
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 1981                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Entropic thresholding, a new approach

Pun, Thierry

How to cite

PUN, Thierry. Entropic thresholding, a new approach. In: Computer graphics and image processing, 

1981, vol. 16, n° 3, p. 210–239. doi: 10.1016/0146-664X(81)90038-1

This publication URL: https://archive-ouverte.unige.ch/unige:47457

Publication DOI: 10.1016/0146-664X(81)90038-1

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:47457
https://doi.org/10.1016/0146-664X(81)90038-1


COMPIJTER GRAPHICS AND IMAGE PROCESSING 16. 210-239 ( 1% 1) 

Entropic Thresholding, A New Approach 
T PUN 

Luhoratoire de Trultement des Signcrux, SWISS Federul Institute of Tech&a. 10, A. de Be[[enrc 
CH-1007 Luusunne, Swrtzerland 

Received August 29, 1980 

This paper describes an automatic threshold selection method for picture segmentation. The 
basic concept is the definition of an anisotropy coefficient. which is related to the asymmetry of 
the gray-level histogram. Its use permits the derivation of the entropic threshold, which has 
been successfully applied to images having various kinds of histograms. Several experimentai 
results are presented. An extension to multithresholding is also suggested. 

I. ENTROPIC THRESHOLDING, THE PREVIOUS APPROACH 

I.1 Nature of the Problem 

In the ideal case of a black object superimposed on a white background, the 
gray-level density histogram presents two peaks that are easily distinguishable. 
Thresholding that gray-level image into a black and white one is obvious: the 
threshold is selected in the valley of the histogram. 

In the general case, however, for three major reasons, this operation is not so 
straightforward. First, nobody can say how many black picture elements ( pels 1 are 
necessary and sufficient for a good interpretation. Second, the histogram gives only 
first-order statistical information, disregarding the semantic content of the image. 
Third, which criterion has to be applied when the histogram is not clearly bimodal? 

The answer to the first question has not yet been found. Given more black points. 
more details will appear but also more noise. The limit has to be chosen depending 
on the desired use of the bilevel picture. The second problem has the consequence 
that varying the threshold will only lead to accepting more or fewer black pels. We 
meet then the previous problem. The use of higher-order statistics has been at- 
tempted [l-7], but this area seems to be still open. The third question is the one we 
are trying to solve here. We will see how another approach has been previously 
derived from considerations about the entropy of the histogram [8], and what kind 
of problems its use presents. We will then present a new approach to this concept of 
“entropic thresholding.” 

1.2 Entropic Thresholding, The Old Method 

Let us consider the first-order probability histogram of a picture. Assuming that 
all symbols are statistically independent, its entropy (in the Shannon sense) is 

H= - i p[i].lb(p[i]) shannon/symbol. (1) 
i-o 

where n + 1 is the number of gray levels, p[ i] the probability of occurrence of level I, 
and lb the log in base 2. 
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After thresholding, the picture has two levels: white (w) and black (b). Its entropy 
becomes 

H’ = -P’[w]lb(P’[w]) -P’[b]lb(P’[b]) = H’[w] + H’[b], (2) 

where the ’ denotes the two-level picture. 
Let us denote by s the value of the threshold. We can define two partial entropies 

H[w] = - ip[i].lb(p[i]) H[b] = - i P[i].lb(P[i]). (3) 
0 S+l 

H[w] and H[b] are an objective measure of the u priori quantity of information 
associated with white and black points, while H’[ w] and H’[b] measure the a 
posteriori information. 

In [S] we present a method for maximizing the a posteriori entropy H’ using its 
intrinsic relationships with H. Achieving this, the aim was to have an adaptive 
unsupervised global criterion for selecting a threshold disregarding the geometrical 
shape of the histogram. The purpose of the use of H in the maximization process of 
H’ is to avoid the trivial optimal (in the Shannon sense) case H’ = 1. We would then 
always obtain p’[ w] = p’[ b], and the threshold would not be adaptive. 

1.3 Remarks 

The experimental results show that this method leads to a thresholded picture with 
a number of black pels close to the number of white pels. That is to say that, despite 
the proposed method, the a posteriori entropy is close to its absolute maximal value. 
And the more the picture decreases in size, the more strong this effect becomes [8]. 

