
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2004                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Nonparametric estimation and sensitivity analysis of expected shortfall

Scaillet, Olivier

How to cite

SCAILLET, Olivier. Nonparametric estimation and sensitivity analysis of expected shortfall. In: 

Mathematical finance, 2004, vol. 14, n° 1, p. 115–129. doi: 10.1111/j.0960-1627.2004.00184.x

This publication URL: https://archive-ouverte.unige.ch/unige:41799

Publication DOI: 10.1111/j.0960-1627.2004.00184.x

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:41799
https://doi.org/10.1111/j.0960-1627.2004.00184.x


Mathematical Finance, Vol. 14, No. 1 (January 2004), 115–129

NONPARAMETRIC ESTIMATION AND SENSITIVITY
ANALYSIS OF EXPECTED SHORTFALL

O. SCAILLET

HEC Genève and FAME, Université de Genève

We consider a nonparametric method to estimate the expected shortfall—that is,
the expected loss on a portfolio of financial assets knowing that the loss is larger than
a given quantile. We derive the asymptotic properties of the kernel estimators of the
expected shortfall and its first-order derivative with respect to portfolio allocation in
the context of a stationary process satisfying strong mixing conditions. An empirical
illustration is given for a portfolio of stocks. Another empirical illustration deals with
data on fire insurance losses.

KEY WORDS: nonparametric, kernel, time series, expected shortfall, incremental expected shortfall,
risk management, risk adjusted performance measure, portfolio selection, loss severity distribution

1. INTRODUCTION

The expected shortfall on a portfolio of assets is the expected loss knowing that the loss
is larger than a given quantile of the loss distribution. Such a quantile is called Value
at Risk (VaR) in finance (for an introduction see, e.g., Duffie and Pan 1997; Jorion
1997). The expected shortfall and the VaR are two measures of risk. They are useful in
setting benchmarks for capital requirements (CAD of the Basle Committee on Banking
Supervision), in quantifying and regulating the risk taken by market participants such as
traders or insurance underwriters (prudential rules imposed by European or American
regulators on financial institutions), as well as in allocating available capital in internal
risk management procedures. Their primary use in banks is to ensure that the risk incurred
by the financial institution remains within its stated risk appetite, and that the assessment
of that risk occurs in a timely manner to allow for prompt corrective action if warranted.
When the risks across the trading books of a bank are to be summed up, what is called
for is a quantitatively oriented, fast, and coherent analysis.

The use of expected shortfall rather than VaR in risk measurement has been recently
advocated by Artzner et al. (1999) because of its better properties. First, expected shortfall,
called TailVar by these authors, is subadditive for continuously distributed risks, whereas
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VaR is not. This subadditivity property is part of the necessary requirements to be a
coherent measure of risk, and it expresses the idea that the total risk on a portfolio
should not be greater than the sum of the individual risks. Second, VaR tells us nothing
about the potential size of the loss that exceeds it, but expected shortfall does.

The expected shortfall has been known for decades among actuaries and is very popular
in insurance companies. It is used to assess risk on a portfolio of potential claims, and to
design reinsurance treaties (choice and price of excess layers). Its estimation has mainly
been developed for i.i.d. data in a semiparametric univariate framework based on the
estimation of the mean excess function in extreme value theory (see, e.g., Embrechts,
Kluppelberg, and Mikosch 1997; McNeil 1997). As far as we know, it has received no
theoretical and empirical attention outside such a setting.

In this paper we propose and study the properties of an estimation method based on a
kernel approach. It allows for a broad class of dependencies in the observations, namely
strong mixing (for examples of commonly used models satisfying α-mixing conditions,
see Doukhan 1994), and is therefore well suited for financial data. The estimation pro-
cedure is extremely fast and easy to implement. It basically only requires the standard
functionalities of any spreadsheet used in financial statement reporting. We examine
how to estimate nonparametrically the expected shortfall together with its sensitivity
with respect to changes in portfolio allocation. The expected shortfall and its sensitivity
are functions of the portfolio allocation and the loss probability. Our interest in getting
a smooth and distribution-free estimation of these functions dictates our choice of a
kernel-based method.

