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It has been shown that in the asymptotic case of infinite-key length, the 2-decoy state Quantum Key

Distribution (QKD) protocol outperforms the 1-decoy state protocol. Here, we present a finite-key

analysis of the 1-decoy method. Interestingly, we find that for practical block sizes of up to 108 bits,

the 1-decoy protocol achieves for almost all experimental settings higher secret key rates than the 2-

decoy protocol. Since using only one decoy is also easier to implement, we conclude that it is the

best choice for QKD, in most common practical scenarios. Published by AIP Publishing.
https://doi.org/10.1063/1.5023340

Quantum Key Distribution (QKD) has been originally

designed to work with true single-photons.1 However, more

than 30 years later, suitable deterministic single-photon sour-

ces are still not available. Therefore, in most experimental set-

ups, convenient weak coherent laser pulses are used.2,3 Weak

coherent pulses are vulnerable to the so-called photon number

splitting (PNS) attack exploiting multi-photon pulses.4,5 This

attack can be mitigated using small average photon numbers l
or particular protocols which are more resistant by design.6–8

However, arguably the most efficient counter-measure is the

so-called decoy-method.9,10 In this method, Alice chooses ran-

domly the average photon number among different levels li

and analyses statistically the probabilities of detection at Bobs

in order to detect a possible PNS attack.

The decoy state protocol was proposed by Hwang,9 and

the first complete security proof of the decoy-method was

given in 2005 by Lo et al.10 for an infinite amount of intensi-

ties. Wang11 showed, instead, that it was possible to employ

the decoy method with only three intensities, i.e., two decoys

and one signal state. Later, Ma et al.12 demonstrated that in

the optimal configuration, one of the two decoys must be set

close to the vacuum state (vacuumþweak decoy state proto-

col). In the same work, a simpler method with only two inten-

sities was presented as well, i.e., a signal and a decoy state. Its

security was proved, but the achieved secret key rates (SKR)

was slightly below the 2-decoy protocol. However, the analy-

sis did not take into account the statistical correction due to a

finite-key length. This was first done by Hayashi and

Nakayama13 and then by Lim et al.,14 using a simpler

approach, but still only for the 2-decoy configuration.

In this paper, we compare the performance of 1-decoy

and 2-decoy level approaches, following the method used by

Lim et al. in 2014. Taking into account finite size effects, we

show that, interestingly, for most experimental settings, the

use of only 1-decoy level is advantageous.

The previous finite-key analysis of the 2-decoy method

bounded the secret key length of the protocol to the

quantity14

l � sl
Z;0 þ sl

Z;1ð1� hð/u
ZÞÞ � kEC

�alog2ðb=� sec Þ � log2ð2=�corÞ; (1)

where sl
Z;0 is the lower bound on the vacuum events (sZ;0);

those events where Bob had a detection and the pulse sent by

Alice contained no photons, sl
Z;1 is the lower bound on the

single-photon events (sZ;1), defined by the number of detec-

tions at Bob side when the pulse sent by Alice contained

only one photon, /u
Z is the upper bound on the phase error

rate (/Z), kEC is the number of disclosed bits in the error cor-

rection stage, �sec and �cor are the secrecy and correctness

parameters, and a and b depend on the specific security anal-

ysis taken into account (a¼ 6 and b¼ 21 for the 2-decoy

approach and a¼ 6 and b¼ 19 for the 1-decoy protocol, see

supplementary material for details).

The main contribution to the secret key is given by the

single-photon events, estimated by the following formula:
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where sn is the total probability to send an n-photon state and

n6
Z;k is the finite-key correction, obtained by using

Hoeffding’s inequality,15 of the number of detections in the

Z basis due to the state of intensity k 2 l1; l2; l3f g

n6
Z;k :¼ ek

pk
nZ;k6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nZ

2
log

1

e1

r !
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In order to find the lower bound on this expression, another

lower bound on the vacuum events sZ;0 is needed. This is

easily obtained by applying the decoy state analysis.14

Here, we continue on the same path and apply the finite-

key analysis to the 1-decoy protocol (see supplementary

material for more details). Our analysis results in a secret

key length bound of the same form of Eq. (1). The main dif-

ference is given by the estimation of the single-photon

events. In fact, without a third intensity level, the lower

bound of this quantity changes to the form

sZ;1� sl
Z;1 :¼ s1l1
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In this case, different from the previous approach, the num-

ber of vacuum events must be upper bounded. In order to

achieve this, we take into account that the probability of

error from a vacuum event is 1/2. We cannot directly mea-

sure this quantity, but we can upper bound it by the total

number of errors mZ;k, for the intensity k. Considering the

finite-key correction, we obtain the following relation (see

supplementary material for the derivation):

sZ;0� su
Z;0 :¼2 s0

ek

pk
mZ;kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mZ

2
log

1

e2

r !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nZ

2
log

1

e1

r !
:

