \ π1(Kn).

The rest of the proof is identical to the proof of Theorem 1.38.

1.C Asymptotics

Proof of Theorem 1.45. For any estimator, we proceed by verifying the assumptions
for the weak consistency result of Lemma 3.1. We start by showing the claim 1: the point-
wise convergence of π̂n. Then we demonstrate the claim 2 with two different approaches
corresponding respectively to the Assumptions 1.43 and 1.44.

1. Fix π0 ∈ Π. Since {Φn(θ,u,π)} is stochastically Lipschitz in π, it is stochastically
equicontinuous by the Lemma 3.4. In addition, Π is compact and {Φn} is pointwise
convergent by assumption, so by the Lemma 3.3 {Φn} converges uniformly and the limit
Φ is uniformly continuous. By Π compact and the continuity of the norm, the infimum
of the norm of Φ exists. The infimum of Φ is well-separated by the bijectivity of the
function. Therefore, all the conditions of Lemma 3.1 are satisfied and {π̂n} converges
pointwise to π0.

2 (i). For this proof, we consider θ and π jointly. Let K = Θ ∩ Π be the set for
both θ and π. Fix (θ0,π0) ∈ K. Since Π ⊂ IRp and Θ ⊂ IRp are compact subsets of a
metric space, they are closed (see the Theorem 2.34 in [Rud76]), and K is compact (see
the Corollary to the Theorem 2.35 in [Rud76]) and nonempty (Theorem 2.36 in [Rud76]).
Having K compact, it is now sufficient to show that {Φn} is jointly stochastically Lipschitz
as the rest of the proof follows exactly the same steps as the claim 1.

For every (θ1,π1), (θ2,π2) ∈ K, n and u ∼ Fu, we have by the triangle inequality
that

‖Φn(θ1,u,π1) − Φn(θ2,u,π2)‖ =
∥∥∥Φn(θ1,u,π1) − Φn(θ1,u,π2)

+ Φn(θ1,u,π2) − Φn(θ2,u,π2)
∥∥∥

≤ ‖Φn(θ1,u,π1) − Φn(θ1,u,π2)‖
+ ‖Φn(θ1,u,π2) − Φn(θ2,u,π2)‖

≤ Dn (‖π1 − π2‖ + ‖θ1 − θ2‖) ,

where for the last inequality we make use of the marginal stochastic Lipschitz assumptions
and Dn = max(An, Bn). Let a = ‖θ1 − θ2‖ and b = ‖π1 − π2‖. Now remark that for the
ℓ2-norm we have ∥∥∥∥∥

(
θ1

π1

)
−
(

θ2

π2

)∥∥∥∥∥ =
√
a2 + b2.

Since a, b are positive real numbers, a direct application of the inequality of arithmetic
and geometric means gives √

2
√
a2 + b2 ≥ a+ b.
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Therefore, we have that

Dn (‖π1 − π2‖ + ‖θ1 − θ2‖) ≤ D⋆
n

∥∥∥∥∥

(
θ1

π1

)
−
(

θ2

π2

)∥∥∥∥∥ ,

where D⋆
n =

√
2Dn. Consequently, {Φn} is jointly stochastically Lipschitz, and following

the proof of claim 1 we have that θ̂n
p→ θ0. More precisely, we even have that (θ̂n, π̂n)

p→
(θ0,π0).

2 (ii). This proof is different from 2 (i) since π̂II,n is considered as a function of θ. Fix
π0 ∈ Π. Since {π̂II,n} is stochastically Lipschitz in θ, it is stochastically equicontinuous by
the Lemma 3.4. In addition, Θ is compact and {π̂II,n} is pointwise convergent by the claim
1, so by the Lemma 3.3 {π̂II,n} converges uniformly and the limit π is uniformly continuous
in θ. Let the stochastic and deterministic objective functions be Qn(θ) = ‖π̂n − π̂II,n(θ)‖
and Q(θ) = ‖π0 − π(θ)‖, for any norms. Now, we have by using successively the reverse
and the regular triangle inequalities

|Qn(θ) −Q(θ)| = |‖π̂n − π̂II,n(θ)‖ − ‖π0 − π(θ)‖|
≤ ‖π̂n − π̂II,n(θ) − π0 + π(θ)‖
≤ ‖π̂n − π0‖ + ‖π(θ) − π̂II,n(θ)‖ .

By the convergence of {π̂n} and the uniform convergence of {π̂II,n}, we have

lim
n→∞

Pr

(
sup
θ∈Θ

|Qn(θ) −Q(θ)|
)

= op(1).

By Π compact and the continuity of the norm, the infimum of the norm of Φ exists.
The infimum of Φ is well-separated by the bijectivity of the function. Therefore, all the
conditions of Lemma 3.1 are satisfied and {π̂n} converges pointwise to π0.

Proof of Theorem 1.49. We first demonstrate the asymptotic distribution of the aux-
iliary estimator, then separately shows the result for θ̂n using independentely the As-
sumption 1.47 and 1.48.

1. The result on π̂n is a special case of π̂II,n(θ). Fix θ0 ∈ Θ◦ and denote π(θ0) ≡ π0.
By assumptions, the conditions for the delta method in Lemma 3.8 are satisfied so we
have

Φn (θ0,us, π̂II,n(θ0))−Φn (θ0,us,π0) = DπΦn (θ0,us,π0)·(π̂II,n(θ0) − π0)+op (‖π̂II,n(θ0) − π0‖) .
(1.9)

By the Definition 1.4, we have Φn (θ0,us, π̂II,n(θ0)) = 0. By the Theorem 1.45, op (‖π̂II,n(θ0) − π0‖) =

op(1). By assumptions, DπΦn (θ0,us,π0)
p→ K, K nonsingular. Multiplying by square-

root n, the proof results from the central limit theorem assumption on Φn and the Slut-
sky’s lemma.

2 (i). From the delta method in Lemma 3.8, we obtain

Φn

(
θ̂n,us, π̂n

)
− Φn (θ0,us, π̂n) = DθΦn (θ0,us, π̂n) ·

(
θ̂n − θ0

)
+ op

(∥∥∥θ̂n − θ0

∥∥∥
)
.

By definition we have Φn

(
θ̂n,us, π̂n

)
= 0. Using again the delta method on the non-zero

left-hand side element, we obtain from (1.9)

0 − [Φn (θ0,us,π0) +DπΦn (θ0,us,π0) · (π̂n − π0) + op (‖π̂n − π0‖)]

= DθΦn (θ0,us, π̂n) ·
(
θ̂n − θ0

)
+ op

(∥∥∥θ̂n − θ0

∥∥∥
)
.
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Since {DθΦn(θ0,us,π)} is stochastically Lipschitz in π, it is stochastically equicontinuous
by the Lemma 3.4. In addition, Π is compact and {DθΦn} is pointwise convergent by
assumption, so by the Lemma 3.3 {DθΦn} converges uniformly and the limit J is uniformly
continuous in π.

Next, we obtain the following

‖DθΦn(π̂n) − J(π0)‖ ≤ ‖DθΦn(π̂n) − J(π̂n)‖ + ‖J(π̂n) − J(π0)‖
≤ sup

π∈Π

‖DθΦn(π) − J(π)‖ + ‖J(π̂n) − J(π0)‖ .

By uniform convergence supπ∈Π ‖DθΦn(π) − J(π)‖ = op(1) and by the continuous map-
ping theorem ‖J(π̂n) − J(π0)‖ = op(1).

The central limit theorem is satisfied for the estimating equation thus n1/2Φn  

N (0,Q). Let y be a random variable identically and independently distributed according
to N(0,Q). Therefore, by multiplying by square-root n we obtain

−y − Kn1/2 (π̂n − π0) − op (‖π̂n − π0‖) = Jn1/2
(
θ̂n − θ0

)
+ op

(∥∥∥θ̂n − θ0

∥∥∥
)
.

By the Theorem 1.45, we have op (‖π̂n − π0‖) = op(1) and op

(∥∥∥θ̂n − θ0

∥∥∥
)

= op(1). By the
result of the claim 1 and the nonsingularity of J, we have

n1/2
(
θ̂n − θ0

)
= −J−1

(
y + K · K−1y + op(1)

)
+ op(1).

Slutsky’s lemma ends the proof.

2 (ii). Let gn(θ) = π̂n − π̂II,n(θ). The conditions for the delta method in Lemma 3.8
are satisfied by assumption so we have

gn(θ̂n) − gn(θ0) = Dθgn(θ0) ·
(
θ̂n − θ0

)
+ op

(∥∥∥θ̂n − θ0

∥∥∥
)
. (1.10)

Since θ̂n = argzeroθ d(θ̂n, θ̂II,n(θ)), we have θ̂n−θ̂II,n(θ̂n) = 0 and thus gn(θ̂n) = 0. By the

Theorem 1.45, we have op

(∥∥∥θ̂n − θ0

∥∥∥
)

= op(1). We have Dθgn(θ0) = −Dθπ̂II,n(θ0) which,

by assumption converges pointwise to Dθπ(θ0). By the claim 1, we have n1/2(π̂n − π0)
d
=

n1/2(π̂II,n(θ) − π0)
d
= K−1y as n → ∞. Hence, multiplying the Equation 1.10 by square-

root n, gives the following

K−1(y − y) = Dθπ(θ0) · n1/2
(
θ̂n − θ0

)
+ op(1),

for sufficiently large n. Remark that the mapping θ 7→ π is implicitely defined by

Φ (θ,π(θ)) = 0.

Since Φ is once continuously differentiable in (θ,π) and the partial derivatives are in-
vertibles, the conditions for invoking an implicit function theorem are satisfied (see for
example the Theorem 9.28 in [Rud76]) and one of the conclusion is that

Dθπ(θ0) = −K−1J.

Since J is invertible, the conclusion follows by Slutsky’s lemma.
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Proof of Proposition 1.50. The proof follows essentially the same steps as the proof

of Theorem 1.49. From the proof of Theorem 1.49, the following holds: n1/2 (π̂n − π0)
d
=

K−1y0 and n1/2Φn (θ0,us,π0)
d
= ys as n → ∞ where yj ∼ N (0,Q), j ∈ N

+, DπΦn (θ0,u0,π0)
converges in probability to K and DθΦn (θ0,us,π) converges uniformly in probability to
J. The {uj : j ∈ NS} are assumed independent and so are {yj : j ∈ NS}.

From the delta method in Lemma 3.8, we obtain

1

S

∑

s∈N
+
S

Φn

(
θ̂(s)

n ,us, π̂n

)
− 1

S

∑

s∈N
+
S

Φn (θ0,us, π̂n) =
1

S

∑

s∈N
+
S

DθΦn (θ0,us, π̂n)·
(
θ̂(s)

n − θ0

)
+op(1).

By definition 1
S

∑
s∈N

+
S

Φn

(
θ̂(s)

n ,us, π̂n

)
= 0. Using the delta method on 1

S

∑
s∈N

+
S

Φn (θ0,us, π̂n),

multiplying by square-root n, we obtain from the results of Theorem 1.49:

− 1

S

∑

s∈N
+
S

ys − KK−1y0 − op(1) = Jn1/2
(
θ̄n − θ0

)
+ op(1).

Clearly 1
S

∑
s∈N

+
S

ys ∼ N
(
0, 1

S
Q
)
. The conclusion follows from Slutsky’s lemma.
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1.D Additional simulation results

1.D.1 Lomax distribution

SwiZs Boot AB RSwiZs RBoot

n = 35 0.1430 0.0222 0.0197 0.5613 0.0998
n = 50 0.2002 0.0293 0.0268 0.7889 0.1320
n = 100 0.3826 0.0526 0.0504 1.3520 0.2314
n = 150 0.5580 0.0753 0.0736 1.7792 0.3291
n = 250 0.8998 0.1228 0.1211 2.3141 0.5174
n = 500 1.7763 0.2364 0.2398 3.2132 0.9848

Table 1.5: Average computationnal time in seconds to approximate a distribution on
S = 10, 000 points.
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SwiZs Boot BA RSwiZs RBoot
α θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

n = 35

50% 49.48 50.07 43.10 44.26 0.00 0.00 42.73 44.07 36.72 36.84
75% 74.49 75.14 65.82 65.39 0.00 0.00 65.84 66.59 55.00 55.06
90% 89.31 89.39 80.64 78.74 0.00 0.00 81.41 81.97 64.47 64.26
95% 94.27 94.34 86.71 84.28 0.03 0.00 87.58 87.41 67.33 67.13
99% 98.26 98.43 91.23 91.07 0.75 0.00 93.84 93.53 69.64 70.39

n = 50

50% 49.59 49.88 44.48 45.30 0.01 0.00 45.70 46.93 37.37 37.64
75% 74.73 76.67 68.43 67.84 0.08 0.00 67.40 68.21 57.44 56.73
90% 89.89 90.62 83.15 81.57 0.76 0.00 82.51 82.75 69.52 68.81
95% 94.67 94.94 89.26 87.11 1.92 0.00 88.47 88.35 73.01 72.49
99% 98.40 98.46 95.19 93.69 10.86 0.00 94.79 94.80 75.97 76.43

n = 100

50% 49.86 49.95 47.52 48.04 20.52 27.75 49.44 49.80 36.19 35.48
75% 75.37 75.88 72.00 71.59 44.13 57.82 73.07 74.32 57.01 55.61
90% 90.20 90.42 86.69 85.86 69.68 81.85 86.54 86.83 73.68 71.96
95% 95.41 95.67 92.06 90.96 81.89 91.13 91.69 91.52 80.75 79.17
99% 98.85 98.91 97.32 96.42 94.93 98.74 96.85 96.79 86.96 86.38

n = 150

50% 50.12 49.80 48.36 48.58 47.05 49.78 49.80 49.82 33.94 33.00
75% 74.85 75.32 72.41 72.63 70.68 72.58 74.44 74.69 55.12 53.45
90% 90.31 90.32 87.58 86.85 86.94 89.18 88.95 89.22 72.14 70.01
95% 95.08 95.35 93.03 92.11 93.26 94.89 93.60 93.74 80.17 78.15
99% 99.08 99.10 97.92 97.43 98.72 99.28 97.81 97.69 90.07 88.56

n = 250

50% 49.46 49.84 48.60 49.01 47.61 47.09 49.55 49.90 29.16 28.45
75% 75.02 74.49 73.59 72.75 72.09 72.63 74.83 74.80 49.94 47.56
90% 89.55 89.81 88.05 88.11 89.54 90.13 89.56 89.58 67.50 65.25
95% 94.77 94.79 93.56 93.34 94.79 95.68 94.50 94.70 76.90 74.39
99% 99.02 99.03 98.46 97.92 99.18 99.50 98.61 98.70 89.37 87.24

n = 500

50% 50.08 49.89 49.29 49.81 48.76 48.67 50.26 49.64 20.51 18.95
75% 74.73 74.36 73.90 73.64 73.68 73.85 74.55 74.68 37.76 34.96
90% 89.53 89.75 88.86 88.69 89.03 89.22 89.45 89.80 56.15 52.68
95% 94.92 94.86 94.11 94.22 94.33 94.77 94.92 94.80 66.89 63.51
99% 98.97 98.99 98.62 98.40 99.01 99.07 98.94 99.03 83.63 80.06

Table 1.6: Estimated coverage probabilities.
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SwiZs Boot BA RSwiZs RBoot
α Gini index

n = 35

50% 50.22 44.26 0.02 44.27 36.84
75% 76.03 65.44 0.72 67.12 55.06
90% 91.07 78.96 68.11 83.07 64.36
95% 96.76 84.35 100.00 89.43 67.19
99% 98.84 91.10 100.00 93.88 70.41

n = 50

50% 49.89 45.30 0.00 46.94 37.64
75% 76.86 67.84 0.00 68.26 56.73
90% 90.83 81.58 41.20 82.68 68.82
95% 95.17 87.16 71.42 88.40 72.49
99% 98.92 93.76 99.82 95.14 76.45

n = 100

50% 49.95 48.04 32.96 49.80 35.48
75% 75.88 71.59 59.90 74.32 55.61
90% 90.42 85.86 82.63 86.83 71.96
95% 95.74 90.98 91.44 91.64 79.19
99% 98.85 96.46 98.73 96.83 86.43

n = 150

50% 49.80 48.58 46.30 49.82 33.00
75% 75.32 72.63 72.68 74.69 53.45
90% 90.32 86.85 89.18 89.22 70.01
95% 95.35 92.12 94.87 93.73 78.15
99% 99.06 97.47 99.27 97.71 88.60

n = 250

50% 49.84 49.01 46.99 49.90 28.45
75% 74.49 72.75 72.41 74.80 47.56
90% 89.81 88.11 88.95 89.58 65.25
95% 94.81 93.34 94.99 94.69 74.43
99% 99.04 97.93 99.48 98.68 87.34

n = 500

50% 49.89 49.81 48.67 49.64 18.95
75% 74.36 73.64 73.85 74.68 34.96
90% 89.75 88.69 89.22 89.80 52.68
95% 94.86 94.22 94.77 94.79 63.57
99% 98.98 98.41 99.03 99.02 80.28

Table 1.7: Estimated coverage probabilities of Gini index.
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SwiZs Boot BA RSwiZs RBoot
α 95% value-at-risk

n = 35

50% 47.30 46.08 20.92 45.34 41.13
75% 73.76 67.53 55.77 70.38 61.00
90% 90.05 80.35 93.73 88.08 73.92
95% 95.67 85.36 98.92 94.80 79.41
99% 99.17 91.63 99.97 99.25 87.26

n = 50

50% 48.14 47.23 31.76 46.40 41.27
75% 73.39 69.40 63.30 70.22 61.47
90% 89.63 82.24 91.60 87.07 74.72
95% 94.89 87.41 97.72 93.60 80.20
99% 99.23 93.17 99.90 99.27 87.87

n = 100

50% 49.75 48.90 48.33 49.18 39.94
75% 74.68 72.61 75.68 72.93 61.39
90% 89.48 86.38 91.97 87.16 75.97
95% 95.07 91.17 96.79 94.17 82.45
99% 99.23 96.31 99.75 99.11 90.45

n = 150

50% 50.10 49.19 49.47 49.91 37.43
75% 74.13 73.17 75.42 73.57 59.31
90% 89.77 87.25 91.21 88.49 75.26
95% 94.76 92.57 96.18 93.31 81.76
99% 98.89 97.34 99.61 98.46 91.00

n = 250

50% 50.28 49.52 50.02 50.24 34.09
75% 75.29 74.25 74.87 74.75 55.55
90% 89.43 88.10 90.27 89.13 72.28
95% 94.66 93.26 95.15 94.14 80.35
99% 98.89 97.85 99.10 98.67 90.11

n = 500

50% 49.15 48.63 49.00 49.22 27.45
75% 74.88 74.01 74.63 74.53 45.61
90% 90.02 89.46 90.37 89.93 62.84
95% 94.97 94.45 95.18 94.85 72.65
99% 98.92 98.32 98.87 98.96 86.63