Knowledge of the sensitivity is helpful in reducing the amount of computational time
needed to process large portfolios. Indeed it avoids the need to recompute the expected
shortfall each time the portfolio composition is slightly modified. Furthermore, the first-
order derivative is useful in portfolio selection problems (see Markowitz 1952 for portfolio
selection in a mean-variance framework). It helps to characterize and evaluate efficient
portfolio allocations when expected shortfall is substituted for variance as the measure of
risk. Numerical optimization algorithms for computation of optimal allocations require
smooth estimates of first derivatives in order to converge properly. Gourieroux, Laurent,
and Scaillet (2000) have studied the analogous VaR case, and analyzed the sensitivity of
the VaR from a theoretical and empirical point of view.

The paper is organized as follows. In Section 2 we outline the framework and define the
expected shortfall formally. We provide the analytical form of the first-order derivative
of the expected shortfall with respect to portfolio allocation. The expression is a condi-
tional expectation that is amenable to estimation by a kernel approach. As a corollary,
incremental (or component) expected shortfalls—that is, contributions of each asset po-
sition to the expected shortfall of the portfolio—are fully described and may be easily
estimated. Quantifying risk contributions is especially relevant when allocating available
capital in internal risk management procedures and deriving risk-adjusted performance
measures. We refer to Tasche (1999) for a detailed treatment of the connection between
capital allocation (see also Denault 2001 for an axiomatic approach to this problem),
risk-adjusted performance measurement, and the characterization of efficient portfolios
via the two-fund separation property of portfolio choice theory. In Section 3 we present
the kernel estimators and derive their asymptotic distribution under suitable assumptions
on the bandwidth and mixing properties of the data generating process. Section 4 presents
two empirical illustrations, one on a portfolio of stocks and the other on fire insurance
losses. Section 5 concludes. Proofs and mathematical developments are gathered in the
Appendix.
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2. SENSITIVITY OF THE EXPECTED SHORTFALL

2.1. Definition of the Expected Shortfall

We consider a strictly stationary process {Yt, t ∈ Z} taking values in IRn and assume
that our data consist in a realization of {Yt; t = 1, . . . ,T}. The vector Yt = (Y1,t, . . . , Yn,t)′

corresponds to n risks over a given period of time. The data may correspond to simulated
values drawn from a parametric model (VARMA, multivariate GARCH, or diffusion
processes), possibly fitted on another set of data. Simulations are often required when
the structure of financial assets is too complex, as for some derivative products. This,
in turn, implies that the sample length T can sometimes be controlled, and asked to be
sufficiently large to get satisfying estimation results.

The expected shortfall associated with a portfolio with allocation a is defined by

m(a, p) = E[−a′Y | − a′Y > VaR (a, p)],(2.1)

where VaR(a, p) is implicitly defined by

P[−a′Y > VaR (a, p)] = p.(2.2)

The expected shortfall corresponds to the average loss on a portfolio with composition
a = (a1, . . . , an)′, knowing that the loss is larger than a given quantile VaR(a, p), called
Value at Risk in finance. Note that a is a vector of quantities held of particular financial
assets when the vector Y is made of price differences, and it is a vector of allocations
measured in values (percentage) when Y is a vector of returns.

The above-expected loss and quantile are defined with respect to the stationary distri-
bution P of Y , and are thus marginal measures of risk. Conditional expected shortfalls
and conditional VaR may be defined by replacing P with a conditional distribution. The
expected shortfall and the VaR are functions of the portfolio structure a and the loss
probability p. Typical values for the loss probability range from 1% to 5%; stock returns
are usually measured over either a 1-day period or a 10-day period.

2.2. Sensitivity of the Expected Shortfall

In the following proposition we provide the first-order derivative m(1)(a, p) =
∂m(a, p)/∂a′ of the expected shortfall with respect to portfolio allocation. This propo-
sition characterizes explicitly the sensitivity of the expected shortfall with respect to
local changes in the portfolio structure. For the sake of completeness, we provide in the
Appendix a simple proof akin to the derivation of the sensitivity of the VaR in Gourieroux
et al. (2000; see also Tasche 1999).

PROPOSITION 2.1. The first-order derivative of the expected shortfall with respect to
portfolio allocation is

m(1)(a, p) = E[−Y | − a′Y > VaR (a, p)].(2.3)

Note that the expected shortfall and its first-order derivative are linearly related through
m(a, p) = a′m(1)(a, p). This is due to the homogeneity of degree one of the expected short-
fall (application of Euler’s Theorem). The quantity ai∂m(a, p)/∂ai is called incremental
(or component) expected shortfall of asset i by analogy with the existing VaR terminol-
ogy (Garman 1997). Indeed, VaR also shares this homogeneity property. Incremental
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expected shortfalls and incremental VaR can be used to rank asset positions in terms of
their contribution to the total portfolio risk measured by expected shortfall and VaR,
respectively.