Thus, instead of using the entropy itself for deriving the value of the threshold, we 
will use it as a tool for the classification of the histogram. Taking this class into 
account, we will then select a threshold. 

2. CLASSIFICATION OF HISTOGRAMS 

2. I. Definition of the Anisotropy Coefficient 

Let us consider a probability histogram with n + 1 possible gray levels. The 
probability of occurrence of each of these levels is denoted by p[i]. We obviously 
have 

PC01 + PI11 + . . * +p[n - l] +p[n] = 1. (4) 

Let us denote by na the first level which satisfies 

p[O] +p[l] + .*.+p[na] >+. (5) 

If equality holds, na divides the histogram into two parts containing the same 
number of points. Otherwise, na separates it into two parts that are as equal as 
possible. 

The anisotropy coefficient (Y is defined by 

(Y= { ~p[il~lb(p[il)}/ { ip[i]*lb(p[il)}. 
0 0 

(6) 
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If na were the threshold. we would have 

P’bl = P’M, H’= 1. and a = H[w],/H. iyl\ 

In the following sections, we show how (Y can describe the geometric shape of the 
histogram. 

2.2 Histograms with Central Symmetry 

Let us consider an equalized histogram, that is to say, a histogram satisfying 
p[i] = l/( n + 1) for every level i. If n + 1 is even, it is obvious that (Y = f. If n 4~ 1 
is odd, (Y is not exactly i, but all the following considerations will remain the same. 
In the remaining part of the paper, we will assume n + 1 even. For numerical 
applications, n + 1 will be 256 (8-bit pels). 

LY = + remains true for every histogram having a symmetric density function on 
each side of a central value (see Fig. 1). This is due to the fact that na will be the 
level closest to the central value. The proof is trivial and will be omitted. 

This shows the basic property of the anisotropic coefficient: it is equal to f for all 
histograms with central symmetry. Here it is also shift invariant; moving the 
histogram along the gray-level axis keeps (Y the same. 

2.3. The “Left-Right” Effect 

We will now analyze an ideal case, a two-peak histogram (see Fig. 2a) with 
probabilities of occurencep and 1 - p. Let us assume that na will always be selected 
between the two peaks. This is not true if p is lower than 0.5, but this assumption is 
only made to demonstrate the ‘left-right ” effect. We easily obtain from (5) and (6) 

a(p) = {p%(p))/ {p+(p) + (1 -pHW -P% (8) 

(Without the above assumption, CY would be 1 for p in [0.,0.5], and would be given 
by (8) for p in 10.5,l.l). 

The function CX( p) is plotted in Fig. 2b. One can see that, while balancing the 
weight p from the left peak to the right peak, (Y varies symmetrically from 0 to 1. 
This is the “left-right” effect. For a left-histogram (with more weight on the left), 01 
is between 0 and 0.5; for a right histogram, it is between 0.5 and 1. 

Let us analyze what happens when we have two symmetric histograms, whose 
probability laws are denoted by p[i] and p”[i]. We have 

p”[i] =p[n - i] 

and na and na” are given by 

pi01 +p[l] + . ..+p[na] =+ p”[O] +p[l] + ..~+p”[na”] =+, (10) 

From (9) 

p”[O] + . . . +p”[ na”] =p[n - na”] +p[n - na” + 11 +. . +p[n] =+. 

(11) 
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FIG. 2-Continued. 

With (5), we have 

p[na+ l] + --t&z] =+. 

Identifying (11) and (12), we obtain 

na-tna”=n- 1. 

From (6), and due to the symmetry (9), 

412) 

!13) 

f, - 
z di1.M p”[il) 

a- n 
~pP[il*lb(p[il) 
0 

(14) 
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Using (9) and (13) and withj = n - i, the numerator of (14) becomes 

2 p”[i].lb(p”[i]) = i p[i].lb(p[i]). 
0 fla+l 

(15) 

Thus 

a + a” = 1. (16) 

This shows that a symmetry in the shapes leads to a symmetry in the anisotropy 
coefficients. An extreme case is given by two equalized histograms: (Y = LY” = 4. At 
the other extreme, a very quick decaying histogram, with (Y close to 0, has a 
symmetric p”[ i] characterized by (Y close to 1. This will be used in the derivation of 
the method for selecting the threshold. 

