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ABSTRACT

In animals, the expression of genes is a regulated process shaping cellular gene expression
profiles, at the origin of tissue identity. While transcription factors regulate the expression of
genes at the transcription level, microRNAs (miRNAs) induce a post-transcriptional repres-
sion of protein-coding genes. Embedded in the RNA-Induced Silencing Complex (RISC),
miRNAs act as a recognition element for driving the RISC to repress targeted mRNAs. Re-
pression is mainly achieved by degrading targeted mRNAs, but also by inhibiting translation.
Although identification of miRNA targets remains challenging, partial base pairing between
the miRNA 5’ region, the so-called “seed”, and the targeted mRNA in its 3’-untranslated
region (UTR) triggers repression of mRNA expression. As the human genome encodes over
1000 miRNA genes, searching for miRNA seeds identifies many potential targets. For exam-
ple, simple seed-match searches suggest that miR-122 has about 13’300 potential target sites
in 3’-UTRs of about 7'600 human genes.

Prioritization of targets for any miRNA functional analysis is therefore of critical impor-
tance. This necessitates the ranking of potential miRNA targets bearing a seed-match, not
only predicting in a binary manner if an mRNA is a target or not. A biologically meaning-
ful ranking criterion is the miRNA-mediated repression strength that can be experimentally
measured as the effect on mRNA or protein levels. I employed a collection features to com-
putationally predict the miRNA repression strength from additional information beyond the
seed-match, and thereby rank putative miRNA-mRNA interactions in a biologically relevant
manner.

I developed an open source software library, miRmap, which for the first time com-
prehensively covers thermodynamic, evolutionary, probabilistic, and sequence-based ap-
proaches. Accessibility of mRNAs to miRNA binding and stability of miRNA-mRNA du-
plexes were estimated with RNA-folding algorithms. The significance of the target site’s
evolutionary conservation was assessed non-empirically with the Siepel, Pollard, and Haus-
sler test, which evaluates the significance of negative selection. The statistical significance
of seed occurrence(s) in 3’-UTR sequences was calculated with an approximate, but also an
exact probability distribution. In total, eleven features are implemented in miRmap, three of
which are novel.

The predictive power of miRmap features was evaluated in an unbiased way using high
throughput experimental data from immunopurification, transcriptomics, proteomics and
polysome fractionation experiments, covering recognition, mRNA stability and translational
miRNA-mediated repression aspects. Overall, target site accessibility is the most predictive
feature. My linear model combining all features almost doubles the predictive power of the
renowned TargetScan tool. It increases the proportion of variance explained from 7.5% to
13% of miRNA over-expression effects measured at the transcriptome level. Prediction fea-
tures were also tested with experimental data, obtained in collaboration with Swiss research
groups, on tissue samples instead of cell line cultures: I investigated the role of miR-122 in
the regulation of the hepatocyte transcriptome, of miR-155 in dendritic cell maturation and
function, and the effects on transcriptome of knocking-out all miRNAs in mouse testis.

Available as an open source Python library, miRmap establishes a solid foundation for
the future development of approaches to miRNA target prediction, facilitating meaningful
comparisons between existing and new features, and providing the community with direct
access to state-of-the-art analytical tools.






RESUME

Chez les animaux, 1’expression des genes est un processus régulé qui aboutit aux profils
d’expression cellulaire des génes, eux-mémes a l'origine de l'identité tissulaire. Alors que
les facteurs de transcription régulent I’expression des génes au niveau de leur transcription,
les microARN (miARN) induisent une répression post-transcriptionnelle des genes codants
pour des protéines. Chargé dans le RNA-Induced Silencing Complex (RISC), les miARN ser-
vent d’élément de reconnaissance pour diriger le RISC vers les ARNm ciblés. La répression
s’effectue principalement par la dégradation de I’ARNm ciblé mais aussi par 1'inhibition de
la traduction. Bien que l'identification des cibles des miARN reste difficile, un appariement
partiel entre la région 5 du miARN, dite «région d’ancrage», et la région 3’ non-traduites
(RNT) de I’ARNm ciblé provoque la répression de 'expression de 'ARNm. Le génome de
I’'Homme codant pour environ 1’000 genes de miARN, la recherche des régions d’ancrage
de miARN permet l'identification d’un grand nombre de cibles potentielles. Par exemple,
une simple recherche de région d’ancrage suggere que le miR-122 a environ 13’300 cibles
potentielles dans les 3’-RNT d’environ 7’600 génes.

Dans le cadre d’une analyse fonctionnelle, le choix des cibles a inclure dans 1’étude est
ainsi primordial. Ce choix nécessite un classement des cibles potentielles des miARN, et
non une simple prédiction binaire qui distingue les ARNm ciblés de ceux qui ne le sont
pas. Un critére de classement, qui fait sens d"un point de vue biologique, est I'intensité de la
répression associée au miARN. La mesure de cette intensité peut étre l'effet sur les quantités
d’ARNm ou de protéines et a donc un sens biologique. J'ai utilisé une série de critéres pour
prédire in silico l'intensité de la répression associée au miARN, a partir d’autres informations
que la seule présence d’une région d’ancrage.

J’ai développé une librairie, nommée miRmap et dont le code est librement accessible, qui
pour la premiere fois couvre les approches thermodynamique, de 1’évolution, probabiliste
et fondée uniquement sur la séquence. L’accessibilité des ARNm a l'appariement avec un
miARN et la stabilité des paires miARN-mRNA sont estimées en utilisant des algorithmes
de repliement d’ARN. La significativité de la conservation des sites cibles est évaluée par le
test non-empirique de Siepel, Pollard et Haussler, qui mesure la significativité de la sélec-
tion négative. La significativité statistique de la présence des régions d’ancrage dans les
séquences des 3'-RNT est calculée grace a une approximation ainsi qu’avec une solution ex-
acte de la distribution de probabilité. Au total, onze criteres sont implémentés au sein de
miRmap, dont trois critéres originaux.

Les performances des critéres de prédictions de miRmap ont été évaluées de fagon non-bi-
aisée en utilisant des données d’expériences a haut-débits d’'immunopurification, de tran-
scriptomique, de protéomique et de fractionnement de polysomes, qui couvrent les différents
aspects de répression par les miARN tels que la reconnaissance des cibles, la stabilité de
I’ARNm et la traduction. Généralement, 1’accessibilité du site cible est le meilleur critére
de prédiction. Mon modele linéaire qui combine I’ensemble des critéres de prédiction dou-
ble presque les performances de 1'outil de référence TargetScan. Il accroit le pourcentage
de variance expliquée de 7.5% a 13% des effets d"une sur-expression de miARN mesurés au
niveau du transcriptome. Les critéres de prédiction ont aussi été évalués avec des données
expérimentales produites a partir d’échantillons de tissue, obtenues en collaboration avec
des laboratoires de recherche suisses, au lieu de cultures cellulaires: j’ai examiné le role de



RESUME

miR-122 dans la régulation du transcriptome des hépatocytes, de miR-155 dans la matura-
tion et le fonctionnement des cellules dendritiques, ainsi que les effets sur le transcriptome
d’un knock-out de tous les miARN dans le testicule de souris.

Disponible sous forme de logiciel libre écrit en Python, miRmap établit de solides fon-
dations pour les développements futurs des méthodes de prédiction des cibles de miARN,
en facilitant les comparaisons entre les outils existants et nouveaux et en donnant acceés a la
communauté a un outil d’analyse de pointe.
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INTRODUCTION

3.1 Biology and evolution of miRNAs

In the central dogma of molecular biology (Crick [1]), the most important class of RNA is
messenger RNA (mRNA). In the past, mostly non-coding RNAs (ncRNAs) associated with
translation, such as transfer RNA (tRNA) and ribosomal RNA (rRNA), were described. Re-
cently, new classes of ncRNAs have been discovered like small interfering RNA (siRNA) and
microRNA (miRNA). About 20 years ago, studies in the worm Caenorhabditis elegans led to
the discovery of the first miRNA, lin-4 (Lee et al. [2]). Most of the characteristics of lin-4 were
later extended to the numerous miRNAs that were discovered. The lin-4 gene is intronic, as
a substantial part of today’s known miRNAs. The lin-4 small regulatory RNA was found to
be responsible for the decrease of lin-14 protein level. It acts post-transcriptionally through
RNA-RNA interaction with the lin-14 mRNA by partial complementary pairing to seven pos-
sible sites in the 3" untranslated region of lin-14. The pairing between the 5" end of the miRNA
and the mRNA was later described to be a general requirement for target recognition: mu-
tations in this region, called the “seed”, disrupt miRNA-mediated repression (Brennecke et
al. [3]).

While the majority of miRNA genes are found in intergenic regions, about 30% of miRNA
genes are located on the sense strand of coding-gene introns (Rodriguez et al. [4]). Although
these miRNA genes can have their own regulatory elements, most of them are transcribed
together with the host gene. The transcription of miRNA genes into long primary miRNA
(pri-miRNA) is generally performed by RNA polymerase II (Figure 1). Once transcribed,
these pri-miRNAs adopt a stem-loop structure that is recognized by an RNAse IlII-like en-
zyme, the Drosha protein. Drosha releases a precursor miRNA (pre-miRNA) of 60 to 70 nu-
cleotides. Additionally, intron splicing can directly generate a pre-miRNA from a so-called
mirtron, in a Drosha independent pathway, when the intron already adopts the pre-miRNA
structure. The pre-miRNAs are exported into the cytoplasm by exportin-5, where they are
processed in miRNA/miRNA* duplexes by the cytoplasmic Dicer enzyme. Only a sin-
gle-stranded mature miRNA is kept and bound to an argonaute (Ago) protein to form the
core of the RNA-Induced Silencing Complex (RISC) (Bartel [5]), while the passenger strand,
named miRNA¥, is discarded. Vertebrates have four argonaute proteins. The mammalian
Ago2 and the Drosophila Agol have also a slicer activity (Liu et al. [6]).

The miRNA reference database, miRBase (Kozomara and Griffiths-Jones [7]), currently
contains approximately 1500 miRNA genes for human, 750 for mouse, 240 for Drosophila
melanogaster, and 220 for Caenorhabditis elegans. The miRNA genes are also found outside
the bilaterian clade. Eight putative miRNAs were indeed found in the sponge Amphimedon
queenslandica at the root of Metazoa, but miRNAs are lost in Trichoplax adhaerens (Grimson et
al. [8]). The miRNA repertoire expanded during the metazoan evolution and expanded even
further for vertebrates (Grimson et al. [8] and Kozomara and Griffiths-Jones [7]). MiRNA
genes are absent from Saccharomyces cerevisiae and present in plants with 300 miRNA genes
in Arabidopsis thaliana, yet with a different biogenesis. They are often organized in clusters,
next to each other: up to 40% of miRNAs in animals are clustered. Most of these clusters
(80% to 95%) are composed of miRNA genes encoding unrelated mature miRNAs, implying
a different mode of evolution than amplification by duplication (Axtell et al. [9]) as this mode

11
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Figure 1 Biogenesis pathway of miRNAs. miRNA genes are first
transcribed, then recognized and processed by the Drosha en-
zyme, before being exported from the nucleus to the cytoplasm.
An alternative pathway through direct intronic sequence export,
called "mirton", is also depicted. The RNA duplex is processed
by the Dicer enzyme, and a single RNA strand is loaded into
the RNA-Induced Silencing Complex (RISC). The mature RISC
binds to 3’-UTRs, and inhibits mRNA translation mainly through
mRNA destabilization. The key factor in this process is GW182.
(Adapted from Daniel Gerlach, personal communication)

of evolution implies the presence of identical miRNA clusters. Due to the low complemen-
tarity of miRNA targeting in animals, it it conceivable that new miRNAs appear through de
novo emergence from the transcription of the many existing hairpins in the genome. Indeed,
the human genome contains 11 million hairpins (Bentwich et al. [10]) that, once transcribed,
can potentially give rise to a functional mature miRNA. As nascent miRNAs can diminish
the quantity of many mRNAs, they are expected to be expressed at low levels, as they could
otherwise have very deleterious effects. They would then either disappear or their expres-
sion level would increase due to the advantageous nature of the new regulation. This theory
is supported by the fact that (i) among highly expressed miRNAs, all are deeply conserved
(for example to the level of vertebrate for human), and that (ii) nascent miRNAs have low

12



Biology and evolution of miRNAs INTRODUCTION

levels of expression (Berezikov et al. [11]). Despite the abundance of hairpins, new regu-
lation would rarely arise from newly transcribed hairpins, as most of them would not be
recognized by Drosha and processed efficiently (Berezikov et al. [11]). Yet natural selection
can also act to select hairpins better processed by Drosha to increase the efficiency and the
level of the beneficial miRNA repression. Even careful efforts to distinguish the functional
pri-miRNA recognized by Drosha are challenged by experimental work (Chiang et al. [12]
and Berezikov et al. [11]), calling into question existing miRNA annotations.

The miRNA machinery composed of Drosha and Dicer and their co-factors is present in
all known animal species (Reviewed in Muljo et al. [13]). The existence of the two processing
steps performed by these enzymes can be traced back to the last eukaryotic common ancestor,
from which they evolved in different directions: plants have different miRNA biogenesis
and targeting rules whereas Saccharomyces cerevisiae has lost the RNAi (RNA interference)
machinery (Muljo et al. [13]). Interestingly, this loss is advantageous to yeast, as it avoids
the processing and consequent destruction of the beneficial Killer virus (Drinnenberg et al.
[14]) by the RNAi machinery. This virus encodes a protein toxin that kills nearby cells while
conferring immunity to cells making the toxin: cells with a functional RNAi machinery are
not immune to the toxin, as the viral dsRNA (double-stranded RNA) is destroyed by RNA..

In a comparison involving nematodes, insects, and vertebrates, only five miRNA-target
relationships were found to be conserved across all the lineages, implying that the miRNA
regulatory network might be lineage specific. Over 250 were shared by at least one pair of
lineages (Chen and Rajewsky [15]). On the contrary, in the mammalian lineage, 85% of the
target sites have conserved positions (Vejnar and Zdobnov [16]), implying a large conser-
vation of miRNA-target relationships. By tuning the expression pattern of genes, miRNAs
have a role in the specification of structures in animals, and are involved in the development
(Bartel [5]). Conservation of the miRNA-mediated regulatory network is therefore expected.

5 MRNA 3

3| W 5|
MiRNA
Figure 2 Seed definition. Target recognition by the RISC is
mainly driven by base-pairing of the 5" part of the miRNA with
the 3’-UTR part of mRNAs. This pairing region from nucleotide
2to 7 or 8 of the miRNA is called the "seed".

In animals miRNAs recognize their targeted mRNAs through imperfect complementar-
ity. However, perfect complementarity between the 5" region of the miRNA (positions 2
to 7 or 8) and the target, called the “seed” (Figure 2), is present in most of the described
miRNA-target relationships. The pairing between a seed and target, however, is not always
sufficient for a functional interaction, and in a few cases such pairing is not required (Did-
iano and Hobert [17]) or non-canonical pairing with G:U wobbles or mismatches may be
acceptable (Brennecke et al. [3]). Furthermore other types of binding have been described,
such as centered pairing sites (Shin et al. [18]). These sites require a long 11-nt pairing in the
center of the miRNA and can trigger in vitro mRNA cleavage in some conditions (in elevated
Mg?*). In humans they are two orders of magnitude less frequent than seed-based sites.
The key contribution to the stability of the binding is the seed pairing together with a set of
arginines, which has also been shown at the molecular level with molecular dynamics (Wang
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et al. [19]) on a ternary complex including the crystal structures of a Thermus thermophilus
argonaute complex (Wang et al. [20]) and two RNAs. Overall, most of the miRNA target
sites are found in the 3’-UTR of mRNAs. However, some functional sites were found at the
end of the coding sequence (CDS), but their efficacy is limited because they compete with
ribosomes (Gu et al. [21]) to bind to CDSs. Yet CDSs are “ribosome-free” once the translation
is inhibited by miRNAs, explaining how a few RISCs can bind to the CDS or the 5’-UTR.

Known miRNAs act post-transcriptionally on gene expression by degrading targeted mR-
NAs and/or inhibiting translation. There is evidence of deadenylation and decapping of
miRNA-targeted mRNAs that impair mRNA stability and initiation of translation (Eulalio
et al. [22] and Filipowicz et al. [23]). The key effector protein, bound to Ago, is the GW182
protein implicated in mRNA deadenylation (Reviewed in Huntzinger and Izaurralde [24]).
Repressed mRNAs and RISCs also accumulate in processing bodies (P-bodies), where they
are sequestered and stay untranslated (Pillai et al. [25] and Filipowicz et al. [23]). The major
effect is on the stability of the mRNA, with estimates of about 75% (Hendrickson et al. [26])
to 84% (Guo et al. [27]) of miRNA repression attributable to decreased mRNA levels. These
measurements were obtained with polysome fractionation, also named ribosome profiling,
that measures translation rate. Coupled with microarray or RNA-Seq to measure mRNA
abundance, the relative contribution of miRNA repression levels can be estimated. The effect
on mRNA translation, studied on a large scale with about 5000 protein levels measured with
PSILAC (pulsed Stable Isotope Labeling by Amino acids in cell Culture), is indeed relatively
mild (Baek et al. [28] and Selbach et al. [29]). The two effects are correlated without evidence
for the existence of large classes of miRNAs triggering specifically repression by degradation
or by translation inhibition (Baek et al. [28], Selbach et al. [29] and Hendrickson et al. [26]).

3.2 Computational prediction of miRNA targets

Rules predicting miRNA repression can be inferred from the biological knowledge of the
participants, enzymes and co-enzymes, their properties and structures, their mechanisms of
action, in addition to in vivo miRNA machinery measurements. For instance, the mandatory
RNA-RNA interaction has been studied by exhaustive mutation experiments in Drosophila
melanogaster (Brennecke et al. [3]) and with an endogenous neuronal miRNA in Caenorhab-
ditis elegans (Didiano et al. [30]), where every possible interacting nucleotide in the miRNA
and the mRNA has been probed. Most new miRNA-mediated regulations are tested with
reporter constructs, and collected in databases like TarBase (Vergoulis et al. [31]) and miR-
TarBase (Hsu et al. [32]). However, the rules need to be tested and/or parameterized with
studies that have statistically relevant sizes, and that probe the different aspects of miRNA
repression, notably mRNA destabilization and translational repression.

First miRNA target prediction tools were fully rule-based without any parameterization
with experimental data that were used only for benchmarking, while more recent tools use
high-throughput data to fit simple linear models (Grimson et al. [33] and Vejnar and Zdob-
nov [16]), or more complex models like Support Vector Machine (SVM) (Saito and Seetrom
[34]). However, all miRNA target prediction tools largely share a common set of prediction
features derived from the knowledge of the miRNA repression pathway. SVM is a super-
vised machine-learning method used to solve classification problems by finding an optimal
hyperplane separating different populations of points. The hyperplane is defined by the
“support vectors”, or points that best separate the different populations.

As mentioned above, mRNA repression by a miRNA implies the pairing of both RNAs.
Rules describing the characteristics of this pairing have been described, the most used and
predictive being the presence of a seed-match in the mRNA. If the pairing in the seed is not
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canonical, i.e. with G:U wobble(s) or mismatch(s), pairing with the 3’ part of the miRNA
(the 5" part being the seed) can compensate the imperfect pairing and maintain the same re-
pression level (Brennecke et al. [3]). Features counting canonical pairing have been derived
from this observation. Furthermore, the overall pairing can be determined by computing the
folding of the miRNA-mRNA duplex and calculating its Gibbs free energy, or AG. In the var-
ious miRNA prediction tools, different AGs are computed, where some consider the duplex
energy, and some consider the internal structures of the mRNA and miRNA themselves etc.

The energies of many small RNAs were measured to developed a thermodynamic model
for RNA folding (Mathews et al. [35]) used to obtain the 2D structure of RNAs with a dy-
namic programming algorithm (Nussinov and Jacobson [36]). The structure with the lowest
predicted energy, or the most stable structure, has the Minimum Free Energy (MFE). In vivo, a
population of RNAs adopts different sub-optimal structures than the MFE structure. Sub-op-
timal structures (Zuker [37]) and their contributions to the ensemble of structures weighted
by their Boltzmann probabilities (McCaskill [38]) can be computed. This approach allows
more realistic energy computation of the mRNA-miRNA duplex. As mRNAs are long mol-
ecules with a high number of possible nucleotide pairings, they can fold locally differently,
with local structures affecting miRNA binding, but still globally have an energy close to the
MEFE. Ab initio methods, those which rely solely on a thermodynamic model, were shown
to have an accuracy of 73% for known canonical base pairs in sequences smaller than 700 nt
(Mathews [39]).