Table 1.8: Estimated coverage probabilities of value-at-risk at 95%.
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SwiZs Boot BA RSwiZs RBoot
α 95% expected shortfall

n = 35

50% 50.33 48.55 0.02 50.08 47.38
75% 74.97 72.60 0.72 74.70 71.28
90% 89.61 87.63 68.11 89.24 86.35
95% 94.65 92.87 100.00 94.37 92.23
99% 98.80 97.97 100.00 98.72 97.48

n = 50

50% 49.48 48.24 0.00 49.28 47.06
75% 74.81 72.74 0.00 74.45 71.28
90% 89.76 88.07 41.20 89.25 86.85
95% 94.74 93.32 71.42 94.48 92.16
99% 98.89 97.92 99.82 98.62 97.48

n = 100

50% 49.94 49.16 32.96 49.64 47.22
75% 74.47 74.12 59.90 74.37 72.21
90% 90.13 89.15 82.63 89.99 87.57
95% 95.10 94.23 91.44 95.00 93.13
99% 98.98 98.55 98.73 98.91 98.10

n = 150

50% 49.91 49.49 46.30 49.81 48.13
75% 75.03 74.25 72.68 74.95 72.45
90% 89.82 89.31 89.18 89.74 87.76
95% 95.05 94.37 94.87 94.98 93.15
99% 98.91 98.62 99.27 98.86 98.14

n = 250

50% 50.53 50.64 46.99 50.44 47.94
75% 75.01 74.97 72.41 74.91 72.31
90% 89.96 89.72 88.95 89.98 87.75
95% 95.11 94.58 94.99 95.13 93.16
99% 99.04 98.70 99.48 99.06 98.14

n = 500

50% 49.25 49.34 48.67 49.48 46.61
75% 74.50 74.29 73.85 74.28 70.91
90% 90.02 89.56 89.22 89.99 86.47
95% 95.05 94.77 94.77 95.13 92.52
99% 99.01 99.01 99.03 99.04 98.23

Table 1.9: Estimated coverage probabilities of expected shortfall at 95%.
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SwiZs Boot BA RSwiZs RBoot

α θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

n = 35

50% 2.19 1.85 7.52 6.04 0.26 0.34 1.89 1.64 7.97 6.73

75% 4.79 3.92 216.08 179.86 0.46 0.54 3.84 3.37 27.20 23.62

90% 11.18 8.56 9710.48 8673.53 1.31 1.09 6.96 5.97 86.42 75.85

95% 24.30 18.00 2.55×104 2.18×104 8.99 8.89 9.89 7.92 161.13 142.10

99% 2488.08 1849.66 1.19×105 1.05×105 3.18×109 3.30×109 22.62 17.10 435.99 401.28

n = 50

50% 1.78 1.51 3.61 2.98 0.39 0.42 1.56 1.34 5.04 4.20

75% 3.60 2.97 10.55 8.78 0.66 0.68 3.11 2.65 14.89 12.37

90% 6.78 5.41 642.67 551.95 1.22 0.94 5.57 4.83 44.67 38.37

95% 10.78 8.38 7.40×103 6.31×103 6.13 5.27 7.80 6.70 84.42 73.24

99% 54.20 39.06 5.57×104 4.82×104 1.09×107 1.04×107 15.60 12.65 231.61 202.96

n = 100

50% 1.26 1.06 1.69 1.39 0.64 0.60 1.19 1.01 2.73 2.27

75% 2.32 1.92 3.32 2.74 1.08 1.02 2.23 1.87 6.01 5.01

90% 3.74 3.04 6.28 5.20 1.55 1.36 3.67 3.03 13.00 10.88

95% 4.92 3.94 10.30 8.58 1.93 1.54 4.89 4.00 22.10 18.69

99% 8.58 6.63 181.34 153.63 20.11 16.79 8.41 6.95 64.18 55.35

n = 150

50% 1.02 0.86 1.21 1.01 0.71 0.62 1.00 0.85 2.02 1.68

75% 1.82 1.52 2.24 1.88 1.23 1.08 1.80 1.52 4.00 3.35

90% 2.78 2.30 3.71 3.11 1.78 1.59 2.80 2.32 7.50 6.28

95% 3.52 2.89 5.05 4.26 2.12 1.90 3.58 2.95 11.12 9.34

99% 5.38 4.35 10.59 8.97 2.86 2.27 5.62 4.52 26.58 22.47

n = 250

50% 0.78 0.66 0.85 0.72 0.64 0.55 0.79 0.66 1.45 1.21

75% 1.36 1.15 1.52 1.29 1.13 0.96 1.38 1.16 2.68 2.24

90% 2.01 1.69 2.34 1.99 1.68 1.44 2.07 1.72 4.41 3.68

95% 2.48 2.08 2.97 2.52 2.07 1.78 2.56 2.12 5.94 4.97

99% 3.56 2.92 4.72 4.01 2.96 2.55 3.69 3.01 10.84 9.10

n = 500

50% 0.55 0.46 0.57 0.48 0.50 0.42 0.56 0.47 0.97 0.81

75% 0.94 0.80 0.99 0.84 0.87 0.74 0.96 0.81 1.71 1.43

90% 1.37 1.16 1.47 1.25 1.27 1.08 1.41 1.18 2.63 2.20

95% 1.66 1.40 1.80 1.53 1.54 1.32 1.71 1.43 3.31 2.78

99% 2.27 1.90 2.55 2.16 2.16 1.83 2.35 1.95 5.05 4.22

Table 1.10: Estimated median interval length.
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SwiZs: mean SwiZs: median MLE AB RSwiZs: mean RSwiZs: median WMLE

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Mean bias

n = 35 2511.13 2226.09 2504.27 2230.19 2492.15 2241.82 -1.38×1012 -1.34×1012 13.33 11.50 13.38 11.53 13.78 12.10

n = 50 832.02 739.28 829.87 739.77 827.45 742.50 -1.54×1011 -1.55×1011 5.99 5.19 6.07 5.22 6.52 5.70

n = 100 45.96 37.47 45.71 37.28 45.81 37.48 -6.65×108 -5.22×108 1.20 1.03 1.26 1.05 1.72 1.47

n = 150 1.03 0.91 0.96 0.82 1.06 0.92 -1.60×104 -1.48×104 0.48 0.42 0.52 0.43 0.96 0.82

n = 250 0.17 0.15 0.15 0.12 0.21 0.18 -0.02 -0.02 0.20 0.18 0.21 0.17 0.62 0.53

n = 500 0.08 0.07 0.07 0.06 0.10 0.08 0.00 0.00 0.08 0.08 0.08 0.06 0.45 0.39

Median bias

n = 35 0.4583 0.4894 0.0538 0.0276 0.5885 0.4654 -1.5551 -1.2966 0.2523 0.3257 0.0561 0.0309 0.9571 0.7846

n = 50 0.2083 0.2374 0.0250 0.0197 0.3684 0.3008 -1.1319 -0.9168 0.1691 0.2039 0.0335 0.0213 0.7112 0.5986

n = 100 0.0801 0.0824 0.0191 0.0135 0.1770 0.1389 -0.4093 -0.3267 0.0813 0.0905 0.0228 0.0195 0.5025 0.4289

n = 150 0.0358 0.0434 0.0051 0.0021 0.1011 0.0851 -0.2259 -0.1848 0.0385 0.0470 0.0063 0.0041 0.4140 0.3623

n = 250 0.0151 0.0265 -0.0022 0.0028 0.0541 0.0521 -0.1255 -0.1011 0.0184 0.0268 -0.0017 0.0029 0.3686 0.3268

n = 500 0.0129 0.0150 0.0050 0.0046 0.0331 0.0275 -0.0560 -0.0473 0.0145 0.0163 0.0049 0.0034 0.3449 0.3056

Root mean squared error

n = 35 17263.26 15552.08 17223.34 15587.83 17137.54 15667.69 2.97×1013 2.95×1013 59.16 50.35 59.00 50.44 58.45 50.95

n = 50 7996.07 7382.94 7982.45 7395.00 7957.28 7418.68 5.15×1012 5.62×1012 27.55 24.08 27.52 24.13 27.32 24.35

n = 100 1331.57 1055.16 1330.24 1056.18 1328.51 1057.59 4.41×1010 3.36×1010 6.15 5.21 6.22 5.27 6.26 5.37

n = 150 36.30 32.42 36.27 32.44 36.24 32.48 1.11×106 1.06×106 2.46 2.13 2.56 2.20 2.70 2.34

n = 250 0.77 0.66 0.75 0.63 0.78 0.66 0.58 0.49 0.92 0.79 1.01 0.85 1.26 1.07

n = 500 0.46 0.39 0.46 0.38 0.47 0.40 0.42 0.35 0.49 0.41 0.50 0.42 0.77 0.66

Mean absolute deviation

n = 35 2.1893 2.0002 1.5119 1.2537 2.0914 1.7082 0.5845 0.3672 1.7446 1.4744 1.5891 1.2890 2.5445 2.0878

n = 50 1.5636 1.4044 1.2510 1.0720 1.5649 1.3200 0.4261 0.3293 1.3908 1.2241 1.2901 1.0831 1.9384 1.6231

n = 100 0.9693 0.8220 0.8979 0.7479 1.0042 0.8306 0.5443 0.4800 0.9576 0.8300 0.9091 0.7685 1.2615 1.0552

n = 150 0.7571 0.6546 0.7291 0.6191 0.7807 0.6627 0.5752 0.4942 0.7685 0.6633 0.7396 0.6308 0.9975 0.8454

n = 250 0.5871 0.4942 0.5737 0.4782 0.5991 0.4995 0.5058 0.4256 0.5959 0.4984 0.5810 0.4827 0.7737 0.6368

n = 500 0.4084 0.3440 0.4041 0.3390 0.4130 0.3456 0.3818 0.3200 0.4127 0.3516 0.4076 0.3452 0.5295 0.4502

Table 1.11: Performances of point estimators.
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1.D.2 Random intercept and random slope linear mixed model

SwiZs Parametric bootstrap

N = 25 1.87 0.20
N = 100 6.49 0.73
N = 400 35.60 4.58
N = 1, 600 245.59 37.80

Table 1.12: Average computational time in seconds to approximate a distribution on
S = 10, 000 points.



84 1. SwiZs: Switched Z-estimators

SwiZs parametric bootstrap
α β0 β1 σ2

ǫ σ2
α σ2

γ β0 β1 σ2
ǫ σ2

α σ2
γ

n = 5 m = 5

50% 51.78 53.87 48.54 54.18 70.38 42.37 43.61 44.60 32.27 28.10
75% 76.89 78.87 73.58 81.67 89.09 64.17 66.19 66.20 48.35 41.80
90% 91.87 92.93 88.89 94.10 98.80 78.38 81.94 81.07 61.72 46.87
95% 96.45 97.04 94.32 97.83 99.98 84.58 88.45 86.61 68.68 47.30
99% 99.54 99.71 98.73 99.87 100.00 91.93 95.40 93.54 79.03 47.61

n = 10 m = 10

50% 50.10 51.20 50.70 50.65 62.48 46.25 45.37 50.05 40.01 39.84
75% 75.16 77.08 74.92 75.64 85.74 69.81 68.68 74.48 60.54 59.68
90% 90.38 92.03 90.20 90.61 95.49 84.81 84.32 88.65 75.01 73.29
95% 95.23 96.40 95.23 94.96 97.86 90.71 90.32 93.95 81.30 79.29
99% 99.16 99.54 99.25 99.09 99.64 96.45 96.76 98.41 89.37 84.71

n = 20 m = 20

50% 50.78 49.10 49.97 49.74 49.85 49.03 47.58 49.63 45.40 45.75
75% 75.28 74.45 75.24 74.89 75.88 73.08 71.87 75.06 67.66 66.98
90% 90.06 89.79 89.95 90.28 90.75 87.59 87.02 89.73 81.76 81.83
95% 95.05 94.83 94.79 95.06 95.97 93.10 92.69 94.59 87.48 87.52
99% 98.96 98.97 98.93 98.90 99.50 97.77 97.82 98.75 94.20 94.15

n = 40 m = 40

50% 49.52 48.48 49.80 52.42 53.19 49.41 48.92 49.94 47.47 47.95
75% 74.70 72.86 75.27 77.89 78.39 74.22 73.34 75.63 70.93 71.46
90% 90.07 88.10 89.69 91.81 92.46 89.30 87.99 89.70 85.62 86.34
95% 95.15 94.09 94.71 96.27 96.59 94.37 93.65 94.82 91.29 91.82
99% 99.01 98.62 98.99 99.37 99.43 98.56 98.39 98.90 96.80 96.67

Table 1.13: Estimated coverage probabilities.
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SwiZs parametric bootstrap
α β0 β1 σ2

ǫ σ2
α σ2

γ β0 β1 σ2
ǫ σ2

α σ2
γ

n = 5 m = 5

50% 0.3303 0.2243 0.4976 1.2050 0.1755 0.2712 0.1728 0.4453 1.5575 0.0005
75% 0.5940 0.3882 0.8552 2.0974 0.4491 0.4606 0.2947 0.7607 3.5624 0.0012
90% 0.9314 0.5682 1.2436 3.1286 1.1761 0.6577 0.4217 1.0909 12.9753 0.0024
95% 1.1956 0.6934 1.5222 3.9149 3.7094 0.7845 0.5031 1.3051 13.9626 0.0036
99% 1.8698 1.0031 2.3468 9.8944 8.6739 1.0290 0.6623 1.7335 15.3409 0.0070

n = 10 m = 10

50% 0.2230 0.1198 0.2136 0.7311 1.0080 0.2038 0.1069 0.2099 0.7676 1.6745
75% 0.3902 0.2068 0.3638 1.2540 1.8614 0.3471 0.1818 0.3594 1.3370 8.6134
90% 0.5817 0.3008 0.5210 1.8131 2.9290 0.4953 0.2601 0.5144 1.9844 11.7988
95% 0.7162 0.3658 0.6218 2.1764 3.9196 0.5887 0.3097 0.6140 2.4462 12.6107
99% 1.0284 0.5130 0.8177 2.8992 7.9667 0.7745 0.4075 0.8055 3.6688 13.8600

n = 20 m = 20

50% 0.1547 0.0699 0.1006 0.4750 0.5665 0.1482 0.0674 0.0998 0.4733 0.6557
75% 0.2672 0.1205 0.1718 0.8065 0.9934 0.2530 0.1149 0.1708 0.8102 1.1462
90% 0.3900 0.1752 0.2455 1.1499 1.4857 0.3622 0.1643 0.2447 1.1655 1.7189
95% 0.4718 0.2117 0.2926 1.3701 1.8096 0.4311 0.1957 0.2918 1.3964 2.1535
99% 0.6436 0.2894 0.3833 1.8121 2.4686 0.5645 0.2569 0.3825 1.8686 3.4277

n = 40 m = 40

50% 0.1056 0.0452 0.0490 0.2816 0.1124 0.1056 0.0451 0.0493 0.3194 0.3628
75% 0.1810 0.0772 0.0834 0.4466 0.3469 0.1804 0.0770 0.0839 0.5429 0.6249
90% 0.2596 0.1107 0.1191 0.6923 0.6031 0.2576 0.1102 0.1197 0.7759 0.9014
95% 0.3100 0.1323 0.1420 0.8523 0.7672 0.3070 0.1313 0.1423 0.9257 1.0804
99% 0.4094 0.1747 0.1870 1.1467 1.1309 0.4020 0.1724 0.1864 1.2163 1.4420

Table 1.14: Estimated median interval length.
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SwiZs: mean SwiZs: median Maximum likelihood

β0 β1 σ2

ǫ
σ2

α
σ2

γ
β0 β1 σ2

ǫ
σ2

α
σ2

γ
β0 β1 σ2

ǫ
σ2

α
σ2

γ

Mean bias×100

N = 25 -0.0647 -0.3827 -3.1193 1.8554 1.5502 -0.0761 -0.3732 -2.4630 6.4149 3.3175 -0.0708 -0.4203 -1.2985 -5.8224 -0.3807

N = 100 0.2843 -0.0320 -0.2911 2.4583 0.6119 1.6374 -0.1452 0.7182 -1.8475 1.8127 0.0685 0.0314 -0.0166 -2.8806 -0.6425

N = 400 0.0163 0.0374 0.0739 1.2927 0.0944 0.0149 0.0386 0.0514 0.9056 0.1565 0.0245 0.0417 0.0133 -1.3425 -0.2785

N = 1, 600 0.0010 0.0385 0.0183 -0.9811 -0.2965 -0.0011 0.0394 0.0120 -1.1600 -0.2121 0.0130 0.0343 -0.0021 -0.6265 -0.1253

Median bias×100

N = 25 -0.0341 -0.2171 -3.8669 -6.5130 -0.0876 -0.0018 -0.2114 -3.3736 -0.8483 0.0121 0.0327 -0.2932 -2.1012 -10.1138 -3.9990

N = 100 0.4345 0.0289 -0.4759 0.1208 -0.0951 5.3959 -1.4459 0.5589 -0.7598 0.0354 0.1838 0.0069 -0.1815 -4.8730 -1.2975

N = 400 0.0020 -0.0378 0.0422 0.4196 -0.1116 0.0149 -0.0286 0.0211 -0.0405 -0.0068 -0.0140 -0.0261 -0.0220 -2.1176 -0.4517