3. KERNEL ESTIMATOR OF EXPECTED SHORTFALL

In the next lines we describe how to estimate nonparametrically the expected shortfall
and its sensitivity with respect to changes in the portfolio structure. We mainly follow
the presentation of Robinson (1983) both in terms of notations and assumptions (see,
e.g., Bierens 1985 or Bosq 1998 for alternative sets of assumptions). Let us introduce the
kernel estimator,

[(Yt, a′Yt); ξ ] = (Th)−1
T∑

t=1

Yt K((ξ − a′Yt)/h),(3.1)

and define

Î(ξ ) =
∫ ξ

−∞
[(Yt, a′Yt); u] du.(3.2)

Here h is a positive number, called the bandwidth, that depends on the sample size T
and is assumed, at least, to converge to zero as T goes to infinity. The real function
K(u), the kernel, satisfies, at least, that it integrates to 1. We further define the kernel
estimator q̂(a, p) of the quantile of level p of the distribution of a′Y through the equality∫ q̂(a,p)

−∞
[(1, a′Yt); u] du = p.

This kernel estimator delivers an estimate of q(a, p) = −VaR(a, p). The ratio Î(q̂(a, p))/p
then provides an estimator of the conditional expectation E[Y | a′Y < q(a, p)], and we
may consider estimating the expected shortfall and its sensitivity with

m̂(a, p) = −a′ Î(q̂(a, p))/p,(3.3)

m̂(1)(a, p) = − Î(q̂(a, p))/p.(3.4)

Note that the kernel estimator of the expected shortfall is simply obtained by multiplying
the kernel estimator of the sensitivity with the portfolio allocation.

If a Gaussian kernel K(x) = ϕ(x) is adopted, the estimator Î(q̂(a, p)) simplifies to

Î(q̂(a, p)) = T−1
T∑

t=1

Yt�((q̂(a, p) − a′Yt)/h),

where ϕ and � denote the p.d.f. and c.d.f. of a standard Gaussian variable, respectively.
For the Epanechnikov kernel: K(x) = 3

4 (1 − x2), for |x| ≤ 1, and K(x) = 0, otherwise, it
simplifies to:

Î(q̂(a, p)) = T−1
T∑

t=1

Yt

(
1I q̂(a,p)−a′Yt

h >1 +
(

1
2

+ 3
4

(
q̂(a, p) − a′Yt

h

)

− 1
4

(
q̂(a, p) − a′Yt

h

)3
)

1I| q̂(a,p)−a′Yt
h |≤1

)
,
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where 1I denotes the indicator function. Explicit forms may also be derived for the
biweight, triweight, and triangular kernels.

In the aforementioned kernel estimators, we plug a kernel-based quantile estimator in
(3.2) to get (3.3) and (3.4). Such a quantile estimate is a smooth function of the portfolio
allocation a and the loss probability p. We could also have thought of plugging in an
empirical quantile but that choice would deteriorate the smoothness because empirical
quantiles are not smooth functions of a and p.

The asymptotic normality of the kernel estimators (3.3) and (3.4) can be established
under suitable conditions on the kernel, the asymptotic behavior of the bandwidth, the
regularity of the conditional expectations, and some mixing properties of the process.

ASSUMPTION 3.1 (kernel and bandwidth).

(a) The function K is a real bounded and symmetric function on IR such that∫
K(u) du = 1.

(b) The bandwidth h is a positive function of T such that Th → ∞ and Th5 → 0 when
T → ∞.

(c) The kernel and the bandwidth satisfy |K(u)| ≤ C(1 + |u|)−1−ω, and hω−2 ≤ C for
ω > 2, C > 0.

ASSUMPTION 3.2 (process).

(a) The process Y is strong mixing with coefficients αj such that
∑∞

l=N α
1−2/θ

l =
O(N−1), as N → ∞, while E|Yi|θ < ∞, i = 1, . . . , n, θ > 2.