As described above, the miRNA machinery, the miRNA genes and the miRNA targets are
conserved among species. Depending on natural selection and the conferred advantage of
the miRNA repression, targets can either be conserved in multiple species or disappear. This
degree of conservation can be used as a proxy for the functional relevance of each miRNA
target. From the simplest search in a multiple species sequence alignment to more complex
methods, a wide range of methods measures the target conservation (see below). Since con-
servation can also be observed by chance, these methods try to assess the significance of
the observed target conservation. The main information used for this purpose is that, within
3’-UTRs, only certain sequence regions have regulatory or structural roles. These regions can
therefore be considered as islands of natural selection in a sea of mostly neutrally evolving
sequence; about 5% of the human 3’-UTR bases are constrained (Lindblad-Toh et al. [40]).
This distinction can be exploited to propose statistical test for measuring the significance of
conservation. It can also be used within a probabilistic framework to distinguish the back-
ground sequence composition from the target site composition.

The first prediction step of most software tools is to search for seed-matches in the 3'-UTR
of genes. This definition has a major impact on the sensitivity of the tools (Ellwanger et al.
[41]), as the number of seed-matches can be orders of magnitude different with different
seed lengths. The widely accepted definition is a perfect match with nucleotides 2 to 8 of the
miRNA for restrictive sites and 2 to 7 to capture the majority of potential target sites. Exper-
imental methods can identify Ago-miRNA-mRNA complexes using an in vivo cross-linking
protocol with subsequent high-throughput sequencing. In the miRNA-mRNA binding map
based on Ago HITS-CLIP (HIgh-Throughput Sequencing of RNA isolated by CrossLinking
ImmunoPrecipitation) (Chi et al. [42]) and PAR-CLIP (PhotoActivatable-Ribonucleoside-en-
hanced CrossLinking and ImmunoPrecipitation) (Hafner et al. [43]), 67% of the sites were
6-mer seed-matches, but about 55% of them were conserved whereas about 70% of 7-mer
seed-matches were conserved in 17 vertebrates (Ellwanger et al. [41]). Some approaches
consider GU wobbles or even mismatches in the miRNA-mRNA pairing, while others add
the presence of an A in the first position. For higher confidence in the predictions, canonical
pairing and long seeds should be used. Otherwise, shorter seeds and the presence of GU
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wobble and mismatches decrease the prediction sensitivity. In the second step, the potential
target sites defined only by the presence of the seed-match are selected based on different
criteria. In the following paragraphs, the major miRNA prediction tools and their criteria
are described.

3.2.1 Existing miRNA target prediction tools: Description

RNAhybrid (Rehmsmeier et al. [44]) relies on the MFE of the miRNA-mRNA duplex
to predict miRNA targets without relying on the seed, whose presence is optional. It also
evaluates the statistical significance of the computed energy by first normalizing the energy
with the miRNA and mRNA lengths, and second by estimating the probability distribution
stated to be an Extreme Value Distribution (EVD). The parameters of the EVD were estimated
for each miRNA.

TargetScan is based on a sequence approach, combining sequence features into a context
score (Grimson et al. [33]). These features are the position in the 3’-UTR, the nucleotide com-
position surrounding the seed and the pairing in the 3’ part of the miRNA. A conservation
score was later added (Friedman et al. [45]), derived from the evolutionary feature described
by Stark et al. (Stark et al. [46]). Predictions available at targetscan.org are based on the con-
text scores and conserved targets are obtained by thresholding the evolutionary feature. The
threshold is determined on an empirical probability distribution, a refined version of Stark
et al. [46]. Recently, two novel features were added measuring the target site abundance and
the seed-pairing stability (Garcia et al. [47]). They improve the miRNA target ranking by
trying to integrate the kinetic effect of the target site abundance for the first feature, and to
better score the low energy miRNA-mRNA seed duplex for the second.

The first version of miRanda (John et al. [48]) was a two-step tool. In the first step, miRNA
and mRNA sequences are locally aligned using a scoring matrix including weights for GU
wobbles. The score of the miRNA first half, containing the seed, was multiplied by a scal-
ing factor of 2.0. In the second step, the MFE of the identified duplexes is computed, on
which a threshold was applied to predict potential target sites. Predictions were published
on the microrna.org web site (Betel et al. [49]). The miRanda pipeline was later extended by
mirSVR (Betel et al. [50]) that learns the feature weights using the Support Vector Regression
(SVR) algorithm. The features include the TargetScan context score features and an mRNA
accessibility measure computed with a thermodynamic model. Overall, mirSVR marginally
improves the performance of TargetScan 4 (Grimson et al. [33]) by about 5%. The source
code of miRanda is available, but not for mirSVR.

Thermodynamic evaluation of the mRNA accessibility was first introduced in PITA
(Kertesz et al. [51]). The free energy of the mRNA constrained to maintain the target site
single-stranded is subtracted from the free energy of the same unconstrained mRNA to ob-
tain the accessibility of the target site. The PITA score is obtained by adding this accessibility
energy to the MFE of the miRNA-mRNA duplex.

PicTar (Krek et al. [52]) is based on a Hidden Markov Model (HMM) trained on a
set of 3-UTRs targeted by coexpressed miRNAs. Stable, with low MFE, and conserved
seed-matches are considered as anchors in the training set of 3'-UTRs. The other nucleotides
considered as the background are modeled as a Markov chain of order 0, where the anchors
are the two hidden states of the HMM. The model is trained using the Baum-Welch algorithm
and used to compute the likelihood of potential target sites.

With the Teiresias algorithm (Rigoutsos and Floratos [53]), Rna22 (Miranda et al. [54]) de-
termines representative 4-mer patterns in a set of miRINA sequences. These patterns are then
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searched in 3’-UTRs sequences to determine “target islands”. A target island is predicted to
be a target site if the MFE with a given miRNA is below a defined threshold.

EIMMo (Gaidatzis et al. [55]) uses a Bayesian framework to model target site evolution
and assess their conservation by evaluating the probability for each seed-match to be con-
served more than the background. The conservation pattern of each seed-match is com-
puted as the presence/absence in the 3’-UTRs sequence pairwise alignments of the consid-
ered species. These frequency patterns are compared with the frequency pattern of random
patterns of the seed length. Finally, for each putative target site, the posterior probability
that the site is functional given its conservation pattern is computed.

Target sites are, from a probabilistic point of view, rare events in the 3’-UTR sequence. The
binomial distribution is, therefore, an appropriate probability distribution for computing the
statistical significance of target site presence. PACMIT (Marin and Vanicek [56]) uses this
method and adds a seed-match accessibility criteria. It computes the statistical significance
of accessible target sites.

The DIANA-microl algorithm was first presented in 2004 (Kiriakidou et al. [57]) with
refinement published at a later time (Maragkakis et al. [58] and Maragkakis et al. [59]). A
minimal length of 7 nucleotides is required by DIANA-microT to select potential target sites.
Shorter seeds are kept if their MFE is below a defined threshold. A conservation score is
attributed to every potential target site if found at the same position in a multiple species
sequence alignment. The final score is the ratio between this conservation score and the
score of the randomized miRNA. Multiple target site scores on a 3’-UTR are summed with
higher weights for longer sites (Maragkakis et al. [58]). In the latest DIANA-microl version
(version 4), mock miRNAs are replaced by high throughput proteomics experimental data
(Selbach et al. [29]).

The tools described above have many aspects in common. They all have a limited num-
ber of features, are mostly de novo predictors, and rely on only experimental data for a sta-
tistical evaluation of the significance of their predictions (RNAhybrid for example) or for
benchmarking (PITA or PACMIT for example). Another approach is to include as many as
possible criteria that can together potentially distinguish a functional from a non-functional
target site, and to use a machine learning algorithm to weigh and combine the features. The
most commonly used algorithm for this purpose is the SVM. Even if SVMs are an efficient
machine learning tool, in the case of miRNA target prediction, they are not the most appro-
priate. Training an SVM requires both a positive (miRNA targets) and a negative (miRNA
non-targets) datasets. Given the definition of functional miRNA targets is not completely
determined, defining a negative dataset for training remains difficult. Moreover this frame-
work ignores the fact that miRNA repression strength is continuous, ranging from strong
to weak effects, making the distinction between target versus non-target a matter of an ar-
bitrary cut-off choice. Contrary to machine learning methods, the other methods that use
a negative dataset are less dependent on it, as the negative dataset is used for example to
determine the statistical significance of a previously computed score. However, many tools
use this approach, two of the most promising are described below: the Saito tool (Saito and
Seetrom [34]) and SVMicrO (Liu et al. [60]).

Both methods first predict individual target sites with a large number of features, all
of which are already described and published. The Saito tool has 24 features covering the
seed type and length, position in the 3’-UTR, mRNA accessibility and conservation. SVMi-
crO covers every pairing position in the miRNA, seed type and conservation, position in the
3’-UTR and mRNA accessibility with 113 features. Most of the SVM-based prediction tools
only have this first target site level SVM. Interestingly, both tools also have a UTR level SVM
that provide the means to combine each target site score into a global score for the whole
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mRNA. The Saito tool UTR level SVM has 17 features, SVMicrO has 30. Both have features
with site numbers, one for each seed type, and 3’-UTR length. SVMicrO has features with
target site densities. The tools are different by how they include each target site score pro-
duced by the first SVM. SVMicrO only adds features with counts of sites in a top category
whereas the Saito tool represents the score distribution in a 16-cell vector. The boundaries
of each cell are appropriately chosen to increase the performance prediction; they are closer
for higher scores.

Most of the source code of the miRNA target prediction tools is not available. In a re-
cent review (Saito and Saetrom [61]), over the 30 tools examined by the authors, only 7 have
software available. Of the described tools here, only the source code of miRanda, PITA,
RNAhybrid, SVMicrO, and TargetScan (with some delay after manuscript publication) are
available.

3.2.2 Existing miRNA target prediction tools: Performance

The unavailability of the source code for most tools makes performance comparison diffi-
cult, as any comparison will rely on pre-computed predictions (for example in Rajewsky
[62]). Up to 30% of the differences among the prediction tools could be due to the map-
ping step mandatory to any comparison (Nikolaus Rajewski, personal communication), as
the predictions are based on different miRNA and mRNA annotations. However, to limit
such a bias, comparisons using only recent target prediction sets were performed. They
cover the different aspects of miRNA repression: the recognition step with IP pull-down
(Figure 3), the mRNA destabilization with transcriptomics (Figure 4), and the translation
inhibition with proteomics experiments (Figure 5). Unsurprisingly, each tool is the best ac-
cording to its authors (Diana-microl is slightly better than PicTar in Selbach et al. [29], but
has less sensitivity with number of predicted targets divided by two compared to the other
tools in the same comparison). According to these studies, the best performing tool overall is
TargetScan, followed by PITA, PicTar and Diana-microl. SVM based tools seem to be efficient
but independent benchmarking is not available. Moreover, their performance compared to
non machine-learning methods is close, making it difficult to justify their added complexity.
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Figure 3 Target predictions tested on an IP pull-down experiment.
ROC curves (Liu et al. [60]) based on 388 high confidence posi-
tive targets of miR-124 determined by IP pull down experiment
(Hendrickson et al. [63]).
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Figure 5 Target predictions tested on a proteomics experiment. The
fraction of computationally predicted target mRNAs with re-
duced protein production (log2-fold change < -0.1) is calculated
for the five miRNAs of the study (Selbach et al. [29]).

3.3 Thesis contributions

While the biological knowledge of the miRNA pathway remains incomplete, a substan-
tial amount of information has accumulated over the years. Multiple approaches to predict
miRNA targets can be developed based on this knowledge. Moreover, high-throughput ex-
perimental data are publicly available. Indeed, the effects of overexpressing or knocking-out
a specific or all miRNAs has been measured at the genome-wide scale, opening the possibil-
ity to model these data with a bioinformatics approach. In other words, there is both a mul-
tiplicity of approaches to tackle the target prediction problem and of experimental datasets
to parameterize and test these approaches. Most current studies choose to focus on a single
aspect of the miRNA repression, the target recognition for example (Wen et al. [65]), and
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test a limited set of appropriate prediction features with a limited appropriate experimental
dataset.

The goal of this thesis work is to computationally predict the targets of miRNAs by de-
veloping a comprehensive set of predictive features and testing them on a complete range
of miRNA repression assays. I developed the miRmap Python library covering thermody-
namic, probabilistic, evolutionary, and sequence-based features. I evaluated their individual
predictive power, and measured their intercorrelations on immunopurification, transcrip-
tomics, proteomics, and polysome fractionation experimental data.

During the development of miRmap, I collaborated with three research groups to guide
the choice of prediction features, and had direct access to non-cell-line-based experiments
to test my predictions in biologically relevant situations. In these studies, a commonly used
experimental scheme is the measurement of the changes, at the level of the transcriptome
for example, in response to overexpression or depletion of one or all miRNAs. I devel-
oped an approach to statistically test the correlation between such perturbation of the miR-
NAome and the effect on mRNA transcriptome linked by my computationally predicted po-
tent miRNA-mRNA interactions (Figure 6).

I first participated in the investigation of the role of the Dicer enzyme (miRNA processing,
previously described in Section 3.1), at the transcriptome and proteome level in the mouse
testis. The study including my analysis was published in the two following articles:

e Sertoli cell Dicer is essential for spermatogenesis in mice.
Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, Vejnar CE, Kiihne F,
Descombes P, Zdobnov EM, McManus MT, Guillou F, Harfe BD, Yan W, Jégou B, Nef
S

Developmental biology. February 2009

e Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice.
Papaioannou MD, Lagarrigue M, Vejnar CE, Rolland AD, Kiihne F, Aubry F, Schaad
O, Fort A, Descombes P, Neerman-Arbez M, Guillou F, Zdobnov EM, Pineau C, Nef
S

Molecular and cellular proteomics. April 2011

Some miRNAs are abundantly expressed in specific tissues (Lagos-Quintana et al. [66]),
making their impact on the transcriptome a priori more measurable, and therefore an ap-
propriate in situ test case for a miRNA target prediction tool. In our case, we studied two
miRNAs transiently expressed in the liver for miR-122, and in dendritic cells for miR-155. I
participated in the analysis of the experimental data, performing all miRNA target predic-
tions. In particular, I presented statistical tests and controls to distinguish the effects of the
miRNA regulation in the experiments. The study including my analysis was published in
the two following articles:

e Integration of microRNA miR-122 in hepatic circadian gene expression.
Gatfield D, Le Martelot G*, Vejnar CE*, Gerlach D, Schaad O, Fleury-Olela F, Rus-
keepdd AL, Oresic M, Esau CC, Zdobnov EM, Schibler U.
Genes and development. June 2009
"These authors contributed equally to this work.

e Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell matura-
tion and function.
Dunand-Sauthier I, Santiago-Raber ML, Capponi L, Vejnar CE, Schaad O, Irla M,
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Figure 6 miRNA target site enrichment analysis. For all miR-
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Seguin-Estévez Q, Descombes P, Zdobnov EM, Acha-Orbea H, Reith W.
Blood. April 2011

In the miRmap library, I implemented published prediction features as well as three
novel methods including (i) a more accurate way to compute the binding energy between
the miRNA and the mRNA based on the ensemble free energy instead of the minimum free
energy, (ii) an exact method to compute the probability that the seed-match is an over-repre-
sented motif in the 3’-UTR and (iii) a non-empirical statistical test to assess the significance
of the target site evolutionary conservation.

Finally, I proposed a novel model for miRNA target predictions based on the linear com-
bination of the eleven features implemented in my library. This model predicts the repres-
sion strength of each individual miRNA-mRNA relationship established with the seed pair-
ing. The overall predictive power of my model appears to almost double that of the most
renowned TargetScan software, and outperform PITA and PACMIT that are single and dou-
ble feature tools respectively. I presented the miRmap library in the following article:

e miRmap: Comprehensive prediction of microRNA target repression strength.
Vejnar CE, Zdobnov EM.
In submission
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In addition, I was involved in studies related to miRNAs but unrelated to miRNA target
prediction that I include in this thesis as appendices. These studies were published in the
two following articles:

e miROrtho: computational survey of microRNA genes.
Gerlach D, Kriventseva EV, Rahman N, Vejnar CE, Zdobnov EM.
Nucleic Acids Research. January 2009

e Identification of cis- and trans-regulatory variation modulating microRNA expres-
sion levels in human fibroblasts.
Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery SB, Dimas AS, Ve-
jnar CE, Attar H, Gagnebin M, Gehrig C, Falconnet E, Dupré Y, Dermitzakis ET,
Antonarakis SE.
Genome Research. January 2011

3.4 Thesis outline

Following this introduction is a results part composed of the manuscripts described in
the Thesis contributions. Each manuscript is preceded by an overview of the study and
my analysis performed in the frame of that study. The last manuscript presenting miRmap
closes the results part. Finally, the discussion part places the developments and results in
perspective.
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4.1 Impactof Dicer loss in Sertoli cells on the testicular transcriptome and
proteome of mice

In the seminiferous tubules of the testis, the Sertoli cells (S5Cs) provide structural and nu-
tritional support to the germ cells during adulthood, and play a critical role in the formation
of the testis during embryonic development (Brennan and Capel [67]). Papaioannou et al.
[68] investigated the implication of miRNA regulation in mouse SCs by knocking-out (KO)
the RNase III Dicer, essential to miRNA processing (see introduction). The deletion of Dicer
was done specifically in SCs with a Cre-LoxP recombination system, as the complete loss of
Dicer is lethal at embryonic stage. The absence of Dicer in SCs with a full penetrance, start-
ing at embryonic day E13.5, caused a complete loss of mature miRNA and had severe conse-
quences on testis development leading to infertility. At post-natal day P5, massive apoptosis
in the mutant testes was observed. At P60, the mutant testis had several defects including
vacuolization, presence of Sertoli-cell-only (SCO) tubes, spermatogenic arrest and internal
disorganization.

% targeted genes Fisher test p-value
Fraction / Test Up Unchanged Down Up vs Down vs
Unchanged Unchanged
balanced balanced
Genes 122 15236 135
All seeds 98.3 89.2 88.9 10 0.62
AG duplex 97.2 87.4 85.7 10 0.61
Seed conservation 86.4 70.8 65.0 104 0.98
TargetScan context score 98.3 89.1 88.9 10 0.56
Above 3 filters 76.7 54.8 41.5 107 1

Table 1 Target site enrichment with different prediction filters for
Dicer KO at the mRNA level. The first three columns indicate the
percentage of targeted genes in each gene fraction (up-regulated,
unchanged and down-regulated). The last two columns pro-
vide the one-sided Fisher test p-values comparing the up- and
down-regulated fractions with the unchanged fraction. Differ-
ent features of miRmap were used to refine miRNA target pre-
dictions.

To investigate the consequences of Dicer loss at the transcriptome level, mRNA profiling
was first performed on the wild-type and Dicer KO animals at PO (new born animal) and P5.
At PO, a large proportion of transcripts were expressed, as 67% of the about 45000 Affymetrix
probe sets showed detectable levels of hybridization. With a stringent threshold of 2.0 on
fold-changes between control and mutant testes, 77 probe sets were up-regulated and 68 were
down-regulated at PO. To investigate the role of miRNA regulation, miRNA profiling was
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performed on wild-type SCs, where a total of 248 miRNAs were cloned. As reported in the
manuscript, comparisons of miRNA target distributions between up- and down-regulated
mRNA fractions were not statistically significant.

The direct effects of miRNA regulation are expected to be detected on the mRNAs of
up-regulated fraction as the ablation of Dicer removes all miRNA repression. Indirect effects
can lead to up-regulation but in normal conditions only indirect effects can lead to down-reg-
ulation (Vasudevan et al. [69]). Based on this observation, I compared the percentage of tar-
geted genes between the up-regulated and unchanged fractions, with a less stringent thresh-
old of 1.5 on fold-changes. Considered globally, 98.3% and 89.2% of up-regulated and un-
changed genes respectively have at least one seed-match for one of the miRNA expressed in
wild-type testes, and are significantly different (p=10"* with Fisher’s exact test). When I re-
fined the potential target sites to those with lower energies, a conserved seed-match, a high
TargetScan context-score (computed with miRmap with the 3 features of TargetScan), sig-
nificant proportions of targeted genes were observed in the up-regulated fraction (Table 1).
Interestingly, a very stringent potential target site refinement combining the three previous
filters increased the ratio of targeted genes between up-regulated and unchanged fractions
from 1.1 to 1.4. On the contrary, as a control of the previous tests, no significant differences
were observed between the down-regulated and unchanged fractions.