N = 1, 600 -0.0332 0.0500 0.0082 -1.0639 -0.1813 -0.0060 0.0543 0.0041 -0.0818 -0.0021 -0.0098 0.0480 -0.0098 -1.1378 -0.1833

Root mean squared error×100

N = 25 24.6914 16.0625 9.2357 27.0499 6.2389 24.7198 16.0766 8.6916 24.2014 8.3432 24.7291 16.0853 8.1605 18.5249 6.8108

N = 100 16.4663 8.8542 3.9374 14.7976 3.5251 14.3449 7.7017 4.1388 11.5080 3.3680 16.5630 8.7967 3.8703 12.0714 3.1774

N = 400 11.4174 5.2549 1.8779 9.1330 1.8623 11.4174 5.2550 1.8752 8.9859 1.7515 11.4182 5.2554 1.8689 8.2404 1.7092

N = 1, 600 7.8721 3.4528 0.9119 4.7681 0.6698 7.9083 3.4524 0.9117 4.4706 0.5759 7.8981 3.4532 0.9110 5.7583 1.0216

Mean absolute deviation×100

N = 25 24.4139 15.8780 8.2892 23.3025 0.6468 24.4872 15.9113 8.1000 17.1094 0.2293 24.4752 15.9014 7.8528 15.1530 0.0015

N = 100 16.7958 8.9936 3.8427 13.3232 2.8386 13.0610 6.2264 2.9059 8.0151 1.4453 16.9915 8.9079 3.8351 10.8654 3.0194

N = 400 11.2283 5.3202 1.8651 8.8004 1.8018 11.2417 5.3225 1.8695 8.8299 1.4204 11.2634 5.3160 1.8653 7.8895 1.6541

N = 1, 600 7.9220 3.4259 0.9115 4.3804 0.5033 7.9954 3.4277 0.9108 0.2978 0.0214 7.9745 3.4325 0.9082 5.7040 0.9952

Table 1.15: Performances of point estimators
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Coverage probability Median interval length
α β0 β1 σ2

ǫ σ2
α σ2

γ β0 β1 σ2
ǫ σ2

α σ2
γ

n = 5 m = 5

50% 43.16 44.94 48.66 40.42 36.49 0.2770 0.1791 0.1043 0.1868 0.0375
75% 67.51 69.17 73.83 64.17 70.73 0.4942 0.3180 0.1836 0.3625 0.0945
90% 83.68 86.75 88.79 81.88 96.33 0.7612 0.4897 0.2764 0.6358 0.2010
95% 90.37 93.23 93.83 88.93 98.88 0.9671 0.6226 0.3431 0.8982 0.3095
99% 97.04 98.93 98.54 96.95 99.75 1.4991 0.9746 0.4982 1.8138 0.7069

n = 10 m = 10

50% 46.38 45.98 50.75 45.86 44.91 0.2060 0.1082 0.0525 0.1422 0.0383
75% 70.85 71.03 75.36 70.65 68.84 0.3591 0.1888 0.0901 0.2583 0.0690
90% 87.23 87.08 90.04 86.58 85.82 0.5321 0.2806 0.1304 0.4088 0.1078
95% 93.20 93.27 95.12 92.37 93.09 0.6534 0.3449 0.1569 0.5299 0.1392
99% 98.41 98.53 98.95 98.02 99.59 0.9264 0.4903 0.2111 0.8593 0.2265

n = 20 m = 20

50% 49.20 47.62 49.92 48.00 47.31 0.1491 0.0677 0.0251 0.1048 0.0216
75% 73.66 72.54 75.09 72.49 72.86 0.2571 0.1168 0.0429 0.1845 0.0381
90% 88.70 88.34 89.97 88.33 88.10 0.3742 0.1700 0.0616 0.2774 0.0573
95% 94.09 94.02 94.81 93.80 93.72 0.4524 0.2055 0.0735 0.3445 0.0712
99% 98.56 98.61 98.94 98.40 98.59 0.6167 0.2801 0.0972 0.5019 0.1038

n = 40 m = 40

50% 49.46 49.32 49.79 48.67 49.01 0.1060 0.0452 0.0122 0.0748 0.0136
75% 74.46 73.78 75.28 73.52 74.77 0.1819 0.0776 0.0209 0.1295 0.0236
90% 89.88 88.76 89.70 88.89 89.83 0.2623 0.1119 0.0299 0.1899 0.0346
95% 94.95 94.28 94.85 94.22 94.71 0.3148 0.1343 0.0356 0.2310 0.0420
99% 98.98 98.86 98.99 98.77 98.82 0.4212 0.1797 0.0468 0.3194 0.0582

Table 1.16: Asymptotic results
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1.D.3 M/G/1 queueing model

SwiZs Indirect inference Parametric bootstrap
θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

50% 46.92 38.68 56.73 40.59 9.95 54.59 18.31 10.23 20.96
75% 71.56 55.41 81.80 68.01 34.11 84.50 32.70 20.96 37.38
90% 87.55 67.77 94.47 87.62 57.13 96.04 48.62 35.24 53.71
95% 93.16 74.78 97.97 94.66 70.22 98.75 57.05 46.03 63.21
99% 98.17 90.06 99.90 98.84 94.89 99.94 71.99 65.43 77.64

Table 1.17: Estimated coverage probabilities.

SwiZs Indirect inference Parametric bootstrap
θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

50% 0.0235 0.0805 0.1379 0.0382 0.0468 0.1368 0.0263 0.0420 0.1134
75% 0.0404 0.1467 0.2357 0.0911 0.0978 0.2389 0.0460 0.0757 0.2051
90% 0.0585 0.2207 0.3378 0.1563 0.1914 0.3835 0.0708 0.1185 0.3131
95% 0.0705 0.2733 0.4032 0.2225 0.2952 0.5432 0.0895 0.1533 0.3855
99% 0.0952 0.3934 0.5407 0.5331 0.7152 1.6084 0.1327 0.2514 0.5562

Table 1.18: Estimated median interval length.

SwiZs: starting value is θ0 SwiZs: sample size is n = 1, 000.
θ1 θ2 θ3 θ1 θ2 θ3

50% 50.22 58.64 49.98 50.07 46.06 49.37
75% 75.24 91.25 74.24 75.24 71.82 74.77
90% 90.52 99.82 89.55 89.73 89.84 89.49
95% 95.37 100.00 94.87 94.81 95.41 94.69
99% 99.09 100.00 99.02 98.95 99.28 99.10

Table 1.19: Estimated coverage probabilities under different conditions than Table 1.17.
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SwiZs: mean SwiZs: median Indirect inference Indirect inference: mean Indirect inference: median

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Mean bias 0.0037 -0.0149 0.0006 0.0057 -0.0096 0.0002 2×1090 3×1090 1.6107 0.0309 0.0254 3×1089 0.0157 0.0297 0.0201

Median bias 0.0026 -0.0219 -0.0044 0.0046 -0.0157 -0.0041 0.0135 0.0270 0.0181 0.0295 0.0235 0.0772 0.0150 0.0257 0.0200

RMSE 0.0197 0.0764 0.0890 0.0200 0.0762 0.0888 2×1092 3×1092 135.72 0.0451 0.0976 3×1091 0.0254 0.1041 0.0851

MAD 0.0192 0.0705 0.0884 0.0190 0.0718 0.0882 0.0307 0.1069 0.1405 0.0365 0.0918 0.1109 0.0182 0.0968 0.0823

Table 1.20: Performances of point estimator.
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Bounded-Influence Robust
Estimation of Copulae

Always look on the bright side of life.
– Monty Python, Life of Brian

2.1 Introduction

Copula functions are very convenient for modeling multivariate observations. One of their
clear advantage is that they offer to the modeler the possibility to focus separately on the
marginal distributions and the multivariate model. Moreover, a wide variety of copula
functions exist (see [Nel06; Joe14] for monographs) that are convenient for modeling
specific characteristics of the the joint model. This flexibility brought by copula models
has made it a popular tool in fields that require specific care for tails and asymmetric
dependencies of the joint distribution, a situation very often encountered in application
to real data.

In welfare economics, well-being consists of many dimensions such as income, health
and education. Even within such dimensions, modifications in time of their distribution
is of interest, as is done in, for example, [DL01] who measure pre- and post-tax living
standard distributions using copulae, [BR09] who study earnings mobility in France by
proposing a model of earnings dynamics including a transition probability modeled by
means of a copula, [VGC10] who use copulae for income mobility (see also [CG17] who
propose a joint modeling of income and consumption with a copula function to capture
the dependence structure) or [DG12] who take advantage of a copula model for measur-
ing household financial fragility. In financial economics, for example [Pat06] use copula
to model asymmetric exchange rate dependence and [CHV08] to model international
financial returns. Inequality indices, which are functions of the distributions, have also
been extended to multivariate versions, using copulae, either between different dimensions
or within the same dimensions. For example, [ANG06] propose multivariate measures
of inequality, [Qui09] measures income-related inequalities in health using copulae (see
also [JSVK15]), [FL12] use copulae in multidimensional poverty evaluation and [Dec14]
propose more generally a class of dependence measures between well-being dimensions
(see also [Atk11]).

Copula based models have also been used, for example in health sciences by [SL95]
to study survival risk factors in AIDS, by [SLY09] to study treatment effect in multiple
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sclerosis, by [DW10] to study burn injuries, by [He+12] for the analysis of secondary
phenotypes in case-control genetic association studies, by [PCJ12] to study headache
severity, by [St15] to study comorbidity of chronic diseases in the elderly patients, in
natural and engineering sciences by [Smi+10] for modeling and forecasting electricity
load at an intraday resolution, by [GS11] to measure spatial dependence in wind for
optimal wind power allocation and by [ZK16] for predicting disruption length in public
transportation.

Multivariate generalized linear models can also be modeled using copulae as is done
for example in [Son00; Joe05; SLY09; DW10; NJR11; MF11; He+12] and in the survey
of [Nik13] for the discrete case. Copulas have also been proposed as an alternative to the
covariance matrix in factor (correlation structure) analysis for dimension reduction; see
e.g. [KK09; KJ13; KHK15; OP17; KHG18].

Given the complexity of (parametric) copula model, several estimation methods have
been proposed. An alternative to the maximum likelihood estimator (MLE) is the method
of inference functions for margins (IFM), a two-step MLE proposed by [JX96; Joe97].
Indeed, even though the IFM has a reduced (asymptotic) efficiency ([Joe05]), direct opti-
mization of the likelihood function can be numerically difficult and a sequential approach
is often preferred. In the first step, a parametric (or non-parametric) estimator of marginal
distributions is computed and in the second step, given this estimator, the parameters of
the copula are estimated by the MLE. With a non-parametric approach the empirical dis-
tribution function (EDF) is used [GGR95; SL95; CFT06], essentially to prevent the risk
of misspecification of margins (see e.g. [KSS07]) at a cost of an efficiency loss compared
to the IFM (when the model is correctly specified).

Even so, multivariate copula estimation can become computationally challenging in
even moderate dimensions (e.g. more than three). The extension to the multivariate
setting can easily be made using elliptical copulae (e.g. Gausssian or Student), but the
number of parameters can become very large and the postulated dependence is symmetric.
To avoid this curse of dimensionality, a possible extension to high dimensional settings
is the construction of multivariate model using only bivariate copulae, which is called a
pair-copula construction (PCC). This approach makes use of vine families proposed in
[Joe96] and [BC02] (see [KJ11] for a monograph), and [PCJ12] sets a general estimation
framework (see also [KC06; Aas+09; Fis+09; BCA12; Hob13]). A similar approach is
the use of Hierarchical Archimedean copulae (HAC) [Joe97]; for simulation and inferen-
tial methods, see e.g. [McN08; Hof08; MN09; Hof10; HMM12; Hof12; AGN12; OOS13;
Rez15; GHH17; DC17; Uyt18]; see also [Bre14] hierarchical Kendall copulae, a similar
concept. Alternatively, [Son+05] proposes an algorithm for the MLE based on a conve-
nient decomposition of the likelihood function and [OP13] extends the simulated method
of moments ([McF89; PP89]) to estimate copula models based on empirical bivariate
dependence measures (that do not depend on the specification of the model).

An important drawback of most of the estimation methods proposed so far is that
they rely on the exact specification of the (parametric) model. In other terms, if the
data shows small deviations from the assumed model, these estimators can be dramati-
cally biased. These small deviations take the form of data contamination (e.g. outliers)
and robust statistics can limit their influence on the estimation and testing procedures
([Hub+64; Ham+86]). At the marginal level, the benefits of a robust estimation ap-
proach has been shown with parametric estimation of densities (see e.g. [VFR94a; AVH05;
DVF06; Van+07; B́ı14; Brz16]). For generalized linear models (GLM), a robust estima-
tion approach has been motivated for example in [CP93; Chr94; CR01; VF02; RC03;
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MY04; CR06; C0́8; BY11; BBR13; VY14; ACH14; Her+09; HFZ05; MVF06].

Hence, at the marginal level robust estimation is available while at the copula level,
surprisingly, robust estimation approaches have received little attention. [MMN07] define
estimator as the solution of weighted goodness-of-fit measures between empirical and
estimated parametric copula, yet asymptotic properties of the resulting estimator remain
unclear. [DM11] approach is based on the method of likelihood depth (see also [RH99]),
but is limited to two bivariate copula and shows difficulties to generalize to other models.
[KL13] concentrate their work on copula-based dynamic models, they proposed to replace
the MLE of copula by minimum density power divergence estimator (see also [Bas+98]).
However, none of the previous work treats issues with model contamination affecting both
copula and margins.

We propose here to generalize the IFM estimator to a two-steps M -estimator [Hub+64;
HR09] that includes bounded Influence Function (IF) estimators [Ham74; Ham+86]. In-
deed, as shown in [ZGR12], a two-step estimator has a bounded IF only if the estimation
equations at each stage are bounded. Bounded IF estimators are usually numerically
challenging, except for symmetric models, since they need to include, in the estimating
equations, a centrality quantity (for Fisher consistency) that consists of multiple integrals.
In order to alleviate the numerical aspects, so that robust copula estimation can be per-
formed in high dimensional settings, we use the indirect inference framework to provide
consistent robust estimators that are simple to compute as proposed in [Gue+18b].

This paper is organized as follows. In Section 2.2, we set a general framework for joint
dependence modeling, within which we propose a multi-step indirect inference estimator
with focus on the dependence parameters. In Section 2.3, we set the general conditions
under which the consistency and asymptotic normality of the proposed estimator are
demonstrated. Some conditions are particularly hard to verify, therefore this section is
also ponctuated by alternative propositions. The Section 2.4 covers practical aspects
of implementation, in particular, it gives computationally efficient algorithm for solving
a point estimator and a first-order approximation to facilitate bootstrap procedure. In
Section 2.5, an IF is developed that permits to appreciate the robustness of estimators
in this framework. Inline with these findings, in Section 2.6 is discussed the weighted
maximum likelihood estimator as the most reasonable approach in terms of bias and
mean squared errors when the data generating mechanism deviates from the assumed
model. In Section 2.7, we present a simulation study to compare performances of the
proposed estimators in two situations: first, when outlying observations contaminate the
data, second, when the assumed model is complex, that is the likelihood function has
no known analytical expression. Eventually, in Section 2.8 an application to real data is
presented. The income mobility (in time) is studied for the Swiss Household Panel, by
means of related inequality measures derived from classical and robust copula estimators.

2.2 A general indirect inference framework for mul-

tivariate models with joint dependence

We consider the same general class of data-generating process used by [CF06; Cha+09;
OP13; Rém17]. This class permits to model in an unified fashion time-varying conditional
mean and variance together with any parametric marginal models. Thus, it covers many
commonly used multivariate models such as copula GARCH, multivariate ARMA models,
multivariate stochastic volatility models, multivariate regression models, and so on. Let
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the d-dimensional multivariate random sequence

yt = σ−1
t (ν){xt − µt(ν)}, t ∈ T = {1, . . . , n}, (2.1)

to be jointly independent and identically distributed according to an assumed probability
modelGY . More specifically, µ = [µ1 . . . µn] is a IRd×IRn matrix where each column µt is
Ft−1-measurable and independent of yt. Ft denotes the sigma field containing all informa-
tion from the past sequences up to t and possibly depending on fixed covariates (omitted
in the notation). σ is a IRd × IRd × IRn tensor where each slice σt = diag(σ1t, . . . , σdt)
is a diagonal square matrix also assumed Ft−1-measurable and independent of yt. The
vector parameter ν ∈ V ⊂ IRr characterises both the dynamic of each univariate random
process {xjt : t ∈ T, j ∈ J}, J = {1, . . . , d}, and the marginal cumulative distribu-
tion function (cdf ) of the innovation, FY (y,ν) = [F1(y1,ν1)T . . . Fd(yd,νd)T ]T , where
y = [yjt]j∈J,t∈T ∈ IRn×IRd is a real-valued matrix. This setup allows conveniently to sepa-
rate between the marginal sequential dependence and the joint multivariate dependence of
the processes. Indeed, we have by Sklar’s Theorem ([Skl59]) that GY (y) = C(FY (y,ν),θ),
where C = {Cθ : θ ∈ Θ} is a copula model indexed by parameter vector θ ∈ Θ ⊂ IRp.
Our interest is in the estimation and the inference of θ. However, if ν is unknown,
FY (y,ν) depends upon the estimation of ν. In view of the foregoing, we consider the
situation, usually encountered in practice, of estimating ν and θ separately in a multistep
procedure.

We denote generically a real-valued random matrix that is an assumely known measur-
able function of the observations, the marginal parameters and the dependence paramters
by u : X × V × Θ → [0, 1]d. In particular, we have in mind that u(x,ν; θ) = FY (y,ν) is
a matrix of cdf and u(x,θ; ν) is a matrix of jointly dependent standard uniform variates
identically and idenpendently distributed according to Cθ. For convenience, the function
takes the index from the observation so ut(ν) = u(xt,ν; θ1), for a point θ1 ∈ Θ, and
ut(θ) = u(xt,θ; ν1), for a point ν1 ∈ V.

