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S Abstract

O\ We consider the wind-forced nonlinear Schrédinger (NLS)atipn obtained in the potential flow framework when the Klile
+=2 .growth rate is of the order of the wave steepness. In this tasdorm of the wind-forcing terms gives rise to the enhameet of

Q the modulational instability and to a band of positive gaithvinfinite width. This regime is characterised by the fdwttthe ratio

O between wave momentum and norm is not a constant of motiargritrast to what happens in the standard case where the Miles
(40 growth rate is of the order of the steepness squared.

N Keywords: Modulational instability, Wind forcing, Water waves, Ragwaves
L
O 1. Introduction equation at third-order in the wave steepness ng\r/]'en by a
1 . . s N
. . - - . wind-forced nonlinear Schrodinger (NLS) equati 7, lﬂq], 2
O The modulational instability (known as Benjamin-Feir mst of the form ger ( )eq @
CE; bility in the context of fluid dynamicﬂﬂ 2]) is ubiquitous i
(/) physics, it occurs in nonlinear waves within numerous ptajsi 9a Ty
O situations (water waves, plasma waves, laser beams, @lectr iﬁ —ﬂlﬁ - MlaPa= i(7 - 2vk2)a Q)

"(/) magnetic transmission lines,.L) [3, 4] and it is one of thegr
é\?szrgsej;:?r?ésg::z;)‘fﬂcigiéstroph|c growth and generation efaog V\{here,Bl_ _ _—(dcg_/dk)/z _ w/(8K), M = wk?/2, andv is the
Q. The stability properties of the wavetrains rely on the forfim o kinematic viscosity.
[ S H H
the dampingpumping terms in the governing equations which, _Recen@ly We_have derived the wind-forced NLS for stronger
] in the context of water waves, depend on the wind providingVind forcing, with a growth rat€y/  of the wave energy of the
> ‘energy to the systerhl[B, [7, 8]. Modeling theets of wind on ~ Same order as the Steep_n@; [Z8]/ f = O(e). Inthis case, the
O .ocean waves is a very complex task due to turbulence in botRnvelope equation obtained by the multiple-scale pertigiva
[~ the atmospheric and the oceanic boundary layers, and ronliff'€thod at third-order ia reads
earities in the propagation of the gravity waves at the fater. 5 P p
. The problem has been simplified by assuming quasi-laminar {92 _ﬂl_f;‘ ~Malal? = (8,2 + s - 2ivi|a 2
O -airflows [9] through the Miles mechanist [10], quasi-linear ot 7o ox
«— 'theory in wind-wave generation (the Janssen mecharism [11]
<t .and diferent approximations in the wave dynamics (i.e. in thewhere 8, = 3w/(4k) andBs = TI%/(8w). As compared
1 'Navier-Stokes equations or the Euler equations) to obtathm to eq. [1), the latter equation contains two additional ifayc
. .ematical models for the propagation of surface gravity wave terms, namely the terms proportionajgpandps.
= 'which can be handled analytically. The wind can induce ei- In this Letter, we investigate thefects of the wind-forcing
>é ther damping or forcing terms in the resulting equati@}sﬁlz terms in eq.[(R) on the modulational instability (sectioragyl
(Q depending on its speed and direction relative to the wave-pro compare it to the well-known case described by [el. (1) for ref
agation. Many experiments have been performed to invéstigaerence. We show that considering the wave-energy growgh rat
how surface waves and modulational instability affeced by  at the first order in steepness results in widely extendirg th
wind and dissipatior{ﬂﬁ[ll]@ 17], sometimes with-con spectral range of the modulational instability gain. Besidve
trasting results regarding in particular the values of timpging  show (section 3) that the way wind-forcing is considergdas
rates induced by winds blowing slower or opposite to the wavehe ratio of the momentum to the norm of the pulse, that is con-
velocity [ﬁ@ ]. served only if the growth rate is limited to the second order i
The dfect of wind can be modelled in the framework of steepness. We compare this finding with recent sets of experi
the Miles mechanisnEiO] and the potential flow approxima-ments where either the carrier wave amplitude or the irpeéat
tion ] for deep-water waves. The growth rétg/f of the  turbation amplitudes are ficiently large and the modulational
wave energy (normalised with respect to the frequency of thénstability is enhanceﬂiS], suggesting the physicalvahee
carrier wave) is most often taken of the same order as the dissof considering the model given by efj] (2). We discuss the main
pation, hence at thEy/f = O(e?), and the resulting envelope results in section 4 and we draw the conclusions in section 5.
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2. Modulational instability

Benjamin and Feiﬂl] showed that inviscid deep-water wave: ~ 0.012
trains are unstable to small perturbations of other wawe®tr
ling in the same direction with frequencies within the bamhd o 0.01
positive gain. We compare here the modulation instabilitgw
wind forcing terms are included in the envelope equations ir  0.008
two different regimes: low Miles growth ratds,/f = O(e?) _
(that is the well-known standard case that we develop ferref S 0006t
ence) and high Miles growth rat&g / f = O(e).