All seeds AG duplex AAG Seed conservation TargetScan 4
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Figure 1 Target site enrichment for miRNA target sites in the up-reg-
ulated mRNA fraction. For each miRNA annotated in the mouse
genome, ratios of targeted mRNA in up-regulated and un-
changed fractions are represented. Significant ratios were deter-
mined with one-sided Fisher test with Dunn-Sidéak multiple test
correction at 10%. The color code is explained on Table 2.
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Expression / Test Non-significant Significant
Expressed Orange Red
Non-expressed Light blue Dark blue

Table 2 Color code. Color code used in "all miRNAs enrich-
ment" analyses.

The ratios of targeted genes between up-regulated and unchanged fractions were com-
puted above for all miRNAs at the same time. To refine the analysis, target site enrichments
were computed separately for each miRNA, either expressed in wild-type SCs or not, in or-
der to observe differences between expressed miRNAs and non-expressed miRNAs used as
controls (Figure 1). The individual effects of specific sets of miRNAs were not distinguish-
able.

To further investigate miRNA regulation at the translational level, proteome measure-
ments were performed on 20 mutant and control PO testes. Quantitative mass spectrometry
allowed the detection of 130 proteins with a mutant to control ratio, of which 50 were up-reg-
ulated, 77 unchanged, and 3 down-regulated with a 1.3 fold-change threshold. With the
same type of analysis, proportions of targeted genes were compared between up-regulated
and unchanged fractions. Enrichments were statistically significant only when considering
conserved seed-matches (Table 3).

% targeted genes Fisher test p-value
Fraction / Test Up Unchanged Up vs Unchanged
Proteins 59 96 balanced
All seeds 93.2 90.6 0.40
AG duplex 77.8 65.2 0.072
Seed conservation 74.6 77.1 0.71
TargetScan context score 78.0 59.4 0.013

Table 3 Target site enrichment with different prediction filters for
Dicer KO at the protein level. See Table 1 for the column descrip-
tion.
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Spermatogenesis requires intact, fully competent Sertoli cells. Here, we investigate the functions of Dicer, an
RNaselll endonuclease required for microRNA and small interfering RNA biogenesis, in mouse Sertoli cell
function. We show that selective ablation of Dicer in Sertoli cells leads to infertility due to complete absence
of spermatozoa and progressive testicular degeneration. The first morphological alterations appear already at
postnatal day 5 and correlate with a severe impairment of the prepubertal spermatogenic wave, due to
defective Sertoli cell maturation and incapacity to properly support meiosis and spermiogenesis. Importantly,
we find several key genes known to be essential for Sertoli cell function to be significantly down-regulated in
neonatal testes lacking Dicer in Sertoli cells. Overall, our results reveal novel essential roles played by the
Dicer-dependent pathway in mammalian reproductive function, and thus pave the way for new insights into

© 2008 Elsevier Inc. All rights reserved.

Introduction

Spermatogenesis refers to the development of mature haploid
spermatozoa from diploid spermatogonial germ cells and ensures
continuous gamete production throughout the adult life of males.
Sertoli cells (SCs), one of the somatic constituents of the testis, have
long been known to play an essential role in spermatogenesis. They
extend from the base to the apex of the seminiferous epithelium, and
are in direct physical association with all types of germ cells. During
embryonic development, SCs play a critical role in the formation of the
testis (for review see Brennan and Capel, 2004), whereas during
adulthood they are entirely committed to sustaining spermatogenesis.
Adult SCs provide germ cells with structural and nutritional support,
assist their movement, produce seminiferous fluid and support
spermiation (reviewed in Jegou, 1992). Importantly, one SC can
support only a finite number of germ cells, therefore the ultimate
adult testis size and eventual sperm production is directly linked to
the total SC number (Orth et al., 1988). The latter is already established
by around P15 in mice, when, after extensive proliferative activity, SCs

* Corresponding author. Fax: +41 22 379 5260.
E-mail address: Serge.Nef@medecine.unige.ch (S. Nef).

0012-1606/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
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cease dividing and switch from a fetal, ‘immature’ to an adult, ‘mature’
state. This maturation is characterized by radical morphological and
functional changes, the most characteristic being the formation of the
blood-testis barrier (BTB) at the level of adjacent SC tight junctions
and the commitment of SCs to sustain germ cell progression through
meiosis and differentiation into spermatozoa (reviewed in Mruk and
Cheng, 2004; Sharpe et al., 2003). Thus, the adult spermatogenic
outcome is not only dependent on the SC number, but also on their
functional integrity.

Regulation of spermatogenesis at the post-transcriptional level,
particularly during spermiogenesis, was earlier shown to be of
crucial importance (reviewed in Braun, 1998). Recently, a novel
mechanism of post-transcriptional regulation mediated by micro-
RNAs (miRNAs) has emerged (for review see Pillai et al, 2007).
MicroRNAs are endogenous, small (19-25 nucleotides), non-coding
RNAs that act as negative post-transcriptional regulators of gene
expression and control diverse aspects of development in several
species. In animals, the majority of miRNAs regulate their target
mRNAs by inhibiting their translation; however some may regulate
their targets by inducing their degradation (Lim et al., 2005). Dicer
is an RNaselll endonuclease essential for miRNA processing; its
deletion, which leads to a complete loss of mature miRNAs, is
lethal at E7.5 in mice. Importantly, Dicer acts as a ‘transcriptional
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regulator’ itself, since it plays a role in the structural maintenance
and silencing of centromeres in murine ES cells (Kanellopoulou et al.,
2005).

The functional relevance of Dicer and miRNAs in spermatogenesis
is only starting to be unraveled. Several miRNAs are specifically
expressed or enriched in the testis (Ro et al., 2007a; Yan et al., 2007)
and all essential members of the RNA interference (RNAi) machinery
(Drosha, Dicer, Ago2) are expressed in SCs, meiotic and postmeiotic
germ cells (Gonzalez-Gonzalez et al., 2008; Kotaja et al., 2006). In fact
Dicer was recently reported to be required for primordial germ cell
development and spermatogenesis (Hayashi et al., 2008). The purpose
of our study was to investigate the role of Dicer and miRNAs in SC
function, and thereby their involvement in spermatogenesis. We
found that male mice in which Dicer was deleted specifically in SCs
were infertile, due to defective SC function preceded by down-
regulation of SC-specific genes known to be essential for spermato-
genesis. Our results demonstrate for the first time the crucial
importance of Dicer—and thereby miRNAs in SC function, and thereby
unravel the existence of post-transcriptional control in the supporting
cell lineage of the testis.

Materials and methods
Animals

Derf®* (D) and Mis-Cre (Amh-Cre) mice were kindly provided by
B. Harfe and F. Guillou respectively, and were genotyped as described
(Harfe et al., 2005; Lecureuil et al, 2002). To achieve selective
inactivation of Dcr in Sertoli cells, we mated transgenic MisCre female
mice expressing Cre recombinase under the control of the Mis gene
promoter with male mice carrying two floxed Dcr alleles in order to
generate 50% Dc¥“;MisCre and 50% Dcr*" mice. These animals
were then intercrossed to produce Dc¥:MisCre as well as control
littermates, namely Dc** and Dcr®":MisCre mice. The genetic
background of these mice is a mixed C57BL/6] and SV129. Protocols
for the use of animals were approved by the Commission d'Ethique de
I'Expérimentation Animale of the University of Geneva Medical School
and the Geneva Veterinarian Office.

Fertility tests and sperm analysis

Dcr™#;MisCre males (n=8) and control littermates (Dcr’®*; MisCre,
n=5 and Dc®*, n=5) were each bred with two 6-week-old wild type
C57BL/6] female mice for 6 months. The number of litters and pups/
litter were systematically recorded. Epididymal sperm count was
performed with sperm extracted from the caudal epididymis and
ductus deferens of adult (P60) male mice and was analyzed for its
concentration as previously described (Guerif et al., 2002).

Histology and immunohistochemistry

Tissues were fixed overnight either in 4% paraformaldehyde (PFA)
or in Bouin's fixative and embedded in paraffin. Five-um sections were
stained with haematoxylin and eosin (H&E) or processed for
immunohistochemistry (IHC). For IHC analysis, PFA-fixed sections
were incubated overnight at 4 °C with the following antibodies: anti-
GATA4 (sc-9053, Santa Cruz Biotechnology, 1:50), anti-ZO1 (#61-
7300, Zymed, 1:250), anti-p galactosidase (ab9361, Abcam, 1:500),
anti-MVH (1:1000, gift from Toshiaki Noce) and anti-33-HSD (1:500,
gift from lan Mason). For fluorescent staining, Alexa-conjugated
secondary antibodies (Invitrogen) were used for signal revelation,
whereas for stable staining, signals were revealed with DAB (Sigma).
All images were obtained with a Zeiss Axioscop microscope and
processed using the AxioVision software. For X-gal coloration tissues
were fixed in 4% PFA for 2 h, immersed in PBS1 x/sucrose 25% and then
stained with X-gal (1 M MgCl2, 10% sodium deoxycholate, 10% NP40,

X-gal 20 mg/ml, 200 mM potassium ferricyanide, 200 mM potassium
ferrocyanide) overnight at 37°.

Proliferation and apoptosis assays

Fifteen regions from 3 different animals per genotype were
randomly selected to count proliferating or TUNEL (TdT-mediated X-
dUTP nicked labeling)-positive cells. The proliferation assay was
performed with PFA-fixed sections double stained with anti-GATA4
(sc-9053, Santa Cruz Biotechnology, 1:50) and anti-Ki67 (BD, 1:100)
overnight at 4 °C. Values were expressed as the percentage of
proliferating SCs over the total number of SCs counted in a given
region. Apoptotic assays were performed both by means of TdT-
mediated X-dUTP nicked labeling (TUNEL) reaction using the In Situ
Cell death kit (Roche) and double IHC using anti-cleaved caspase3
(1:200, Cell Signaling, #9661L) and anti-GCNA1 (1:50, gift from G.
Enders) so as to reveal the identity of TUNEL-positive cells. The
percentage of apoptotic, TUNEL positive cells within seminiferous
tubules was expressed as the average number of apoptotic cells within
20 seminiferous tubes.

Microarray analysis

Total RNAs from 3 control (Dc¥*) and 3 mutant (Dc¥*;MisCre) PO
and P5 pairs of testes were extracted individually using the RNeasy
Micro kit (Qiagen) according to the manufacturer's protocol, and their
quality was assessed using Agilent Biosizing Total RNA NanoChips. To
minimize biological variability, mutant and control pups originated
from the same litters. Briefly, for each of the 12 independent samples,
1 pg of total RNA was reverse transcribed and amplified using the
MessageAmpTM II-Biotin Enhanced Single Round aRNA Amplification
Kit (#1791, Ambion). For each probe, 20 ng of the amplified biotinylated
cRNA was fragmented and hybridized to Mouse Genome 430 2.0 Arrays
(Affymetrix, High Wycombe, UK) as described (Cederroth et al., 2007).
All microarray data are available through ArrayExpress (http://www.
ebi.ac.uk/arrayexpress/, accession #E-TABM-426).

Classification and functional analysis of genes

Classification of differentially expressed genes was performed
using the Ingenuity Pathways Knowledge Base (Ingenuity Systems,
www.Ingenuity.com), based on their involvement in diverse biological
processes. In short, a data set containing the Affymetrix gene
identifiers, their corresponding expression values and p-values, was
used to map to the corresponding gene object in the Ingenuity
Pathways Knowledge Base. A fold-change cutoff of at least 2 was set
between control and mutant testes to further filter genes whose
expression was significantly altered. These genes, called “focus genes”,
were used as the starting point for generating biological networks. To
start building networks, the program queries the Ingenuity Pathways
Knowledge Base for interactions between focus genes and all other
gene objects stored in the knowledge base, and generates a set of
networks. IPA then computes a score for each network based on how
well it fits to the set of focus genes. The score is derived from a p-value
and indicates the likelihood of the Focus Genes in a network being
found together due by chance. Scores of 2 or higher represent a 99%
confidence level. Biological functions are then calculated and assigned
to each network.

MicroRNA expression profiling

Purification of P6 SCs, small RNA isolation and cloning were
performed as described (Ro et al., 2007a). MicroRNA profiling on
purified spermatogenic populations was performed using quantitative
PCR as described (Ro et al., 2006). Oligonucleotides used for qRT-PCR
are listed on Supplementary Table 4.
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MicroRNA target recognition analysis

The prediction model employed for the identification of potential
miRNA-target interactions is similar to that of Kertesz et al., (2007)
and relies on: (i) the initial identification of seeds for miRNAs,
followed by (ii) the evaluation of the free energy gain (AAG) resulting
from the formation of the miRNA-target duplex, which takes into
consideration the competing internal mRNA structures, and requires
at least 10 nucleotides upstream and 15 downstream of the target site
to be unfolded. For seed identification, we used standard parameters,
requiring seed length to be 6-8 bases from position 2 of the miRNA,
and not allowing mismatches except a single G:U wobble in 7-mers
and 2 G:U in 8-mers. The stringency cut-off we used yields over 80%
specificity as estimated from published luciferase assays.

Real-time quantitative PCR

Total RNAs from 6 control (Dc™®) and 6 mutant (Dcr®¥:MisCre)
testes at PO and P5 were extracted using the RNeasy Micro Kit (Qiagen)
according to the manufacturer's protocol. Total RNAs for each of the 24
independent samples were reverse transcribed and 1/40th of the
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cDNA was used as template for PCR amplification as previously
described (Cederroth et al., 2007). The statistical significance of fold-
changes was determined by a paired Student's t-test. Primers used for
qRT-PCR are listed in Supplementary Table 5.

Results

Complete and specific elimination of miRNAs in Sertoli cells of Dcr™*%;
MisCre testes

To investigate the in vivo role of Dicer in SCs, mice bearing two
loxP-flanked alleles of Dicer (Dcr®/¥) (Harfe et al., 2005) were crossed
with mice carrying the Mis-Cre transgene (Lecureuil et al., 2002), and
their progeny were then intercrossed to obtain males in which Dicer
was specifically inactivated in SCs (Dc*/*;MisCre), as well as control
Dc*"tMisCre and Dcr™ littermates. Mis-driven Cre recombinase
has been reported to efficiently delete floxed alleles specifically in SCs
from E14.5 onwards (Lecureuil et al., 2002; Vernet et al., 2006). We
ourselves confirmed the specificity of Dicer ablation first by (-gal
immunohistochemistry (IHC) (Fig. S1). To further analyze the
efficiency of Dicer removal in SCs we sought to assess whether the
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Fig. 1. Complete SC-specific Dicer ablation and subsequent SC-specific miRNA suppression using the MisCre recombinase. (A) Shown in this heat map are the expression levels of 26
representative miRNAs from purified mouse Sertoli cells, primitive type A spermatogonia and total testes at P6, as determined by quantitative RT-PCR. mir-299, mir-376a, mir-381,
mir-409-5p, mir-674*, mir-431, mir-341 and mir-487b appear to be predominantly expressed in P6 Sertoli cells, with the first five being exclusively expressed in SCs. (B) Expression levels
of 5 Sertoli cell-specific miRNAs (miR-376a, miR-381, miR-409-5p, miR-674*, and miR-299) were completely suppressed in P5 Dc#¥*:MisCre (-|-) testes whereas those of a
spermatogonia-specific miRNA (miR-380-3p) were unaffected. *p<0.05, **p<0.01, ***p<0.001 versus controls.
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downstream products of Dicer—microRNAs—were eliminated too. For
this purpose, we first sequenced the small RNA-ome from purified
mouse P6 SCs using a method previously described (Ro et al., 2007b)
and identified a total of 248 miRNAs present in SCs (Supplementary
Table 1), of which 5 were exclusively or predominantly expressed in
SCs (miR-299, miR-376a, miR-381, miR-409-5p, and miR-674%*, see
Fig. 1B). Real-time PCR showed that the levels of these 5 SC-specific
miRNAs were completely suppressed in P5 Dc™;MisCre testes,
whereas spermatogonia-specific miRNAs were unaffected (Fig. 1B),
thus further confirming the efficiency and specificity of Dcr excision.
Interestingly, SC-specific miRNAs were reduced by about 2-fold in PO
Dcr™*;MisCre testes even though the Cre recombinase activity starts
at E14.5. This suggests that pre-existing miRNAs in SCs are quite
stable molecules and that they remain present within the cell for
several days.

Ablation of Dicer in Sertoli cells results in reduced testis size
and infertility

Dcr: MisCre males were viable, grew to adulthood normally and
appeared to have normal sexual behavior and external genitalia when
compared to control littermates. At P60, testes lacking Dicer in SCs
showed a dramatic, 90%, mass reduction compared to control DcrPwe.
MisCre and Dcr™ littermates (10+3 mg versus 100+20 mg and 100
+20 mg respectively, Figs. 2A-D). Testicular descent had occurred
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normally in Dc®;:MisCre males and internal reproductive organs
such as the seminal vesicles and the prostate were normally
masculinized (data not shown). Dcr: MisCre males exhibited virile,
androgen-dependent behavior including normal mounting and
copulatory activity (data not shown), and importantly, their testicular
testosterone levels at PO, P5 and P60 were not significantly different
from those in controls, although interstitial hyperplasia was observed
from P5 onwards (Fig. S1). Despite this, Dcr¥X:MisCre males were
infertile: during a 6-month mating period with wild type C57BL/6]
females, they (n=8) failed to produce any offspring, whereas control
littermates systematically sired offspring (n=8-12 pups/litter, 6-9
litters per mating cage). Sperm count analysis revealed that no
spermatozoa were present in P60 Dcr®/*; MisCre caudal epididymides,
whereas normal sperm counts were found for control littermates
(Fig. 2G). Histological analysis confirmed the complete absence of
spermatozoa in testes (Fig. 2F) and epididymal ducts (Fig. 2I) of Dcr™;
MisCre males. Instead, numerous exfoliated germ cells were found in
the lumen of mutant epididymal ducts (arrowhead in Fig. 2I).

Ablation of Dicer in SCs results in severely impaired spermatogenesis and
age-dependent testis degeneration

Histological analysis revealed a severely impaired spermatogenesis

and testis degeneration in P60 Dcr™®*;MisCre mice; with rare
exceptions, elongated spermatids were completely absent. More
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Fig. 2. Dramatic size reduction and complete absence of spermatozoa in Dc¥¥*;:MisCre testes. At P60, testes from Dc¥*;:MisCre mice (C) showed a drastic, 90% reduction (D, n=8-14
animals per genotype) in size compared to control Dc®* (A) and Dc¥";MisCre (B) littermates. H&E staining of testes (E, F) and epidydimides (H, I) revealed complete absence of mature
spermatozoa. Exfoliated germ cells were present in mutant epidydimal ducts (arrowhead in I). (G) Results of sperm count analysis (n=4-9 animals per genotype). +/+, +/- and -/- are
abbreviations for Dc#¥X, Dc":MisCre and Dc™®;MisCre animals respectively. Results are mean+SEM, *p<0.05, *¥p<0.01, ***p<0.001 versus controls. Scale bar: 50 pm.
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precisely, the seminiferous epithelium of mutant testes displayed a
wide range of defects, including vacuolization (Fig. 3A), presence of
Sertoli-cell-only (SCO) tubes (Fig. 3B), tubes arrested at an early post-
meiotic stage (Fig. 3C), as well as tubes which were not only smaller in
diameter and devoid of a lumen, but also showed complete
disorganization of the typical cell layering (Fig. 3D). The latter was
confirmed by IHC: anti-GATA4 staining revealed the abnormal
presence of SC nuclei in the center of tubes (Fig. 3F), whereas an
anti-MVH antibody, which specifically labels the germ cell cytoplasm,
revealed severe germ cell disorganization (Fig. 3H).

