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Abstract. This article presents a numerical quadrature
intended primarily for evaluating integrals in quantum
chemistry programs based on molecular orbital theory,
in particular density functional methods. Typically,
many integrals must be computed. They are divided up
into different classes, on the basis of the required
accuracy and spatial extent. Ideally, each batch should
be integrated using the minimal set of integration
points that at the same time guarantees the required
precision. Currently used quadrature schemes are far
from optimal in this sense, and we are now developing
new algorithms. They are designed to be flexible, such
that given the range of functions to be integrated, and
the required precision, the integration is performed as
economically as possible with error bounds within
specification. A standard approach is to partition space
into a set of regions, where each region is integrated
using a spherically polar grid. This article presents a
radial quadrature which allows error control, uniform
error distribution and uniform error reduction with
increased number of radial grid points. A relative error
less than 10~ for all s-type Gaussian integrands with
an exponent range of 14 orders of magnitude is
achieved with about 200 grid points. Higher angular /
quantum numbers, lower precision or narrower expo-
nent ranges require fewer points. The quadrature also
allows controlled pruning of the angular grid in the
vicinity of the nuclei.

Key words: Numerical quadrature — Molecular orbital
theory — Density functional theory

1 Introduction

Quantum chemistry of polyatomic systems has usually
relied on fast evaluation of analytic formulae, made
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possible by the use of Gaussian basis sets introduced by
Boys [1] and developed into highly efficient algorithms
such as the McMurchie-Davidson method [2], the
Obara—Saika method [3] and the Rys—Gauss quadrature
[4-6]. However, the increasingly important density
functional theory (DFT) requires systematic evaluation
of integrals of a complicated nature, for which there are
no basis functions that allow simple closed formulae, but
whose integrands are easily evaluated at arbitrary points
in space. Such integrals are then best computed by
numerical quadrature. In 1988, Becke [7] proposed the
partitioning of the molecular integral into single-center
components, each of which was evaluated by numerical
quadrature using spherical polar coordinates. This is not
necessarily the best strategy, but it is a simple and well-
defined approach which has been adopted by most DFT
programs. However, the radial integration formula used
by Becke gives only a five- to six-figure accuracy of the
integrals. Better schemes have been introduced. Some
important contributions are those of Murray, Handy
and Laming [8], Treutler and Alrichs [9] and Mura and
Knowles [10]. Also the angular integration has been
much improved by the Lobatto (see, for example, Ref.
[9]) and Lebedev approaches [11]. The partitioning
technique has been studied [12], considerations of
linear-scaling have attracted attention [13] and adaptive
integration schemes have been suggested [12, 14, 15].
Nevertheless, it seems that the errors introduced by the
radial integration are still unacceptably large in many
applications and are not easily controlled by the user.
Examples of shortcomings of the numerical quadrature
are given by Tozer and Handy [16], in computing
excitation energies to Rydberg states with a DFT
approach, and by Mura and Knowles [10], who, in
analyzing the error of the so-called LOG3 scheme, noted
that the LiH and LiF molecules had to be eliminated
from the test set owing to the poor precision of the
integrals for these two molecules.

The present article suggests a rather simple and
straightforward radial quadrature scheme to eliminate
such problems. Each batch of integrands is characterized
by the highest and lowest exponent of a set of Gaussian



functions, and the user, or rather the integration pack-
age, specifies that all integrals of a certain standard type
should be integrated to within a certain accuracy. By
explicit and simple formulae, integration points and
weights are determined such that the numerical quadr-
ature meets these requirements. The actual integrals to
compute are, of course, not exactly of the standard type
that defines the quality requirements (if they were, nu-
merical quadrature would not be the preferred method).
The assumption is just that the user will express his re-
quirements in this form, which is also natural for such
molecular orbital programs that are based on expansion
in Gaussian basis sets.

The most common previous methods are reviewed in
Sect. 2 and their errors are compared to analytic results.
The design of the new quadrature is described in Sect. 3
and its performance is compared to that of previously
used methods in Sect. 4. Finally, the article ends with a
conclusion.