Our inferential problem concerns estimating sequentially ν and θ. Within the scope of
this chapter, our focus is driven by θ, and thereby ν, considered as “nuisance parameters”,
receive a less exhaustive treatment. It is nonetheless not taken as known, the fact that
the nuisance parameters need to be estimated is of primordial importance for example
when considering the robust properties of the estimator of θ in Section 2.5.

We focus our attention to the situation where estimating θ is a complex problem,
as for example the likelihood function is intractable or more generally the estimating
equation has no analytic expression. This situation is in fact unrestrictive and broader
than usually admitted. To tackle these issues, we use the general framework of indirect
inference ([GMR93; Smi93]) refined for our purpose. The basis of this method consists of
two successive steps. First, an auxiliary parameter π ∈ Π ⊂ IRq, q ≥ p, is obtained by
finding the roots of the following Z-estimating equation

π̂n∗ = argzero
π∈Π

1

n∗
∑

t∈T∗

φ
(
ut (ν̂n) ,π

)
= argzero

π∈Π

Φn∗ (ν̂n,π) , (2.2)

where T∗ ⊆ T denotes the set of jointly observed variables and is assumed non-empty
with cardinality n∗ = |T∗| > 0. More precisely, n∗ = ⌊nρ∗⌋ with 0 < ρ∗ ≤ 1, the least
positive integer smaller than nρ∗. There are several reasons why the joint sample size
n∗ might be smaller than n (and thus ρ∗ < 1): marginally or jointly missing data, data
considered as fixed for estimation purposes, and so on. With this point of view, 1−ρ∗ may
be interpreted as the percentage loss of information due to disjoint observation. Second,
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the same auxiliary parameter may be obtained on an independent copy of ut(ν), say
ut(θ), and the solution is obtained by matching both auxiliary estimators:

θ̂n∗ = argmin
θ∈Θ

‖π̂n∗ − π̄m(θ)‖2
Ω , (2.3)

where for all θ ∈ Θ

π̄m(θ) =
1

B

B∑

b=1

π̂(b)
m (θ),

and

π̂(b)
m (θ) = argzero

π∈Π

1

m

m∑

t=1

φ
(
u

(b)
t (θ),π

)
= argzero

π∈Π

Φm(θ,π),

where m = ⌈Hn∗⌉, H ∈ IR+, is the least positive integer greater than Hn∗, B ∈ N
+ and

u(b) is the bth independent sample with a length m. The matrix Ω ∈ IRq × IRq in (2.3)
is assumed symmetric and positive-definite with finite elements. It possibly needs to be
estimated. Although not essential in theory, the function φ is assumed to be known in
analytical form, it echos the practical interest of the method.

Remark 2.1. Several indirect inference estimators exist in the literature (see [GMR93;
FZ14]): one auxiliary estimator on one large simulated sample, several auxiliary estima-
tors on simulated samples of size n∗. Here we combine them in an unified fashion and
study the consequence in next section.

Remark 2.2. Z-estimating equations are usually defined with ψ-function notation in the
robust statistical literature (see [Hub+64; Ham+86; HR09]). Here, we are purposely using
a different notation with φ instead as we allow π̂n∗ to be an inconsistent estimator of θ0.
This difference aims at emphasing the gain in generality of the proposed method.

2.3 Asymptotic results

The following conditions are sufficient to prove the consistency of θ̂n∗ . We start by
characterizing the estimating equation Φn. In the next assumption we use n instead of m
or n∗ for simplicity. The statement should nonetheless be understood as for all ρ∗ ∈ (0, 1]
and for all H ∈ IR+ where pertinent.

Assumption 2.3 (characterization of Φn). The following holds:

i. For all π ∈ Π, for a sufficiently large n, Φn(ν,π) is continuous at each ν ∈ V with
probability one.

ii. For all (θ × ν) ∈ Θ × V, for a sufficiently large n there exist random values An =
Op(1) and Bn = Op(1) such that for every π1,π2 ∈ Π

‖Φn(θ,π1) − Φn(θ,π2)‖ ≤ An ‖π1 − π2‖ , ‖Φn(ν,π1) − Φn(ν,π2)‖ ≤ Bn ‖π1 − π2‖ .

iii. For all (θ,ν,π) ∈ Θ × V × Π, the following expectations exist and are finite

E‖Φn(ν,π)‖ < ∞, E‖Φn(θ,π)‖ < ∞,

when n is sufficiently large.
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iv. For all (θ,ν,π) ∈ Θ × V × Π, the following non-stochastic limits exists

lim
n→∞

Φn(ν,π) = Φ(ν,π), lim
n→∞

Φn(θ,π) = Φ(θ,π).

v. For all (θ,ν) ∈ Θ × V, we have for every π1,π2 ∈ Π that

Φ(θ,π1) = Φ(θ,π2), Φ(ν,π1) = Φ(ν,π2),

if and only if π1 = π2.

The first condition states that Φn is continuous at every ν ∈ V. This condition is very
mild and is typically verified in application. Together with Assumption 2.7 (i), it permits
to employ the continuous mapping theorem ([Vaa98]) thereby faciliating the handling of
the two-steps estimators ν̂n and π̂n∗ in (2.2). All the next conditions, namely stochastic
Lipschitz, finite expectation, deterministic limit and identifiability are regular ones. We
now charaterize the stochastic mapping θ 7→ π̄m in (2.3) which is specific to indirect
inference. This mapping, once made deterministic by either taking the expectation or the
limit, is refered in the literature to as the “binding” function ([GMR93]) or the “bridge
relationship” ([JT04]) and is a key ingredient of the method.

Assumption 2.4 (characterization of π̄m(θ)). We have the followings:

i. For all (B,H, ρ∗) ∈ N
+ × IR+ ×(0, 1], for a sufficiently large n there exists a random

value Cm = Op(1), where m = O(n), such that for every θ1,θ2 ∈ Θ

‖π̄m(θ1) − π̄m(θ2)‖ ≤ Cm ‖θ1 − θ2‖ .

ii. For all (θ, B,H, ρ∗) ∈ Θ×N
+ ×IR+ ×(0, 1], the following non-stochastic limit exists

lim
n→∞ π̄m(θ) = π(θ).

iii. For every θ1,θ2 ∈ Θ, we have

π(θ1) = π(θ2),

if and only if θ1 = θ2.

The first condition requires π̄m(θ) to be stochastically Lipschitz. It does not usually
appear in the literature (see [GM96]) as it is a lower level condition that implies the
uniform convergence of the stochastic function (see Lemma 3.4). Since the mapping
θ 7→ π̄m is known only implicitly, this condition can in general not be verified. The next
Propoposition 2.5 gives the mean to verify this assumption.

Proposition 2.5 (Lipschitz). If the implicit mapping θ 7→ π̂n is continuously once dif-
ferentiable and the Jacobian is bounded, i.e. Dθπ̂n(θ) < ∞, then it is Lipschitz.

The second hypothesis of Assumption 2.4 is regular. The third condition is on the
identifiability and is related to the choice of the auxiliary parameter. It is commonly
assumed to hold (see [GM96]) but it is typically hard to verify since the mapping θ 7→ π

is unknown in an explicit form. The next proposition provides a mean to imply this
condition.
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Proposition 2.6 (local identifiability). Let Θ be a open convex subset of IRp. If the
mapping θ 7→ π is continuously once differentiable in Θ and the Jacobian Dθπ(θ) is
nonvanishing and of full column rank at a point θ0 ∈ Θ, then there exists a neighborhood
of θ0 on which π is injective.

Before stating the consistency of θ̂n∗ , we require a last assumption to assess the asymp-
totic behaviour of the marginal esitmator ν̂n and matrix of weight Ω if estimated.

Assumption 2.7 (asymptotics). The following asymptotic results hold:

i. If Ω = [ωkl]k,l=1,...,q is estimated by Ω̂, we have

ω̂kl = ωkl + op(1),

elementwise, for k, l = 1, . . . , q.

ii. For the marginal estimators, we have

ν̂n = ν + op(1).

The first condition is about the consistency of Ω̂ and is a regular one. The second
condition is on the consistency of the marginal estimator. Because such hypothesis highly
depends on the marginal models at hand, it is simply assumed here for the sake of gen-
erality. There is a large body of literature for most models.

Theorem 2.8 (consistency). Let Θ be compact subset of IRp. Let Π be a compact subset

of IRq. Let {Qn∗(θ) = ‖π̂n∗ − π̄m(θ)‖2
Ω̂

} be sequence of real-valued function. Let {θ̂n∗} be

a sequence that nearly minimises {Qn∗(θ)}. If the Assumptions 2.3 to 2.7 hold, then any

sequence {θ̂n∗} converges weakly in probability to θ0.

We now turn our attention to the asymptotic distribution of θ̂n∗ . We start by defining
quantities of interest for latter convenience. We use the following notation for the Jacobian
matrices of the estimating equation with respect to θ, π and ν:

Jn(θ,π) ≡ DθΦn(θ,π),

Kn(ν,π) ≡ DπΦn(ν,π), Kn(θ,π) ≡ DπΦn(θ,π),

Ln(ν,π) ≡ DνΦn(ν,π).

By convention, when one of the above quantities is evaluated to one of the following points
θ0 ∈ Θ, π0 ∈ Π or ν0 ∈ V, the argument is omitted from the notation. For example, Jn

means the Jacobian of Φn(θ,π) with respect to θ evaluated at θ0 and π0. Having defined
these Jacobian matrices, we now impose some restrictions on them.

Assumption 2.9 (characterization of J, K and L). We have the following:

i. The matrices Jn(θ,π), Kn(θ,π), Kn(ν,π) and Ln(ν,π) exist and are continous.

ii. The matrices Jn, Kn and Ln converges pointwise to J, K and L respectively.

iii. The matrices K and JT K−T ΩK−1J are nonsingular.
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iv. For a sufficiently large n there exists a random value Dn = Op(1) such that for every
ν1,ν2 ∈ V we have

‖Kn(ν1) − Kn(ν2)‖ ≤ Dn ‖ν1 − ν2‖ .

v. For a sufficiently large n there exists a random value En with E[En] = O(1) and
such that for every θ1,θ2 ∈ Θ we have

∥∥∥K−1
n (θ1)Jn(θ1) − K−1

n (θ2)Jn(θ2)
∥∥∥ ≤ En ‖θ1 − θ2‖ .

The first three conditions are regular ones. The fourth condition accounts for the fact
that we require Kn to converge uniformly because of the marginal estimator appearing
in the two-step procedure. As with the fourth condition, the fifth permits to imply the
uniform convergence of the Jacobian matrix of π̂n(θ). As remarked by [Phi12], contrary
to usual estimating methods such maximum likelihood or generalized method of moments,
the indirect inference uses a stochastic mapping, θ 7→ π̄m in our notation in (2.3), thereby
requiring a more involved treatment. The reason for the form of this last condition will
become clearer after the next proposition. As already remarked, the binding function is
unknown in an explicit form, however its Jacobian may be derived explicitely.

Proposition 2.10 (Jacobian). If Assumption 2.9 (i,ii,iii) hold, then

Dθπ(θ)
∣∣∣
θ=θ0

= −K−1J.

Moreover, if we strengthen Assumption 2.9 (i,ii,iii) to hold for all n, then

Dθπ̂n(θ)
∣∣∣
θ=θ0

= −K−1
n (π1)Jn(π1),

where π1 ≡ π̂n(θ0).

Proposition 2.10 delivers the Jacobian matrix of the binding function but also of
the stochastic mapping θ 7→ π̂n. As demonstrated in Propositions 2.5 and 2.6, it is of
theoretical interest to know these Jacobian matrices. On a more practical aspect, it is
also interesting to have the Jacobian of θ 7→ π̂n as it allows to obtain the gradient of
the indirect inference estimator (2.3) that may useful for any gradient-based optimization
routines.

The next assumption characterizes the asymptotic distribution of the marginal esti-
mators and restricts the asymptotic behavior of the estimating equation.

Assumption 2.11 (asymptotics II). The followings hold:

i. For the marginal estimators, we have that

ν̂n = ν0 + n−1/2Λ−1z + op(1),

where ΛT Λ = Σ = Σ1 ⊕· · ·⊕Σd is a d-blocks-diagonal matrix such that ‖Σ‖∞ < ∞
and z is a multivariate standard Gaussian random variable.

ii. For all (θ,π,ν) ∈ Θ × Π × V, we have

lim
n→∞

E‖Φn(ν,π)‖21{‖Φn(ν,π)‖ > ε} = 0, lim
n→∞

E‖Φn(θ,π)‖21{‖Φn(θ,π)‖ > ε} = 0,

for every ε > 0, and

Cov (Φn(ν,π)) = Q, Cov (Φn(θ,π)) = Q, ‖Q‖∞ < ∞,

when n is sufficiently large.
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For the same reasons invoked after Assumption 2.7, the asymptotic normality of ν̂n

is simply assumed here for marginal estimators. We let the reader refer to the above
literature. Assumption 2.11 (ii) is regular as it permits to invoke Lindeberg-Feller central
limit theorem (see [Vaa98] for instance). Next, we present the asymptotic distribution of

θ̂n∗ .

Theorem 2.12 (asymptotic normality). Let Θ,Π be as in Theorem 2.8 and denote by
Θ◦,Π◦ the interior sets assumely convex. Suppose that θ0 ∈ Θ◦ and π0 ∈ Π◦. If
Assumptions 2.3, 2.4, 2.7, 2.9 and 2.11 hold, then

n
1/2χ−1/2

(
θ̂n∗ − θ0

)
 N (0, Ip) ,

where

χ =
(
JT K−T ΩK−1J

)−1
JT K−T ΩK−1

[
γ∗Q + LΣLT

]
K−T ΩK−1J

(
JT K−T ΩK−1J

)−T
,

and

γ∗ =
1 +BH

ρ∗BH
≥ 1.

This result is remarkable as all sources responsible for the loss of efficiency of θ̂n∗

appear in the asymptotic variance χ. First, the term LΣLT that inflates the variance
is due to the two-steps procedure (see [Joe05] for similar result on IFM). Second, the
fact the binding function is unknown and requires to be estimated is reflected in γ∗ with
constants B and H increasing the variance. Individual effects of B or H were known in
the literature, what may be more surprising here is that both have a multiplicative effect
on the variability of θ̂n∗ . Third, losing information with ρ∗ < 1 inevitably increases the
variability of θ̂n∗ .

If in addition to Assumption 2.9 (iii) we suppose J to be invertible, and thereby
implicitly supposing that dim(π) = dim(θ), an optimal choice of weight function could
be

Ωopt = J−1K,

as it simplifies the asymptotic variance to

J−1
[
γ∗Q + LΣLT

]
J−T .

An other choice, which is more general as π can be of a larger dimension than θ, is to
select Ωopt = KT K to simplify the asymptotic variance. Note that with both choices,
Assumption 2.7 (i) is satisfied by Assumption 2.9 (iii). If one is willing to strengthen
slightly the above conditions, a general optimal weight function is found and given in the
next proposition.

Proposition 2.13 (optimal Ω). If in addition to the conditions under which Theorem 2.12
is derived, the matrices Q and JT Q−1J are nonsingular, then an optimal weight function
is

Ωopt = KT Q−1K.

The asymptotic variance matrix in Theorem 2.12 simplifies to

χopt =
(
JT Q−1J

)−1
JT Q−1

[
γ∗Q + LΣLT

]
Q−1J

(
JT Q−1J

)−1
.
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Supposing the covariance Q and the squared symmetric matrix JT Q−1J to be in-
vertible seems reasonable in general. The optimal weight function in Proposition 2.13
corresponds in fact to the inverse of the asymptotic variance matrix of the auxiliary esti-
mator π̂n∗ (see the appendix for more details, especially Lemma 2.A.2). Eventually, note
that if the marginal estimators are fixed, the asymptotic variance in Theorem 2.12 further
simplifies to

χopt = γ∗
(
JT Q−1J

)−1
.

Heretofore, we demonstrated that the indirect inference estimator in (2.3) is consistent
and we gave the distribution towards which it weakly converges. But is this estimator
and its distribution obtainable has remained a silent question. The next section aims at
shedding lights on such feasibility.

2.4 Some practical aspects for indirect inference pro-

cedure

Indirect inference procedures are not in particular computationally easy ones. In this
section we discuss and propose some practical techniques to obtain a point estimator and
make inference for indirect inference procedure.

2.4.1 Point estimator

Finding a point estimator for indirect inference procedure is usually very demanding in
computational power. The main reason for this drawback is that every step for solving
θ̂n∗ in an optimization procedure requires B optimizations for approximating the binding
function. As discussed in the first Chapter in Theorem 1.8, if one considers only B = 1
and dim(π) = dim(θ), then it becomes equivalent to solve the problem directly within
the Z-estimating equation (the SwiZs), a solution much more computationally efficient
(see Example 1.63 on M/G/1 queue of the first Chapter).

Another reason is that the gradient of the objective function in (2.3) is usually un-
known, thereby requiring further costly numerical approximations. Proposition 2.10 offers
in this view an interesting solution. For example, the kth step of a gradient descent algo-
rithm may be expressed as

θ̂
(k)
n∗ = θ̂

(k−1)
n∗ + JT Q−1K

[
π̂n∗ − π̄m

(
θ̂

(k−1)
n∗

)]
,

when n is sufficiently large and Ωopt in Propostion 2.13 is used. When dim(π) = dim(θ),
a further simplification is the iterative bootstrap as proposed by [Gue+18b]:

θ̂
(k)
n∗ = θ̂

(k−1)
n∗ +

[
π̂n∗ − π̄m

(
θ̂

(k−1)
n∗

)]
.