By 3 months of age (P90), degeneration was even more severe in
D™, MisCre testes, with most of the tubes having formed their
lumen, but with the majority of them having degenerated into SCOs
with severely impaired SC morphology (Fig. 4D). In fact, staining with
tight-junction-associated protein (TJP1, formerly known as zonula
occludens 1, ZO-1)—a marker of SC tight junctions— was not only
present at the basal lamina of mutant tubes but in the adluminal
compartment too (SI Fig. 2F), suggesting defective SC cyto-architec-
ture and polarity. By 6 months of age (P180), mutant testes' size was
reduced to 5% of that of a control (Fig. S3A) and had degenerated into a
mass of interstitial cells containing only rare remaining tubes (Fig. 4E),

H&E
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MVH
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Fig. 3. Numerous spermatogenic defects in adult Dcr®”*;MisCre testes. H&E staining of
representative P60 Dcr®X;MisCre testis sections. Spermatogenic defects included
vacuolization (A), Sertoli-cell-only (SCO) tubes (B), tubes with spermatogenic arrest (C)
or disorganization of the seminiferous epithelium (D). Anti-GATA4 (red) staining (E,F)
revealed abnormal positioning of SC nuclei (F), whereas anti-MVH (red) staining (G,H)
revealed disorganization and reduction in germ cell number (H) in DcP;MisCre
testes. DAPI (blue) was used for nuclear staining (E-H). +/+ and -/~ are abbreviations
for Dc™”, and Dcr®*;MisCre animals respectively. Scale bar: 50 pm.
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thus showing that testis degeneration aggravates upon aging. In fact,
these sparse remaining tubes were almost completely devoid of germ
cells, as confirmed by anti-MVH staining (Fig. 4F). These results show
that SC Dicer is required both for SC survival and their capacity to
support germ cell development.

Tubular abnormalities appear as early as P5 in Dc®*:MisCre males

To unravel the events that led to infertility, we compared
development of mutant and control testes from PO to P42, when the
first spermatogenic wave is completed. At birth (P0), Dc*;MisCre
and control testes were morphologically indistinguishable (Figs. S4A-F).
The first abnormalities began to appear at P5, about 8-9 days after the
onset of the Mis-Cre transgene expression and when miRNAs were
completely eliminated from SCs. At this stage, gonocytes resume
proliferation, while moving towards the basement membrane (arrow-
head in Fig. 5A). In Dc™*:MisCre testes, two major defects were
observed: first, instead of lying against the basement membrane, SC
nuclei were mislocalized in the center of the tubes, as confirmed by
anti-GATA4 staining (arrows in Figs. 5D, E). Second, numerous pycnotic
cells were present within mutant tubes (arrowheads in Fig. 5D). By P15,
an 80% reduction in the size of Dcr**:MisCre testes compared to
controls was observed (2.0x1 mg versus 20+2 mg respectively,
p<0.0001, n=6-16 animals per genotype). Pachytene spermatocytes
had not yet appeared and germ cell layering was severely perturbed
(Fig. 5L). No tube had formed a lumen, and numerous pycnotic cells
were found within (arrowheads in Fig. 5]). Several aspects of SC
morphology suggested that these cells had remained immature: their
nucleus did not display the characteristic irregular shape (compare
insets in Figs. 5], G), they were mostly mislocalized in the center of the
tubes instead of the periphery (Figs. 5], K) and TJP1 staining was more
diffuse and discontinuous around the baso-lateral site of SCs compared
to controls (Fig. S2D). At P21 (Figs. S4M-R), when secondary
spermatocytes had appeared in control testes, and the first round
spermatids were seen in some tubes, mutant testes continued to show
a severe delay in meiosis and SC maturation, to harbor numerous
pycnotic cells, and to display cellular disorganization. However, a few
tubes had begun to form a lumen, suggesting that some SCs were
partially functional. By P42, round spermatids were drastically reduced
in number, and elongated spermatids were completely absent in
Dcr™#;MisCre testes. Tubular disorganization and vacuolization had
become severe (Figs. 5P-R), germ cells showed extensive apoptosis,
and most of the tubes were SCOs, although notably, those which
were less severely affected displayed a lumen.

Taken together, these data show that SC loss of Dicer severely
impairs the prepubertal spermatogenic wave due to defective SC
maturation, which includes dysfunctional secretory activity (absence
of lumen), abnormal nuclear positioning and morphology and
incapacity to properly support meiosis and spermiogenesis.

Increased SC proliferation followed by massive cell apoptosis in
prepubertal Dcr™™;MisCre testes

The dramatic testis size reduction we observed as early as P15 led
us to the assumption that the balance between cell proliferation and
death had been perturbed. Surprisingly, as evidenced by double anti-
GATA4/anti-Ki67 [HC, there was a significant increase in SC prolifera-
tion of PO, P5 and P15 Dcr®;MisCre testes. At PO and P5, we found
respectively a 1.25-fold (63.9% versus 51.2%) and 1.5-fold (56.2% versus
36.4%) increase of SC proliferation in mutant testes compared to
controls (Fig. 6A). At P15, when SCs normally cease dividing and
become mature, we still observed a 2.6-fold (1.8% versus 4.6%)
increase in proliferation in mutant testes, thus further suggesting a
delayed SC maturation.

These results prompted us to assess cell apoptosis in mutant testes.
Whereas at PO no difference between controls and mutants was



Impact of Dicer loss in Sertoli cells

RESULTS

M.D. Papaioannou et al. / Developmental Biology 326 (2009) 250-259 255

P90

P180

MVH

F

Fig. 4. Age-dependent testis degeneration in Dc®’*; MisCre mice. Control (A, B) and mutant (D, E) testis sections at P90 (A, D) and P180 (B, E) were stained with H&E. At P90, most
tubes had become SCOs (tube pointed with arrow in panel D); by P180, an almost complete testicular degeneration was observed, with only 5-6 (per transverse section) tubes
remaining, surrounded by a mass of interstitial cells (asterisk in panel E); in addition, these few remaining tubes were almost completely devoid of germ cells (F), as evidenced by
anti-MVH staining (C, F). +/+ and -/~ are abbreviations for DcP™* and Dcr¥/;MisCre animals respectively. Scale bar: 50 pm.

found, a 26- and 7-fold increase in apoptosis was observed in P5 and
P15 mutant testes respectively, compared to controls (Fig. 6B). To
reveal the identity of these apoptotic cells, we performed double anti-
cleaved caspase3/anti-GCNA1 IHC, so as to label apoptotic cells and
germ cell nuclei respectively. At P5, cleaved caspase-3 positive cells
(Fig. 6C) were almost exclusively GCNA1 negative (Fig. 6D), suggesting
that the large majority of apoptotic cells in Dc™*;MisCre testes were
SCs (arrows in Fig. 6E). However at P15, both germ and SCs were found
to be apoptotic (Figs. 6F-H), while at P21, apoptotic cells were almost
exclusively germ cells (Figs. 61-K). These findings suggest that the
striking testis size reduction is a consequence of both the incapacity of
SCs to sustain spermatogenesis and the subsequent germ cell death.

Ablation of Dicer in SCs causes alterations in the testicular transcriptome

To determine whether Dicer affects SC function at the transcrip-
tional level, we performed a microarray analysis on control and
mutant testes, just prior to (P0) and when the first morphological
changes appear (P5). At these early postnatal stages, more than 80% of
the tubular cells are SCs (Bellve et al., 1977), which minimizes the
tissue's heterogeneity.

Of the 29,000 probe sets defined as present in mutant or control
testes at PO, 77 were up-regulated (+2 fold) and 68 were down-
regulated (-2 fold) (SI Table 2), whereas 787 and 796 probe sets were
found to be up- or down-regulated respectively in P5 mutant testes
(Supplementary Table 3). The variation in abundance of several key
transcripts was further confirmed by quantitative RT-PCR (Fig. S7).
Among the genes down-regulated in PO mutant testes were Glial-
derived nerve factor (Gdnf), mannosidase IIx (Man2a2), serpin peptidase
inhibitor (SerpinA5), Claudin11 and Sox9, all of which, when inactivated
in mice, lead to diverse spermatogenic defects resulting in infertility.
To this group of transcripts was added another set of down-regulated
genes in P5 mutant testes including Gatal, Kitl (SCF), Bclw, Dhh, Stra6,
Wt1, Inhibin-(, connexin43, Jam2, Tjp2 and Amh, all known to be
major regulators of testicular development or spermatogenesis
(reviewed in Matzuk and Lamb, 2002). In contrast, when looking at
the genes up-regulated in mutant testes—that could be direct targets
of miRNAs—we found none that has been reported to be involved in
testicular function, with the notable exception of Bcl2L11, a member of

the proapoptotic Bcl-2 homology3-only protein family required for
the elimination of supernumerary germ cells during the first
spermatogenic wave (Coultas et al., 2005).

A hierarchical clustering (Fig. 7A) of the profile of the 145 probe
sets showing a>2-fold change in expression in PO mutant testes
revealed that the majority of the genes down-regulated at PO remained
so at P5. In contrast, the expression level of most of the genes
upregulated in PO mutant testes—with the exception of Bcl2L11—
returned to normal levels at P5, a finding indicative of a transient
upregulation. This also suggests that the “permanent” gene down-
regulation is more likely to be responsible for the observed phenotype.
We therefore used the Ingenuity Pathway Analysis (IPA) software to
classify the differentially expressed genes in groups of common
function. We found that genes critical for “cell signaling”, “cell
death”, “organ development”, “cellular development” and “tissue
development” were the five most statistically significant functional
groups affected by the SC loss of Dicer (Fig. 7B). Interestingly, each of
these groups contained both up- and down-regulated genes—in
approximately equal numbers—suggesting that the effect of Dicer
loss is probably the result of a deregulation of both miRNAs and
other factors downstream of Dicer itself.

Several studies have reported an enrichment of sequences
complementary to miRNA seeds in the 3’-untranslated region (3'-
UTR) of mRNAs that are upregulated upon Dicer—or specific miRNA—
deletion. To assess if this was also the case for Dcr™™/*;MisCre testes, we
compared the distribution of predicted miRNA target sites among
transcripts that were up- or down-regulated in PO and P5 Dcr*/%;
MisCre testes for the 248 miRNAs we cloned from purified P6 SCs. To
predict likely functional miRNAs targets, we used 3 different
bioinformatic approaches: when considering either all potential
sequences complementary to the seed, or 1 seed per miRNA/per
transcript, distributions between up- or down-regulated transcripts in
PO/P5 mutant testes were not significantly different (Mann-Whitney
test p-values 0.238 and 0.181 respectively). We also performed the
test using a selection of potential functional seeds based on a
thermodynamic model (Kertesz et al., 2007); distributions were
again not significantly different (p-values of 0.155 and 0.112
respectively) although a slightly higher significance was found.
These findings show that the 3’-UTR sequences of transcripts up-
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GATA4 MVH

Fig. 5. Tubular defects appear as early as P5 in Dc¥¥/*; MisCre mice. At P5, three major abnormalities were evident in Dcr®/*; MisCre testes: interstitial hyperplasia (asterisk in panel D),
pycnotic cells (arrowheads in panel D) within tubes, SC nuclear mislocalization (arrows in panels D and E) with almost complete absence of cytoplasm (compare tubule structure in
panel A and D, SC cytoplasm in A marked with asterisk). At P15, SC nuclear mislocalization persisted (arrows in panel K) with the majority of them having an abnormal circular (inset
in panel ]) rather than flattened triangular (inset in panel G) shape, and germ cell disorganization was remarkable (L). By P42 almost all tubes had become severely vacuolized (P) and
germ cell loss had become striking (R). +/+ and —/- are abbreviations for DcP** and Dc#;MisCre animals respectively. Scale bar: 50 pm.

regulated in PO and P5 Dcr™*;MisCre testes are not significantly Finally, we assessed the expression levels of certain repetitive
enriched for miRNA-binding sites, and therefore suggest that—at least elements, since there is evidence for the implication of Dicer-
in SCs—miRNAs may have limited direct effects on target gene dependent small RNAs in the repression of repetitive parasitic
expression at the RNA level. sequences (Murchison et al., 2007; Svoboda et al., 2004). Quantitative
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Fig. 6. Increased SC proliferation and massive cell apoptosis in prepubertal Dcr®/*; MisCre testes. Percentages of proliferating SCs as revealed by double IHC staining with anti-GATA4
and anti-Ki67 at PO, P5 and P15 are plotted in panel A. Quantifications of TUNEL labeled cells revealed a dramatic increase in apoptosis in P5 and P15 mutant testes (B). Double IHC
staining (C-K) with anti-GCNA (red) and anti-cleaved caspase3 (green) antibodies was performed on control (data not shown) and mutant (-/-) testis sections at P5 (C-E), P15 (F-H)
and P21 (I-K). At P5, absence of GCNA1 and cleaved caspase3 co-localization is indicative of SC apoptosis (white arrows in panel E), whereas at P15 and P21, double GCNA1-cleaved
caspase3 cells appeared (white arrowheads), thus revealing apoptotic germ cells. DAPI (blue) was used for nuclear staining (E, H, K). +/+ and —/- are abbreviations for Dc#** and
Dcr®X:MisCre animals respectively. Results are mean+SEM (n=3 animals/ genotype/ stage), *p<0.05, **p<0.01, ***p<0.001 versus controls. Scale bar: 50 pum.

RT-PCR analysis revealed no significant differences in the abundance
of transcripts for MT (mouse transcript), IAP (Intracisternal A particle
element), Linel (long interspersed nuclear elements), SineB1 and
SineB2 (short interspersed repetitive elements) in PO and P5 mutant
testes compared to controls (Fig. S6). Thus, the Dcr™®;MisCre
phenotype is probably not due to the derepression of these specific
repetitive elements.

Discussion

Given the fundamental importance of gamete production for the
perpetuation of a species, it comes as no surprise that spermatogen-
esis is a process tightly regulated at multiple levels, including the
transcriptional and post-transcriptional levels. An issue that has not
yet been addressed is whether post-transcriptional regulation of
spermatogenesis also occurs in the somatic compartment of the
testis. Here, we report that Dicer, a central component of the RNAi
machinery, is essential for SC maturation, function and survival.
Specific deletion of Dicer in SCs leads to infertility due to absence
of mature spermatozoa and testis degeneration, thus highlighting

GCNAT1

the absolute necessity of Dicer for the development of fully
competent SCs.

The first histological signs of the phenotype appeared a few days
after birth, and led already before puberty to a gradual degeneration of
the seminiferous epithelium's architecture. In fact, our expression
profiling analyses revealed that although PO control and mutant testes
are morphologically indistinguishable, miRNA levels in SCs are
reduced by approximately 50% and at the same time significant
transcriptional alterations have already occurred in mutants. At PO, SC
loss of Dicer affected the expression of not only numerous mRNAs
specifically expressed in SCs, but also mRNAs in gonocytes (e.g.
Serpin5a, TSLC1) and in LCs (e.g. Amhr2, PNMT). This suggests that
despite no apparent testicular phenotype at birth, damages in SCs
have already had important secondary effects on gene expression in
the adjacent cell lineages, but more importantly, it confirms the long-
standing notion of a close crosstalk between SCs and germ cells
[reviewed in (Jegou, 1993)]. From P5 onwards, numerous testicular
abnormalities appeared, the most prominent being a delay in SC
maturation and a delayed entry into meiosis. Testicular degeneration
worsened upon aging; by 6 months of age, mutant testes were
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Fig. 7. Global expression analysis of the transcriptomes of control and mutant testes at
PO and P5. (A) Hierarchical clustering of the 145 probe-sets exhibiting a =|2| fold change
in expression in PO Dc™;MisCre (-/-) compared to Dcr®* (+/+) testes. Each line
represents a probe set and each column corresponds to a specific stage and genotype as
indicated. Red and green colors indicate increased and decreased expression
respectively. (B) IPA analysis revealed the five most statistically significant functional
groups affected by the SC loss of Dicer. Each bar corresponding to a gene group is split in
two (red for up-, green for down-regulated genes); numbers within are the numbers of
modulated genes in each group.

composed almost exclusively of Leydig and fibroblast-like cells
interspersed with rare—completely disrupted—tubes. Overall, our
results suggest that the striking testis size reduction is very likely to
have been the result of both (i) SC inability to support germ cell
survival and spermatogenesis and (ii) SC death.

Increased cell death has in fact been observed in numerous
conditional Dicer knockouts (Chen et al.,, 2008; Harfe et al., 2005;
Harris et al., 2006), thereby raising the possibility that Dicer might be a
“universal” regulator of cell survival. Specific ablation of Dicer in SCs
was no exception since increased levels of SC apoptosis were detected
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as early as P5. At first glance, the dramatic phenotype of aging mutant
testes could be simply explained by massive SC apoptosis leading to
subsequent germ cell death. However, a closer examination of the
phenotype suggests that Dicer has additional roles in regulating SC
function, independent of its requirement for cell survival. Several of
our findings are in support of this notion: (1) the significant
alterations in gene expression at a time (P0) when histological defects
and apoptosis are not yet detectable in mutant testes indicate that
expression of genes essential for SC function is already affected and is
not a consequence of cell death. (2) Apoptosis in mutant SCs appears
gradually: some SCs die as early as P5, while some remain viable for
several months and are at some level capable of supporting
spermatogenesis, although they display other abnormalities (defec-
tive maturation, abnormal cellular architecture and polarization—as
evidenced by TJP1 staining). Finally, (3) by 2 months of age, most
remaining tubes are SCOs and composed of mutant, yet viable SCs
which are Dicer-deficient, as confirmed by recombination of the
Rosa26 stop LacZ marker (Fig. S1), thus showing that mutant SCs have
lost their capacity to support germ cell survival, but remain viable
themselves. These data reinforce our belief that Dicer should not be
merely viewed as a global regulator of cell survival, and that the effects
caused by its absence should not be interpreted solely on the basis of
cell death.

Among the genes whose expression was downregulated in PO and/
or P5 mutant testes, were Gdnf, Kitl, Man2a2, Gatal, Dhh, SerpinA5,
Wt1, and Sox9, all known to result in diverse spermatogenic defects
when deleted in vivo. The significant reduction of Kitl and Gdnf levels
was of particular interest; a balance between the Kitl/c-kit and GDNF/
Ret signaling pathways is known to control the choice between
spermatogonial differentiation and renewal (reviewed in Wong et al.,
2005). It is thereby reasonable to assume that deregulation of this
balance, notably a 5- and 3-fold reduction of Gdnf and Kitl respectively,
could perturb the initial phase of spermatogenesis. It is possible that
around P5, when spermatogonia resume proliferation and either
renew themselves or differentiate, the reduction of Gdnf impairs their
capacity to renew, whereas the reduction of Kitl negatively affects
their capacity to differentiate. Defective spermatogonial renewal
could lead to gradual germ cell loss, and could thereby explain the
tubular degeneration we observed upon aging.

An essential question that emerges with the findings presented
here is which biological activities mediated by Dicer are essential for
SC function. Dicer is involved in a variety of gene-silencing
phenomena at the transcriptional or translational level—through the
activity of small RNAs—but is also required for the maintenance of
chromatin structure (Kanellopoulou et al., 2005). Therefore, it is likely
that the Dc®*;MisCre phenotype is the result of (1) the deregulation
of genetic elements that are directly under the control of Dicer itself,
and/or (2) the deregulation of —direct or indirect—miRNA target
genes. In the first case, loss of Dicer could lead to the up-regulation of
genetic elements that are normally transcriptionally silent, which in
its turn could affect the expression of other genes essential for
spermatogenesis. In the second case, loss of miRNAs—subsequent to
the loss of Dicer—could result in the up-regulation of direct miRNA
target genes, which in their turn could deregulate the expression of
other downstream factors. For the moment, our data favor the second
option, since we found no significant change in the expression of a
selected set of repetitive elements in mutant testes. A tempting
hypothesis is raised by the fact that most genes that could actually be
responsible for the observed phenotype were down-regulated in
mutant testes. Taken together, our data suggest a model in which Dicer
deletion leads to the gradual—but ultimately complete—disappearance
of miRNAs in Sertoli cells, followed by a major transcriptome
deregulation that could be the result of an alteration in the fine tuning
of protein synthesis, such as the upregulation of potential transcrip-
tional repressors. This hypothesis is supported by recent high-
throughput proteomic analyses revealing that a single miRNA can
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repress the production of hundreds of proteins but that this repression
is relatively mild, rarely exceeding 4-fold (Baek et al., 2008; Selbach et
al., 2008). We therefore hypothesize that the infertility phenotype
observed in Dc®*:MisCre mice is the indirect consequence of the
downregulation of genes essential for Sertoli cell capacity to support
germ cell survival and differentiation, such as Gdnf, Kitl, Wt1, and Sox9.