2 Review of some standard radial quadratures

The accuracy of numerical integration schemes for DFT
is usually assessed by the error in the integrated density
and sometimes also the Slater—Dirac exchange functional
for some set of molecules. In the former case, accurate
results are obtained from analytic integrals; in the latter
case the number of grid points in the numerical
quadrature is increased until the evaluated integral
appears to have reached a stable value. We have noted
examples where an apparently stable value is in fact of
quite poor accuracy.

Here, we follow a different approach, by simply
studying the error of a test set of Gaussian integrands
rather than molecular integrals for some set of mole-
cules. The reason is that we wish the integrals to be
reliable for any basis set, including possibly very sharp
core orbitals or extremely diffuse ones, or Rydberg
funtions. This means that the grid must be basis-set
dependent, and we wish to find simple criteria for
obtaining close-to-optimal integration formulae, as
defined by the precision requirements. We compute
the integration error in the self-overlap integral of
normalized Gaussians as a function of the Gaussian
exponent.

The exponents used in the 6-31G and the ANO-L
basis sets for the first 30 elements are shown in Fig. 1.
The logarithm of the Gaussian exponent is seen to lie in
the range —3 to 7. The lower exponents are especially
important for alkali and rare-earth metals. The lower
range of —3 is expected to be unchanged if other ele-
ments of the periodic table are included and it will have
to be lowered only for extreme cases such as Li~ or for
the higher Rydberg states. The high end of the range
must be increased for heavier elements, where the loga-
rithm of the exponent may become as large as 12-14,
or even higher in relativistic work if a point nucleus is
assumed.

In the following, the integration error of various
melghods will be studied for the exponent range 107°—
10",
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Fig. 1. The logarithm of the highest and lowest Gaussian expo-
nents of the 6-31G and ANO-L basis sets for the first 30 elements of
the periodic table

2.1 The Becke scheme
The scheme of Becke [7] is based on the coordinate
transformation

1 +x
1—x

r=a (1)
using points in —1 < x < 1 and standard Gauss—Cheby-
shev quadrature of the second kind for the x-space
quadrature. o is a parameter corresponding to the
midpoint of the integration interval at x =0, which
was chosen to be half the Bragg—Slater radius, except for
hydrogen, for which the whole Bragg—Slater radius was
used.

2.2 The Murray, Handy and Laming scheme

The EM grid of Murray et al. [8] is defined from the
Euler—Maclaurin approach by the transformation

r:oc( al )m (2)

1 —x

Use of the Euler—-Maclarin formula converts the integral
to a sum over an equidistant grid, plus correction terms
that depend on the derivatives at the end of the interval.
Depending on the value m, a few of these derivatives are
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automatically zero. The rest are ignored, yielding a
formula with equal weights and yet of high order.
However, for any given number of points, it cannot be
generally assumed that increasing orders give higher
accuracy. Ultimately, the break-even step size gets
smaller and smaller when m is increased, and the
Euler—Maclaurin series does not converge.

Murray et al. chose the exponent m = 2, and the « is
the Bragg—Slater radius.

2.3 The Treutler and Alrichs scheme

The so-called M4T2 scheme of Treutler and Alrichs [9] is
based on the transformation

rzﬁ(ljtx)o‘(’ln(lzj) » (3)

using standard Gauss—Chebyshev quadrature of the
second kind for the integration over x. The scaling
depends on the atom type and is in the range 0.8-2.0.

2.4 The Mura and Knowles scheme

The so-called LOG scheme of Mura and Knowles [10] is
based on the transformation

r=—aln(l —x") , (4)

with 0 <x <1 and a simple Gauss quadrature over x.
Recommended values are m =3 and o= 5.0 (7.0 for
alkali and rare-earth metals).

2.5 Properties of existing radial quadratures

The precision of the four methods (Becke, EM, M4T2
and LOG?3) was studied by evaluating the integral

25 (1+3)/2

—1_[(1+ 73 / rlexp(—ar?)r?dr=1 . (5)

0

Such integrals arise, for example as the overlap of
Gaussian basis functions with / equal to the sum of the
two angular quantum numbers and « equal to the sum of
the exponents. In all cases, we used an exponent range
o € [1073,101).