(b) The p.d.f. g(y) of Y exists and is twice continuously differentiable.
(c) The equation P[a′Y ≤ z] = p admits a unique solution denoted by q(a, p), and

f (z) = ∂P[a′Y ≤ z]/∂z > 0 at z = q(a, p).
(d) The conditional expectation Gi(u) = E[Yi | a′Y < u], i = 1, . . . , n, has continuous

second order partial derivatives at u = q(a, p).
(e) The conditional expectation Hij(u) = E[YiYj | a′Y < u], i, j = 1, . . . , n, is contin-

uous at u = q(a, p).
(f) The conditional expectation E[|Yi|γ | a′Y < u], i = 1, . . . , n, is bounded for

γ > θ at u = q(a, p).

PROPOSITION 3.1. Under Assumptions 3.1 and 3.2, the kernel estimators m̂(a, p)
and m̂(1)(a, p) are asymptotically normally distributed as

√
Th(m̂(a, p) − m(a, p)) → N

(
0, a′Va

∫
K2(z) dz

)
,(3.5)

√
Th

(
m̂(1)(a, p) − m(1)(a, p)

) → N
(

0, V
∫

K2(z) dz
)

,(3.6)

where

V =
(

E[YY′ | a′Y < q(a, p)]
p

+ E
[
Y1Ia′Y=q(a,p)

]
E

[
Y′1Ia′Y=q(a,p)

]
p f 2(q(a, p))

− E[Y | a′Y < q(a, p)]E
[
Y′1Ia′Y=q(a,p)

]
f (q(a, p))

− E
[
Y1Ia′Y=q(a,p)

]
E[Y′ | a′Y < q(a, p)]

f (q(a, p))

)
.
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Consistent estimates of the matrix V may be derived after replacement of the various
terms by adequate density and conditional moment kernel estimators.

Note that we do not face the curse of dimensionality often encountered in kernel
methods since the kernel dimension is small (one) and independent of the number of
assets in the portfolio. Our approach, which basically only requires computations of
empirical averages, may be applied even in the presence of very large portfolios, possibly
involving simulated returns. Indeed, the asymptotic results of Proposition 3.1 will not
be affected if simulations of a parametric model are used as input data, when estimated
parameters satisfy the usual parametric rate of convergence. The number of simulations
should then be chosen large enough to be on the safe side of asymptotic theory. Let
us further remark that Monte Carlo experiments (available on request from the author)
show that the proposed estimators perform well in terms of bias and mean squared error
for sample lengths possibly encountered in practical situations (two trading years of daily
observations).

Finally, Proposition 3.1 can be easily adapted if we wish to consider higher conditional
moments such as E[(a′Y )2 | − a′Y > VaR(a, p)], or, more generally, E[g(−a′Y ) | − a′Y >

VaR(a, p)] for a given differentiable function g, instead of m(a, p).

4. EMPIRICAL ILLUSTRATIONS

This section illustrates the implementation of the estimation procedure described in sec-
tion 3. We provide two empirical illustrations, the first one in finance and the second
one in insurance. They concern French data on stock returns and Danish data on fire
insurance losses.

4.1. Stock Return Data

We analyze two companies listed on the Paris Bourse: Thomson-CSF (electronic de-
vices) and L’Oréal (cosmetics). Both stocks are highly traded and belong to the in-
dex CAC 40 of the Paris Bourse. The data are one-day returns recorded daily from
04/01/1997 to 05/04/1999 (546 observations). The mean and standard deviation are
0.0049% and 1.262% for Thomson-CSF, 0.0586% and 1.330% for L’Oréal. Minimum
returns are −4.524% and −4.341%; maximum returns are 3.985% and 4.013%, respec-
tively. We have −0.2387 and 0.0610 for skewness, and 1.099 and 1.295 for kurtosis. This
indicates that the data cannot be considered as normally distributed. The correlation is
38.54%. The autocorrelograms, partial autocorrelograms, and Ljung-Box statistics have
not detected the presence of linear dynamics in the one-day returns. In the following,
kernel estimates are compared to empirical estimates and estimates under a Gaussian
assumption for the stationary distribution.

Empirical estimates of the expected shortfall and its sensitivity are given
by T−1 ∑T

t=1 a′Yt 1Ia′Yt<q̃(a,p)/p and T−1 ∑T
t=1 Yt 1Ia′Yt<q̃(a,p)/p, where q̃(a, p) is the quan-

tile of level p computed from the empirical distribution of the portfolio returns. Note
that these empirical estimators are not smooth functions of portfolio allocation and loss
probability, and are neither differentiable in a nor in p.