In conclusion, a better understanding of spermatogenesis is
essential in order to become able to treat a rapidly increasing number
of cases of male infertility. By demonstrating with our study that Dicer
is essential for spermatogenesis, not only do we unravel a novel role
for this gene, but we also provide new insights on the mechanisms
controlling SC function and germ stem cell niche regulation in
mammals.
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Loss of Dicer in Sertoli Cells Has a Major
Impact on the Testicular Proteome of Mices
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Sertoli cells (SCs) are the central, essential coordinators of
spermatogenesis, without which germ cell development
cannot occur. We previously showed that Dicer, an RNaselll
endonuclease required for microRNA (miRNA) biogenesis,
is absolutely essential for Sertoli cells to mature, survive,
and ultimately sustain germ cell development. Here, using
isotope-coded protein labeling, a technique for protein rel-
ative quantification by mass spectrometry, we investigated
the impact of Sertoli cell-Dicer and subsequent miRNA loss
on the testicular proteome. We found that, a large propor-
tion of proteins (50 out of 130) are up-regulated by more that
1.3-fold in testes lacking Sertoli cell-Dicer, yet that this
protein up-regulation is mild, never exceeding a 2-fold
change, and is not preceeded by alterations of the corre-
sponding mRNAs. Of note, the expression levels of six pro-
teins of interest were further validated using the Absolute
Quantification (AQUA) peptide technology. Furthermore,
through 3’'UTR luciferase assays we identified one up-reg-
ulated protein, SOD-1, a Cu/Zn superoxide dismutase
whose overexpression has been linked to enhanced cell
death through apoptosis, as a likely direct target of three
Sertoli cell-expressed miRNAs, miR-125a-3p, miR-872 and
miR-24. Altogether, our study, which is one of the few in
vivo analyses of miRNA effects on protein output, suggests
that, at least in our system, miRNAs play a significant role in
translation control. Molecular & Cellular Proteomics 10:
10.1074/mcp.M900587-MCP200, 1-14, 2011.

In all sexually reproducing organisms, germ cells (GCs)', in
contrast to somatic cells, are the only cells that can give rise
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to a new organism; GCs give rise to the gametes—egg in
females and sperm in males. Spermatogenesis refers to the
development of mature haploid sperm from diploid spermato-
gonial cells within the testis of the male reproductive tract. It
is typically divided in three strictly regulated phases, the mi-
totic, the meiotic, and the phase of spermiogenesis, which
culminates with spermiation, the release of spermatozoa in
the testicular seminiferous tubule’s lumen. Spermatogenesis
ensures continuous gamete production and occurs through-
out adulthood in consecutive waves within the seminiferous
tubules of the testis (reviewed in (1)). Apart from the GCs,
which undergo spermatogenesis, the supporting cells of the
testis called Sertoli cells (SCs), play a central role in the
coordination of this process (for review see (2, 3)). SCs struc-
turally and nutritionally support GCs and secrete factors that
control, among other events, the survival and progression of
GCs through the sequential steps of spermatogenesis (for
example see (4-6)).

Post-transcriptional control plays an essential role in the
regulation of spermatogenesis. During GC development, tran-
scription and translation are un-coupled: transcription occurs
massively following meiosis, with postmeiotic transcripts ac-
cumulating in large amounts, becoming deadenylated and
stored in a repressed, dormant form in the spermatid cyto-
plasm for 4-5 days, whereas translation occurs at later stages
(7). In addition to this “classic” mechanism, a novel system
of post-transcriptional control mediated by microRNAs
(miRNAs) is lately emerging with an important role during
spermatogenesis ((8-10), and reviewed in (11)). miRNAs are
endogenous, single-stranded, noncoding RNAs of ~22 nucle-
otides that act as post-transcriptional regulators of gene ex-
pression. They are generated through a multistep enzymatic
process that involves the function of Dicer (Dcr), an RNaselll
endonuclease essential for the production of mature miRNAs
(reviewed in (12)). miRNAs bind most frequently to the 3'UTR
(3" untranslated region) of target mRNAs, although recent
studies show that some can also bind within the coding
sequence (CDS) of mRNAs (reviewed in (13)), and depending
on sequence complementarity, induce either mMRNA degrada-
tion or translational repression of their target (for review see
(14)). Importantly though, it has been reported that in some
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cases, miRNAs can also promote gene expression (15, 16),
thus broadening even more their range of effects.

Although miRNA effects at the mRNA level have been fre-
quently evaluated (for example (17-19)), their impact on pro-
tein output, which is thought to be the primary effect of animal
miRNAs, has been, technically, more difficult to assess. One
study used stable isotope labeling by amino acids in cell
culture (SILAC) technology to investigate the effect of a single
miRNA on protein output and reported that miR-1 can regu-
late a substantial percentage of the Hel.a proteome (20). Only
recently though two groups performed a large-scale protein
analysis that unraveled the impact of miRNAs on protein
output; both concluded that, in addition to down-regulating
mRNA levels, a single miRNA can repress the production of
hundreds of proteins, but that this repression is relatively mild
(21, 22).

We previously generated a mouse model in which Dcr -and
miRNAs- are eliminated uniquely in the SCs of the testis (10).
We found that this ablation leads to complete infertility be-
cause of severe spermatogenic defects and gradual testicular
degeneration; importantly, significant transcriptome (mMRNA)
down-regulation of genes such as Gadnf, KitL, Man2a2, and
Wt1, all with essential roles during spermatogenesis, was
detected upon SC-Dcr loss (10). Here, in order to investigate
the impact of SC-Dcr loss at the proteome level, we per-
formed ICPL (isotope-coded protein label) analysis (23), which
allowed us, by means of MS, to relatively quantify proteins
whose expression was altered between SC-Dcr-depleted
(Der™™:MisCre, hereafter referred to as mutant) and wild-type
(Der™™, hereafter referred to as control) testes. We found that
more than a third of 130 quantified testicular proteins are
up-regulated in mutant testes, yet at a relatively mild level,
and that, importantly, this up-regulation does not reflect de-
tectable changes in their respective mRNA levels. Of note,
protein absolute quantification was achieved in independent
experiments using the AQUA (Absolute QUAntification) pep-
tide strategy (24) on a selected set of proteins and thus
validated the results obtained through ICPL analysis. In addi-
tion, we identified Sod-1, a gene up-regulated at the protein
level, as a direct in vitro post-transcriptional target of three
SC-expressed miRNAs, miR-125a-3p, miR-872, and miR-24,
we hypothesize that its up-regulation upon SC-Dcr and
miRNA loss could account, partially, for the observed testic-
ular degeneration. Globally, our findings further reinforce the
current notion of animal miRNAs exerting one of their primary
negative effects at the translational level, but most impor-
tantly, open new perspectives in studying the testicular pro-
teome and its relation to the miRNA machinery.

EXPERIMENTAL PROCEDURES

Affymetrix Microarray Analysis— Microarray analysis is described in
(10). All microarray data are available through ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/, accession number: E-TABM-426).

Protein Extraction and ICPL Labeling—Performing differential pro-
teomics analysis using extremely small micro-dissected tissue sam-

ples is indeed a challenge. Considering in addition, the cost of knock-
out animals, experiments were only performed once. Protein extracts
were prepared from 20 pairs of control and 20 pairs of mutant PO
(postnatal day 0) testes; for additional information on the generation
of the Dcr™*™;MisCre mouse strain, refer to (10). Tissues were homog-
enized by sonication on dry ice in a lysis buffer (6 m guanidine HCI, pH
8.5, tissue/buffer: 1/1.5(w/v)) and were then placed for 1 h at 4 °C
before being centrifuged (15,000 X g, 30min, 4 °C). The resulting
supernatants were then ultracentrifuged (105,000 X g, 1 h, 4 °C).
Protein concentration of the resulting supernatants was measured
with a bicinchoninic acid assay (Sigma-Aldrich) and was adjusted to
5 mg/ml by addition of lysis buffer. Disulfide bonds were reduced with
0.2 ™ tris(2-carboxyethyl)phosphine and then alkylated with 0.4 mm
iodoacetamide. For each sample, 100 pg of proteins were labeled
using the ICPL-kit (Serva Electrophoresis, Heidelberg, Germany) ac-
cording to the manufacturer’s instructions. Briefly, free amino groups
(lysine residues and N-terminal NH,) of proteins from control and
mutant extracts were labeled at room temperature for 2 h with the
light (*2C- nicotinoyloxysuccinimide) and the heavy ('*C- nicotinoyl-
oxysuccinimide) ICPL reagents, respectively. Following quenching
excess reagent with 6 M hydroxylamine, the two labeled samples were
mixed, purified by acetone-precipitation (—20 °C, overnight), and
subsequently dissolved in 20 mm HEPES. Labeled proteins (50 wg)
were separated by SDS-PAGE on a 12% precast gel (Gebagel, Gene
Bio-Applications, Interchim, Montlugon, France). The gel was subse-
quently stained with Coomasie blue R-350 using the EZBlue gel
staining reagent (Sigma-Aldrich, Saint-Quentin Fallavier, France). The
entire gel lane was cut into 20 bands, which were washed with
different acetonitrile (ACN)/100 mm NH,HCO; solutions. In-gel diges-
tion was performed overnight at 37 °C with modified trypsin (Pro-
mega, Charbonniéres-les-Bains, France). Proteolytic peptides were
then extracted from the gel by sequential incubation in the following
solutions: ACN/H,O/TFA, 70:30:0.1 (v/v/v), 100% ACN and ACN/
H,O/TFA, 70:30:0.1 (v/v/v), and extracts were eventually concen-
trated by evaporation to a final volume of 30 pul.

Nano-LC-MS-MS Analysis— Proteolytic mixtures were separated
on a nano-high performance liquid chromatography system (Ultimate
3000, Dionex, Jouy-en-Josas, France), with an injection volume of
22 ul: first, they were concentrated on a C18-PepMap trapping
reverse phase column (5 um, 300 A/300 um i.d. X 5 mm, Dionex),
and were then eluted with a 75-min, 2-90% ACN gradient in 0.05%
formic acid, at a flow rate of 250 nL/min. The nano-LC apparatus
was coupled on-line with an Esquire HCT Ultra PTM Discovery
mass spectrometer (Bruker Daltonik, GmbH, Bremen, Germany),
equipped with a nanoflow electrospray ionization (ESI) source and
an ion trap analyzer (ITMS). The mass spectrometer was operated
in the positive ionization mode. The EsquireControl™ software
(Bruker Daltonik, GmbH) automatically alternated MS and MS-MS
acquisitions and was tuned to preferentially subject ICPL labeled
peptides to MS-MS acquisitions.

Protein Identification and Relative Quantification—The DataAnaly-
sis 3.4 software (Bruker Daltonik, GmbH) was used to create the peak
lists from raw data. For each acquisition, a maximum of 500 com-
pounds were detected with an intensity threshold of 250,000 and the
charge state of precursor ions was automatically determined by re-
solved-isotope deconvolution. The Biotools 3.1 software (Bruker Dal-
tonik, GmbH) was used to submit MS/MS data to the Swiss-Prot
database (version 47, Mus musculus taxonomy, 568,851 sequence
entries) using the Mascot algorithm (Mascot server v2.2; http://www.
matrixscience.com). Given that modification of lysine residues by
ICPL labeling prevents their cleavage by trypsin, arginine C was
selected as enzyme with one allowed missed cleavage. In addition,
carbamidomethylation of cysteins was set as fixed modifications, and
labeling of lysine residues and of the N-terminal NH, group of proteins
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by light or heavy ICPL reagents, as well as methionine oxidation were
considered as variable modifications. The mass tolerance for parent
and fragment ions was set to 1.2 and 0.5 Da, respectively. Peptide
identifications were accepted if the individual ion scores were above
25 (the ion score is —10*log(P), where P is the probability that the
observed match is a random event). Protein identifications were ac-
cepted if the score indicated identity or extensive homology, i.e. the
probability that the identification is a random match was lower than
5%. Matches corresponding to the heavy and the light labeled forms
of the same peptide counted for one peptide. Single peptide-based
identifications were accepted because missed cleavages of labeled
lysine residues leads to a global reduction in the number of peptides
produced in comparison to “classical” trypsin digestion and to the
formation of relatively long peptides that can single-handedly repre-
sent a sufficient percentage of protein sequence coverage.

MS/MS spectra were searched against a randomized sequence
(decoy) database using Mascot to determine the false discovery rate
defined as the number of validated decoy hits/(number of validated
target hits + number of decoy hits)*100. Thus, a satisfactory false
discovery rate of 1.15% was obtained for the totality of identifications
acquired during ICPL analysis.

Relative protein quantification was obtained using the WarpLC 1.1
software (Bruker Daltonik, GmbH). This automatically calculates the
heavy-to-light (H/L) ratios by comparing the relative intensities of the
extracted ion chromatograms (EIC) that are reconstituted by extrac-
tion of the intensities of m/z ratios corresponding to the labeled
peptides observed on MS spectra. For each EIC, the contribution of
1+, 2+, and 3+ charge states of the peptide was considered and
smoothing was applied (one smoothing cycle with Gauss algorithm
and a smoothing width of 3 s). For each protein, the H/L ratio was
calculated by averaging the different H/L ratios obtained for each pair
of labeled peptides.

In the present study, the amount of peptides obtained following
peptide extraction from both sample pools was not enough to per-
form technical replicates. Reproducibility and accuracy of ICPL ex-
periments performed by ESI-ITMS were evaluated in five independent
technical replicates using a standard mixture of ICPL labeled proteins
containing bovine serum albumin with a heavy-to-light ratio of 1:1
(ICPL-kit, Serva Electrophoresis). For bovine serum albumin, an av-
erage H/L ratio of 0.94 was obtained, very close to the theoretical
value of 1, and corresponding to a variation coefficient of 8%.

AQUA Peptide Analysis—AQUA ['3Cq, '°N,] K-Lysine-labeled and
['°Cs, "°N,] R-Arginine-labeled peptides (listed in supplemental
Table 1) were synthesized and quality- and quantity-controlled by
Sigma-Aldrich. All AQUA peptide standard solutions were prepared
from stock solutions at 5 pmol/ul according to the manufacturer’s
instructions. All samples used for AQUA peptide experiments were
systematically prepared in low adsorption tubes (LoBind tubes, Ep-
pendorf, Le Pecq, France) to minimize errors because of peptide
adsorption (25). AQUA peptide standard solutions were prepared at
0.1, 0.2, 0.5, 1, 2 and 5 fmol/ul and were analyzed by nano-liquid
chromatography (LC)-ESI-ITMS with an injection volume of 10 ul in
three analytical replicates for calibration. For each AQUA peptide, the
corresponding EIC area was automatically determined by the Quan-
tAnalysis 1.8 software (Bruker Daltonik, GmbH) and plotted against
the injected amount to obtain the calibration curves. The linearity of
the response was verified for all AQUA peptides with correlation
coefficients ranging from 0.988 to 0.996. In addition, the analytical
repeatability of measurement of EIC areas corresponding to the dif-
ferent AQUA peptides was evaluated: satisfactory coefficient of vari-
ations (CV) ranging from 2% to 9% (n = 6) were obtained for an AQUA
peptide concentration of 2 fmol/ul.

Protein extracts used for the ICPL experiment, that is, one sample
of 20 pairs of control and one sample of 20 pairs of mutant testes,

were also used for AQUA peptide analysis. Proteins from the control
and mutant sample were precipitated with acetone overnight at
—20 °C and dissolved in Laemmli buffer (Gene Bio-Application). The
two samples were then independently separated by SDS-PAGE on a
12% precast gel (Gebagel). Following fixation, washing, and staining,
both entire gel lanes were manually cut into 20 pieces. Disulfide
bonds were then reduced with dithiotreitol and alkylated with iodo-
acetamide. Protein in-gel digestion and proteolytic peptide extraction
from each gel band was then performed. In order to precisely control
the final volume of proteolytic peptides, extracts were completely
dried by evaporation and dissolved with 20 ul of H,O/formic acid
(95/5, v/v) solution, then with 20 ul of a H,O/ACN/formic acid (95/5/
0.2, v/v/v) solution and vigorously sonicated and vortexed. AQUA
peptide standards were added in precise amounts to the samples just
before nano-LC-MS analysis. For all AQUA peptide analysis, the
EsquireControl software was operated in the Multiple Reaction Mon-
itoring mode to specifically subject the labeled (AQUA peptides) and
unlabeled (peptides from the sample) peptides to MS/MS fragmen-
tations. Then, for each fragmented peptide, an EIC was reconstituted
by extracting the signals corresponding to fragment ions specific to
the peptide of interest. Absolute quantification was obtained by com-
paring the EIC areas of the unlabeled peptide and its corresponding
AQUA peptide added in precise amount.

Real-Time Quantitative PCR—Total RNAs from six control and six
mutant PO testes were extracted using the RNeasy Micro Kit (Qiagen,
Basel, Switzerland) according to the manufacturer’s protocol. For
each of the 12 individual samples, 1 ng of total RNA was reverse
transcribed with the Superscript || Reverse Transcriptase (Invitrogen,
Basel, Switzerland) according to the manufacturer’s instructions, and
1/40 of the cDNA was used as template for Real-Time PCR amplifi-
cation on a Freedom Evo 150 System (Tecan, Mannedorf, Switzer-
land) using the Power SYBR Green PCR master mix (ABI, Foster City,
CA). Raw threshold-cycle (Ct) values were obtained with the SDS 2.0
software (ABI). Relative quantities (RQ) were calculated with the for-
mula RQ = E-Ct, using efficiencies (E) calculated with the DART-PCR
algorithm, as described (26). Mean quantities were calculated from
triplicate PCR reactions for each sample, and were normalized to two
similarly measured quantities of Gapdh and Trf1R as described (27).
Normalized quantities were averaged for three replicates for each
data point and represented as the mean *+ S.D. The highest normal-
ized relative quantity was arbitrarily designated as a value of 100.0.
Fold changes were calculated from the quotient of means of these
normalized quantities and reported as values * S.E. The statistical
significance of fold-changes was determined by an unpaired Stu-
dent’s t test. Primers used are listed in supplemental Table 2.

Spermatogenic Cell Purification—Mature Sertoli and peritubular
myoid cells were prepared from 10 C57BL/6J males aged P16,
whereas immature Sertoli cells were prepared from 16 C57BL/6J
animals aged P6, as previously described (28). Germ cells were
prepared using the STAPUT technique according to (29); spermato-
gonia were prepared from 40 C57BL/6J males aged P6-8, whereas
pachytene spermatocytes and spermatids were prepared from six
adult (P60) C57BL/6J mice. To verify cell purity, 5 X 10° cells were
fixed in phosphate-buffered saline (PBS)/PAF 1% for 10’ at room
temperature, washed in PBS and then conserved overnight at 4 °C in
PBS/FCS 1%. Cells were then marked with propidium iodide (100
ng/ml) in PBS/0.2% saponin (30’, RT) and were sorted on a Fac-
sCalibur machine (Beckton Dickinson, France), in order to quantify
their contamination. Leydig cells were prepared from 16 adult (12-
week-old) mice, as previously described (30); their purity was as-
sessed by incubating cells with NAD (in Nitro Blue Tetrazolium,
NBT, N-6876, Sigma-Aldrich) for 90’ and quantifying the percent-
age of cells having acquired a violet color, indicative of the pres-
ence of 33-HSD.
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# (>2.00): 77

PO mutant

#(<2.00): 68 |-
10° 10' 10° 10° 10* N
PO control

Fic. 1. Morphological abnormalities appear by postnatal (P) day 5, yet mRNA transcripts are affected upon SC-Dcr loss already by
PO. A, Hematoxylin and eosin-stained paraffin sections from PO (a, d), P5 (b, €) and P60 (c, f) testis sections of control (Dcr™™) (a, b, c) and
mutant (Dcr®**;MisCre) (d, e, f) mice; note the dramatic spermatogenic defects (arrowhead points to a tube containing only SCs) observed in
adult P60 mutant testes. Scale bar: 50 um. B, Scatterplot depicting genes showing at PO differential expression between control and mutant
whole testes. Each dot (black or red) represents a gene; genes represented as red dots are those which are either up-regulated (77 genes) or
down-regulated (68 genes) >2-fold in mutant testes. Diagonal black bars represent a 2-fold threshold.

microRNA Expression Profiling with Illumina Arrays—Total RNA
was isolated with Trizol (Invitrogen, Basel, Switzerland) and quality
controlled for RNA integrity by capillary electrophoresis on an Agi-
lent 2100 Bioanalyzer. miRNA profiling was performed according to
the manufacturer’s protocol using the lllumina MicroRNA Expres-
sion Profiling Mouse Panel (lllumina, Hayward, CA), which contains
656 assays for miRNAs described in miRBase v12. Briefly, for each
sample, 500 ng of total RNA was polyadenylated and converted into
cDNA using an oligo dT-Reverse PCR primer. miRNA-specific oli-
gos (extended with specific address sequences and Forward PCR
primer sequences) were then hybridized to cDNAs. Following ex-
tension using DNA polymerase, products were PCR-amplified using
Cy3-labeled forward and unlabeled reverse primers, then purified
and eventually hybridized onto a Sentrix Array Matrix overnight. The
Sentrix Array Matrix was washed and scanned on a BeadArrays
reader. Data were normalized and analyzed using the lllumina
Beadstudio 3.1.3 (background correction and quantile normaliza-
tion without scaling). Expression profiles for each sample were
imported into GeneSpringGX 7.3.1 (Agilent Technologies) and Mat-
Lab (MathWorks, Inc) and further analyzed in order to identify
differentially expressed miRNAs. MicroRNAs were considered as
being expressed when the expression was above 1000 (arbitrary
units).