First, integrals with / =0, corresponding to s-type
Gaussians, were evaluated using radial grids with 50, 100
and 200 points. Secondly, a grid with 100 points was
used with / = 0,2,4,20 and 40. The lower / values will of
course occur simply as basis function products. The very
high [ values may occur in some schemes, where the
space is subdivided into very nonspherical regions.

The results of the test are presented graphically in
Figs. 2 and 3, where the logarithm of the computed
integrated error is plotted as a function of the logarithm
of the Gaussian exponent.

In the first test (with / = 0), the M4T2 and the LOG3
schemes give almost the same precision, down to errors
of about 10712, The better accuracy of the LOG3 scheme

in the middle exponent range, where the errors are al-
ready very small, is probably not important. The EM
and Becke schemes are similar, but the former is much
better for low exponents. All the radial quadratures have
a short high-accuracy range (logarithm of relative error
smaller than 107'°) for grids of 50 points. The M4T2 and
LOG3 scheme have here a wider range of accuracy
compared to the EM and Becke schemes (3 orders of
magnitude difference of the Gaussian exponent com-
pared to about 1 order). As the number of grid points is
increased, we note again that the EM and Becke
schemes, although not completely identical, are similar.
While the EM and Becke schemes show a more or less
uniform accuracy improvement over the whole Gaussian
exponent range, the M4T2 and LOG3 schemes place
virtually all the improvement in the range of contracted
Gaussian functions. The rate of improvement in the
diffuse range for the M4T2 and LOG3 schemes seems to
be so slow that an apparently stable result, with respect
to grid size, could easily be mistaken to indicate an
accurate result. The larger set of 200 quadrature points
gives a range of accuracy better than 10~'% of about 4-5
orders of magnitude difference of the Gaussian exponent
regardless of the scheme.

In the second test, the error for the EM and Becke
schemes improves with higher angular momentum (up to
[ =4 approximately), but it does not improve for M4T2
and LOG3. On the other hand, the latter methods have
more or less the same precision regardless of the angular
momentum. This is a bit surprising — an increase in the
angular momentum means that the functions fade faster
close to the nuclei and could be integrated accurately
with fewer grid points. For the same reason, we would
expect to see an extension in the accuracy range as we
increase the angular momentum. This is indeed observed
for the Becke and EM schemes. The reason for this not
being observed for the M4T2 and LOG3 schemes is that
these schemes have crowded the quadrature points such
that the computed accuracy is already of machine ac-
curacy, or better, in the high-accuracy range. Thus, as
the angular momentum is increased, no improvement
can be observed, since the numerical experiment is lim-
ited by the machine accuracy. As for the very high an-
gular momentum functions, all quadratures investigated
here exhibit a small and narrow range in which accuracy
is achieved.

As will be seen shortly, the performance of the radial
integration scheme can be much improved. That there is
also a need for such improvement in existing DFT
programs is shown already by two cases mentioned
earlier, and we may add the fact that computation of the
nuclear gradient can be sensitive to the orientation of
the atomic grids. The list of cases could, of course, be
extended at will by studies of heavy elements, NMR
studies, anionic systems or Rydberg states; however, the

|

Fig. 2. The logarithm of the integrated error as a function of the
logarithm of the Gaussian exponent as obtained for 50, 100 and 200
radial quadrature points for a the Becke scheme, b the EM scheme,
¢ the M2T4 scheme and d for the LOG3 scheme
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Fig. 3. The logarithm of the integrated error as a function of the
logarithm of the Gaussian exponent of /=0 (product of s
functions), / =2 (product of p functions), / =4 (product of d
functions), / = 20 and / = 40 as obtained in a 100 radial quadrature
points approach for a the Becke scheme, b the EM scheme, ¢ the
M2T4 scheme and d the LOG3 scheme

point has already been made, and it is obvious that for
any fixed recipe there will be extreme cases that are
handled poorly. It is also obvious that any of the four
schemes studied so far could quite easily be modified to
encompass any of the cases that were handled less well.