A simple expression for the VaR is available under a Gaussian assumption for the sta-
tionary distribution, namely VaR(a, p) = −a′µ + (a′�a)1/2z1−p, where z1−p is the quantile
of level 1 − p of a standard Gaussian distribution. Its estimation only requires estimates of
the mean µ and covariance matrix �. This explains why VaR estimates under a Gaussian
assumption serve as benchmark in many banks.
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An explicit form for the expected shortfall may also be computed in a Gaussian setting:

m(a, p) = −a′µ + (a′�a)1/2 ϕ(z1−p)
p

.

A straightforward differentiation gives

m(1)(a, p) = −µ + �a
(a′�a)1/2

ϕ(z1−p)
p

,

which may be shown to coincide with −E[Y | a′Y < −VaR(a, p)] using

E[Y | a′Y < k] = µ − �a
(a′�a)1/2

ϕ
(
(k − a′µ)/(a′�a)1/2

)
�

(
(k − a′µ)/(a′�a)1/2

) ,

for a given threshold k.
Note that

m(1)(a, p) = −µ + �a
a′�a

(m(a, p) + a′µ),

which says that the first-order derivative under a Gaussian assumption is an affine func-
tion of the expected shortfall with coefficients depending on the portfolio allocation, but
independent of the loss probability p. It is a nonlinear function of the VaR:

m(1)(a, p) = −µ + �a
(a′�a)1/2

ϕ
(

Va R(a,p)+a′µ
(a′�a)1/2

)
p

.

Figure 4.1 conveys estimates of the expected shortfall for various loss probabilities and
for various portfolios including these two stocks. The loss probability levels range from
0.01 to 0.1 and the allocations from 0% (100%) to 100% (0%) in Thomson-CSF (L’Oréal)
stock. The left plot gives the kernel estimates. We have selected bandwidth values such
that h = 0.5(a′�̂a)1/2T−1/5, where �̂ is the empirical covariance matrix computed from
observed returns. Oversmoothing (undersmoothing) has been obtained with twice (half)
this bandwidth—that is, with (a quarter of) the rule of thumb. The central and right
plots correspond to empirical estimates and estimates under a Gaussian assumption for
the stationary distribution, respectively. We may observe that the kernel estimates are
smoother than the empirical estimates. Estimates based on a normality assumption are
below the kernel estimates and empirical estimates. This could have been expected from
the skewness and kurtosis exhibited by the individual stock returns. Estimates under the
Gaussian assumption lead thus to underestimation of the reserve amount aimed to cover
potential losses.

Let us now examine the sensitivities. Estimated first-order partial derivatives of the
expected shortfall are provided in Figure 4.2 for the first asset, Thomson-CSF, and in
Figure 4.3 for the second asset, L’Oréal. Comparison of the plots of kernel and empirical
estimates indicates clearly the advantage of using a smooth estimator. As already men-
tioned, numerical algorithms that would rely on empirical estimates of the first-order
partial derivatives would encounter difficulties to converge properly. For a given proba-
bility level estimates under a Gaussian assumption are always either increasing for the
first asset or decreasing for the second asset. Kernel estimates show that this is an artifact
of the normality assumption.
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FIGURE 4.4. Estimated expected shortfall for insurance loss data.

4.2. Insurance Loss Data

The Danish data consist of 1794 daily losses over one million Danish Krone (DKK)
for the years 1980 to 1990. The loss figure is a total loss figure with a positive sign and in-
cludes damage to buildings and damage to furniture and personal property, as well as loss
of profits. The mean and standard deviation are equal to 4,235,299.9 and 9,256,401.5,
respectively. The minimum loss is 325,000 and the maximum loss is 200,700,000. The
skewness is 13.629 and the kurtosis is 251.336. The autocorrelogram, partial autocorrel-
ogram, and Ljung-Box statistics have not revealed any linear dynamics in the loss data.
Figure 4.4 shows estimates of the expected shortfall for loss probabilities ranging from
0.005 to 0.05. The jagged line corresponds to empirical estimates, the upper dashed line
corresponds to kernel-based estimates. They are very close to each other, but the shape
is rather erratic for empirical estimates. The bandwidth is taken here equal to σ̂ T−1/5,
where σ̂ is the standard deviation of the observed losses (other choices have not led to
results that can be distinguished by the naked eye). The lower dashed line carries the
estimates based on a normality assumption, which are again clearly below the kernel
estimates. Our kernel estimates agree with estimates based on extreme value theory. For
example, we get an estimated expected shortfall of DKK 66.96 million when the loss
probability is equal to 1%. From the estimation results given by McNeil (1997) for a
peaks-over-threshold (POT) method, expected shortfall estimates are 58.69 and 69.59
million for a threshold u set equal to 10 and 20 million, respectively. POT estimates are
carried by the two dotted lines, which enclose our kernel estimates for small probabilities
(less than 0.012). The upper dotted line is interrupted around p = 0.016 where quantile
values become in that case inferior to u = 20.