Under some general assumptions on the form of the bias of the auxiliary estimator,
[Gue+18a] show that the iterative bootstrap procedure indeed converges to the indirect
inference estimator. The aforementioned solutions induced no approximation of any sort
(except numerical). Other authors proposed to approximate directly the binding function
to avoid its computation (see e.g. [AD15]).
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2.4.2 Inference

Closed-form expression for the asymptotic variance in Theorem 2.12 is almost impossible
to obtain. As an illustration, in Figure 2.1 we show the asymptotic variance corresponding
to different estimators of a Gumbel-Hougaard copula ([Gum60; Hou86]), with survival
Weibull marginal distributions whose joint bivariate survival 5-parameters distribution is
given by:

exp
{

−
(
[η1y1]

κ1/θ + [η2y2]
κ2/θ
)θ
}
, 0 ≤ θ ≤ 1,

where θ is the copula dependence parameter corresponding to Kendall’s tau ([Ken38])
τ = 1 − θ. [OM92] derived Fisher information matrix for the maximum likelihood esti-
mator when both marginal parameters are assumed fixed or random. In Appendix 2.C,
we derived the additional quantities to obtain the asymptotic variance of the two-steps
maximum likelihood estimator, or IFM; see [Joe05] for the general form of the asymptotic
covariance matrix. Two elements from this derivation are worth noticing: first, we could
not find a closed-form solution (some integrals need to be evaluated numerically), second,
the expression is long and tedious. Numerical solutions are therefore in general necessary.

Asymptotic variance of MLE for Gumbel-Hougaard copula with Weibull margins

0 0.2 0.4 0.6 0.8 1

va
r(

θ̂
)

θ̂

0

0.1

0.2

0.3

0.4

one-step, known margins one-step, random margins two-steps (IFM)

Figure 2.1: Asymptotic variance of different maximum likelihood estimators of Gumbel-
Hougaard copula dependence parameter with survival Weibull marginal distributions:
one-step MLE when marginal Weibull parameters are fixed or random (due to [OM92])

and two-steps MLE (IFM). When θ̂ tends to 1 (independence) or to 0 (comonotonicity),
the asymptotic variances take the same values.

The bootstrap ([Efr79]) has been extensively used for the purpose of inference. If
a point estimate has been computationally hard to obtain, as it is generally the case
for indirect inference estimator, it is however unthinkable to use this method. The first
Chapter provides an alternative solution which is computationally efficient and remarkable
in terms of the quality of the inference, but it is derived under the restrictive situation
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where dim(π) = dim(θ) and B = 1. We therefore propose a fast bootstrap strategy for
the general indirect inference estimator in (2.3). The main idea is to bypass the repetitive
optimization of θ by a first order approximation. Higher order of approximations may
be developped but has not been considered here. Define the following bootstrap random
variables

θ̂⋆
n∗ = θ̂n∗ −

(
JT K−T ΩK−1J

)−1
JT K−T Ω [π̂⋆

n∗ − π̄⋆
m] ,

where “⋆” is for the bootstrap, the rest of the quantities being fixed. If
√
n(π̂⋆

n∗ − π̄⋆
m)

converges to the same distribution as
√
n(π̂n∗ − π̄m(θ0)), then, in view of Theorem 2.12,

it is clear that this bootstrap converges to the same distribution as
√
n(θ̂n∗ − θ0). The

demonstration of the convergence
√
n(π̂⋆

n∗ − π̄⋆
m) seems straightforward following [BF81]

but the formal treatment is left for further research.
Different strategies may be adopted for obtaining the bootstrap distribution of the

auxiliary estimators. We only present the “naive” version. In order to gain numerical
speed, one may consider for example the bootstrap of [HK00]; see also [CB+05] for an
alternative approach. Supposing the auxiliary and marginal estimators to be numerically
easy to obtain, one can use the usual bootstrap procedure:

π̂⋆
n∗ = argzero

π∈Π

Φn∗ (ν̂⋆
n,π) ,

where ν̂⋆
n is the bootstrap estimate of marginal estimator, and

π̂⋆
m = argzero

π∈Π

Φm

(
θ̂n∗ ,π

)

to form the average π̄⋆
m(θ̂n∗). If using the parametric bootstrap, the bootstrapped obser-

vations are obtained by first generating dependent uniform variates u⋆ from model Cθ̂n∗
,

then using distribution inverse F−1
Y (u⋆; ν̂n) or equivalent to get y⋆

t , and eventually set
x⋆

t = µt(ν̂n) + σt(ν̂n)y⋆
t . Note that the u⋆ employed to generate x⋆ and to estimate π̄⋆

m

should be independently sampled to avoid an unwanted dependence.

2.5 Bounding the Influence Function

We use here the general framework presented in Section 2.2 to develop a bounded IF of
the two-steps indirect estimator in (2.3). Several results are useful in the construction
of our argument. First, as shown in [GDL00; GR03], the indirect inference estimator

θ̂n∗ in (2.3) has a bounded IF only if the auxiliary estimator π̂n∗ in (2.2) has a bounded
IF. Second, as demonstrated by [ZGR12; ZGR16] in the context of Heckman’s two steps
method ([Hec79]), the IF of first step estimators must be bounded for the second step
to be robust. Third, in the context of a multivariate location model, [Alq+09] shows
that the influence of outliers on the location estimator is more severe depending on data
generating mechanism.

Our result presented in the next theorem is essentially a combination of the aforemen-
tioned literature whereas the implications discussed after Corollary 2.16 are surprisingly
not concommitant. To this end, let ∆z be the multivariate Dirac distribution with point-
mass one at z and suppose that the data generating mechanism is the following deviation
model:

Cε = (1 − δε)Cθ0 + δε∆z, (2.4)
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where ε is the marginal probability of observing an outlier from the multivariate Dirac
model, common to each margin, and δε is a proportion reflecting the overall probability
of having at least one outlier appearing in one of the d dimensions.

Theorem 2.14 (influence function). Suppose the binding function π(θ) is Hadamard

differentiable. If the conditions of Theorem 2.12 hold, then the influence function of θ̂n∗

at the point z ∈ IRd is given by

I

(
θ̂n∗ , z

)
=
(
JT K−T ΩK−1J

)−1
JT K−T ΩK−1 [κφ (FY (z,ν0)) + LI (ν̂n, z)] ,

where I(ν̂n, z) is the influence function of ν̂n at the points z and κ is a factor that accounts
for the dependence among z. In particular, κ = 1 if z are comonotonic and κ = −d if z
are independent.

Theorem 2.14 may be derived under the additional condition that the binding function,
seen as a functional, is Hadamard differentiable. In general in the literature, Gâteaux
differentiability, a weaker form of functional derivative, is usually sufficient for the purpose
of deriving the IF (see e.g. [Ham+86] and references therein). However, here we require a
stronger concept as, because of the two-steps procedure, the chain rule needs to be defined
(see [Vaa98], Chapter 20). Note that Hadamard differentiability is weaker than Fréchet
differentiability in our context.

Remark 2.15. The deviation model in (2.4) assumes the proportion of outliers ε to be
the same in all the d dimensions of the multivariate model. One may consider a different
proportion for each dimension as is done for example in [PB02; Ors13] in the bivariate
case. The conclusions would be essentially the same.

An important implication of Theorem 2.14 is formalized in the following Corollary:

Corollary 2.16. If and only if the marginal estimators have a bounded IF, I(ν̂n, z) < ∞,

then θ̂n∗ has a bounded IF.

Several important messages stem from Theorem 2.14 and Corollary 2.16. First, as
studied by [Alq+09], we conclude that if outliers appear independently in the multivariate
model, they have a much sever effect than if they are totally dependent. The intuition
behind is that, the number of outliers in the data being equal, independent outliers affect
a larger proportion of data row-wise thus influencing more importantly the dependence
estimator than totally dependent outliers. This has been shown, for example, in Lorenz
curve comparisons, which are based on quantiles, in [CVF02]. Second, and maybe most
importantly, only the marginal estimators need a bounded IF for the copula dependence
esitmator θ̂n∗ to be robust to outliers. As an interesting consequence, the IFM (two-steps
maximum likelihood, see [Xu96; Joe97]) is not robust to outliers, but the semi-parametric
maximum likelihood estimator is ([GGR95; SL95; CFT06; KSS07]) as indeed the empirical
distribution function has a bounded IF (see [CVF02; HR09]). This result may be qualified
of “counter-intuitive” and it is an apparent contradiction of the results of [GDL00; GR03]
on the IF of indirect inference estimator and [ZGR12; ZGR16] on the robustness of two-
steps procedure. However, the intuition on why this phenomena happens is quite simple:
copula parameters are estimated on a compact set, and thus, the IF being a function of
this set, it is inevitably bounded (see the proof in the appendix).

In next Section 2.6, we give more substance to the estimating procedure proposed in
Section 2.2 by proposing specific forms of auxiliary esitmators in the light of the preceding
findings.
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2.6 A weighted maximum likelihood indirect estima-

tor

In the light of Corollary 2.16, one may wonder why several authors proposed robust
procedure for copulae estimation while assuming marginal parameters to be fixed (see
for instance [MMN07; DM11; KL13]). In fact, simulation studies show evidences that
outliers may drastically bias the copula estimator if not robust (see [Ors13]). Bounding
the IF is a concept too weak to be useful. Indeed, the literature indicates that having
a bounded bias is a protection not sufficient enough, researchers seem to be willing to
obtain a bias due to outliers as close to 0 as possible while maintaining the efficiency of
the estimating procedure. With this purpose in mind, we propose to use the weighted
maximum likelihood estimator ([FS94]) as the auxiliary estimator π̂n∗ in our indirect
inference procedure in (2.3).

The weighted maximum likelihood is indeed a straightforward method to modify the
maximum likelihood estimator to gain robustness against data contamination while suf-
fering a small loss of efficiency, controlled under model Cθ0 . The likelihood score function
is simply multiplied by a weight function. Typical weight functions are Huber’s func-
tion [Hub+64]

wc(s) = min

(
c

‖s‖ , 1
)
,

where s represents the q-dimensional vector of likelihood score function, or redescending
weight function such as the Tukey biweighted function [BT74]

wc(s) =





[
1 −

(‖s‖
c

)2
]2

if ‖s‖ ≤ c,

0 if ‖s‖ > c.

The biweight function has the particularity that it entirely discards extreme scores, i.e.
‖s‖ > c, whereas Huber’s function takes the value of 0 only at limits. The tuning param-
eter c plays the role of trade-off between robustness and efficiency when there is no model
contamination (i.e. ε = 0).

More general weighted estimating equations could also be used, as is proposed for
example with generalized linear models in [PQ99; CR01] where the quasi-likelihood esti-
mating equations ([Wed74]) are weighted; see also [BGT+97] for a broad discussion on
estimating equation. Other robust approaches are identical to the weighted maximum
likelihood in the sense that estimating equations are downweighted according to the value
they take: large values of the estimating equation results in weights close to 0.

Despite being widespread and simple in idea, weighting an estimation equation is not
an easy task as, very often, the resulting estimator is not consistent to the target quantity
([DM02]). The indirect inference proposition in (2.3) thus allows for targeting the correct
quantity; see for instance [MVF06; Gue+18b].

2.7 Simulation Study

In this section we experiment the findings of the preceeding sections by simulations. In
particular, in subsection 2.7.1 we illustrate how the maximum likelihood and the indirect
inference estimators in 2.3 with a weighted maximum likelihood as the auxiliary estimator
respond to outliers for a bivariate copula when the marginal distribution are known,
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thereby indicating that both approaches are robust (see Corollary 2.16). The interest
is therefore on the bias and the mean squared errors. We let the reader refer to the
exhaustive simulation studies in [Ors13] for scenarii where marginal parameters need
also to be estimated under contaminations and the contamination model takes several
forms. In subsection 2.7.2, we study a particular model called factor copula for which the
likelihood function has no known closed-form. We illustrate the benefit of our approach
in comparison to an alternative by measuring the performance of the estimators in terms
of bias, mean squared errors and computational efficiency.

2.7.1 Bivariate Clayton copula: influence of contamination on
bias and mean squared error

Clayton’s copula ([Cla78]), also called Mardia-Takahasi-Clayton-Cook-Johnson copula
in [Joe14] in reference to the several authors who independently discovered this depen-
dence model, is one of the most studied and used copula model. In its bivariate form, the
cumulative distribution function is given by

(
u−θ

1 + u−θ
2 − 1

)−1/θ

, 0 ≤ θ < ∞, 0 ≤ u1, u2 ≤ 1.

The dependence parameter θ corresponds to Kendall’s tau τ = θ/θ+2. When θ ↓ 0,
Clayton’s copula is the independent copula; when θ diverges, Clayton’s copula is the
comonotonic copula. Interestingly, this copula model has a lower tail dependence but
is upper tail independent. The density is illustrated in Figures 2.2 and 2.3 with θ = 4
(τ = 2/3).
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Figure 2.2: Clayton’s copula density plots with θ = 4, which corresponds to a Kendall’s
tau of τ = 2/3. On the left panel: the uniform margins are transformed to standard
Gaussian, i.e. zj ≡ Φ−1(uj), j = 1, 2. On the right panel: same representation as the left
panel, but with the original uniform margins.

We study the impact of contaminations as expressed in (2.4) on the dependence esti-
mator of the bivariate Clayton copula. More specifically, the Dirac distribution ∆z takes
two dependence structure:
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Figure 2.3: Same density illustration as the right panel of Figure 2.2 but here the density
is represented on the z-axis.

(M1) Outliers are independent: Pr(u1 = z1, u2 = z2) = Pr(u1 = z1) Pr(u2 = z2).

(M2) Outliers are comonotone: Pr(u1 = z1, u2 = z2) = Pr(u1 = z1).

We use the following setting: n = 103 and θ0 = 4. For the weighted maximum like-
lihood estimator, we consider Tukey’s biweighted function with three tuning constants
c = (5, 10, 20) which corresponds roughly to 60%, 85% and 95% of efficiency compared
to the maximum likelihood estimators. We study the model under no contaminations
and 10% of outliers taking values in the regular grid from 0 to 1. For each value of z
considered, 100 simulations are performed. For indirect inference estimator in (2.3), we
consider for simplicity H = 1, B = 1 and Ω = 1.

In Figure 2.4, the estimators are illustrated when there is no contamination (δε = 0
in (2.4)). We clearly vizualize that the weighted maximum likelihood estimators have
important bias increasing when c decreases. The indirect inference estimators that cor-
respond to these weighted maximum likelihood estimators have however nearly no bias,
which shows well the ability of the method to correct bias. The variability of the indirect
inference estimators are sensibly larger than their auxiliary estimators counterparts. This
is no surprise in view of Theorem 2.12, as we set B = 1 and H = 1 the asymptotic
variance of θ̂n∗ should be roughly two times larger than the asymptotic variance of π̂n∗ .
Larger values of these parameters will surely reduce this dispersion.

Figures 2.5 and 2.6 illustrate the bias and mean squared errors under contamination
design M1. The effect of contamination is striking: no estimators may pretend to be un-
biased. However, the weighted maximum likelihood and the indirect inference estimators
constantly outperform the maximum likelihood estimator in both terms of bias and mean
squared error. Interestingly, almost at every contamination point z the bias is negative,
indicating thereby that the dependence parameter is closer to 0, and thus to the indepen-
dence copula, than what it actually is. This seems no surprise as outliers are generated
independently.

Figures 2.7 and 2.8 show the bias and mean squared errors under contamination design
M2. The effect of contamination is more surprising than what we observed on Figures 2.5
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Different estimators of Clayton dependence model
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Figure 2.4: Centered boxplots on 100 maximum likelihood, weighted maximum likelihood
and indirect inference estimators of dependence parameter of a bivariate Clayton copula
when θ0 = 4. The weight function is Tukey’s biweighted function. The tuning constants
c corresponds to approximatively 60% (c = 5), 85% (c = 10) and 95% (c = 20) of relative
efficiency to the maximum likelihood estimator. B = 1, H = 1 and Ω = 1 are used for
the indirect inference estimator in (2.3).
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Figure 2.5: Empirical bias of the maximum likelihood, weighted maximum likelihood and
indirect inference estimators for different values of outliers z, assuming z1 = z2, when
they represent 10% of the data and they are generated independently and different values
of the tuning constant c. Each dot represent the average of 100 estimators minus the true
value θ0 = 4. The maximum likelihood estimator is the same in the three figures.
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Figure 2.6: Empirical mean squared error of the maximum likelihood, weighted maximum
likelihood and indirect inference estimators for different values of outliers z, assuming
z1 = z2, when they represent 10% of the data and they are generated independently and
different values of the tuning constant c. Each dot represent the average of 100 of the
square of estimators minus the true value θ0 = 4. The maximum likelihood estimator is
the same in the three figures.
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Figure 2.7: Empirical bias of the maximum likelihood, weighted maximum likelihood and
indirect inference estimators for different values of outliers z, assuming z1 = z2, when
they represent 10% of the data and they are generated totally dependently and different
values of the tuning constant c. Each dot represent the average of 100 estimators minus
the true value θ0 = 4. The maximum likelihood estimator is the same in the three figures.
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Figure 2.8: Empirical mean squared error of the maximum likelihood, weighted maximum
likelihood and indirect inference estimators for different values of outliers z, assuming
z1 = z2, when they represent 10% of the data and they are generated totally dependently
and different values of the tuning constant c. Each dot represent the average of 100 of
the square of estimators minus the true value θ0 = 4. The maximum likelihood estimator
is the same in the three figures.

and 2.6: on all account the maximum likelihood estimators show better performances
than the weighted maximum likelihood and indirect inference estimators. These figure
are counter-intuitives as robust estimators are always perceived to outperform classical
estimator in cases of data contamination. The explanation is quite simple though: we
forced z1 = z2, the contaminants thus appear in the lower-left to upper-right diagonal,
that is where the majority of the density is (see right panel of Figure 2.2), so z are
what may be qualified of “inliers”. Interestingly, at every contamination point z the bias
is positive, indicating thereby that the dependence parameter is larger than θ0, that is
closer to the comonotonic copula. Again, this seems no surprise as outliers are generated
totally dependently.