It is thus clear that one scheme cannot be regarded as
more precise than another, unless perhaps if one scheme
has a smaller integration error than the other in a very
wide range of exponents in a study such as the one
described earlier. In fact, our proposed scheme seems
close to optimal in that sense, but our strongest argu-
ment for a new quadrature is the fact that it can be
designed by reliable formulae to meet any specific
demand on precision within any required exponent
range and is thus easily adapted to the specific needs of
any particular integrand, or group of integrands — up to
the limits dictated by machine precision, of course.

However, the accuracy and the complexity of a DFT
calculation depends only to a limited extent on the radial
integration itself. An unsuitable partitioning scheme can
make extreme demands on the precision of the angular
integration and can yield radial integrands with sharp
features that in themselves require a dense grid. In the
literature it has been reported that numerical stability
may require accurate integration of functions with up to
I = 60. The size of a reasonable highest-/ value depends
on the sharpness of so-called switching functions. It is
clear from the results exhibited here that the earlier
studies of the partioning scheme must have disfavored
the use of softer switching functions, owing to the lack of
accuracy of the radial grid for these kinds of integrands.
It may be that a more accurate radial grid will allow
softer switching functions, which, in turn, will require
lower / values for an accurate overall integration. Hence,
the more accurate radial integration could effectively
allow a smaller overall grid.

3 Theory: design of the new radial quadrature
3.1 Design criteria and the test set

The main thought is to have a point/weight generating
formula that for any case within a broad range of
possible applications could provide a quadrature scheme
with specified properties. The minimum requirements
are formulated in terms of a test set

T(myop, o) (6)
consisting of the functions
f(}"; m, OC) _ rm+2€7fxr2 , (7>

where m is a small integer larger than —3 and « is in the
range op < o <ay for f € T(m,ar,on). This set then
represents the possible integrands.
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The integral
1M (o) = / P2 dr (8)
0

is positive. We wish to find {r,w;} such that the
quadrature

S (o) =" wif (ris m, ) 9)

has a relative error, R™, within specified limits for all
functions in the test set:

m
< M <14+R™ .

J(m) (O()

The interesting test sets are those where o and ay differ
by several orders of magnitude and the required relative
error is 10~% or better, with no lower limit.

This set of points and weights will be a function of
four input parameters: the power m; ap; oy; and the
required precision.

The requirements will be met by choosing three
variable parameters: essentially the smallest and largest
rr and the number of points.

1 —R™ (10)

3.2 The discretization error

For test functions with o well in the interior of the
required range, a well-designed quadrature will have an
oscillating error, with the highest possible number of
nodes. In this range, the error is fairly insensitive to
the end points op, o, and it is simpler to design the
discretization error for the test set T(m,—00,00).
Scaling-symmetry suggests that an exponential radial
grid is used. The variable substitution

r=e | (11)

[rerar= [ rrnea (12

0 —00

together with the infinite quadrature

e =e (13)

Wi =7 , (14)

S= > wf(n) , (15)
k=—00

is easily seen to lead to an error that is periodic in Ina,
with the period Alno = 2/ and an average value of 0.
Thus it is, if not optimal, at least very close to an optimal
solution, when boundary effects are ignored.

The size of the discretization error is easily deduced
from a quantitative analysis along the same lines as the
sampling theorem, together with elementary Fourier
transform theory: the relative discretization error oscil-
lates with the amplitude



I'[(m+3)/2 — ni/h]
I[(m+3)/2]

R ~ (16)

The integral could be computed exactly from the discrete
sample if the Fourier transform of the integrand had
support within the maximum bandwidth allowed by
the sampling theorem. The formula follows from the
assumption that the error is completely dominated by
the lowest-frequency Fourier components outside this
band width.

Gauss’ duplication formula provides a good estimate
of the absolute value of the gamma function with com-
plex argument:

Rg) ~ @e_“z/y’ , (17)
RY ~ {T(3/2)/T((m +3)/2]}(=/h)"*RY) . (18)

This formula is very accurate, as verified by numerical
experiments.

3.3 The truncation error from the largest ry value

The use of an upper limit £ < ky instead of co causes a
truncation error which is largest for the test function
with o = o . The numerical experiments show that this
error is in all cases smaller than the approximate integral
to the right of ry,, which gives a relative error less than

(19)

The truncation error is usually more than an order of
magnitude smaller than this, but it also varies very
rapidly with the choice of ry,, — thus, this formula is good
enough for determining the upper cutoff. There seems to
be no reason for modifying the distribution of points
near this end point.