5. CONCLUDING REMARKS

Risk measures answer the need for quantifying the risk of potential losses on a portfolio
of assets. This need may arise due to internal concerns (risk-reward trade-off) or external
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constraints (prudential rules imposed by regulators). In this paper we have proposed an
estimation procedure for one of these measures, namely the expected shortfall, and for its
sensivity with respect to changes in portfolio allocation. The procedure relies on a kernel
approach, and provides smooth estimates of the expected shortfall and its sensitivity
viewed as functions of the portfolio allocation and the loss probability. It is fast, efficient,
and valid even in the dependent case for general stationary strong mixing multivariate
processes. The empirical examples in finance and insurance have shown its relevance in
practical situations. Possible use of other nonparametric approaches (local polynomials)
may be contemplated, but this awaits future research.

APPENDIX

Proof of Proposition 2.1. Let us set X = − ∑n
j=1, j �=i a j Yj , and Zi = −Yi, i = 1, . . . , n.

Equation (2.1) defining the expected shortfall can be rewritten as E[X + aiZi | X + aiZi >

VaR(a, p)]. The expression for the first-order derivative is then a direct consequence of
the following lemma.

LEMMA A.1. Let us consider a bivariate vector (X, Z), and the conditional expectation

m(ε, p) = E[X + εZ |X + εZ > Q(ε, p)],

where the quantile Q(ε, p) is defined by

P[X + εZ > Q(ε, p)] = p.

Then

∂m(ε, p)
∂ε

= E [Z |X + εZ > Q(ε, p)] .

Proof of Lemma A.1. Let us denote f (x, z) the joint p.d.f. of the pair (X, Z). We get

E[X + εZ |X + εZ > Q(ε, p)] = E
[
(X + εZ)1IX+εZ>Q(ε,p)

]
p

= 1
p

∫ (∫
Q(ε,p)−εz

(x + εz) f (x, z) dx
)

dz.

The differentiation with respect to ε gives

1
p

∫ (∫
Q(ε,p)−εz

zf (x, z) dx
)

dz − 1
p

∫ (
∂ Q(ε, p)

∂ε
− z

)
Q(ε, p) f (Q(ε, p) − εz, z) dz.

Since the differentiation with respect to ε of the condition defining the quantile, P[X +
εZ > Q(ε, p)] = p, implies the restriction∫ (

∂ Q(ε, p)
∂ε

− z
)

f (Q(ε, p) − εz, z) dz = 0,

the second term vanishes, and we conclude that

∂m(ε, p)
∂ε

= 1
p

∫ (∫
Q(ε,p)−εz

zf (x, z) dx
)

dz,

= E[Z |X + εZ > Q(ε, p)]. �
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Proof of Proposition 3.1. The asymptotic normality of m̂(a, p) = −a′ Î(q̂(a, p))/p
and m̂(1)(a, p) = − Î(q̂(a, p))/p is deduced from the expansion of Î(q̂(a, p)) around
q(a, p):

Î(q̂(a, p)) = Î(q(a, p)) + ∂ Î(q̄(a, p))
∂u

(q̂(a, p) − q(a, p)),

where q̄(a, p) is a mean value located between q̂(a, p) and q(a, p), and the asymptotic
normality of Î(q(a, p))/p and q̂(a, p):

√
Th

(
Î[q(a, p)]

p
− E[Y | a′Y < q(a, p)]

)
→ N

(
0,

E[YY′ | a′Y < q(a, p)]
p

∫
K2(z) dz

)
,

√
Th(q̂(a, p) − q(a, p)) → N

(
0,

p
f 2(q(a, p))

∫
K2(z) dz

)
.

(a) We deduce the first of the two aforementioned normality results along the same
lines as Robinson (1983, Thm. 5.3), which establishes asymptotic normality of conditional
expectation estimators in the context of strong mixing processes.

We need to show that
√

Th(E[ Î(q(a, p))] − pE[Y | a′Y < q(a, p)]) → 0.