0.004

2.1. Low growth rates

We review here for reference the standard case where the e 0.002
velope equation is given by el (1). This will be useful toget

- -
g

the formalism and to compare with results obtained when con 0~ 3 o2 o1 0 01 02 03
sidering growth rates at the first order in steepness. ¢
By definingt = wt, & = 2kx, T = Tw/(2w), § = 2vk?/w,
K =T -6, andA = ka/ V2, the equatiori{1) reduces to [8] Figure 1: Band of positive gain for the modulational waveiens ¢ with
1 |As| = 0.1_: low Miles grc_)Wth—rates (dashed red line) and high Mi!eevgh—
A, — EAff _ A|A|2 —iKA (3) (r:ecl)trerzs(psgrlg ﬂgilff/)zm{wf = € = V2|Ag|. Dash-dotted vertical lines

The factorK on the right-hand side can be positive, null or

negative depending on the relative importance of the vigcos Inthe case&K = 0, this diferential equation has constant fibe
terms with respect to the wind-forcing terin The Stokes-like  cients and by settinylo(r) = M &7, one gets the dispersion
wave, which is a solution of ed.](3) independentfiis given  relation [15]

by ¢ [e ,

As(t) = AgeTe ™ b(r) = - (e - 1) (4)
2K In the casek # 0, eq. [IR) is a Sturm-Liouville problern [15]
Note that fork = 0, we geth(r) = |Aol?r, which is valid in ~ Which must be analysed as in 15, 8]. The presence of oscil-
the inviscid case. Following previous studies|[15, [12, Bg t latory or exponentially growing solutions depends on tiya si

I+

Stokes-like wave is perturbed as follows of the factor (%/2 — 2|A¢* €") in eq. [I2). Growing pertur-
bations of the Stokes-like solution appear in a limited eaf
A7) = As(7)[1 +604(£.7)] (5)  modulational wavenumbets [15]
with & infinitesimal and: (£, 7) = M(¢, 7) + iN(&, 7). Substitut- 02 < 4 Ag? €K7 (14)
ing into eq. [B) gives the following system of equations

The stability range expands (contracts) with time in thespre

1 ence of pumpindk = I' = 6§ > 0 (dampingl’ < §), but the
M. - Efo =0 (6) Benjamin-Feir instability gain is independent from the gtm
1 5 ing/damping term[[15,17]. In other words, the dependence on
Nr + EMff +2A'M = 0 O only within the exponential term which appears in the

Stokes wave amplitudés| and determines expansion or con-

By choosing perturbations of the form traction depending on the sign &. The range where mod-

M) = R{Mo(r) €%} (8)  ulational wavenumbers become unstable is shown in Fig. 1,
N(E, = R{Na(r) 9 dashed line, foftAs| = 0.1: The maximum grow?h rqte occurs
(€7) No(r) €7 ©) at* = +V2|Ag| (see vertical dash-dotted lines in Fig. 1)
\évheref is the modulational wavenumber, the previous system Qi€ = ) = |AR 5T = |Ag (15)
ecomes
dMo ffNO _ 0 (10) 22 Highgrowth rates
5 dr 2 Here we conduct a similar procedure in the case of the enve-
dNo (5; _ 2|As|2) My = 0 (11) 'ope equatior{2) obtained from the full nonlinear gravitgve
dr 2 equations when the Miles growth ratdig/f = O(e) [@]. By

: . . defining as before = wt, £ = 2kx, T’ = 'y /(2w), § = 2vk?/w,
which corresponds to the following equatldﬂ[@, 12, 8] andA = ka/ v2, this equation reduces to
Mo * (¢ 2 2Kt . 1 1 .

iz t7 (5 - 2Ad* € )Mo =0 (12) A = SAc — AP = 3T Ac + STPA - 16A (16)



The Stokes-like wave is given by:

I?/2 + Ao

As(r) = Age e (1) = —— > (e~ 1)(17)

Now if we perturb the Stokes-like solution as stated presfpu
(eq. [3)) and we substitute the perturbed wave into[eq. (16),

obtain the following system of equations

1

Me=3Ne —SNee = 0 (18)

1
N: +3TM + Mg + 2/As’M

By choosing perturbations of the form given by efs. [8)93,
system becomes

0 (19)

dMy (2
F + (E - 3i F{’) No = 0 (20)
2
dNo (£ _ 3ir-2As|Mg = 0 (21)
dr 2

which corresponds to the following equation

d2M0 52 . 52 . 2 26T
2 +(E - :Mr)(E - 3T - 2|Aof% e ) Mo = 0(22)