R~ T(m+3)/2) (o, ) Te o .

3.4 The truncation error from the smallest r values

At the lower end of the summation, the effect of a
truncation is quite different. Here, the truncation error is
largest for test functions with o = oy, and it is also very
dependent on m. To get an efficient distribution of points
in this region, the quadrature scheme is modified in two
ways. First, the distribution is made much more even
close to the origin, by a slightly different variable
substitution

r=cle—1), (20)
f(rydr= [ flr(t)]ce'dt , (21)

[rom=]

and thus

re=cE" 1), (22)

Wy =T1r+c, (23)

S= iwk f(re) (24)
k=0

This modification has a negligible effect on the previous
error analysis.

Second, the first few weights are further modified by
multiplying them with the weights of Gregory’s semiin-
finite quadrature formula. The Gregory formula is ob-
tained from the Euler—-Maclaurin one by replacing the
derivatives in the end points by asymmetric difference
formulae using the few points at the very end. In our
case, we used the three points closest to the origin (and
also the origin itself, for / = —2).

The resulting truncation error, Ry, has been deter-
mined experimentally to be well-described by the
formula
In(1/Ry) + 723

Inoyri = Dy, (25)

and the values of D, were found to be D_, =9.1,
Dy=19, D, =—-1.0 and Dy = —2.3. Equation (25) is
used to define the range of the radial grid; however, it
can also be used to determine how higher-order angular
grids can be reduced without any loss of accuracy near
the nucleus. A similar reduction based on an ad hoc
approach as defined by a so-called crowding factor has
been used elsewhere [8] but with no control over the
error caused by the truncation of the angular grid.

3.5 The recipe

Given a specific power, m, and the required relative
precision, R, a step size, A, is found for which the
discretization error is Rp = R. Given the exponent
oy of the most diffuse test function, determine the
outermost point, r,, such that Ry ~R. Given the
exponent oy of the most compact test function,
determine the point r; such that Ry =~ R. From these
parameters, we obtain

c=r/e"-1), (26)

ku =In(1+ru/c)/h . (27)

If m # =2, the point ry = 0 is left out, so the number of
points is kg (which, of course, is rounded to the nearest
integer). For m = —2, this point must be included.

4 Results and discussion

In order to compare the new scheme with the ones
studied in Sect. 2, we specified the exponent range to
[0.1,10°], i.e. 6 orders of magnitude, and then adjusted
the requested accuracy to get a number of quadrature
points close to 50, 100 and 200 points. However, it
turned out that even with an error as low as 10714, we
needed only 128 points. Since it would be pointless to
increase the precision of the formulae beyond that
allowed by the machine precision, we increased the
requested range and found a suitable comparison case
with an error of 107'# and an exponent range of 14



orders of magnitude and 197 integration points. The
results are presented in Figs. 4-6.

The design parameters of the new grid include the
angular dependence through /. Usually, a direct-product
grid is used for the 3D integration, and the grid must be
able to handle integrands with many different angular
dependences. If this is the case, a “hybrid”’ grid must be
used for the radial integration.

We compare here the results of the normalization
integrals for an s, a p and a d function for which the
radial grid contains 102, 90 and 85 points, respectively,
for a requested range of accuracy of 0.1-10° and a
largest relative error of 107! (Fig. 5). It is observed that
the new radial grid provides us with the requested ac-
curacy. The lower angular momentum functions require
a larger grid than the higher angular momentum func-
tions for the same exponent range and accuracy. The
parameters A, r; and r; of the grids were (0.152,5.95x%
1077,17.31), (0.140,1.03 x 1073,17.31), and (0.131,4.40
x1073,17.31) for the s, p and d functions, respectively.