Figures 2.9 represents the absolute bias under contamination design M2 for every
coordinates in the unit square (as opposed as Figures 2.7 and 2.8 for which only the
down-left to upper-right diagonal is illustrated). The density of the copula (Figure 2.2)
is illustrated on top of the absoulte bias. The message is clear: wherever the density
is important, outliers have a mild effect of the same order of magnitude on both the
maximum likelihood and the robust indirect inference estimators, whereas in the bottom
and left areas where the density is small, the robust estimator have no bias, the maximum
likelihood estimator have an important bias.
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Figure 2.9: Effect of the location of outliers z on the absolute bias evaluated by 100
simulations for each point of the maximum likelihood (left panel) and indirect inference
estimators (right panel) when using the weighted maximum likelihood as auxiliary esti-
mator with Tukey’s biweighted function and tuning constant c = 10. The closer to 0 is
the better.

2.7.2 Large dimension with factor copula: a time-constrained

study

Many situations occur in which the likelihood function has no known analytical expres-
sions. A famous example is the stable distribution which has no analytical expression for
its density depending on the parametrization (see e.g. [PSF12]). Indirect inference is a
natural candidate for trying to solve this estimation problem, the auxiliary estimator do
not need to be consistent to θ0. The choice of the auxiliary estimator is however delicate
(see Example 1.63 of the first Chapter) and many proposition may be valid. For the sta-
ble distribution, [GRV11] for example proposed a skewed-t distribution as the auxiliary
model. This situation is also common when modeling latent variables. In this section,
we focus on a specific latent model, the factor copula of [OP17] (see also [MFE05; KJ13;
KHG18] for alternatives). The authors developed a factor copula model tailored for the
modeling of high-dimensional dependent random variables that requires particular care
for tail events and asymmetrical dependence structure and showed the benefits of such
approach in applications. The main idea behind the factor copula model is to separate
the modeling of the marginal distributions from the joint distribution through a copula
function, but nonetheless uses a factor model for the joint model to benefit from the
dimension-reduction capacity. Specifically, we study the following factor copula model:

yj = w + ǫj, j = 1, · · · , d, (2.5)

where the latent variable w, common to all d dimensions, follows a centered Hansen’s
skewed-t distribution ([Han94]) with unknown parameters θ = (σ2, λ, η)T , and ǫj are
identically and independently distributed according to a standardized t with the same
unknown parameter η. (Note that there exist several proposal in the statistical literature
to introduce skewness in the t distribution and we therefore always mention the author’s
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name to avoid ambiguity). Hansen’s skewed-t density for i = 1, · · · , n is given by:

f(wi,θ) =





bc
(

1 + 1
η−2

(
bwi+a
σ(1−λ)

)2
)−(η+1)/2

, if wi < −a/b,

bc
(

1 + 1
η−2

(
bwi+a
σ(1+λ)

)2
)−(η+1)/2

, if wi ≥ −a/b,

where

a ≡ 4λc
η − 2

η − 1
, b2 ≡ 1 + 3λ2 − a2, c ≡

Γ
(

η+1
2

)

Γ
(

η
2

)√
(η − 2)πσ

,

and σ2 > 0 is the scale parameter, −1 ≤ λ ≤ 1 is the parameter that gauges the
asymmetry of the distribution (λ = 0 means no asymmetry) and η > 2 denotes the
degree-of-freedom (see also [JR03] for interesting properties of Hansen’s skewed-t).
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Figure 2.10: On the left panel: sampled factor copula in (2.5) with d = 2, θ0 = (σ2
0 =

2, λ0 = −0.5, η0 = 6)T and n = 104. On the right panel: the histogram represents the
sample in the left panel vectorized. The solid line is the density of a Hansen’s skewed-
t distribution with parameters estimated on the vectorized sample, we obtained π̂n∗ =
(2.29,−0.14, 6.35)T .

As simple as it looks, this factor model has no known closed-form expression for the
likelihood function and is therefore complicated to estimate. Indeed, already the con-
volution of two independent t variables is known only on restrictive cases where the
degree-of-freedom are odd numbers ([ND05]). A similar model is studied in [OP13] un-
der a more complex scenario where each marginal observation are assumed to follow an
AR(1)-GARCH(1,1) process. Here we focus our interest on θ and assume the margins to
be known. [OP13] propose to estimate the above model by using bivariate measures of
dependence as the auxiliary estimator π̂n∗ in (2.3), namely Spearman’s rank correlation
ρij ([Spe04]) and quantile dependence qα

ij, whose sample version, for i, j = 1, · · · , d, are
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defined as:

ρ̂ij ≡ 12

n∗
∑

t∈T∗

F̂i (yit) F̂j (yjt) − 3,

q̂α
ij ≡





1
n∗α

∑
t∈T∗ 1

{
F̂i (yit) ≤ α, F̂j (yjt ≤ α)

}
, α ∈ (0, 0.5],

1
n∗(1−α)

∑
t∈T∗ 1

{
F̂i (yit) > α, F̂j (yjt > α)

}
, α ∈ (0.5, 1),

where F̂i(y0) ≡ 1/(n∗+1)
∑

t∈T∗ 1{yit ≤ y0} is the empirical cumulative distribution.
There is at least one clear advantage in [OP13]’s approach: these dependence measures

do not depend on the chosen factor copula model, so it is easy to use the same measures
across different models, and also they offer robustness agains model misspecification.
On the other hand, we see two disadvantages to their proposal. First, the proposed
measures of dependence are not smooth and Proposition 2.10 do not hold for finite n, as
a consequence the numerical optimization for this problem may be cumbersome unless for
example considering the iterative bootstrap procedure ([Gue+18b; Gue+18a]), but this
requires to restrict the number of moment to satisfy the constraint dim(π) = dim(θ),
which is impossible here as we discuss next. [OP13] in their supplementary material
mentioned this problem, they had to opt for a derivative-free algorithm. Second, since
these measures are bivariate, the number of moments q increases with d, the dimension
of the problem. If q2 denotes the number of moments when d = 2, there are q2d(d− 1)/2
moments when d > 2. A solution to this problem is discussed in the appendix of [OP17].
They propose to average certain measure to keep the dimension of π constant. This
maybe simplify the optimization procedure, but the q2d(d − 1)/2 dependence measures
still need to be computed, which can be a tremendous effort in high-dimensions.

As an alternative, we propose an auxiliary model that ignores the latent structure and
look at the data as if it was one large sample of size d× n identically and independently
distributed according to Hansen’s skewed-t. This model seems not far in idea to the data
generating process but clearly there is no reason to believe for the resulting estimators to
be consistent, and we thus correct them via indirect inference as in (2.3). In Figure 2.10,
we illustrate the “closeness” between the factor copula and the auxiliary model when
d = 2. We simulate a sample of size n = 104 with θ0 = (σ2

0 = 2, λ0 = −0.5, η0 = 6)T . We
find π̂n∗ = (2.29, −0.14, 6.35)T .

For the simulations, we set the followings: several dimensions with d = {2, 10, 50, 100, 1, 000},
a (marginal) sample size n = 200, M = 1, 000 Monte Carlo replicates for each dimension
and θ0 = (σ2

0 = 2, λ0 = −0.5, η0 = 6)T . [OP17] gives the upper and lower tail dependence
measures of the copula factor model in (2.5) when σ2 is fixed to 1 (see Proposition 2
in [OP17]). Supposing θ0 = (1,−0.5, 6)T , the upper tail coefficient is close to 0 whereas
the lower tail is stronger, about 0.2. These tail coefficients translate into dependent lower
tail event and (quasi) independent upper tail events (see the left panel of Figure 2.10 for a
representation). We compare our proposed auxiliary model to the proposition of [OP13].
We use their suggested bivariate dependence measures: Spearman’s rank correlation and
quantile dependence with α = {0.05, 0.1, 0.9, 0.95}, so q2 = 5. We also follow [OP17] rec-
ommendation and averaged each dependence measures separately when d > 2 so q = 5.
For the parameters of indirect inference in (2.3), we select them as follows: we fix H = 1
and choose B such that it takes about 60 seconds to obtain one estimator with [OP13]
proposition; if this time limit is exceeded when B = 1, we reduce H ∈ (0, 1] until approx-
imatively respecting the constraint. The value we obtained on 5 simulations are given
in Table 2.1. Concerning the weighting matrix, we estimated Ω̂ = Q−1 once on large
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sample for our approach and set Ω = Iq2 for the approach on dependence measures. For
both [OP13] and our proposal, we use our proposed auxiliary estimator as starting value

for finding θ̂n∗ .

Parameters for indirect inference

d 2 10 50 100 1,000
B 1,000 400 35 9 1
H 1 1 1 1 0.1
s̄1 29.36 43.79 20.04 11.94 1.32
s̄2 22.40 51.30 53.59 53.86 69.05

Table 2.1: Parameters H and B for indirect inference in (2.3) depending on the dimension
of the problem used for the simulation study for [OP13] and our proposals. These values
target a time of approximatively 60 seconds of computations for [OP13]’s proposal. We
report the average computational time in seconds over the 1, 000 Monte Carlo replicates:
s̄1 is for our proposed auxiliary model and s̄2 is for [OP13]’s proposal.
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Figure 2.11: On the left panel: the absolute bias on θ̂n∗ of [OP13]’s proposal with depen-
dence measures as auxiliary estimators, our proposition to use Hansen’s skewed-t distri-
bution as the auxiliary model and the indirect inference estimator. On the right panel:
likewise left panel but using the root mean squared error as measure of performance.

We report the absolute bias and root mean squared error in Figure 2.11. In terms of
both performance measures, our approach systematically outperforms [OP13]’s proposal
for the scale and degree-of-freedom estimators σ̂2 and η̂, yet the opposite can be observed
for the skewness estimator λ̂, except when d = 1, 000. Increasing the dimension d seems
to increase the performance of the estimators, regardless of the value that B takes, except
at the highest dimension considered when d = 1, 000. This seems to indicate that taking
H = 0.1 inflates drastically the variability of the estimators. The choice for this value was
considered such that [OP13]’s approach takes on average 60 seconds for one estimation.
We can clearly see in Table 2.1 that our proposal is faster, the difference in time between
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the two approaches escalates when the dimensions of the problem increases. Eventually,
not that under the same constraint of 60 seconds, our approach could have benefit from
larger values for both B and H and thereby increased the performance of the resulting
estimators.
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2.8 Application to income mobility

We are interested in the income mobility in time of unit-record Swiss households between
2011 and 2012. The data is provided by the Swiss Household Panel, a longitudinal study
of Swiss households. For this application, we use the OECD equivalence scale yearly
household net income in order to take into account the household’s size and composition.
We give the descriptive statistics in Table 2.2 after having removed missing data and
scaled it by a factor of 103.

We follow [VGC10] analysis and model the incomes with Singh-Maddala ([SM76])
distribution (aslo known as Burr XII distribution) and the bivariate distribution with
Frank ([Fra79]), Clayton ([Cla78]) and Gumbel-Hougaard ([Gum60; Hou86]) copulae.
The Singh-Maddala density function is

aqxa−1
i

ba
[
1 +

(
xi

b

)a]q+1 , xi > 0,

where a, b, q are positive parameters, b is a scale parameters and the two others are shape
parameters. The bivariate Frank copula distribution is given by

−θ−1 log

(
1 − e−θ − (1 − e−θu1)(1 − e−θu2)

1 − e−θ

)
, −∞ < θ < ∞,

where the dependence parameter θ corresponds to Kendall’s tau τ = 1−4/θ+4/θ2
∫ θ

0
t/(e1−1) dt.

The countermonotonic copula is obtained as θ → −∞, the independence copula when
θ → 0 and the comonotonic copula as θ → ∞. From the modeler’s point of view, Clay-
ton’s copula is interesting for its lower tail dependence as opposite to Gumbel-Hougaard’s
copula which permits to model upper tail dependent events. Frank’s copula is useful as
it has both negative and positive dependence (see Figure 2.14).

Estimators that are robust to outliers are particularly important, it has been outlined
on many occasions in the literature of income distribution in both practical and theoretical
situations (see e.g. [CVF96b; CVF96a; RVF97; VFR97; CVF02; CVF06; CVF08; ATF13;
Rob+15; PS18]). We therefore compare the performance of the maximum likelihood
against robust indirect inference when using the weighted maximum likelihood estimator
with Tukey’s biweighted function as the auxiliary model.

For these estimators, we perform grid searches in order to obtain the starting values for
the estimation procedures and set the tuning constants c so the robust estimator achieves
roughly 90% of relative efficiency compared to the maximum likelihood estimator. We
report the estimators and standard errors in Table 2.3. The standard errors are obtained
using the bootstrap scheme presented in Section 2.4 using a parametric bootstrap, there-
fore there are three possibilities, each one corresponding to one the three multivariate
models considered.

It is clear from the descriptive statistics in Table 2.2 and Figure 2.12 that the data
have a heavy right tails, with some incomes very far from the averages. Hence we expect
the maximum likelihood estimator to be biased. Surprisingly, the maximum likelihood
and robust indirect inference estimators have very comparable values for both marginal
parameters suggesting that data is not subject to contaminations. However, for the copula
dependence parameter, there is a clearer distinction between the two methods of estima-
tion regardless of the choice of copula. Robust estimators indicate stronger dependencies
than classical estimators. The parameters may be related to Kendall’s tau and as shown
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Yearly net income, OECD equivalised

2011 2012

observations 4103 4065
min 1 1

median 58.80 59.10
mean 66.79 67.67
max 2062 5503

skewness 17.27 46.42
kurtosis 504.81 2621.47

linear correlation 0.3120
Spearman’s correlation 0.8467

Kendall’s tau 0.6885
Gini’s index 0.2192

Source: Swiss Household Panel (SHP)

Table 2.2: Descriptive statistics of Swiss households. There are 3692 households present
in both 2011 and 2012 surveys. Bivariate Gini’s index is given in (2.6).

in Table 2.3 the estimators provide quite different values which might lead to a different
interpretation of the degree of dependence between the two income cohorts. This analysis
is supported by the bivariate plots in Figure 2.14. This empirical application shows that
even if margins do not suffer from contamination, the dependency may be impacted.

To have a better understanding of the implication of the difference in estimates, we
compute the bivariate Gini (distance-Gini) index [KM97] as is done in e.g. [JSVK15]. The
population version for a d-dimensional parametric distribution GY (y) (which corresponds
to Cθ(FY (y,ν),θ)) is

1

2d

∫

IRd

∫

IRd
‖y − y′‖ dG̃Y (y) dG̃Y (y′)

where G̃Y is the relative distribution function of GY , that is the joint distribution of

(
y1

EF1 [y1]
, · · · , yd

EFd
[yd]

)
.

The sample version of this bivariate Gini index is given by:

1

2dn2

n∑

j=1

n∑

i=1

(
d∑

s=1

(yis − yjs)
2

ȳ2
s

)1/2

, (2.6)

where ȳs = 1/n
∑n

i=1 yis is the average value of the sth dimension.
In general, there is no closed-form expression for this bivariate Gini index, but one can

easily simulate a large sample from the copula model and then approximate the population
index with the sample version given in (2.6). In Figure 2.13, we illustrate 1,000 such
simulations using n = 3, 692 as the sample size and Clayton’s copula. It appears clearly
that the Gini index issued from maximum likelihood and indirect inference estimators
almost do not overlap.



2.8. Application to income mobility 117

MLE Robust

Parameters Estimates τ(θ̂) Estimates τ(θ̂)

â(2011) 3.2039 3.1530
(GH : .0696, FR : .0698, CL : .0719) (GH : .0032, FR : .0040, CL : .0029)

b̂(2011) 64.6926 67.1316
(GH : 1.8050, FR : 1.8194, CL : 1.9929) (GH : 4.9892, FR : 5.2536, CL : 5.0833)

q̂(2011) 1.2696 1.3803
(GH : .0752, FR : .0757, CL : .0830) (GH : .0298, FR : .0305, CL : .0299)

â(2012) 3.2993 3.2259
(GH : .0754, FR : .0788, CL : .0779) (GH : .0024, FR : .0029, CL : .0022)

b̂(2012) 63.8496 66.3655
(GH : 1.7531, FR : 1.8836, CL : 1.9320) (GH : 2.9393, FR : 3.2197, CL : 3.0343)

q̂(2012) 1.2188 1.3312
(GH : .0716, FR : .0777, CL : .0786) (GH : .0440, FR : .0521, CL : .0448)

θ̂GH 2.9759 .6640 3.1858 .6861
(.0514) (.0224)

θ̂FR 11.2032 .6953 11.5488 .7030
(.2021) (.3170)

θ̂CL 2.5820 .5635 3.2734 .6207
(.0750) (.0116)

Source: Swiss Household Panel (SHP)

Table 2.3: Maximum likelihood and robust indirect inference estimators of the Singh-
Maddala distribution and Gumbel-Hougaard (GH), Frank (FR) and Clayton (CL) copu-
lae. Standard errors are in parenthesis, they are estimated by bootstrap with B = 500
replicates (see Section 2.4). Kendall’s tau are calculated from the estimated models.
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Figure 2.12: On the left panel: histogram representation of income for 2011. Solid lines
correspond to Singh-Maddala density with maximum likelihood and robust indirect in-
ference estimators. On the right panel: likewise left panel but for 2012.
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Figure 2.13: Histogram representation of 1,000 simulated multivariate Gini’s indices based
on a Clayton copula with Singh-Maddala marginal distributions. The parameters are set
to estimates given in Table 2.3.
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Figure 2.14: Representation of the bivariate incomes (dots) with 2011 cohort in the x-axis
and 2012 cohort in the y-axis on top of which densities (solid lines) implied by the copula
models with Singh-Maddala margins with parameters set at the estimates in Table 2.3
are illustrated.
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Appendix

2.A Intermediate results

Lemma 2.A.1 (asymptotic distribution of π̂n∗ in (2.3)). Let Π be a convex open set in
IRq. Let V be a compact convex open set in IRr. If Assumptions 2.9 and 2.11 hold, and
π̂n∗ is pointwise convergent, then

n
1/2 (π̂n∗ − π0) N

(
0,K−1

[
(1/ρ∗)Q + LΣLT

]
K−T

)
.