This equation must be compared to €gl (12): in the preseat cas

there are two additional imaginary terms within the paresih
If we neglect viscosity (by setting = 0), this diferential equa-
tion has constant céigcientl and by settingVlo(r) = M e,
we get the dispersion relation

£2 {2
Q = = (7 - 3i£r)(5 - 3ier - 2|AS|2) (23)
= i\/Ql+iQZ = i(QR+iQ|) (24)
where
2 (2 2 2
Q = £l (3 - 2|Ag|” - 180 ) (25)
Q, = -3(r(£-2AsP) (26)
and the real and imaginary part are
Q1+ Q2+ Q2
Qr = \ — (27)
—Q1+ Q7+ 03
Q = \ > (28)

In contrast with the standard cash,is defined for all the mod-
ulational wavenumbers, as shown in Fig. 1 (solid line). ket
more, forf = * = + V2|Ag|, the growth rate is given by

/ 1812
Q¢ =) = |Ag)*+[1
1 ) = |As] +|AS|2

1When viscosity cannot be neglected, €ql (22) is a Sturmdilielproblem
and must be analysed with the same approach usedlin [15, 8].

(29)

Comparing this expression with the corresponding value in
eq. [1%), it is obvious that the form of wind forcing on thelig
hand side of eq[{2) enhances not only the width of the modu-
lational instability band, but also the gain of the Benjashir
instability at each frequency, as can be seen in Fig. 1, Eoéd
The enhancement is directly related to the forcing fattam
eq. [Z3) which, contrary to the second-order case, doesmot a
pear in the Stokes wave amplitughgs|. More surprising, the
enhancement occurs regardless of the sigh,dfe. for both
wind forcing and damping, as can be seen from[gg. (29).

This can be understood by considering that the first term on
the right-hand side of ed.(IL6) plays the role of a modificatib
the wave group velocity under théect of wind [6], i.e. a mod-
ification of the coéicient of the second term on the left-hand
side of eq.[(Ib). It therefore contributes to the phase match
ing necessary to triggeffecient modulational instability. More
specifically, sincé,, A andI' areO(e)-terms, at third-order in
€ (which is the order in the multiple-scale approach where the
NLS equation is obtained) we can replde&; ~ ikI'A: and
thus the two considered terms in €g.](16) can be rewritten as

1 1 3r
— 5P~ 3TA~ —(5 +W)A§f (30)
so that the NLS equation takes the form of eq. (1) in Réf. [7]
with a # 0, which indeed corresponds to the regime where neg-
ative energy modBxan be destabilised and Benjamin-Feir in-
stability enhanced.

As can be seen from Fig. 1, the g& has a local maximum
which occurs for modulational wavenumber slightly lardeart
the standard C£BIZMX| > V2|Ag|. For large modulational
wavenumbers, the dependence of the imaginary Qarbe-
comes asymptotically lineaf); ~ 3|¢|T". Moreover, the de-
pendence of) onT'y/f is shown in Fig. 2, where we can see
that the local maximum disappears at growth rates of therorde
Oer/f ~15e€.

The final spectrum generated by the modulational instgbilit
depends on both the seed of the initial spectrum, and the gain
accumulated over propagation for each spectral compotrent.
the case of the modulational-instability gain as generated
low growth rates]'y/f = O(¢?), the bandwidth is intrinsically
limited but expands in time (foK > 0) to reach high modu-
lational WavenumbethZ]. Conversely, for high growtresat
I'v/f = O(e), the modulational-instability gain band has infi-
nite width from the initial time, thus inducing broadeningloe
initial spectrum and development of turbulence in the prese
of either damping or pumping forc& (< or > 0). Numerical
simulations are required to understand the role of the higti-m
ulational wavenumbers as a function of the initial spectwum
der diferent parameterisation of the wind forcing, and this will
be the subject of a forthcoming paper.

2Energy is relative to that of the carrier waleokes SO that ‘negative en-
ergy’ means thak — Esiokes< O.

3The analytic expression can be easily found using symbetignams like
Mathematica, but it is very long and not particularly illurating.
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Figure 2: Band of positive gain for the modulational waveihenst with |As| =
0.1 for different values of the Miles growth-rakg; /.

3. Effect of the wind-forcing term on the momentum to
norm ratio

The form of the wind forcing as proposed in €g. (2) qualita-
tively affects not only the modulational instability, but also the
conservation of the ratio of the wave momentum to its norm
that are respectively defined @[15]

P=-i foA*dX

and
N = f |Adx

Adding a forcing term of the forrK A as in eq.[(B) destroys the
conservation oN andP, which then evolve in time as follows:
N(t) No ¢t (33)
P(t) Po 2Kt (34)
whereK = I' — 6. Note that the ratio betweelR and N is
constantP/N = Py/Ng [@].