3. THE NEW ENTROPIC THRESHOLDING 

3.1. Selection of the Threshold 
We have seen in Section 1.1 that it is difficult to say whether a threshold is good 

or not. The only guidelines we have are intuitive. In the case of an equalized 
histogram, or for one with central symmetry, a “good” choice seems to put the 
threshold in the middle of the dynamic range. This is what we would do for a 
bimodal histogram composed of two equal peaks. We would then obtain an equal 
number of white and black pels. 

For an histogram containing only one nonzero value, intuition would tell us to 
accept for black points either all pels or no pel at all. 

Between those two extreme cases, what would be the choice for a quick decaying 
histogram? These kind of histograms arise from high-pass filtered images, where the 
relevant information is contained in the contours. Thus, while there are fewer 
contours than other points in a real world scene, we would like to have a number of 
black points smaller than half, and related to the slope of the histogram. 

All these considerations lead to the following definition of the entropic threshold; 
it will be selected at the level s such that 

$p[i]={++abs(i-a)}= ‘-’ ii 1::‘. 
i a 2 

(17) 

It is easy to demonstrate from (17) that the percentage of black points after the 
thresholding operation is 

100-a if cx If and lOO.(l - CY) if a Lt. 08) 

Then, the thresholding operation will be performed in the following way: 

ifiZs,it 1 and if i < s,i t 0. (19) 

The right term of (17) can be viewed as a kind of “distance to the equalized 
histogram.” If (Y is f, the threshold s will be equal to nu (middle of the dynamic 
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range). For a quick decaying histogram, with (Y close to zero, we will have a small 
number of black points. 

The absolute ualue used in (17) arises for two reasons. First, suppose we have two 
symmetric quick decaying histograms, whose anisotropy coefficients are related by 
(16). Since in both cases we would like to obtain the same number of black points, 
the absolute value is needed. Second, let us consider the extreme case of a very small 
image (or subimage) containing only low-level background noise. Due to the very 
low number of levels, it can occur that (Y becomes greater than 0.5 although the 
histogram is a “left one” (see Fig. 3). To avoid noise, thus to have a high threshold, 
the absolute value will also be necessary. 

3.2. Examples 

The method has been tested experimentally with two kinds of artificial histograms. 
First, linear bimodal ones, like those of certain real images. Second, quick decaying 
ones, like those of high-pass filtered images. 

If we denote by f(i) the laws presented in Fig. 4, the probability law of the 
histogram will be 

P[il = a-f[il, 
where a is a normalization factor, 

a= l/{f[O] + . ..+f[n]}. 

In order to compare equivalent laws, we have to compare the values of a(/~ instead 
of the values of (Y. 

In the linear bimodal case (Fig. 4a), (Y/U increases linearly with the maximal value 
of the right mode, thus linearly with its area. This is due to the fact that the 
histogram becomes a “right” one. The chosen thresholds are indicated by stars (Fig. 
4). It follows from (17) that they cannot be in the valley, since there are no nonzero 
levels in it. 

In the quick decaying case (Fig. 4b), a/a decreases when the histogram becomes 
“left.” The thresholds seem to be on a quite regular curve, situated between the zero 
level and the maximal curvature level. 

4. EXPERIMENTAL RESULTS 

4.1. The Four Pictures Used 

Four pictures were used for the experiments, having various kinds of structure. 
They are shown in Fig. 5; Fig. 5a is the “building,” Fig. 5b the “cameraman,” Fig. 
5c the “humans” and Fig. 5d the “crowd.” They are all digitized with a raster of 
256 X 256 points and quantized to 256 levels. 

The entropic threshold was applied both to the original pictures (Section 4.2) and 
to preprocessed pictures (Section 4.3). 

The preprocessing consists of two stages. First, a 4 X 4 median filter [9, lo] is 
applied; here, the median of the gray levels of the window will be the 9th value. This 
size of 4 X 4 was determined experimentally, in order to decrease noise while 
keeping a rather good definition. Second, a high-pass filter (2 X 2 Mero-Vassy 
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FIG. 5. The four original images used in this study: a. building, b. cameraman, c. humans, d. crowd 
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FIG. 5-Continued. 
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operator) has been used for contour extraction. Figure 6 shows the results of the 
median filter, and Fig. 7 the results after all the preprocessing. 