Here we observe that the lower angular momentum
functions require a longer range for r, while the higher
angular momentum functions require a smaller 4. In
order to create a hybrid grid which integrates the given
basis set not worse than some given threshold, the

extreme values have to be used in the construction of the
final basis set.
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Fig. 5. The logarithm of the integrated error as a function of
the logarithm of the Gaussian exponent of s, p and d functions

as obtained for the new radial quadrature optimized for each
individual angular shell

The result of such a hybrid quadrature is presented in
Fig. 6. In this scheme we have taken the 4 value of the d
functions and the | value of the s function. The resulting
grid has 118 points.

The error is no longer uniformly limited to 10~ over
all the values of /, so this grid cannot be optimal for the
extended test set with several / values. In fact, that is
probably impossible to achieve with a direct-product
grid. However, no error in the requested Gaussian
exponent range is larger than the requested largest
acceptable error. As expected, the s functions are in-
tegrated to an accuracy better than requested in the
desired Gaussian exponent range and the higher order

angular functions will have an accuracy which extends
far beyond the requested Gaussian exponent range.

The size of the complete grid can be cut down by
using the individual 7| (/) values to determine the size of

the angular grid. As can be seen in Fig. 7, there is hardly
any loss in accuracy.

5 Conclusions

The proposed quadrature offers a near-optimal solution
to a well-defined class of “‘tactical” problems. However,
it is clear that the search for very efficient numerical



186

New Radial Quadrature
Hybrid grid, 118 points

01 T
4
o o =0
%‘( n |=2
A x |=4
a4
-
-5 b <
- g
e o
pe L]
9]
[ S
= u
© o
] i
T o
=)
9 ]
o
-10 =
-15
-5

10
Log(Gaussian exponent)

Fig. 6. The logarithm of the integrated error as a function of the
logarithm of the Gaussian exponent of s, p and d functions as
obtained in a 118 hybrid radial quadrature designed to integrate all
functions no worse than the requested accuracy

integration techniques for quantum chemical calcula-
tions must be in the ‘“‘strategical” direction. A large
number of integrals, with very different size and different
distribution in space, must be computed. The integrals
must therefore be divided up in different classes, of
which some may be ignored completely, others treated
by low precision and a few must be computed with the
highest accuracy. The possibility of such screening is
intricately involved with the partitioning scheme. The
choice of integration method within the regions depends
strongly on the partitioning scheme, and it is not at all
obvious that a radial-times-angular grid is the correct
tactical choice for each region. An adaptive integrator
using the finite element method may be the final choice.

We have initiated a study of useful known, and
promising new, integration schemes; however, we ad-
dressed only the radial integration problem itself. For
this problem, we argue that a flexible scheme, with
specified accuracy and range of applicability as param-
eters, can be used. The family of radial grids presented
here is parameterized by the required accuracy in a test
set of integrals and by the range of exponents and the
angular dependence of the integrands in this test set.
Simple formulae define a grid such that the relative error
of any integral in the test set is smaller than or equal to
the specified threshold. The approach gives a near-

New Radial Quadrature
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Fig. 7. The logarithm of the integrated error as a function of the
logarithm of the Gaussian exponent of s, p and d functions as
obtained in a 118 hybrid radial quadrature points approach for the
new radial quadrature evoking the controlled angular pruning as

suggested by the truncation formula for radial quadrature points
close to the nuclei

optimal grid for purely radial integration of the type that
is encountered, for example, in DFT calculations.

This optimality is by necessity compromised when
such a grid is used as part of a direct-product grid of
radial-times-angular point sets. Our approach is still
useful: at least for smaller / quantum numbers, grid
parameters can be selected from those which are optimal
for the smallest and largest / values to result in a grid
that integrates several functions within the specified ac-
curacy. It is no longer guaranteed that the number of
integration points is very close to the minimum possible,
but it should not become much larger. Also, the grid
parameters make it possible to use a composite grid,
where fewer angular points are used close to the nucleus.

The requirement that also very high / quantum
numbers should be integrated correctly results from the
usual strategy of breaking up the space into smaller in-
tegration regions. If these regions are very nonspherical,
and if the switching functions are sharp, this puts very
large demands on the angular grid and also, to some
extent, compromises the optimality of the radial grid. It
is argued that the reverse relation may also be true: if the
radial grid also allows high precision for more diffuse
functions, smoother switching functions may be used.
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