Proof. Fix ν0 ∈ V, π0 ∈ Π and ρ∗ ∈ (0, 1]. From the mean value theorem stated in
Lemma 3.8 we have

Φn∗ (ν̂n, π̂n∗) − Φn∗ (ν̂n,π0) = Kn∗ (ν̂n) · (π̂n∗ − π0) + op (‖π̂n∗ − π0‖) .

Using again Lemma 3.8 and multiplying by n1/2 leads to

n
1/2Φn∗ (ν̂n, π̂n∗) −n1/2 [Φn∗ (ν0,π0) + Ln∗ · (ν̂n − ν0) + op (‖ν̂n − ν0‖)]

= Kn∗(ν̂n) · n1/2 (π̂n∗ − π0) + n
1/2op (‖π̂n∗ − π0‖) .

By definition Φn∗ (ν̂n, π̂n∗) = 0. By assumption n∗1/2Φn∗(ν0,π0) satisfies the Lindeberg-
Feller central limit theorem, n∗1/2Φn∗(ν0,π0)  N (0,Q). Note that we have n1/2 ∼
n∗1/2/

√
ρ∗, thus n1/2Φn∗  N(0, (1/ρ∗)Q). By assumption Ln∗ converges in probability to

L. By hypothesis, n1/2(ν̂n − ν0) N(0,Σ).
We need to demonstrate the uniform convergence in probability of Kn∗(ν̂n). By the

continuity of Kn∗ , the continuous mapping theorem is satisfied (see [Vaa98]) so Kn∗(ν̂n) =

Kn∗ +op(1). Moreover, by assumption Kn∗ converges in probability to K, so Kn∗(ν̂n)
p→ K

pointwise. By the additional assumption that Kn∗(ν) is stochastically Lipschitz and V

is compact, Lemma 3.6 is satisfied and as a conclusion Kn∗(ν)
p→ K(ν) uniformly for all

ν ∈ V, and K(ν) is uniformly continuous. Following, this result, we obtain

‖Kn∗(ν̂n) − K‖ ≤ ‖Kn∗(ν̂n) − K(ν̂n)‖ + ‖K(ν̂n) − K‖
≤ sup

ν∈V

‖Kn∗(ν) − K(ν)‖ + ‖K(ν̂n) − K‖ .

The first term of the last inequality converges to zero by the uniform convergence result,
and the second term converge to zero by the continuous mapping theorem. Consequently,
Kn∗(ν̂n)

p→ K uniformly. Since K is invertible, we obtain by Slutsky’s lemma

n
1/2 (π̂n∗ − π0) = −K−1

[
ρ∗−1/2Q

1/2zq + LΣ
1/2zr + op(1)

]
− K−1op(1),

where zn ∼ N(0, In). The proof follows from well-known properties of Gaussian dis-
tributed random variables.
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Lemma 2.A.2 (asymptotic distribution of π̄m(θ0) in (2.3)). Let Π be convex open set
in IRq and suppose θ0 is an interior point of Θ. If Assumptions 2.9 and 2.11 hold, and
π̄m(θ0) is pointwise convergent to, say π0, then

n
1/2 (π̄m(θ0) − π0) N

(
0, (1/ρ∗)γK−1QK−T

)
,

where γ = 1/BH.

Proof. Let π0 ≡ π(θ0) and fix H ∈ IR+, B ∈ N
+ and ρ∗ ∈ (0, 1]. Let us pick the bth

auxiliary estimator π̂(b)
m from the sequence {π̂(b)

m : b = 1, · · · , B}. From Lemma 3.8 we
have

Φm

(
θ0, π̂

(b)
m

)
− Φm (θ0,π0) = Km ·

(
π̂(b)

m − π0

)
+ op

(∥∥∥π̂(b)
m − π0

∥∥∥
)

By definition Φm

(
θ0, π̂

(b)
m

)
= 0. By assumption Km is pointwise convergent to K. Since

K is invertible, multiplying the above by n1/2 yields

n
1/2
(
π̂(b)

m − π0

)
= −(Hρ∗)−1/2K−1Q

1/2zq − n
1/2K−1op(1),

where zq ∼ N(0, Iq). Indeed, by assumption m1/2Φm(θ0,π0) satisfies the Lindeberg-
Feller central limit theorem so it converges in distribution to N(0,Q). Remark that√
n ∼ √

m/
√
Hρ∗. The rest of the above result follows from Slutsky’s lemma. To conclude

the proof, one can remark that the distribution for the average π̄m(θ0) ≡ 1
B

∑B
b=1 π̂m(θ0)

follows directly by property of the variance of the averaged of identically and indepen-
dently distributed Gaussian random variable.

2.B Main proofs

Proof of Proposition 2.5. The proof results directly from the mean value inequality
stated in Lemma 3.7.

Proof of Proposition 2.6. Fix θ0,θ1,θ2 ∈ Θ and define the line segment λ = θ1 +tθ2,
t ∈ [0, 1]. From the mean value inequality in Lemma 3.7 we have

‖π (θ1 + θ2) − π (θ1) −Dπ(θ0) · θ2‖ ≤ sup
λ

‖Dπ(λ) −Dπ(θ0)‖ · ‖θ2‖ .

Let L ≡ ‖Dπ(θ0)θ2‖. Since Dπ(θ0) is not vanishing and full column rank, L > 0. Let
B(θ0, ‖θ2‖) be a closed neighborhood of θ0 with radius ‖θ2‖. Let choose θ2 such that

sup
θ∈B(θ0,‖θ2‖)

‖Dπ(θ) −Dπ(θ0)‖ ≤ L

2
.

By the triangle inequality we obtain

‖π(θ1 + θ2) − π(θ1)‖ ≥ ‖Dπ(θ0) · θ2‖ − ‖π(θ1 + θ2) − π(θ1) −Dπ(θ0) · θ2‖
≥ L− sup

θ∈B(θ0,‖θ2‖)
‖Dπ(θ) −Dπ(θ0)‖ · ‖θ2‖

≥ L

2
‖θ2‖

which concludes the proof.
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Proof of Theorem 2.8. We proceed by verifying the assumptions for the weak consis-
tency result of Lemma 3.1. We separate the proof in four parts. We start by showing (i)
the pointwise convergence of the auxiliary estimator for all θ ∈ Θ. Then we demonstrate
(ii) the uniform convergence of the auxiliary estimator, followed by (iii) the uniform
convergence of the stochastic objective function. Eventually we show that (iv) the non-
stochastic objective function has a unique minimum.

(i). We proceed by verifying the assumptions of Lemma 3.1. Fix θ1 ∈ Θ. Fix also
H ∈ IR+ and B ∈ N

+ in (2.3) so m diverges at the rate of n and π̂n(θ1) and π̄n(θ1) are
alike whenever n diverges. The n∗ diverges at the rate of n so we use only the notation
with n in the proof. By assumption ν̂n = ν0 + op(1) and Φn(ν,π) is continuous at every
ν ∈ V, so by the continuous mapping theorem ([Vaa98]) we have

Φn(ν̂n,π) = Φn(ν0,π) + op(1).

Since the expectation of {Φn} exists, {Φn} converges pointwise in probability to Φ by
the weak law of large numbers. By assumption Φn is globally Lipschitz, the condition of
Lemma 3.5 is verified so {Φn} is stochastically uniformly equicontinuous. By compactness
of Π, Lemma 3.3 yields the uniform convergence of {Φn} and the uniform continuity of Φ.
By compactness and continuity of Φ, the infinum of the norm of Φ exists. The minimum
of Φ is well-separated by the bijectivity of the function. Therefore, we have by Lemma 3.1
that the sequence {π̂n(θ1)} converges pointwise to π(θ1).

(ii). We have by assumption that {π̂n(θ)} is globally Lipschitz so by Lemma 3.4 it is
also stochastically uniformly equicontinuous. Since Θ is compact, we have by Lemma 3.3
that π̂n(θ) is uniformly convergent and π(θ) is uniformly continuous.

(iii). By assumption the matrix Ω is symmetric positive-definite. A direct application
of the Courant-Fischer minimax theorem ([GVL12]) gives the following upper bound

Q(θ) = ‖π0 − π(θ)‖2
Ω ≤ λmax ‖π0 − π(θ)‖2 ,

where π0 ≡ π(θ0) and λmax is the maximum eigenvalue of Ω. The Gershgorin circle
theorem ([GVL12]) gives an upper bound on the eigenvalues, so

λmax ≤ max
i

q∑

j=1

|ωij| = k,

the largest eigenvalue is bounded by the maximum row sum of absolute elements. By
assumption k is finite. Similarly, denote λ̂max the largest eigenvalue of Ω̂. We have by
assumption that λ̂max ≤ k + γn where γn is op(1). Without loss of generality, let assume
that γn is positive so that

|Qn(θ) −Q(θ)| ≤
∣∣∣∣ (k + γn) ‖π̂n − π̂n(θ)‖2 − k ‖π0 − π(θ)‖2

∣∣∣∣

≤ k
∣∣∣∣ ‖π̂n − π̂n(θ)‖2 − ‖π0 − π(θ)‖2

∣∣∣∣+ γn ‖π̂n − π̂n(θ)‖2 , (2.7)

where we use the triangle inequality for the second inequality. For the left-hand side
of (2.7), we obtain from the reverse triangle inequality and the triangle inequality

∣∣∣∣ ‖π̂n − π̂n(θ)‖2 − ‖π0 − π(θ)‖2
∣∣∣∣ ≤ ‖π̂n − π̂n(θ) − π0 + π(θ)‖2

≤ ‖π̂n − π0‖2 + ‖π̂n(θ) − π(θ)‖2 .
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For the right-hand side of (2.7), by using the triangle inequality we have

‖π̂n − π̂n(θ)‖2 ≤ ‖π̂n − π0‖2 + ‖π̂n(θ) − π(θ)‖2 + ‖π0 − π(θ)‖2 .

From the results of parts (i) and (ii), we obtain the following

lim
n→∞ Pr

(
sup
θ∈Θ

|Qn(θ) −Q(θ)| > ε

)
≤ kop(1)+kop(1)+γnop(1)+γnop(1)+γn sup

θ∈Θ

‖π0 − π(θ)‖2 .

Since the mapping θ 7→ π is unifomly continuous, continuity preserved by the norm, and
Θ is compact, the supremum exists so supθ∈Θ ‖π0 − π(θ)‖2 < ∞. Since γn is op(1), the
objective function converges uniformly.

(iv). It follows from the uniform continuity of θ 7→ π that Q(θ) is uniformly contin-
uous. Since Θ is compact, the infimum exists. By the injectivity of θ 7→ π, the infimum
is wel-separated, which concludes the proof.

Proof of Proposition 2.10. The proof results directly from the implicit function the-
orem stated in Lemma 3.10.

Proof of Theorem 2.12. Fix θ0 ∈ Θ◦, π0 ∈ Π◦, H ∈ IR+, B ∈ N
+ and ρ∗ ∈ (0, 1].

Let g(n∗,m)(θ) ≡ π̂n∗ − π̄m(θ). From Proposition 2.10, we have the following when n is
sufficiently large

Dθg(n∗,m)(θ)
∣∣∣
θ=θ0

≡ Hm(θ0) =
1

B

B∑

b=1

K−1
m

(
π

(b)
1

)
Jm

(
π

(b)
1

)
,

where π
(b)
1 ≡ π̂(b)

m (θ0). Under the condition of this theorem, it is equivalent to solve

θ̂n∗ = argmin
θ∈Θ◦

∥∥∥g(n∗,m)(θ)
∥∥∥

2

Ω̂
≡ argzero

θ∈Θ◦

HT
m(θ)Ω̂g(n∗,m)(θ).

By the mean value theorem (Lemma 3.8) we have the following

g(n∗,m)

(
θ̂n∗

)
− g(n∗,m) (θ0) = Hm(θ0) ·

(
θ̂n∗ − θ0

)
+ op

(∥∥∥θ̂n∗ − θ0

∥∥∥
)
.

Using this result, the above equivalence and multiplying by square-root n leads to

n
1/2HT

m

(
θ̂n∗

)
Ω̂g(n∗,m)

(
θ̂n∗

)
− n

1/2HT
m

(
θ̂n∗

)
Ω̂g(n∗,m) (θ0)

= n
1/2HT

m

(
θ̂n∗

)
Ω̂Hm(θ0) ·

(
θ̂n∗ − θ0

)
+ n

1/2HT
m

(
θ̂n∗

)
Ω̂op

(∥∥∥θ̂n∗ − θ0

∥∥∥
)
.

By definition g(n∗,m)(θ̂n∗) = 0. By assumption, all the quantities θ̂n∗ , Ω̂, Km, Jm, and thus
Hm, are pointwise convergent. From Lemma 2.A.1 and 2.A.2, we have straightforwardly
that

n
1/2g(n∗,m)(θ0) N

(
0,K−1

[
(γ∗Q + LΣLT

]
K−T

)
,

when n is large enough.
It remains to demonstrate that Hm(θ̂n∗) converges to some quantity H ≡ K−1J. By

the continuity of Km and Jm, Hm is continuous and thus the continuous mapping theorem
is satisfied (see [Vaa98]) so Hm(θ̂n∗) = Hm(θ0)+op(1). As already stated, Hm is pointwise

convergent so Hm(θ0)
p→ H(θ0). Since K−1

m (π̂
(b)
1 )Jm(π̂

(b)
1 ) is stochastically Lipschitz, we

have by Lemma 3.5 that Hm(θ) is also stochastically Lipschitz when n is sufficiently
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large. By the additional assumption that Θ is compact, Lemma 3.6 is satisfied and as a
conclusion Hm(θ)

p→ H(θ) uniformly for all θ ∈ Θ, and H(θ) is uniformly continuous.
Following, this result, we obtain

∥∥∥Hm(θ̂n∗) − H
∥∥∥ ≤

∥∥∥Hm(θ̂n∗) − H(θ̂n∗)
∥∥∥+

∥∥∥H(θ̂n∗) − H
∥∥∥

≤ sup
θ∈Θ

‖Hm(θ) − H(θ)‖ +
∥∥∥H(θ̂n∗) − H

∥∥∥ .

The first term of the last inequality converges to zero by the uniform convergence result,
and the second term converge to zero by the continuous mapping theorem. Consequently,
Hm(θ̂n∗)

p→ H uniformly. The rest of the proof results from Slutksy’s lemma.

Proof of Theorem 2.14. Let the data generating mechanism be the following devia-
tion model

Cε = (1 − δε)Cθ + δε∆z,

where ε is the marginal probability of observing an outlier from the multivariate Dirac
model ∆z, common to each margin, and δε is the proportion of having overall at least one
outlier. Clearly δε ↓ 0 as ε ↓ 0.

Let (R, T, S) be the functional estimator corresponding to (ν̂n, θ̂n∗ , π̂n∗) and assume
for convenience that they are Fisher consistent, e.g. T (Cθ0) = θ0. We have

[Dθπ ◦ T (Cθ0)]T Ω [S(Cθ0) − π ◦ T (Cθ0)] = 0.

Note that in the previous equation, we use T with two meanings: a functional and the
matrix transpose. The functional is never used as an exponent so we keep this apparent
ambiguity in the rest of the proof as we think the distinction is clear from the context.
Replacing Cθ0 by Cε and taking the Hadamard derivative yields

[
∂

∂ε
Dθπ ◦ T (Cε)

]T

Ω [π0 − π(θ0)]

+ [Dθπ(θ0)]T Ω

[
∂

∂ε
S(Cε) −Dθπ

∣∣∣∣
θ0

◦ ∂

∂ε
T (Cε)

]
= 0, as ε ↓ 0.

The influence functions are I(S) = ∂S(Cε)/∂ε and I(T ) = ∂T (Cε)/∂ε as ε ↓ 0. By
construction π0 − π(θ0) = 0 so the first term disappear. By Proposition 2.10 Dθπ(θ0) =
−K−1J. Rearranging yields

I(T ) =
(
JT K−T ΩK−1J

)−1
JT K−T ΩI(S).

It remains to demonstrate the explicit form of I(S). By definition we have
∫

φ (u, R(Cθ0), S(Cθ0)) dCθ0 = 0.

Replacing Cθ0 by Cε and taking the Hadamard derivative yields

∫
Dνφ (u,ν0,π0) dCθ0 ·

[
∂

∂ε
R(Cε)

]

+
∫
Dπφ (u,ν0,π0) dCθ0 ·

[
∂

∂ε
S(Cε)

]

+

[
∂

∂ε
δε

]
φ (v,π0,θ0) = 0, as ε ↓ 0.
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Let κ = ∂δε/∂ε, ε ↓ 0. Rearranging the terms yields the result.

For the specific values that κ takes, let {Bj : j = 1, . . . , d} denotes a sequence of
Bernoulli random variables that takes values one with probability ε and 0 with probability
1 − ε. By definition δε = 1 − Pr(B1 = 0, . . . , Bd = 0). If the B are independent, we have
δε = 1 −∏d

j=1(1 − ε) = 1 − (1 − ε)d, and thus κ = −d. If the B are comonotonic, we have
δε = 1 − (1 − ε) = ε, and thus κ = 1.

Proof of Corollary 2.16. Let u ≡ FY (z,ν0). Note that u takes values in the unit
simplex [0, 1]d. Since [0, 1]d is compact, the mapping u 7→ φ is bounded (see Theorem

4.16 in [Rud76]). Thus, the only source of unboundess for the influence function of θ̂n∗ is
I(ν̂n, z), i.e. the influence function of the marginal estimators.