(5)

This is a pessimistic estimate given that the number of errors

is not only due to vacuum events, i.e., dark counts and after-

pulsing of the detector and counts due to parasitic light, but

also by imperfections in the preparation and measurement

apparatus and quantum channel de-coherence that result in a

non-vacuum state error.

In our simulation to maximize the SKR for a given

global attenuation (g), we fix a number of parameters that

depend on the characteristics of the devices and we optimize

over a set of variables that can be easily tuned experimen-

tally. For practicality, the efficiency of the detector and the

internal losses of Bob’s apparatus are included in the global

attenuation g. The parameters considered are the probability

of dark-count (pDC), the detector dead-time (sDT), and the

alignment imperfection of the devices (pErr). For a given set

of these parameters, we optimize the SKR over the different

decoy state variables, i.e., li and the associated probability

pli
, and the probability to choose the Z basis for Alice (pZa

)

and Bob (pZb
).

The analysis in the asymptotic case was already carried

out in previous works. Now, considering the finite-key sce-

nario, the most important parameter is the number of detec-

tions in the Z basis. This defines the privacy amplification

(PA) block size nZ which is included in our analysis by

Hoeffding’s correction. In addition, we set the secrecy and

correctness parameters (�sec and �cor) to the values 10�9 and

10�15, respectively, similarly to what is commonly used in the

literature.14,16–18 In Fig. 1(a), we plot the SKR for the two dif-

ferent approaches and for four PA block sizes. We consider a

system working at a repetition rate of 1 GHz, which, as an

order of magnitude, represents the source’s state of the art in

QKD technologies.17,18 For the detection apparatus, we refer

to recent superconducting nanowire single-photon detectors

(SNSPD)19 which have a dead-time sDT ¼ 100 ns, dark-count

rate (DCR) of 10 Hz which correspond to pDC ¼ 10�8 and an

efficiency (gdet around 50%). In the supplementary material,

we show also the analysis taking into account an InGaAs

detector.20 The dead-time is responsible for the saturation of

the SKR at short distances, whereas the DCR at long distances

is the cause of the fast drop of the SKR. Indeed in this regime,

the amount of valid detections becomes comparable to the

random detector’s dark counts, which raises the Quantum Bit

Error Rate (QBER). We choose a typical value pErr of 1%.

In this paragraph, we will analyse the effect of different PA

block sizes to our security analysis. As we see from Fig. 1(a), by

increasing the block size we increase slightly the SKR as well as

the maximum transmission distance. But, in this way, the time

needed to collect the data increases proportionally to the PA

block size. For this reason, in real application it is preferable to

use a small PA block size. By doing this, it becomes apparent

from our simulation [Fig. 1(b)] that deploying 1-decoy is advan-

tageous in most configurations. For attenuations going from

10 dB up to 60 dB, it is apparent that, unless a really big (>1011)

or really small (<105) PA block size is applied, the simpler

approach gives a higher SKR. For block sizes smaller than 105,

we see that for an attenuation between 40 dB and 60 dB [Fig.

1(b)], the advantage of the 1-decoy protocol is still present.

Moreover, for small attenuation, there is no practical reason to

use small PA block sizes; in fact, even for nz¼ 107 at 40 dB, the

acquisition time does not exceed few minutes as presented in

Fig. 2.

Intuitively, in an infinite-key scenario, sending the vac-

uum state to better estimate, the s0 contribution has a little

positive effect on the final SKR. Indeed, in this configura-

tion, even a small probability to send this intensity results in

a good estimation on the vacuum events. In the case of a

finite-key scenario, instead, this probability starts to be

FIG. 1. (a) Comparison between different PA block sizes of the obtainable SKR considering a repetition rate of 1 GHz. For each block size, the two protocols

are shown: continuous line for the 1-decoy method and dashed line for the 2-decoy method. (b) Analysis of the percentage difference between the two proto-

cols for different PA block sizes. (SKR difference ¼ SKR1D�SKR2D

SKR2D
).
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significant for reasonable block sizes. Sending a considerable

amount of vacuum states diminishes the total number of

detections and consequently the SKR of the protocol.