MicroRNA Target Recognition Analysis—Target sites were initially
identified by the presence of miRNA seeds (the minimum sequence of
nucleotides required for successful miRNA binding on its target, see
supplemental Fig. 1A), and their biological relevance was estimated
using the following three models: The first model relies on the ther-
modynamics of the miRNA-mRNA interactions. The energy balance
of these interactions (AAG) was computed with a method similar to
that of (31): It includes the free energy gain resulting from the forma-
tion of the miRNA-target duplex (AG duplex) and the free energy
required for the unfolding of the target site and of at least 10 nucle-
otides upstream and 15 downstream of the target site (AG open). The
second model relies on sequence features as described in (32). The
third model relies on conservation of the seed sequences among
placental species: the Phastcons scores of the seed sequence bases,
provided by the UCSC genome browser (33), were summed (the sum
allows to include the effect of the seed length). For seed identification,
we used standard parameters, requiring seed length to be 6-8 bases
from position 2 of the miRNA, and not allowing mismatches except for
a single G:U wobble in 7-mers and two G:U wobbles in 8-mers. Of
note, for each model, the first quartile of the ranked predictions was
considered as biologically significant in our target site enrichment

analysis. A schematic representation of the described strategy is
shown in supplemental Fig. 1B.

In vitro Luciferase Assays—The 3’UTR of Sod-1 was PCR-ampli-
fied from genomic DNA using the following oligos: F:5'-ATATG-
GTCTAGAACATTCCCTGTGTGGTCTGAG-3’, R:5'-ATATGGCCG-
GCCGTCACACAGTTACAA-3’, and was subcloned in a TOPOII
vector (Invitrogen, Basel, Switzerland). The insert was then digested
out and directionally inserted downstream of the Firefly luciferase
coding sequence in the Xbal and Fsel sites of the pTal-Luc vector
(Clontech, Sait-Germain-en-Laye, France). Mutated Sod-1 3'UTR
constructs were generated with the QuikChange Il Site-Directed Mu-
tagenesis kit (Stratagene, Agilent Technologies, Schweiz AG), as de-
scribed in the manufacturer’s protocol, using oligos carrying a fully
mutated seed sequence. The day before transfection, 10* HEK293T
cells/well were seeded in 96-well plates; transfection was performed
with (i) 100 ng of the pTal-Luc-Sod1-3'UTR (wild-type or mutant)
Firefly plasmid, (ii) 5 ng of the transfection control pRL-SV40 Renilla
luciferase plasmid (Promega AG, Dlbendorf)) and (jii) 10 nm of the
pre-miR-125a-3p (#PM12378), pre-miR-872 (#PM12800), or pre-
miR-24 (#PM10737) (Ambion, Applied Biosystems Europe BV), using
Lipofectamine 2000 (Invitrogen, Basel, Switzerland) according to the
manufacturer’s instructions. The Firefly and Renilla luciferase activi-
ties were measured 48 h post-transfection using the Dual Luciferase
Assay system (Promega AG, Dibendorf) as described in the manu-
facturer’s protocol. All experiments were performed three times, with
each experimental condition being performed in four technical repli-
cates. A schematic representation of the Luciferase assays’ strategy
is shown in Fig. 6A.

RESULTS

SC-expressed miRNAs Affect Testicular Transcription—\We
previously generated a mouse model in which Dicer (Dcr), and
subsequently miRNAs, are specifically eliminated in the Ser-
toli cells (SCs) of the testis (Dcr™™:MisCre), and found that
this loss leads to complete infertility (10). We were able to
detect already by postnatal day 5 (P5), a delay in SC matu-
ration and an initial increase in SC proliferation followed by
highly elevated levels of SC and GC apoptosis, events that
ultimately led to a dramatic testicular degeneration during
adulthood (Fig. 1A). Importantly, although at birth (PO) no
morphological (histological) defects were detected (Fig. 1A),
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we measured several alterations of the testicular transcrip-
tome. More precisely, we found 77 and 68 genes to be = 2 -
fold up- and down-regulated respectively in PO testes lacking
Dcr in SCs (Fig. 1B). Deregulated genes included among
others Ganf, Kitl, Serpin5a, Sox9, Wt1, and Cldn11, all of
which have key roles during spermatogenesis. However, the
in vivo effect of SC-miRNA depletion on protein output was
not addressed.

Sertoli-cell Loss of Dicer Causes Significant Proteome Al-
terations—Here, to assess the impact of SC-miRNA loss on
the testicular proteome, we performed relative quantification
of proteins on PO whole testis protein extracts of control and
mutant mice using ICPL: Proteins extracted from PO control
and mutant testes were labeled with the light (L) and heavy (H)
ICPL reagent respectively, mixed, prefractionated by gel elec-
trophoresis, excised, and trypsin digested. The obtained pep-
tide mixtures were analyzed by nano-ESI-ITMS for protein
identification and relative quantification (Fig. 2A).

By querying the Swiss-Prot database with the Mascot al-
gorithm, we obtained 240 protein identifications showing a
score superior to the identity or the extensive homology
threshold. These 240 identifications actually corresponded to
168 proteins, each associated with a nonredundant Entrez-
Gene (EG) identifier. Out of these 168 nonredundant proteins,
a mutant/control (H/L) protein ratio was calculated for 130 of
them (all 130 proteins are listed in supplementary Table 3, and
all peptide sequences for the identified proteins are listed in
supplementary Table 4); for the remaining 38, this was not
possible because of the absence of detected labeled peptides
from either the control or the mutant sample. The minimum
variation of H/L ratios associated to significant variation of
protein expression was determined similarly to (34). The av-
erage of the CV (coefficient of variation) obtained for H/L
ratios of all proteins for which at least two peptides were
quantified was 11.1%. We thus considered that a variation of
30% (>2 CV) was significant. This significant variation of 30%
largely overcomes technical variability in our experiments that
was demonstrated to be 8%. Of these 130 quantified pro-
teins, 50 were up-regulated (H/L ratio =1.3), whereas only 3
were down-regulated (H/L =0.7) in mutant testes (Table ).
The remaining 77 showed no significant difference in abun-
dance between control and mutant testes (0.7<H/L<1.3).
More precisely, of the 50 up-regulated proteins, 23 showed a
mild (1.3-1.5-fold change) up-regulation, and the remaining
27 displayed an H/L ratio between 1.5- and 2- (Fig. 2B and
Table I). These findings are in agreement with two recent
studies that reported a relatively mild repression of hundreds
of proteins upon miRNA overexpression (21, 22).

Independent Validation of Testicular Protein Levels by
AQUA Peptide Analysis—To confirm the differential expres-
sion levels we detected through ICPL analysis, we selected
six proteins, namely four up-regulated (Vimentin, Atp5d,
Anxa2, and Sod1) in mutant testes and two unaffected (Prdx1
and Gstm?1), for further validation by means of AQUA peptide
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Fic. 2. SC-loss of Dcr causes significant proteome alterations
at birth. A, Schematic representation of the experimental design
employed for relative quantification of proteins using ICPL. B, Shown
here are proteins up-regulated (black bars), unaffected (gray bars) or
down-regulated (white bars) upon SC-Dcr loss. H/L (mutant/control)
ratios between 0.7 and 1.3 are indicative of no difference between
control and mutant testes.
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TABLE |

List of proteins whose mutant/control (H/L) ratio, as revealed by ICPL analysis, is >1.3 (50 proteins, Sfrs-Stip1) or <0.7 (3 proteins, Hbb-b1,

Fasn, Hbb-b2). Also shown are two unaffected (0.7<H/L<1.3) proteins (Gstm1, Prdx1) that were used for AQUA validation analysis

Protein Name Gene Name H/L (ICPL)? H/L (AQUA)® mRNA (Affy)® mRNA (gPCR)?
Splicing factor, arginine/serine-rich 1 Sfrs 1.97 —1.08
Heat shock protein HSP 90-alpha Hsp90aa1 1.86 1.12 0.75
Heat shock 70 kDa protein 1L Hspail 1.84 —-1.17
Heat shock protein HSP 90-beta Hsp90ab1 1.82 1.02
408 ribosomal protein S11 Rpsi1 1.8 1.04
Tubulin a-1B chain Tubalb 1.79 1.08
Annexin A2 Anxa2 1.78 1.87 1 ns
ADP/ATP translocase 1 Slc25a4 1.77 1.13
Poly(rC)-binding protein 1 Pcbp1 1.77 1.01
Profilin-2 Pfn2 1.76 1.09
Endoplasmin Hsp90b1 1.74 1.05
Apolipoprotein A-I Apoat 1.72 -1.22
Vimentin Vim 1.69 1.93 1.03 0.75
Superoxide dismutase [Cu-Zn] Sod1 1.68 1.44 —1.04 ns
Elongation factor 2 Eef2 1.66 1.06
Rho GDP-dissociation inhibitor 1 Arhgdia 1.62 1.09
Lamin-B1 Lmnb1 1.61 1.09
Actin, cytoplasmic 2 Actg1 1.6 1.1
Serum albumin Alb 1.6 —-1.21
Heat shock 70 kDa protein 1B Hspaib 1.58 -
60S ribosomal protein L14 Rpl14 1.57 -1.15 0.75
408 ribosomal protein S14 Rps14 1.56 1.05
Histone H4 Histh4 1.56 -
Protein disulfide-isomerase P4hb 1.56 1.08
ADP/ATP translocase 2 Slic25a5 1.55 -0.99
Splicing factor, proline- and glutamine-rich Sfpq 1.53 1.03 ns
ATP synthase subunit delta, mitochondrial Atp5d 1.52 1.78 1.02 ns
Ig kchain C region Igk-C 1.48 -
Tubulin B-5 chain Tubb5 1.47 1.1
Actin, y-enteric smooth muscle Actg2 1.46 1.13
60S ribosomal protein L10 Rpl10 1.45 1.04
60S ribosomal protein L28 Rpl28 1.45 1.02
Elongation factor 1-a1 Eeflal 1.42 1.07
Phosphoglycerate mutase 1 Pgam1 1.42 1.01
Peptidyl-prolyl cis-trans isomerase A Ppia 1.41 1.08
Nucleophosmin Npm1 14 1.06
Calmodulin Calm3;Calm1;Calm2 1.38 —1.04;1.07;1.03
Heat shock cognate 71 kDa protein Hspa8 1.37 —1.01
40S ribosomal protein S20 Rps20 1.35 1.01
60 kDa heat shock protein, mitochondrial Hspd1 1.35 1.12
60S ribosomal protein L18 Rpl18 1.35 1.09
ATP-citrate synthase Acly 1.35 1.17
40S ribosomal protein S3 Rps3 1.34 1.04
ATP synthase subunit 8, mitochondrial Atp5b 1.34 1.01
60S ribosomal protein L13 Rpl13 1.33 1.02
40S ribosomal protein S8 Rps8 1.32 1.01
ATP synthase subunit «, mitochondrial Atpb5ai 1.32 1.06
Heterogeneous nuclear ribonucleoprotein A3 Hnrnpa3 1.32 1.11
Histone H1.2 Hist1hic 1.3 1
Stress-induced-phosphoprotein 1 Stip1 1.3 —0.99
Hemoglobin subunit B-1 Hbb-b1 0.36 1.06
Fatty acid synthase Fasn 0.37 -1.18
Hemoglobin subunit B-2 Hbb-b2 0.38 1.06
Glutathione S-transferase Mu 1 Gstm1 0.85 0.86 -1.38 0.5
Peroxiredoxin-1 Prdx1 1.18 1.3 0.99

2 Marked here is the H/L protein ratio, as measured through the ICPL analysis.

b Marked here is the H/L ratio of six selected proteins, as measured through AQUA peptide analysis.

¢ Shown in this column are the mutant/control mRNA ratios revealed by our Affymetrix (Affy) analysis (Ref (10)). Note that no statistically
significant difference in abundance of mRNAs is observed between mutants and controls. The mark (-) indicates that the mentioned protein
corresponds to multiple EG identifiers and thus, we were not able to sort out the correct corresponding Affymetrix probeset value.

9 Marked here is the mutant/control mRNA ratio as measured through quantitative Real-Time PCR (also see Fig. 4). ‘ns’ indicates no
significant difference.
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analysis, an MS-based technique for the absolute quantifica-
tion of proteins. AQUA peptides are chemically synthesized
isotope-labeled peptides whose sequences correspond to
proteolytic peptides of the proteins to be quantified. They
were spiked into the sample in known quantities before LC-
MS/MS analysis. Absolute quantification was achieved by
comparing the signals corresponding to AQUA and proteo-
lytic peptides (an example for SOD-1 is shown in Fig. 3).
Absolute quantities determined in mutant and control sam-
ples were used to calculate mutant-to-control ratios, which
we found to be close to those obtained with relative quanti-
fication by ICPL for all six proteins, a result that validated our
ICPL results. Note that all AQUA values are indicated in Table I.

Protein Up-regulation Upon Sertoli-cell Loss of Dcr is not
Accompanied by mRNA Alterations—Next, we went on to
assess whether the changes we measured in protein output
were the result of changes in mMRNA expression levels. Forty-
seven out of 50 up-regulated proteins showed no difference in
their mRNA expression levels between controls and mutants,
as evidenced by their expression levels measured on the
Affymetrix microarray (for the remaining three proteins, we
were not able to sort out the corresponding Affymetrix probe-
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set value, because they match to multiple EG identifiers)
(Table 1), thus suggesting that they represent genes whose
expression is controlled at the translational level. In fact, we
further selected seven up-regulated proteins (among them
were those that had been validated by AQUA peptide analy-
sis) and performed RealTime gPCR for their respective genes
on PO control and mutant whole testes: these genes showed
either no difference (Anxa2, Sod1, Sfpqg, and Atp5d), or, in-
terestingly, a ~25% reduction in their mRNA levels (Vimentin,
Rpl14, and Hsp90aa1), whereas their respective proteins were
>1.3 times more abundant in mutant testes (Fig. 4A). We also
selected three unaffected proteins (Gstm1, Cypi1iail, and
Prdx1) to evaluate their mRNA levels, and found that the
mRNA expression levels of Cyp77al and Prdx1 remained
unaffected, whereas that of Gstm1 showed a ~50% reduction
in mutant testes (Fig. 4B). Taken together, these findings
demonstrate that loss of Dcr and miRNAs in SCs has a
significant impact on testicular proteins, without however af-
fecting the amounts of the corresponding mRNAs.

Several microRNAs are Expressed in Immature SCs—The
fact that the protein up-regulation we measured is not accom-
panied by an mRNA up-regulation in mutant testes strongly
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Fic. 4. Real-Time qPCR revealed that protein up-regulation upon SC-Dcr loss is not accompanied by alterations at the mRNA level.
A, Shown here are four genes (Anxa2, Sod1, Sfpq, and Atp5d) whose mRNA levels are not significantly different between controls and mutants
(gPCR and Affy), but whose respective proteins are up-regulated in mutant testes (H/L>1.3), and three genes (Vimentin, Rpl14, Hsp90aat)
whose mRNA levels show a ~25% reduction (QPCR), but whose respective proteins are up-regulated in mutant testes (H/L>1.3). B, Gstm1,
Cyp11a1l and Prdx1 protein levels were unaffected and so were their transcript levels, except for Gstm1, which showed a 50% reduction in
mutant testes. For each gene, the mutant/control (H/L) protein ratio revealed by ICPL analysis, as well as their mutant/control mMRNA (transcript)
ratio revealed either through microarray (Affy) or gqPCR is given beneath the graph. Results are mean = S.E. (n = 6 animals/group), *p < 0.05,
**p < 0.01, **p < 0.001 versus controls; ns: not significant. Primers used are listed on supplemental Table S2. +/+ and —/— are abbreviations
for control Dcr™™, and mutant Der™™;MisCre animals respectively. REL: relative expression levels.

suggested that their respective genes are most likely to rep-
resent direct SC-miRNA targets regulated at the translational,
and not the transcriptional level. To further investigate this
hypothesis, we first set out to characterize the miRNA expres-
sion profile of SCs using a miRNA microarray. For this pur-
pose, we analyzed the expression of 656 murine miRNAs in
purified populations of testicular cells, namely immature P6
and mature P17 SCs, in adult Leydig cells, in different types of

germ cells (spermatogonia A, spermatogonia B, and interme-
diate, pachytene spermatocytes and spermatids), as well as in
immature P6 whole testes, using the lllumina microRNA Expres-
sion Profiling System. We identified a set of 382 miRNAs ex-
pressed in SCs (supplemental Table 5). Of these, we found that
50 are expressed more than two times more abundantly in
immature P6 SCs in comparison to P6 whole testes (shown in
two graphs in Fig. 5A), a finding that could suggest a potential
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Fic. 5. miRNAs expressed in SCs. A, Shown here in two graphs are
the expression profiles of the 50 SC-enriched miRNAs, in descending
order of expression in P6 SCs. The entire list of 382 miRNAs expressed
in SCs, along with their sequences is provided in supplemental Table 5.
B, Shown here are the expression profiles of 7 SC-expressed miRNAs
predicted to have a putative binding site in the 3'UTR of Sod-7. Results
are represented as mean values of three biological replicates *s.d.
miRNA nomenclature is based on the Sanger miRBase, v12.

TaBLE Il
SC-miRNA target site enrichment among genes coding for proteins
deregulated upon SC-Dcr loss. Shown here are the % of up-regulated
proteins (up) versus those unaffected (equal) upon SC-Dcr loss that
were enriched in SC-miRNA target sites, when considering either only
the presence of a seed sequence (seeds), an energetically favorable
miRNA-mRNA duplex (AG duplex), a favorable target site sequence
context (Targetscan) or the conservation of the seed sequence (con-
servation). The numbers in parenthesis indicate the number of genes
taken into consideration in each fraction

Proteome fractions with
an H/L threshold of 1.3

Up (59) Equal (96)
% Enrichment %
targeted (p value) targeted

93.2 0.40
AG duplex 77.8 0.072
Targetscan 74.6 0.71
Conservation 78 0.013

Fractions

Seeds

biological role for these miRNAs in SCs, without however ne-
glecting the potential role of other SC-expressed miRNAs.

The 3'UTRs of Genes Up-regulated Upon SC-Dcr Loss at
the Protein Level are Enriched for SC-miRNA Target Sites—
Having in hand these SC-expressed miRNAs, and given that
miRNAs most frequently bind on regions of an mRNA’s
3’UTR, we went on to assess whether the 3'UTRs of tran-
scripts coding for up-regulated proteins are actually enriched
for SC-miRNA target sites. First, we considered as a criterion
for successful miRNA binding only the presence of a seed (the
minimum sequence of nucleotides required for successful
miRNA binding on its target) in the transcripts’ 3’UTR
(supplemental Fig. 1), but found that none of the seed se-
quences were significantly enriched in genes coding for up-
regulated proteins in mutant testes, when compared with the
unaffected proteins (One-sided Fisher test p value = 0.40,
Table Il). However, when we further refined our query to target
sites bearing a conserved-in-placental-species seed se-
quence, we found that genes coding for up-regulated proteins
in mutant testes were slightly, yet significantly, enriched in
SC-miRNA target sites (One-sided Fisher test p value =
0.0128, Table ll). Interestingly, nonsignificant enrichments
were observed when considering either energetically favor-
able miRNA-mRNA duplexes (AG duplex, One-sided Fisher
test p value = 0.0721, Table Il) or a favorable target site
sequence context (One-sided Fisher test p value = 0.71,
Table Il). Altogether, although the low statistical significance
of the enrichment is acknowledged, these findings tend
to suggest that genes coding for up-regulated proteins
upon SC-Dcr loss are likely to represent direct SC-miRNA
targets.