2.C Additional results

[OM92] derived the asymptotic variance of the MLE of a Gumbel-Hougaard copula with
survival Weibull margins, i.e. P(Xj > xj) = exp(−(ηjxj)

κj ), in both cases where margins
are known and unknown. In order to derive the asymptotic covariance matrix of the IFM,
we need in addition to derive the covariances between the log-likelihood score functions of
the two marginal distribution (see [Joe05] for more details). Let Jη1η2 , Jηjκk

(j, k = 1, 2)
and Jκ1κ denote these covariances. Using the approach proposed by [OM92], we were able
to find the following quantities:

Jη1η2 = κ1κ2(η1η2)
−1

{
2(2α + 1)B(α+ 1, α + 1) − 1

}
,

Jηjκk
=

κj

ηjκk2Γ(α+ 3
2
)

{
− α

√
πΓ(α)(α2 log(2) + αγ − 1)2−2α+2

+ 2(α+ 1/2)(αγ + αΨ(α) + γ − 1)Γ(α+ 1/2) − 2αΓ(α)4−α
√
π

×
[
(α2 + α/2)Ψ(α+ 1/2) + (−α2 − α/2)Ψ(α) + α log(2) − 4α + γ

]}
(1 ≤ j, k ≤ 2),
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Jκ1κ2 = (κ1κ2)
−1




[
3(α+ 1/2)(α+ 1)222α(π2 + 9γ2 − 12γ − 6)Γ(α+ 3/2)

]−1

[
− 3(α+ 1/2)

(
α(α+ 1) × (α(−2 + γ) − 1 + γ)Ψ(α) + (−1 + γ)α4

+ (π2/6 + 2γ2 − 3γ)α3 + (π2/2 + 5γ2 − 13γ + 3)α2

+ (π2/2 + 4γ2 − 12γ + 4)α+ π2/6 + γ2 − 3γ
)

22α(π2 + 9γ2 − 12γ − 6)Γ(α+ 3/2)

+
(

3(α+ 1/2)2(α(−2 + γ) + π2/6 + γ2 − 4γ + 3)22α(π2 + 9γ2 − 12γ − 6)Γ(α+ 1/2)

+ Γ(α)(3α(α(−2 + γ) + (1/2)γ − 3/4)((9γ2 − 12γ − 6)
√
π + π5/2)(α+ 1/2)Ψ(α+ 1/2)

+ (54(−α/2(α(−2 + γ) + γ/2 − 3/4)(α+ 1/2)Ψ(α) + α(α(−2 + γ) + γ/2 − 3/4)(α + 1/2) log(2)

+ (γ2 − 4γ + 5/2)α2 + (γ2 − 15γ/4 + 9/4)α+ γ2/4 − 7γ/8 + 7/16))(γ2 − 4γ/3 − 2/3)
√
π

+ (−3α(α(−2 + γ) + γ/2 − 3/4)(α + 1/2)Ψ(α) + 6α(α(−2 + γ) + γ/2 − 3/4)(α + 1/2) log(2)

+ (π2 + 15γ2 − 36γ + 9)α2 + (15γ2 − 69γ/2 + 15/2 + π2)α+ 15γ2/4 − 33γ/4

+ π2/4 + 9/8)π5/2))α(α+ 1)2)/3(−(3(α+ 1/2))(α(α+ 1)(α(−2 + γ) − 1 + γ)Ψ(α)

+ (−1 + γ)α4 + (π2/6 + 2γ2 − 3γ)α3 + (π2/2 + 5γ2 − 13γ + 3)α2 + (π2/2 + 4γ2 − 12γ + 4)α

+ π2/6 + γ2 − 3γ)22α(π2 + 9γ2 − 12γ − 6)Γ(α+ 3/2) + (3(α+ 1/2)2(α(−2 + γ) + π2/6

+ γ2 − 4γ + 3)22α(π2 + 9γ2 − 12γ − 6)γ(α+ 1/2) + Γ(α)(3α(α(−2 + γ) + γ/2 − 3/4)

× ((9γ2 − 12γ − 6)
√
π + π5/2)(α+ 1/2)Ψ(α+ 1/2) + (54(−(1/2)α(α(−2 + γ) + γ/2 − 3/4)

× (α+ 1/2)Ψ(α) + α(α(−2 + γ) + γ/2 − 3/4)(α+ 1/2) log(2) + (γ2 − 4γ + 5/2)α2

+ (γ2 − (15/4)γ + 9/4)α+ (1/4)γ2 − (7/8)γ + 7/16))(γ2 − (4/3)γ − 2/3)
√
π + (−3α(α(−2 + γ)

+ (1/2)γ − 3/4)(α+ 1/2)Ψ(α) + 6α(α(−2 + γ) + (1/2)γ − 3/4)(α + 1/2) log(2)+

(π2 + 15γ2 − 36γ + 9)α2 + (15γ2 − (69/2)γ + 15/2 + π2)α+ (15/4)γ2 − (33/4)γ

+ (1/4)π2 + 9/8)π5/2)
)
α(α + 1)2

]

+ (1/6)α(−1 + α)(6 − 6γ + α(π2 − 12)) + (α2 + 2α+ 1)−1
[

− α5(2K1 + 2K3 +K4)

+ (−2K1γ + 3K2γ + 3K1 − 5K2 + 2K3 −K4 − γ + 3)α2 + (2K1γ +K2γ − 5K1 − 2K2 + 2K3 −

+ α4(2K1γ − 7K1 − 2K3 − 3K4) + αγK2 − αγ − αK2 + γK2 + 2α −K2 − α(2γ − 3)(K1 −K2)

+ (1/6(−12 + 6γ − 6K1 + α(−π2 + 6K1 + 12) + 36αK3 + (6(11 − 6γ))K1))α
2





where B(·, ·) is the beta function, Ψ(·) is the digamma function, γ = −Ψ(1) is
Euler’s constant. The functions K1 =

∫ 1
0 u

αūα log(ū)du, K2 =
∫ 1

0 u
α log(ū)du, K3 =∫ 1

0 u
αūα log(ū) log(u)du, K4 =

∫ 1
0 ū

α log(ū) log(u)du and K5 =
∫ 1

0 u
α log(ū) log(u)du have

no analytical expression but may be easily computed by numerical integration. We inten-
tionally ignored the dependence with α in their notation to avoid confusion.
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Generic results

This chapter assembles some generic theoretical results useful for the other chapters.
We generically denote {gn : n ≥ 1} a sequence of a random vector-valued function

and θ ∈ Θ a vector of parameters.
The next Lemma is Theorem 5.9 in [Vaa98]. The proof is given for the sake of com-

pleteness.

Lemma 3.1 (weak consistency). Let {gn(θ)} be sequence of a random vector-valued
function of vector parameter θ with a deterministic limit g(θ). If Θ is compact, if the
random function sequence converges uniformly as n → ∞

sup
θ∈Θ

‖gn(θ) − g(θ)‖ p→ 0, (3.1)

and if there exist δ > 0 such that

inf
θ /∈B(θ0,δ)

‖g(θ)‖ > 0 = ‖g(θ0)‖ , (3.2)

then any sequence of estimators {θ̂n} converges weakly in probability to θ0.

Proof. Choose θ̂n that nearly minimises ‖gn(θ)‖ so that
∥∥∥gn(θ̂n)

∥∥∥ ≤ inf
θ∈Θ

‖gn(θ)‖ + op(1)

Clearly we have infθ‖gn(θ)‖ ≤‖gn(θ0)‖, and by (3.1) ‖gn(θ0)‖ p→ ‖g(θ0)‖ so that
∥∥∥gn(θ̂n)

∥∥∥ ≤ ‖g(θ0)‖ + op(1)

Now, substracting both sides by ‖g(θ̂n)‖, we have by the reverse triangle inequality

−
∥∥∥gn(θ̂n) − g(θ̂n)

∥∥∥ ≤ ‖g(θ0)‖ −
∥∥∥g(θ̂n)

∥∥∥+ op(1)

The left-hand side is bounded by the negative supremum, thus

‖g(θ0)‖ −
∥∥∥g(θ̂n)

∥∥∥ ≥ − sup
θ∈Θ

‖gn(θ) − g(θ)‖ − op(1)

It follows from (3.1) that the limit in probability of the right-hand side tends to 0. Let
ε > 0 and choose a δ > 0 as in (3.2) so that

‖g(θ)‖ > ‖g(θ0)‖ − ε
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for every θ /∈ B(θ0, δ). If θ̂n /∈ B(θ0, δ), we have

‖g(θ0)‖ −
∥∥∥g(θ̂n)

∥∥∥ < ε

The probability of this event converges to 0 as n → ∞.

The next definition is taken from [And92] (see also [Pol84, Chapter 7.1])

Definition 3.2. {gn(θ)} is stochastically uniformly equicontinuous on Θ if for every
ε > 0 there exist a real δ > 0 such that

lim sup
n→∞

Pr

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

‖gn(θ′) − gn(θ)‖ > ε

)
< ε (3.3)

Lemma 3.3 (uniform consistency). If Θ is compact, if the sequence of random vector-
valued function {gn(θ)} is pointwise convergent for all θ ∈ Θ and is stochastically uni-
formly equicontinuous on Θ, then

i. {gn(θ)} converges uniformly,

ii. g is uniformly continuous.

Proof. (i) (Inspired from [Rud76, Theorem 7.25(b)]). Let ε > 0, choose δ > 0 so to satisfy
stochastic uniform equicontinuity in (3.3). Let B(θ, δ) = {θ′ ∈ Θ : d(θ,θ′) < δ}. Since
Θ is compact, there are finitely many points θ1, . . . ,θk in Θ such that

Θ ⊂ B(θ1, δ) ∪ · · · ∪ B(θk, δ)

Since {gn(θ)} converges pointwise for every θ ∈ Θ, we have

lim sup
n→∞

Pr (‖gn(θl) − g(θl)‖ > ε) < ε,

whenever 1 ≤ l ≤ k. If θ ∈ Θ, so θ ∈ B(θl, δ) for some l, so that

lim sup
n→∞

Pr (‖gn(θl) − gn(θ)‖ > ε) ≤ lim sup
n→∞

Pr

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

‖gn(θ) − gn(θ′)‖
)
< ε

Then, by the triangle inequality we have

lim sup
n→∞

Pr

(
sup
θ∈Θ

‖gn(θ) − g(θ)‖ > ε

)

≤ lim sup
n→∞

Pr

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

‖gn(θ) − gn(θ′)‖ > ε

)

+ lim sup
n→∞

Pr (‖gn(θ′) − g(θ′)‖ > ε) + Pr

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

‖g(θ) − g(θ′)‖ > ε

)
< 3ε

(ii). The proof follows the same steps.

The next Lemma is similar to [And92, Lemma 1]. The result of [And92] is on the
difference between a random and a nonrandom functions and requires the extra assump-
tion of absolute continuity of the nonrandom function. The proof provided here is also
different.
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Lemma 3.4. If for all θ,θ′ ∈ Θ, ‖gn(θ) − gn(θ′)‖ ≤ Bnd(θ,θ
′) with Bn = Op(1), then

{gn(θ)} is stochastically uniformly equicontinuous.

Proof. By Bn = Op(1), there is M > 0 such that for all n, Pr(|Bn| > M) < ε. Let ε > 0
and choose a sufficiently small δ > 0 such that for all θ′,θ ∈ Θ, d(θ,θ′) < ε/M = τ ,
δ ≤ τ . Let B(θ, δ) = {θ′ ∈ Θ : d(θ,θ′) < δ}. Then, we have

lim sup
n→∞

Pr

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

‖gn(θ) − gn(θ′)‖ > ε

)

≤ lim sup
n→∞

Pr

(
Bn sup

θ∈Θ

sup
θ′∈B(θ,δ)

d(θ,θ′) > ε

)

≤ lim sup
n→∞

Pr (Bnτ > ε) ≤ lim sup
n→∞

Pr (|Bn| > M) < ε

The next Lemma is a special case of [New91, Corollary 3.1].

Lemma 3.5. Let {xi : i ≥ 1} be an i.i.d. sequence of random variable and let gn(θ) =
n−1∑n

i=1 g(xi,θ). If for all i = 1, . . . , n and θ,θ′ ∈ Θ, ‖g(xi,θ)−g(xi,θ
′)‖≤ bn(xi)d(θ,θ

′)
with E[bn(xi)] = µn = O(1), then {gn(θ)} is stochastically uniformly equicontinuous.

Proof. Let Bn = n−1∑n
i=1 bn(xi), so E[Bn] = O(1). We have by triangle inequality

‖gn(θ) − gn(θ′)‖ ≤ 1

n

n∑

i=1

‖g(xi,θ) − g(xi,θ
′)‖ ≤ Bnd(θ,θ

′)

The rest of the proof follows from Lemma 3.4.

Lemma 3.6 (uniform weak law of large number). If, in addition to Lemma 3.5, for each
θ ∈ Θ, gn(θ) is pointwise convergent, then {gn(θ)} converges uniformly.

Proof. The proof is an immediat consequence of Lemma 3.5 and Lemma 3.3.

The next Lemma is essentially a combination of Theorem 4.2 and Corollary 4.3
in [Lan93]. The proof is given for the sake of completeness.

Lemma 3.7 (mean value inequality). Let U be a convex open set in Θ. Let θ1 ∈ U and
θ2 ∈ Θ. If g : U → F is a C1-mapping, then

i. g(θ1 + θ2) − g(θ1) =
∫ 1

0 Dg(θ1 + tθ2)dt · θ2

ii. ‖g(θ1 + θ2) − g(θ1)‖ ≤ sup0≤t≤1‖Dg(θ1 + tθ2)‖ · ‖θ2‖

Proof. (i). Fix θ1 ∈ U , θ2 ∈ Θ. Let θ3 = θ1 + θ2 and λt = (1 − t)θ1 + tθ3. For
t ∈ [0, 1] we have by the convexity of U that λt ∈ U , and so θ1 + tθ2 is in U as well. Put
h(t) = g(θ1 + tθ2), so Dh(t) = Dg(θ1 + tθ2) · θ2. By the fundamental theorem of calcul
we have that ∫ 1

0
Dh(t) dt = h(1) − h(0)
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Since h(1) = g(θ1 + θ2), h(0) = g(θ1), and θ2 is allowed to be pulled out of the integral,
part (i) is proven.
(ii). We have that

‖g(θ1 + θ2) − g(θ1)‖ ≤
∥∥∥∥
∫ 1

0
Dg(θ1 + tθ2) dt

∥∥∥∥ · ‖θ2‖ ,
≤ |(1 − 0)| sup

0≤t≤1
‖Dg(θ1 + tθ2)‖ · ‖θ2‖ ,

where we use the Cauchy-Schwarz inequality for the first inequality, and the upper bound
of integral for the second. The supremum of the norm exists because the affine line θ1+tθ2

is compact and the Jacobian is continuous.

Lemma 3.8 (delta method). If conditions of Lemma 3.7 holds, then

g(θ1 + θ2) − g(θ1) = Dg(θ1) · θ2 + o (‖θ2‖)

Proof. Fix θ1 ∈ U and θ2 ∈ Θ. By Lemma 3.7, we have

∥∥∥∥
∫ 1

0
Dg(θ1 + tθ2) dt

∥∥∥∥ ≤ sup
0≤t≤1

‖Dg(θ1 + tθ2)‖

Let θ3 = θ1 + θ2 so λt = (1 − t)θ1 + tθ3, t ∈ [0, 1], is in U and θ1 + tθ2 as well. Let
Bc(θ1, ‖θ2‖) = {‖θ1 − θ‖ ≤ ‖θ2‖}. We have

‖tθ1 + (1 − t)θ3 − θ‖ ≤ t ‖θ1 − θ‖ + (1 − t) ‖θ3 − θ‖
≤ t‖θ2‖ + (1 − t)‖θ2‖ = ‖θ2‖,

so the line segment λt is in the closed ball. Hence, we have

∥∥∥∥
∫ 1

0
Dg(θ1 + tθ2) dt

∥∥∥∥ ≤ sup
θ∈B(θ1,‖θ2‖)

‖Dg(θ)‖

Eventually, we have by continuity of the Jacobian in a neighborhood of θ1 that

sup
θ∈B(θ1,‖θ2‖)

‖Dg(θ) −Dg(θ1)‖ → 0

as ‖θ2‖ → 0.

Lemma 3.9 (asymptotic normality). Let U be a convex open set in Θ. Let {θ̂n} be a
sequence of estimator (roots of) the mapping gn : U → F . If

i. θ̂n converges in probability to θ0 ∈ U ,

ii. {gn} is a C1-mapping,

iii. n1/2gn(θ0) N(0,V),

iv. Dgn(θ0) converges in probability to M,

v. Dgn(θ0) is nonsingular,
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then
n1/2(θ̂n − θ0) N(0,Σ),

where Σ = M−1VM−T .

Proof. Fix θ1 = θ0 and θ2 = θ̂n − θ0, from Lemma 3.7 and Lemma 3.8 we have

gn(θ̂n) = gn(θ0) +Dgn(θ0) · (θ̂n − θ0) + op(‖θ̂n − θ0‖)

By definition gn(θ̂n) = 0. Multiplying by square-root n leads to

n1/2(θ̂n − θ0) = − [Dgn(θ0)]
−1 n1/2gn(θ0) − n1/2 [Dgn(θ0)]

−1 op

(
‖θ̂n − θ0‖

)

By the continuity of the matrix inversion [Dgn(θ0)]
−1 p→ M−1. Since the central limit

theorem holds for n1/2gn(θ0), the proof results from Slutsky’s lemma.

The next Lemma is Theorem 9.4 in [LS68] and is given without proof.

Lemma 3.10 (implicit function theorem). Let Ξ × Θ be an open subset of IRm × IRp.
Let g : Ξ × Θ → IRp be a function of the form g(ξ,θ) = k. Let the solution at the points
(ξ0,θ0) ∈ Ξ × Θ and k0 ∈ IRp be

g(ξ0,θ0) = k0

If

i. g is differentiable in Ξ × Θ,

ii. The partial derivative Dξg is continuous in Ξ × Θ,

iii. The partial derivative Dθg is invertible at the points (ξ0,θ0) ∈ Ξ × Θ,

then, there are neighborhoods X ⊂ Ξ and O ⊂ Θ of ξ0 and θ0 on which the function
θ̂ : O → X is uniquely defined, and such that:

1. g(ξ, θ̂(ξ)) = k0 for all ξ ∈ X,

2. For each ξ ∈ X, θ̂(ξ) is the unique solution lying in O such that θ̂(ξ0) = θ0,

3. θ̂ is differentiable on X and

Dξθ̂ = − [Dθg]−1 Dξg
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