Let us consider arbitrary coordinates i and j, i, j = 1, . . . , n, i �= j. We have, successively,

h−1 E

[∫ q(a,p)

−∞
Yi K((a′Y − u)/h) du

]

= h−1
∫ q(a,p)

−∞

∫
IRn

yi K

((
a j yj +

∑
l �= j

al yl − u

)/
h

)
g(y1, . . . , yj , . . . , yn)dy1 · · · dyn du,

=
∫ q(a,p)

−∞

∫
IRn

yi

a j
K(z)g

(
y1, . . . ,

(
u − hz −

∑
l �= j

al yl

) /
a j , . . . , yn

) ∏
s �= j

dys du dz,

=
∫ q(a,p)

a j

−∞

∫
IRn

yi g

(
y1, . . . , v −

∑
l �= j

al

a j
yl , . . . , yn

)
dy1 · · · dyndv

+ h2

2

∫ q(a,p)
a j

−∞

∫
IRn

yi

a2
j

[
∂2

∂y2
j
g

(
y1, . . . , v −

∑
l �= j

al

a j
yl , . . . , yn

)]
dy1 · · · dyn dv

∫
IR

z2 K(z) dz

+ o(h2), (by symmetry of the kernel)

= pE[Yi | a′Y < q(a, p)] + O(h2),

from which we deduce the needed convergence result using Th5 → 0.
Now, following Robinson (1983, Thm. 5.3) step by step, we build ḡi t = Yit1I|Yit |≤D, ¯̄git =

Yit − ḡi t, for some D, 0 < D < ∞, and also W̄it = ḡi t Kt, ¯̄Wit = ¯̄git Kt, with Kt =∫ q(a,p)
−∞ K((u − a′Yt)/h) du. We further introduce S̄i T = (hT)−1/2 ∑T

t=1 V̄it with V̄it =
W̄it − E[W̄it]. Since V[(Th)−1/2 ∑T

t=1
¯̄Wit] → 0 as D → ∞, uniformly in large T , we

only have to show that the vector S̄T = (S̄i T, S̄j T)′ has, for fixed D, an asymptotic normal
distribution. First we have

h−1 E[V̄it V̄ j t] → pE[Yi Yj 1I|Yi |≤D1I|Yj |≤D | a′Y < q(a, p)]
∫

K2(z) dz.
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Second, the continuity of Gi(u) and Hij(u) implies the continuity of Ḡi (u) =
E[Yi 1I|Yi |≤D|a′Y < u] and H̄i j (u) = E[Yi Yj 1I|Yi |≤D1I|Yj |≤D|a′Y < u]. Hence the central limit
theorem of Lemma 7.1 in Robinson (1983), valid for bounded V̄it, may be applied to S̄T,
and we get the stated normality result since Ḡi (u) → Gi (u), H̄i j (u) → Hi j (u) by letting
D tend to infinity.

(b) We continue with the proof of the second normality result. We have the expansion

P[a′Y < q(a, p)] = p =
∫ q̂(a,p)

−∞
[(1, a′Yt); u] du

=
∫ q(a,p)

−∞
[(1, a′Yt); u] du + [(1, a′Yt); q̄(a, p)](q̂(a, p) − q(a, p)),

from which we get

(q̂(a, p) − q(a, p)) = 1
[(1, a′Yt); q̄(a, p)]

(
p −

∫ q(a,p)

−∞
[(1, a′Yt); u] du

)
.

We also have

√
Th

(
p − E

[∫ q(a,p)

−∞
[(1, a′Yt); u] du

])
→ 0.

To establish the asymptotic normality of
√

Th(p − ∫ q(a,p)
−∞ [(1, a′Yt); u] du), we

build ST = (hT)−1/2 ∑T
t=1 Vt with Vt = Kt − E[Kt], and Kt = ∫ q(a,p)

−∞ K((u − a′Yt)/h) du,
as above. We may here directly apply the central limit theorem of Lemma 7.1 in Robinson
(1983) since Vt is bounded:

ST → N
(

0, p
∫

K2(z) dz
)

.

We deduce then the second normality result from the convergence of [(1, a′Yt); q̄(a, p)]
to f (q(a, p)).

(c) Eventually, since ∂ Î(q̄(a,p))
∂u = [(Yt, a′Yt); q̄(a, p)] converges to E[Y′1Ia′Y=q(a,p)], we

obtain the final stated normality results for m̂(a, p) and m̂(1)(a, p) after computation of
the covariance terms.
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