4.2. Thresholding the Original Pictures 

For reasons of space, results for only two of the four pictures (building and 
crowd) are presented here. Figure 8 shows their gray-level histograms, with indica- 
tion of the values of the anisotropy coefficient, the selected threshold and the 
percentage of black points. Figure 9 presents the thresholded images. 

We observe that a is quite close to 0.5; this is an illustration of Section 2.3. We 
also verify that the percentage of black points is equal to 100. a (18). 

The evaluation of the interpretability of these pictures is not evident. This 
question can also be formulated as follows: when a gray-level picture is thresholded, 
which are the interesting points that have to become black? However, the pictures 
shown in Fig. 9 are quite satisfying. 

4.3. Thresholding Preprocessed Pictures 
We are now trying to extract the relevant contour information from the original 

pictures. Figure 10 presents the gray-level histograms of the four images shown in 
Fig. 7, with values of a, threshold and percentage of black points. With this kind of 
histogram, it is evident that no geometrical criterion (such as the “valley” one) could 
be used. 

We verify that a is greater for Fig. 10d than for Fig. lob. This is due to the 
“left-right” effect: the histogram shown in Fig. 10d decays slower than the other 
one (see also Fig. 4b). 

Instead of thresholding the full picture with the same value, we can subdivide the 
image into blocks [8]. Then, more details will be extracted, but also more noise will 
appear. Figure 12 gives an example of this effect. Nevertheless, it is less strong than 
with the use of the old “entropic thresholding” method. 

5. CONCLUDING REMARKS 

5.1. Extension to Mdtithresholding 
The proposed method can be extended to multithresholding. For example, if k 

thresholds have to be selected, we have to find k levels na[ 11, na[2], . . . , na[ k] dividing 
the histogram into k + 1 equal parts. We can then define k anisotropy coefficients 
al ,...,ak as follows: 

dll 

x p[+lb(p[~l) 

al= z 

dkl 

ak = 
nalks,l+, p(+lbb[il) 

~p[+lb(p[il) ’ 

(22) 

(23) 
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FIG. 6. Original images after 4 X 4 median filtering. a, b, c, d: Same as Fig. 5. 
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FrG. 6-Continued. 
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FIG. 7. Original images after all the preprocessing. a, b, c, cl: Same as Fig, 5. 
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FlG. 7-Continued. 
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FIG. 9. Thresholded pictures (values of threshold in Fig. 8): a. for Fig. 5a, b. for Fig. 5d. 
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FIG. Il. Thresholded pictures obtained from Figs. 7a. 7b, 7c, 7d. a. b. c. d: Same as Fig. 5. 
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FIG. I 1 -Continued. 
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FIG. 12. Picture obtained by thresholding blocks of 64 X 64 pels (from Fig. 7a) 

The problem, which is under investigation, is how to extend formula (17). A possible 
way of achieving that is to have k thresholds S[ 11,. . . ,s[ k] satisfying 

. . . 

0 

s[kl 

no[ll 
2 p[i]--1 

ii 
(24 

0 

2 PM = 
0 

4kl dkl 
2 P[~I + abs 2 (25 1 
0 na[k-I]+ I 

This extension has been successfully tested experimentally for k = 2. 

5.2. Extension to Multidimensional Thresholding 

When a multidimensional histogram has to be thresholded, the problem becomes 
more difficult. It depends on whether one or more thresholds are to be selected, for 
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example, one for each 1D histogram. It is also not obvious how to define a suitable 
entropy measure. This problem remains open. 

5.3. Open Questions 

Several questions are unsolved. First, what happens if two different pictures do 
have the same histogram, thus the same threshold? Will it be suitable for both? The 
answer is perhaps that comparable kinds of black and white image must have about 
the same number of black pels to be fairly well interpretable, disregarding their 
semantic content. 

This consideration leads to the second question: has this anisotropy coefficient a 
any meaning other than a geometrical interpretation? How should this concept of 
first-order entropy be interpreted in the case of images? 

Third, would it be useful to have higher-order entropies? 

5.4. Conclusion 

A method for automatic selection of a threshold using the gray-level histogram of 
a picture has been presented. An anisotropy coefficient is extracted from this 
histogram, which is closely related to its geometrical shape. It permits the unsuper- 
vised selection of one or more threshold values. 

This method is numerically very easy to implement. The experimental results are 
fairly good, either on the original pictures or on high-pass filtered images. 
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