SOD-1, a Protein Up-regulated Upon SC-Dcr Loss, is a
Direct Target of Three SC-expressed miRNAs—Next, we se-
lected Sod-1, one of the genes we found to be up-regulated
at the protein level, in order to evaluate its direct post-tran-
scriptional targeting by SC-miRNAs. Sod-1 was selected be-
cause of its potential biological interest: SOD-1 is a Cu-Zn
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FiG. 6. Testing the binding of the Sod-1 3'UTR by SC-expressed miRNAs. A, The Sod-7 3'UTR was PCR-amplified (1) and cloned just

downstream of the Firefly luciferase CDS in the pTal plasmid. The pTal-Sod1-3'UTR plasmid was cotransfected with a pRL transfection control
vector expressing the Renilla luciferase CDS and 10 nm of a miRNA precursor in HEK293T cells (2) and the relative luciferase activity was
measured (3). Cotransfection of pTal (Firefly) and pRL (Renilla) (black bars) yielded a certain Firefly/Renilla luciferase level; addition of either
pre-miR-125a-3p or pre-miR-872 did not alter the relative luciferase levels (B, C, dark gray bars), however that of pre-miR-24 did (see text) (D,
dark gray bar); cloning the wt Sod-7 3'UTR in pTal in the presence of either one of three miRNAs caused a significant reduction in the relative
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superoxide dismutase that catalyzes the reaction 20,~ +
2H" — 0, + H,0,, thus protecting cells from oxidative dam-
age (reviewed in (35)). Perturbation of this reaction’s equilib-
rium may lead to oxidative damage; indeed, it has been
shown that overproduction of SOD-1 can cause increased
oxidative damage resulting in enhanced cell death by apopto-
sis (for example see (36, 37)). We thus reckoned that Sod-1
would be an interesting candidate gene for the explanation of
the testicular degeneration phenotype we observed. Using
the three prediction models described in the Experimental
Procedures, we predicted one putative target site for each of
seven SC-expressed miRNAs, namely miR-125a-3p, miR-
140, miR-24, miR-201, miR-22*, miR-872, and miR-582-5p,
on the 3'UTR of Sod-1. Of these, miR-24 showed the strong-
est expression in P6 SCs, miR-872 much lower, and miR-
125a-3p the lowest (Fig. 5B), although the latter was slightly
enriched in P6 SCs in comparison to P6 whole testis (data not
shown). These three miRNAs were selected for further analy-
sis: The Sod-1 3'UTR was cloned downstream of the Firefly
luciferase coding sequence in the pTal plasmid. A dual-lu-
ciferase assay was then performed in HEK293T cells by trans-
fecting the pTal plasmid harboring or not the 3'UTR of Sod-1,
along with one of the three precursor miRNAs and a transfec-
tion control vector expressing the Renilla luciferase coding
sequence (pRL) (Fig. 6A). Transfection of the empty pTal and
pRL plasmids in the presence of pre-miR-125a-3p or pre-
miR-872 did not significantly alter the relative luciferase levels
(Figs. 6B and 6C, dark gray bars). However cotransfection
with pre-miR-24 caused an increase in the relative luciferase
levels (Fig. 6D, dark gray bar), which is most likely due to the
fact that the Renilla CDS harbors one putative miR-24 binding
site: binding of miR-24 causes a decrease in the Renilla levels,
thus an increase in the Firefly/Renilla ratio. When cloning the
wild-type (wt) Sod-1 3’'UTR downstream of the Firefly lucifer-
ase coding sequence, the Firefly/Renilla luciferase levels
showed a significant decrease for all three miRNAs (Figs. 6B,
6C and 6D, light gray bars). To further confirm the specificity
of these effects, we generated three Sod-71 3'UTR constructs,
each harboring a mutated seed sequence for the three SC-
expressed miRNAs (Fig. 6E) and repeated the luciferase as-
says as described above. For all three miRNAs, seed mutation
abolished the miRNA repressive effect on the Sod-7 3'UTR
(Figs. 6B, 6C, and 6D, white bars), thus strongly suggesting
that the 3'UTR of Sod-71 is a direct target of these three
SC-expressed miRNAs.

DISCUSSION

Although the primary effect of animal miRNAs is thought to
occur at the level of translational repression, most studies

until today have measured their effect at the mRNA level,
mostly through DNA microarrays. We ourselves measured the
impact of an SC-Dcr loss at the mRNA level by performing an
Affymetrix microarray on PO and P5 whole testes and mea-
sured several transcriptome alterations occurring in mutant
testes (10). The effect of miRNAs on protein output has been
more difficult to study in a high-throughput manner, and only
recently two groups performed such an analysis, showing that
a single miRNA can repress the production of hundreds of
proteins, yet at a relatively mild level (21, 22). Additional
studies have unraveled similar results, although at a smaller
scale (for example see (38, 39)). Here, in an effort to reveal the
molecular factors whose deregulation causes infertility in mice
lacking SC-Dcr, we have used quantitative mass spectrome-
try to measure the effect of SC-Dcr and subsequent miRNA
loss on the testicular proteome. To our knowledge, this is the
first report using ICPL technology to study in vivo differential
protein expression in the testis. We report the quantification of
130 nonredundant proteins, of which 50 are up-regulated
more than 30% in mutant testes, whereas the remaining are
unaffected (77 proteins) or down-regulated (3 proteins). We
find that protein up-regulation is mild, that is, never exceeding
a 2-fold change, yet the fact that from 53 differentially ex-
pressed proteins, the vast majority (50 proteins) is up-regu-
lated in mutant testes further reinforces the notion that trans-
lational repression, at least in our system, is one of the primary
effects of animal miRNAs.

Indeed, one striking finding of our study is the large pro-
portion of proteins up-regulated upon SC-Dcr loss (50/130 or
~38%). Certainly, we acknowledge that extrapolation to the
whole proteome would be speculative, because our mass
spectrometry analysis quantified only a small set of highly
expressed proteins, however, it would tend to suggest that
SC-miRNAs have a significant impact on testicular transla-
tional control. In itself, this is not unexpected: recently, the
global impact of miRNAs on protein output was investigated
by quantitative mass spectrometry and showed that a single
miRNA can directly repress translation of hundreds of genes
(21, 22). Taking into account that SCs express hundreds of
miRNAs and that in silico analyses have predicted several
thousands of protein-coding genes to be potential targets of
hundreds of miRNAs, our own findings suggest that miRNAs
play a broad role in the fine-tuning of protein synthesis in
SCs. They are thereby essential for their survival and
maturation and eventually for the entire male reproductive
function.

A careful comparison of our own data to those of the two
above-mentioned studies, (21, 22) reveals some interesting

luciferase activity (B, C, D, light gray bars), whereas mutation of the seed sequences abolished the miRNA repressive effect (B, C, D, white
bars); *p < 0.05, *p < 0.01, **p < 0.001 versus controls; ns: not significant. (E) Schematic representation of the binding of miR-125a-3p,
miR-872 and miR-24 on either the wt or the mutated Sod-1 3’UTR sequence. Wt seeds are marked in blue, mutated seeds in red, Watson-Crick

base pairing with a straight line and U-G wobbles with a dotted line.
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points worth of discussion. First, the Selbach and Baek pa-
pers conclude that only targets translationally repressed by
more than a third also display detectable mRNA alterations,
whereas those modestly repressed show little or no change at
the mRNA level. The protein up-regulation we measure in our
system, which falls within a 1.3-2-fold range, is actually not
accompanied at all by alterations at the mRNA level. This
finding could be interpreted as a more significant miRNA-
mediated translational control in SCs than in other systems,
although, again, extrapolation to the whole proteome must be
done with caution. We should also mention here that, in
comparison to our study, the fact that the Selbach and Baek
papers report the identification of ~3000 proteins, is likely
because of the following reasons: (a) They used stable isotope
labeling with amino acids in cell culture (SILAC) a technique
not applicable to tissues, in which trypsin cleavage occurs
following both lysine and arginine residues, thus generating
numerous peptides and increasing the chances of protein
identification and quantification; in our study, ICPL labeling
prevents trypsin cleavage following lysine residues, allowing
cleavage to occur only next to arginine residues, therefore the
number of generated peptides is significantly smaller; (b) The
mass spectrometer used in the Selbach and Baek papers was
an LTQ-Orbitrap instrument, which is of higher performance
and resolution than the one we used.

It would be worth noting at this point that, for purely tech-
nical reasons, our starting material for the mass spectrometry
analysis was whole testis protein extracts, whereas depletion
of miRNAs was performed uniquely in SCs. Thus, the pres-
ence of a heterogeneous population of cells in PO testes
probably masks the true impact on the protein output of SCs
because of the dilution by proteins originating from other cell
populations. The use of purified SCs would certainly further
refine our results and thereby unravel novel, or additional,
molecular targets that could explain the observed testicular
degeneration and eventual infertility caused by the loss of
SC-Dcr and miRNAs. In fact, as a first step toward this direc-
tion, we used purified wild-type SCs to perform a miRNA
expression profiling analysis. This allowed us to unravel
several SC-expressed miRNAs that we then used to assess
whether the transcripts coding for up-regulated proteins
upon SC-Dcr loss are enriched for SC-miRNA target sites.
The enrichment was significant only when taking into con-
sideration seed conservation among placental species.
However, neither an energetically favorable miRNA-mRNA
duplex, nor a favorable target site sequence context yielded
a significant SC-miRNA target site enrichment. This could
be explained by the fact that the AG duplex feature is based
on an RNA-only model and that more importantly, the se-
quence context parameters are evaluated based on RNA-
microarrays (32). As described above, the differences in
protein level we measured here are because of translational
differences and not mRNA alterations. Prediction features
were described to be differentially relevant at each step of

the RNAIi pathway (40), therefore, models for target predic-
tion trained on the mRNA level are expected to be less
accurate when no mRNA degradation is involved. This
might thus explain our insignificant target site enrichment
when considering a favorable sequence context or
miRNA-mRNA duplex. In contrast, the conservation feature
captures a “blinder” information (i.e. without a regulation
model), which allows us to significantly isolate miRNA ef-
fects on the measured proteome.

Among the proteins up-regulated in mutant testes, SOD-1
retained our attention. We reckoned that because SOD-1 is a
Cu/Zn-superoxide dismutase whose overproduction causes
increased oxidative damage resulting in enhanced cell death
through apoptosis (for example see (36, 37)), its up-regulation
could be detrimental for cell survival, and thereby account, at
least partially, for the testicular degeneration we observed
upon SC-Dcr loss. By performing an in vitro dual-luciferase
assay, we found the 3'UTR of Sod-1 to be directly targeted by
three SC-expressed miRNAs: miR-125a-3p, miR-872 and
miR-24. Of note, because SOD-1 is present in both SCs and
in all types of GCs (41), the effect could be Sertoli-cell auton-
omous or not. In either case, taking also into consideration the
~3-fold mRNA up-regulation of Bcl2I11, a facilitator of apo-
ptosis we previously detected at PO (10), we are tempted to
believe that two independent, miRNA-mediated, cell-death
molecular mechanisms are at the origin of -at least part of- the
observed testicular degeneration. It would certainly be inter-
esting to find out whether the observed SOD-1 increase upon
SC-Dcr loss at birth is maintained at later stages of testis
development. If this were indeed true, a chronic oxidative
damage could most likely explain the almost complete loss of
testicular structures upon aging.

An additional interesting issue raised by our findings is
whether the effects on protein output of mutant testes are
because of direct SC-miRNA-mediated inhibition of protein
synthesis, or because of indirect repressive mechanisms.
Several indications suggest that a direct effect of miRNAs on
target genes may account for most of the proteome altera-
tions. First, we performed all of our analyses at an early stage
of testis development (P0), when miRNAs are beginning to be
depleted from SCs and when no morphological and histolog-
ical alterations are yet detected, a fact that would tend to
suggest a direct miRNA effect because of a rather restricted
time window for secondary, indirect effects to occur. Second,
although we did observe transcriptional alterations in mutant
testes, the deregulated genes at PO represent only 0.5% of
the total transcriptome (145 deregulated probe sets versus
29.000 probe sets considered to be expressed in our Af-
fymetrix analysis (10)), and most importantly, do not account
for any protein deregulation, thus suggesting that, any alter-
ations at the protein level are most likely to represent direct
effects in our system. Finally, the fact that the 3'UTR of
transcripts coding for up-regulated proteins are enriched, al-
though slightly, for SC-miRNA target sites, and that one of
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these proteins, SOD-1, is, at least in vitro, directly targeted
by three SC-expressed miRNAs, points toward a direct neg-
ative miRNA effect on protein synthesis.

Overall, with this study, we unravel a molecular mechanism
that could partially explain the observed testicular degenera-
tion caused by SC-Dcr and miRNA loss. Most importantly, we
show, for the first time to our knowledge, that miRNAs have
quite a significant impact on the testicular protein output and
thus further reinforce the current notion of animal miRNAs
exerting their primary negative effect at the translational level.
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4.2 Integration of microRNA miR-122 in hepatic circadian gene expression

To synchronize gene expression with geophysical time, light-sensitive organisms have a
molecular clock (Gachon et al. [70]). While the molecular clock has similar components in
different tissue, its output varies substantially between tissues (Storch et al. [71]). Tissue spe-
cific regulation by miRNAs might explain these differences. The involvement of miRNA-122
that constitutes more than 70% of all miRNA molecules in hepatocytes (Lagos-Quintana et al.
[66]) was investigated. While miR-122 is transcribed in a circadian fashion, mature miR-122
remains nearly constant over the day. The miR-122 locus is regulated by the circadian clock
component REV-ERBa.

% targeted genes Fisher test p-value
Fraction / Test Up Unchanged Down Up vs Down vs
Unchanged Unchanged
balanced balanced
Genes 329 12521 197
All seeds 67.1 385 29.1 102 0.9
AG duplex 52.3 20.7 15.9 102 0.92
Seed conservation 26.0 10.8 6.98 107 1
TargetScan context score 56.7 31.0 26.4 1018 0.93
Above 3 filters 5.87 1.23 0.78 10 0.81

Table 4 Target site enrichment with different prediction filters for
miR-122 KD at the mRNA level. See Table 1 for the column de-
scription.

The possible role of miR-122 was first investigated by a genome-wide identification of
miR-122 targets by knocking-down (KD) its expression in hepatocytes at two time-points
(Zeitgeber time ZT0, and ZT12) with two different controls. Triplicates of mRNA profiling
following antisense oligonucleotides (ASOs) injection were performed on Affymetrix arrays.
With a threshold of 1.5 on the fold-changes, I found 1.7 fold more genes in the up-regulated
fraction compared to the unchanged fraction, and 2.3 fold more compared to the down-reg-
ulated fraction (Table 4), indicating strong direct effects of the miR-122 KD and limited indi-
rect effects. I then tested if up-regulated genes were enriched for miR-122 seed-matches, and
found a significant enrichment (p=1022 with Fisher’s exact test). With target predictions re-
fined with an energy-based model, conservation, or the TargetScan features (computed with
miRmap with the 3 features of TargetScan), I also found significant enrichments. On the
contrary, I found no enrichment between the down-regulated and unchanged fractions.

Similarly to the analysis of the Dicer KO, I computed the target site enrichment between
the up-regulated and unchanged fractions for all miRNAs (Figure 2). Interestingly, miR-122
had the highest enrichment for all methods, expect for the energy based methods. While
the enrichment for miR-122 was higher for the energy-based methods, miR-122 enrichment
was at the third and tenth positions for these methods. However, the miRNAs that have an
higher enrichment than miR-122 were highly AU-rich, introducing a bias in my analysis. For
example, the first miRNA for AG duplex (miR-137) has an 82% AU-rich 5" half-part. Moreover,
in the case of a KD experiment, the miRNA is expressed at endogenous level, which is rarely
the case for overexpression experiments. The effect of a less abundant miRNA could possibly
be more efficiently modeled by integrating kinetic effects.
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Figure 2 Target site enrichment for miR-122 target sites in the
up-regulated mRNA fraction. For each miRNA annotated in the
mouse genome, ratios of targeted mRNA in up-regulated and
unchanged fractions are represented. Significant ratios were de-
termined with one-sided Fisher test with Dunn-Sidak multiple
test correction at 10%. The color code is explained on Table 2.
An arrow indicates the position of miR-122.

Our half-life estimate of RISC-bound miR-122 exceeded 24h. Three scenarios were pro-
posed to explain the role of circadian miR-122 production. First, a gene expressed in a circa-
dian manner would increase its ratio between high and low expressed levels if a miRNA is
permanently repressing a basal level. Second, different miR-122 sub-populations can exist.
For example, RNA editing could make a subpopulation inefficient to target circadian genes.
Third, newly synthesized miR-122 are ready to bind mRNAs, whereas old RISCs might al-
ready be bound and therefore less available to repress newly synthesized mRNAs.
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Light-sensitive organisms possess a circadian timekeep-
ing system that serves to synchronize gene expression
and physiology with geophysical time (Reppert and
Weaver 2002; Gachon et al. 2004). Current models of
the mammalian molecular clocks are based on two
interlocked transcriptional feedback loops (Sato et al.
2006): a positive limb, in which the heterodimeric
BMALI1:CLOCK transcription factor mediates the tran-
scriptional activation of cryptochrome (Cry1 and Cry2)
and period genes (Perl and Per2), and a negative limb, in
which PER:CRY complexes repress the BMAL1:CLOCK-
mediated transcription of their own genes. Coordination
between the two limbs is accomplished by nuclear
receptors of the REV-ERB and ROR families (Preitner
et al. 2002; Reppert and Weaver 2002; Sato et al. 2004).
Cyclic Rev-erba transcription is regulated by the mech-
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anisms described above for Cry and Per genes, and the
circadian accumulation of the repressor REV-ERBa re-
sults in the rhythmic repression of target genes, such as
Bmall, carrying retinoid-related orphan receptor ele-
ments (ROREs) (Ueda et al. 2002). In addition to
these transcriptional feedback loops, numerous post-
translational modifications of core clock proteins are
known to contribute to the rhythm-generating clockwork
circuitry (Gallego and Virshup 2007).

The cyclic expression of clock output genes can be
governed directly by core clock components via E-box or
RORE sequences (Ueda et al. 2002), or transcription
factors such as PAR DbZip proteins whose genes are
regulated by these mechanisms (Gachon et al. 2004).
However, despite the similar molecular makeup of the
core oscillator in different organs, its outputs vary sub-
stantially between tissues (e.g., Storch et al. 2002). Gene
expression profiling in liver has suggested that, depending
on the algorithms used for the identification of cyclically
expressed genes, 2%-10% of the transcriptome may be
under circadian control (Panda et al. 2002; Storch et al.

GENES & DEVELOPMENT 23:1313-1326 © 2009 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/09; www.genesdev.org 1313

52



Integration of microRNA miR-122 in hepatic circadian gene expression

RESULTS

Downloaded from genesdev.cship.org on September 4, 2009 - Published by Cold Spring Harbor Laboratory Press

Gatfield et al.

2002; Kornmann et al. 2007a; Miller et al. 2007). Many of
these genes are involved in hepatocyte-specific metabolic
pathways.

In part, the synergistic activation of genes by circadian
and tissue-specific transcription factors may account for
the rhythmic expression of cell type-specific transcripts.
However, tissue-specific post-transcriptional regulation
of gene expression may also participate in this endeavor.
It is estimated that in mammals ~30% of all mRNAs are
subject to regulation by microRNAs (miRNAs) (Lewis
et al. 2005), and miRNAs have been implicated in the
post-transcriptional control of cellular proliferation, de-
velopment, and differentiation (Bushati and Cohen 2007).
miRNAs are short (~22 nucleotides [nt]), endogenous
RNAs that promote translational repression and/or de-
stabilization of target mRNAs (Bushati and Cohen 2007;
Liu 2008). Target recognition occurs via base-pairing
interactions with the 3’ untranslated region (UTR). Usu-
ally the 5’ portion of the miRNA forms a perfect hybrid
with a 6- to 8-nt seed site, whereas the remainder of the
miRNA undergoes interactions of only partial comple-
mentarity with the 3'UTR of its target mRNA (Lewis
et al. 2005). The mismatches and gaps between miRNA
and mRNA duplexes render the de novo prediction of
miRNA targets challenging. Generally, a given miRNA
can be expected to fine-tune the production of large sets
of proteins within the cell (Baek et al. 2008; Liu 2008;
Selbach et al. 2008).