In contrast, the terms proportionalff@nds in eq. [18&) mod-
ify the temporal evolution oN andP as follows:

(31)

(32)

(L—':' = 6IP-25N (35)
% = 6I f |A2dx — 26P (36)

The ratio betwee® andN satisfies the following equation
d/ P\ 6r ) P?

ai(v)- W(f"*x' dx_ﬁ)

Since i [AAdX)? # ([IAJ?dX)([IA”dx), the right-hand

side is in general not zero and thus the ra®ji is not con-

stant in time for forcing with'y/f = O(e). Note that the lat-

ter relation does not depend on the viscosigince the corre-

sponding terms canceled out. Thus, we have found that the ev
lution of the ratioP/N characterises the twofterent regimes,

4

(37)

I'm/f = O(e?) andI'y/f = O(e), and it can be used in experi-
ments to check dierent parameterisations of the forcing terms
in the envelope equation.

4. Discussion

The above calculations show that considering the wind forc-
ing with wave-energy growth ratEy/f at the first order in
the steepness substantially &ects the model outcome. Al-
though the damping of ocean waves in an adverse wind is not
adequately modeled by the Miles mechanisni [24, Chap. 3],
this damping is important and several investigations have
found damping rates comparable to the corresponding growth
rates|[1B[_20]. If this is confirmed, the above work can be also
applied ifT"y stands for a damping term: only its sign needs to
be inverted.

Our finding can therefore be connected with experiments
showing that, in the presence of dissipation, wavetrairth wi
moderate carrier-wave amplitudes conserved the ratig,
while those with large carrier-wave or perturbation anyolés
led to not-conserve®/N and to enhanced modulational insta-
bility [@]. These results cannot be described by damping-mo
eled as in eq[{1), while they can be explained by a model, such
as eq.[(R), where wave-energy damping rates are assumesl of th
order of the steepness, since it formally predicts Byt is not
a constant of motion and broadening is enhanced via stronger
modulational instability . New experiments are requiretketst
in detail this hypothesis.

5. Conclusions

The modulational instability is a fundamental mechanism fo
nonlinear exchanges of energy between carrier and sideband
waves. It is ubiquitous in physic@ [3] and it is one of the mech
anism of rogue-waves formation in deep—wa@r [5]. Since the
wind is the energy source in surface wave propagation, it is
expected that accurate modeling of the wind is critical fior u
derstanding rogue wave formation.

We have investigated how firent forcingdamping terms,
due to the wind action,fiect the band of positive gain of the
modulational instability. In particular, we have consiggthe
recently proposed model of envelope waves [23] which is ob-
tained from the full nonlinear gravity waves equations by as
suming potential flow and the Miles mechanism for the growth
of ocean waves under wind action. Modelling the wind forcing
(or, equivalently, the damping) with rates at the first oriher
wave steepness qualitativelffects the modulational instabil-
ity as well as the conservation of the momentum to norm ratio
of the wave, as compared to weaker rates.

We find that the proposed parameterisation of the wind forc-
ing gives rise to the enhancement of the modulational ilstab
ity, as shown in Fig. 1. The enhanced modulational instabil-
ity is attributed to the fact that the forcing term in the wind
forced envelope equatioll (2) is equivalent to a correctfdhe
wave group velocity under thefect of wind [6, 7], hence al-
lowing phase matching that would be inaccessible withaout it



Thus the proposed parameterisation corresponds ta-teem  [15]
in the NLS model for dissipatively perturbed Stokes waves in
deep water considered in Reff] [7], which indeed leads to th‘fle]
enhancement of the modulational instability.

Furthermore, the transition to a larger modulational ibista
ity as well as a loss in th®/N ratio conservation for larger
growth rates fers an interpretation to previously published ex-
perimental resultslIiS] showing such transition for inseth
carrier-wave or perturbation amplitudes. It therefonesitates
the need to consider all mechanisms of energy exchange with®l
the wave, including dissipation as well as wind-forcinghatir 1
right order to avoid underestimating them.

In summary, we have found a form of wind forcing which
enhances the modulational instability and gives rise tatia ra
between momentum and norm which is not conserved in time.
Tank and numerical experiments are needed to confirm if thedei]
effects are physically realisable. The enhancement of the modu
lational instability on broad and narrow-banded spectratrha [22]
analysed through numerical simulations to understand in pa
ticular the role of high-frequencies sidebands on the epel
evolution.

(17]

[20]

(23]

We thank Prof. Frédéric Dias for useful discussions. [24]
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