Quantitatively, when the block size chosen is nZ ¼ 107, the

probability to send a vacuum state (pl3
) is always greater

than 10% (see supplementary material); in order for this

probability to go under 2%, the block size should be already

greater than 1011.

The 2-decoy protocol turns to be useful only for either

really short or really long distances. In the first case, due to

the saturation of the detectors, sending vacuum states is less

detrimental. However, the attenuation at Bob’s side (includ-

ing the detector efficiency) could be high enough already at

zero distance that the detectors are no longer in the saturation

regime. In the second case, even if the key exchange is possi-

ble, the results are not interesting from a practical point of

view, since the SKR obtained is on the order of magnitude of

10 Hz, whereas the acquisition time starts to exceed one day.

In order to give a better understanding of our thesis, we

show a comparison of acquisition time and SKR for two

block sizes (nZ ¼ 107 and nZ ¼ 109) at different distances in

Table I. We can see that the 1-decoy protocol almost always

outperforms the 2-decoy one. The only exception within

the chosen attenuations appears at 64 dB; in this case, how-

ever, the accumulation time for a PA block starts to be

impractical.

Also other practical considerations suggest to always

take the 1-decoy approach over the 2-decoy one. Having to

implement only two intensity levels instead of three can give

a net increase, both in terms of performances and cost effi-

ciency of the whole system. At the same time, implementing

one more intensity could result in an increase in the error

probability in the preparation pErr that would decrease the

SKR.

To conclude, we presented in our work the extension of

the 1-decoy protocol security to the finite-key scenario using

the formalism introduced in the work of Lim et al.14 By

comparing the results of the finite-key effects on both 1-

decoy and 2-decoy protocols, we show that for practical

block sizes, the strategy of deploying the former protocol is

advantageous. Indeed, despite the fact that we cannot mea-

sure the vacuum events directly, we achieve a higher SKR

within a shorter acquisition time. We would like to stress

that even if the difference between the two protocols is

small, in practice they could result in a huge experimental

and economical advantage.

See supplementary material for the complete analysis

for the 1-decoy protocol.
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FIG. 2. Analysis of the time required to the QKD protocol when different

block sizes are chosen. For each block size, the two protocols are consid-

ered, continuous line for the 1-decoy and dashed line for the 2-decoy. For

the simulations, a repetition rate of 1 GHz was considered.

TABLE I. Comparison of SKR obtainable and time required for 1-decoy

and 2-decoys using two different PA block sizes.

Distance 26 dB 46 dB 56 dB 64 dB

100 km 200 km 250 km 290 km

nZ ¼ 107

SKR 243 kHz 2627 Hz 227 Hz 11.3 Hz

236 kHz 2503 Hz 197 Hz 14.1 Hz

Time 14 s 20 min 3.4 h 26 h

16 s 23 min 3.9 h 31 h

nZ ¼ 109

SKR 357 kHz 3970 Hz 356 Hz 25.5 Hz

355 kHz 3881 Hz 333 Hz 30.7 Hz

Time 17 min 23 h 10 d 67 d

18 min 24 h 11 d 75 d

171104-3 Rusca et al. Appl. Phys. Lett. 112, 171104 (2018)

ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-112-042817
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-112-042817
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1103/PhysRevA.51.1863
https://doi.org/10.1103/PhysRevLett.85.1330
https://doi.org/10.1103/PhysRevLett.92.057901
https://doi.org/10.1103/PhysRevLett.89.037902
https://doi.org/10.1063/1.2126792
https://doi.org/10.1063/1.2126792
https://doi.org/10.1103/PhysRevLett.91.057901
https://doi.org/10.1103/PhysRevLett.94.230504
http://arxiv.org/abs/0411004
https://doi.org/10.1103/PhysRevLett.94.230503
https://doi.org/10.1103/PhysRevA.72.012326
https://doi.org/10.1088/1367-2630/16/6/063009
https://doi.org/10.1103/PhysRevA.89.022307
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1038/nphoton.2014.327
https://doi.org/10.1364/OE.21.024550
https://doi.org/10.1364/OPTICA.4.000163
https://doi.org/10.1063/1.4977034
https://doi.org/10.1063/1.4977034
https://doi.org/10.1063/1.4866582
https://doi.org/10.1063/1.4866582

	d1
	d2
	d3
	d4
	l
	n1
	d5
	f1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	f2
	t1