Given the large fraction of mRNAs targeted by miRNAs,
it is likely that miRNAs also modulate clock and clock
output functions (Cheng et al. 2007; Xu et al. 2007;
Yang et al. 2008). We wished to examine this conjecture
and initiated our studies with miR-122, a miRNA that
has been proposed to constitute up to 70% of all miRNA
molecules in hepatocytes (Lagos-Quintana et al. 2002).
The knockdown of miR-122 expression in mice and
monkeys has previously been recognized to result in
a down-regulation of cholesterol and lipid metabolizing
enzymes and a reduction in plasma cholesterol levels
(Krutzfeldt et al. 2005; Esau et al. 2006; Elmen et al.
2008a,b). Both lipid and cholesterol metabolism are well
known for their daytime-dependent regulation, similar to
many other hepatic functions that require coordination of
food intake with nutrient-processing and energy homeo-
stasis (Panda et al. 2002).

Here, we show that transcription of the miR-122 locus
is under circadian control, involving the transcriptional
repressor REV-ERBa. Thus, pri- and pre-miRNA precur-
sors oscillated about fourfold to 10-fold in abundance
during the day but accumulated at nearly constant levels
in the livers of Rev-erba knockout mice. However, due to
its high stability mature miR-122 levels were virtually
constant throughout the day. Despite the apparent in-
variable temporal accumulation of miR-122, the identifi-
cation of its target mRNAs suggested that miR-122
nevertheless participates in the circadian control of many
transcripts involved in hepatic metabolism. Among the
miR-122 targets we found the mRNAs encoding peroxi-
some proliferator-activated receptor /5 (PPARB/S) and
SMARCDI1/BAF60a, which are themselves circadian
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regulators of metabolism (Yang et al. 2006; Seedorf and
Aberle 2007; Li et al. 2008).

Results

The miR-122 locus is transcribed in a circadian fashion

In a search for miRNAs that could shape the circadian
expression of target mRNAs, we analyzed the expression
of various miRNAs in mouse liver at different time points
(Zeitgeber time, ZT) around the day. Several miRNAs
(miR-19, miR-20, miR-22, miR-24, miR-30, miR-92, miR-
126-3p), some of which had been predicted to target clock
components (Lewis et al. 2005), only showed modest, if
any, circadian changes in expression, as judged by North-
ern blot analysis (Supplemental Fig. 1). However, analysis
of miR-122, the most abundant miRNA in liver, revealed
that pre-mir-122 oscillated with an approximately fivefold
daily amplitude in abundance, whereas mature miR-122
levels remained nearly constant over the day (Fig. 1A,B).
Pre-mir-122 is a 66-nt hairpin-shaped precursor molecule
from which the endonuclease Dicer cleaves the mature 22-
nt miR-122. The mature miRNA is then incorporated into
the RNA-induced silencing complex (RISC). The same
expression pattern for pre-mir-122 was detected with
a probe recognizing the strand complementary to the
miRNA (known as the miRNA* sequence) (Fig. 1). The
observed circadian changes in pre-mir-122 levels could be
the result of either circadian synthesis or circadian process-
ing into mature miRNA. To distinguish between these
possibilities we analyzed the circadian levels of the miR-
122 primary transcript, pri-mir-122, a ~5-kb precursor
(Chang et al. 2004), from which the pre-miRNA is cleaved
by the Drosha-containing microprocessor complex.

As shown in Figure 1A (bottom panels), pri-mir-122
accumulation was highly circadian (~10-fold amplitude),
showing a similar phase as pre-mir-122 (i.e., minimal
levels at ZT8-12 and maximal levels at ZT24). We wanted
to test if high-amplitude circadian precursors were spe-
cific for miR-122 or were a common feature of miRNAs.
Two other loci tested, pri-mir-17-92 and pri-mir-22, did
not show the circadian pattern observed for pri-mir-122
(Supplemental Fig. 1C,D). This suggested that specifically
the miR-122 locus was transcribed in a circadian fashion.
The two intermediates in miR-122 biogenesis can be
expected to be short-lived and reflect the rate at which
the gene is transcribed. In contrast, the absence of cyclic
expression at the level of mature miR-122 was probably
due to its high metabolic stability. Indeed, based on
Northern blot experiments, we estimated that the ratio
of miR-122/pre-mir-122 steady-state levels (which is
largely determined by the ratio of the half-lives of the
two species) is in the range of 400:1. If one assumes that
the pre-mir-122 half-life is a few minutes, this means that
the miR-122 half-life is probably well beyond 24 h.

The orphan nuclear receptor REV-ERBa drives
circadian mir-122 transcription

We wished to study the molecular mechanism account-
ing for circadian mir-122 transcription. The phase of
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miR-122 in circadian rthythms

Figure 1. miR-122 precursors are circadian in mouse
liver. (A) Northern blot analysis of miR-122 and its
precursor RNAs using whole-cell RNA from male
C57BL/6 mice sacrificed at the indicated ZT values
around the clock. An RNA pool from three mice was
used per time point, tRNAT™ and rpl19 mRNA served
as loading controls in denaturing polyacrylamide (top
and middle panels) and agarose gel electrophoresis
(bottom panels), respectively. (Top panels) miR-122
and pre-mir-122. (Middle panels) pre-mir-122 and miR-
122*. miR-122* is the antisense “passenger strand” that
is incorporated into RISC at low levels. (Bottom panels)
pri-mir-122. (B, top and middle panels) miR-122, miR-
122* and pre-mir-122 levels, normalized to tRNA™,
from Northern blots in which single animals were
analyzed (data not shown). Mean values = SEM. (Bot-
tom panel) Quantification of pri-mir-122 levels, nor-
malized to the circadianly invariant rpl19, from the
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pri-/pre-mir-122 expression suggested that the circadian
transcriptional repressor REV-ERBa might be involved:
REV-ERBa protein expression peaks at around ZTS,
leading to minimal transcript levels for REV-ERBa target
genes at around ZT12 (Preitner et al. 2002; Ueda et al.
2002). Consistent with the hypothesis of miR-122 being
a REV-ERBa target gene, the mir-122 promoter contains
two conserved ROREs ~120-160 base pairs (bp) upstream
of the transcriptional start site (Fig. 2A; see also Supple-
mental Fig. 2 for an alignment of the promoter region in
32 mammalian species). More importantly, the amplitude
of cyclic pri-mir-122 accumulation was severely blunted
in the livers of Rev-erba knockout animals (Fig. 2B,C),
and mature miR-122 accumulated to 1.6-fold higher
levels (Fig. 2D). The residual amplitude in mir-122
transcription was possibly caused by REV-ERBg, a highly
related paralog of REV-ERBa (Preitner et al. 2002). A
second mouse model, in which REV-ERBa was over-
expressed specifically in hepatocytes (Kornmann et al.
2007a), showed the converse effect (i.e., 1.7-fold reduced
miR-122 levels). In summary, these findings supported
a model according to which the miR-122 locus is regu-
lated by the circadian clock component REV-ERBa.

Does the miR-122 locus specify multiple functional
RNAs!?

Since the accumulation of pri-mir-122, but not that of
mature miR-122, was rhythmic, we considered that this
locus produced additional biologically active RNAs with
shorter half-lives than miR-122. In fact, several pri-
miRNAs are polycistronic and produce multiple miRNAs
(Sewer et al. 2005). Although mature miR-122 shows
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Northern blot shown in A.

a sequence conservation of 100% from fish to humans
(Gerlach et al. 2009), its pri-miRNA gene structure is
conserved only in mammals. In these organisms, the
transcription start site is flanked by elements of a classical
RNA polymerase II (Polll)-dependent promoter, which
drives transcription of the ~5-kb capped and polyadeny-
lated pri-mir-122 containing the pre-mir-122 hairpin at
its 3’-end (Fig. 2A; Supplemental Figs. 2, 3A; Chang
et al. 2004). Overall, the pri-mir-122 sequence is poorly
conserved, and we did not detect additional potential
miRNAs (or conserved open reading frames) within the
primary transcript. A thorough bioinformatics search
for conserved RNA secondary structures within the
pri-mir-122 genomic locus in the genomes of six mam-
malian species also failed to identify additional RNA
structures that could carry a function (Supplemental
Fig. 3). Thus, it appeared likely that a potential biolog-
ical function associated with the circadian control of
pri-mir-122 transcription was mediated by miR-122 itself.

Genome-wide identification of miR-122 targets

As miR-122 was produced in a circadian fashion, we
wondered whether it might assume rhythmic functions
despite its long half-life. We decided to approach this
question in an unbiased way by identifying putative miR-
122 targets. In particular, we wished to determine
whether there are targets whose daily rhythms are
influenced by miR-122. To deplete miR-122, we injected
antisense oligonucleotides (ASOs) intraperitoneally into
mice (termed 122AS0 in the following sections) and used
genome-wide Affymetrix oligonucleotide arrays to de-
termine the impact this had on hepatic mRNA levels. As
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controls, we used animals treated with ASOs targeting
a miRNA not expressed in liver (miR-124; samples
124AS0 in the following sections) or with PBS alone.
Mice were sacrificed at time-points ZTO and ZT12,
when pri-mir-122 transcription was highest and lowest,
respectively.

The efficiency of miR-122 depletion was between 89%
and 99% as judged by Northern blot hybridization (Fig.
3A,B). Residual miR-122 levels were consistently lower
for mice sacrificed at ZT12, when miR-122 production
was low, suggesting that miRNA stability was decreased
by 122AS0Os. Importantly, the abundance of the unrelated
miRNA let-7a remained unchanged (Fig. 3A), demon-

strating the specificity of the ASO. To functionally assess
if miR-122 was sufficiently depleted to derepress its
targets, we determined the mRNA levels of the formerly
suggested targets glycogen synthase 1 (Gys1) and aldolase
A (AldoA) by quantitative RT-PCR (qPCR). Similar to
what had been observed previously (Krutzfeldt et al. 2005;
Esau et al. 2006), these mRNAs were up-regulated two-
fold to sevenfold (Fig. 3C).

miRNAs initially have been proposed to mediate trans-
lational repression of their target mRNAs. This is often
accompanied by a decrease in mRNA abundance (Baek
et al. 2008; Selbach et al. 2008). Transcriptomal profiling
using microarrays is therefore a convenient means to
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identify potential miRNA targets. Obviously, this tech-
nology is unable to detect miRNA targets whose trans-
lational attenuation is not accompanied by increased
degradation.

Using Affymetrix microarray hybridization, we de-
tected signals for a total of 22,384 probe sets, representing
11,638 transcripts. Among these, we found 343 tran-
scripts (represented by 467 probe sets) that were up-
regulated, and 188 transcripts (227 probe sets) that were
down-regulated at at least one of the two time points in
122ASO-treated animals, when we applied a 1.5-fold
expression change cutoff (Fig. 3D). We next analyzed
whether transcripts up-regulated in 122ASO livers were
enriched for potential miR-122 targets. For the prediction
of potential miR-122-binding sites we applied a model
that takes into account both the presence of miRNA seed
sites and the energy of miRNA:mRNA duplexes, ensur-
ing that energetically stable miRNA-target interactions
are considered. Using this thermodynamic model (with
an energy cutoff of —15 kcal/mol), we observed that 52%
of transcripts in the up-regulated fraction contained
a predicted miR-122-binding site (Supplemental Fig. 4).
With only 22% of transcripts in the unchanged and 14%
in the down-regulated fraction, this enrichment in the up-
regulated fraction was statistically highly significant (up
vs. unchanged: P-value ~107%% up vs. down: P-value
~107"). The differences between the unchanged and
down-regulated fractions, however, were barely signifi-
cant (P-value ~0.02). With a less elaborate model that
only considers seed site presence, the enrichment for
potential miR-122 targets in the up-regulated fraction
was significant as well (Supplemental Fig. 4).

We next wished to determine, whether transcripts
showing a time point-specific regulation by miR-122
could be clustered into particular metabolic pathways.
To this end, we selected the transcripts that showed
regulation upon 122ASO treatment exclusively at one
of the two time points. Genome ontology (GO) analyses
in the down-regulated fraction revealed that the genes
involved in lipid and cholesterol metabolism (which had
been reported previously to be most responsive to miR-
122 depletion) also showed the strongest temporal regu-
lation (P ~ 107!°). Thus, the down-regulation of these
mRNAs was significantly stronger at ZT12 than at
ZTO (Supplemental Fig. 5A). For up-regulated genes,
transcripts belonging to GO:9607 “response to biotic
stimuli” were most overrepresented (P ~ 1077). Their
up-regulation occurred mainly at ZTO and less so at
ZT12 (Supplemental Fig. 5B). These observations sug-
gested a considerable amount of cross-talk between
circadian gene expression and miR-122, and encouraged
us to analyze the effect of miR-122 depletion on circadian
gene expression in greater detail.

Circadian transcripts are highly enriched among
miR-122 targets

We wished to focus on transcripts that were direct
potential targets of miR-122 and that showed circadian
expression. For the genome-wide analysis of cyclic tran-
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scripts, we used previously reported transcriptome pro-
filing experiments (Kornmann et al. 2007a). This work
analyzes the hepatic transcriptome in a transgenic mouse
model in which REV-ERBa can be conditionally overex-
pressed in liver in a doxycycline-dependent manner (tet-
off system). In the presence of doxycycline, the hepatic
circadian clock is functional in these animals, as the Rev-
erba transgene is constitutively repressed. The gene
expression profiles from these animals, sampled over
a 48-h period (with a resolution of 4 h), have been used
to identify the circadian hepatic transcriptome using
stringent algorithms (Kornmann et al. 2007a,b). In the
absence of doxycycline, REV-ERBa overexpression arrests
the endogenous liver clock. Thus, most circadian genes
lose rhythmicity, with the notable exception of a small
fraction of transcripts whose rhythms are driven by
systemic cues rather than local oscillators (Kornmann
et al. 2007a,b). In these mice, REV-ERBa overexpression
also led to reduced miR-122 levels (Fig. 2D). It may thus
be assumed that the derepression of miR-122 targets
contributed to the gene expression changes observed
upon REV-ERBa overexpression. We therefore compared
the gene expression changes common to REV-ERBa
overexpression and 122ASO administration. Of the tran-
scripts whose abundance changed under both conditions,
the majority (79.2%) indeed showed regulation in the
same direction and only few (20.8%) showed reverse
regulation (Supplemental Fig. 6). These observations
lend further support to a role of REV-ERBa in miR-122
regulation.

We next analyzed the probe sets representing tran-
scripts with circadian accumulation. Using stringent
algorithms, these corresponded to ~2.8% of the liver
transcriptome (Kornmann et al. 2007a,b). We found that
the up- and down-regulated fractions in the 122ASO mice
were significantly enriched for circadian transcripts:
14.4% of the down-regulated, 5.5% of the up-regulated,
but only 2.4% of the unchanged mRNAs were among
those classified as circadian (Fig. 3E). We thus concluded
that the effects of depleting miR-122 were biased toward
a misregulation of circadian transcripts. Since the enrich-
ment was particularly high in the down-regulated frac-
tion that contained indirect miR-122 targets, there were
possibly common circadian regulatory mechanisms in
control of this group. Indeed, almost a quarter of the
transcripts in this fraction belonged to lipid/cholesterol
metabolizing enzymes.

Identification of circadian mRNAs with functional
miR-122-binding sites

We next investigated in more detail the group of tran-
scripts with circadian accumulation that were up-
regulated upon miR-122 depletion, as this subset was
likely to contain the direct miR-122 targets (Fig. 4A).
Within this group, 16 transcripts (specified by 19 probe
sets) contained potential miR-122-binding sites in their
3'UTRs and were therefore candidates for circadianly
expressed miR-122 targets (Fig. 4A, bold type). Many of
them were also up-regulated in REV-ERBa-overexpressing
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animals (Fig. 4A, middle panel). We wished to verify that
the changes in mRNA abundance detected by microarray
analysis were potentially the direct result of miR-122
derepression, as opposed to more complicated indirect
effects. Therefore, we tested the impact of miR-122 on
the 3'UTRs of several candidate transcripts in cotrans-
fection experiments. To this end, we cloned the candidate
3'UTRs into a vector carrying a renilla luciferase reporter
gene, and transfected these constructs together with
synthetic miRNA mimics into Hela cells, which do not
express endogenous miR-122. We then measured the
ability of a miR-122 mimic to inhibit the expression of
luciferase when its open reading frame was followed by
a particular 3'UTR. Two 3'UTRs known to be regulated
by miR-122 served as positive controls: an artificial
3'UTR containing three optimized miR-122-binding sites
(3xbulge) (Pillai et al. 2005), and the 3'UTR of Cat-1/
human Sic7al, a well-known miR-122 target (Chang et al.
2004; Bhattacharyya et al. 2006). These two 3'UTRs
mediated a miR-122-dependent repression by about
68% and 58%, respectively. In contrast, luciferase ex-
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pression from reporters harboring the vector-based
3'UTR devoid of miR-122 seed sites was not affected
(Fig. 4B; Supplemental Fig. 7). Of the circadian transcripts
up-regulated in 122ASO mice, we found that the 3'UTRs
of Relll (receptor expressed in lymphoid tissues-like 1),
Smarcd1/Baf60a (SWI/SNF-related, matrix-associated,
actin-dependent regulator of chromatin, subfamily d,
member 1/BRGI-associated factor 60a), Ddc (dopa decar-
boxylase), Hist1h1c (histone cluster 1, Hlc), Dscr1 (down
syndrome critical region protein 1), Tgfbrl (TGF-B re-
ceptor type 1), Mirl6 (membrane-interacting protein of
RGS16), and Sbk1 (SH3-binding kinase 1) conferred
sensitivity toward miR-122 (Fig. 4B). A complete compi-
lation of the >30 3'UTRs we tested, including those of
several newly identified miR-122 targets, is given in
Supplemental Figure 7.

miR-122 contributes to circadian mRNA expression

For some selected targets, we wanted to verify that their
up-regulation in the 122ASO mice was indeed caused by
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post-transcriptional, rather than indirect transcriptional
mechanisms. Since miRNAs are thought to act on pro-
cessed mRNAs, a derepression mediated by the 122ASO
should manifest itself on the level of the mature mRNA,
but not on that of its pre-mRNA. Indirect effects, how-
ever, can be expected to occur through changes in tran-
scription rates, caused by the up-regulation of activators
or repressors whose production depends on miR-122.
These changes should also be visible on the pre-mRNA
level. Hence, we designed qPCR probes enabling us to
measure mRNA and intron-containing pre-mRNA levels
of several of the identified targets. Our analyses showed
that the up-regulation of mature mRNA levels for the
transcripts Sbk1, Tgfbrl, Smarcd1/Baf60a, Relll, and
Hist1hlc was similar, or even greater, than assessed by
the microarray analysis. The effects of the 122ASO on
pre-mRNA levels, however, were less pronounced (Fig.
4C). In contrast, a transcript such as Ccnd]1 fulfills the
criteria for being indirectly affected. Thus, while Ccnd1
was also circadian and up-regulated in 122ASO mice
(Fig. 4A), it did not confer sensitivity to miR-122 in
the 3'UTR assay (Fig. 4B). In keeping with this observa-
tion, the changes in Ccndl expression were already
observed on the level of pre-Ccnd1 mRNA accumulation
(Fig. 4C).

To evaluate more precisely which influence miR-122
had on shaping the rhythmic accumulation of these
transcripts, we extended our analyses to 122ASO mice
that had been sacrificed at six time points around the
clock. Using RNA pools from three to four animals per

miR-122 in circadian rthythms

time point and for both control and 122ASO mice (see
Supplemental Fig. 8), we observed similar increases in
target mRNA accumulation as in the previous two time
point experiments (Fig. 5A; Supplemental Fig. 8D). In
addition, it was apparent that miR-122 depletion had
striking effects on the circadian amplitude (Smarcd1/
Baf60a, Ddc, Histlhlc), magnitude (Relll) and phase
(Smarcd1/Baf60a, Histlhlc, and Ddc) of accumula-
tion (Fig. 5A, bottom panels). For several transcripts
(Smarcd1/Baf60a, Ddc, and Histlhic) we also ob-
served that derepression caused an especially strong up-
regulation at around ZT4 (Fig. 5A, bottom panels). This
time point corresponds to a few hours after maximal mir-
122 transcription (see Fig. 1B). Moreover, despite a partic-
ularly efficient miR-122 depletion at ZT12 (Fig. 3A,B;
Supplemental Fig. 8), derepression clearly had a milder
effect at this time point (Fig. 5A, bottom panels). For some
of the miR-122 targets, these time-dependent effects were
already observed in the microarray data (Fig. 4A). Due to
their low abundance, the detection of the corresponding
pre-mRNAs was less robust than that of the mature
transcripts (Fig. 5A, top panels). Nevertheless, it was
evident that (with the exception of Ccnd1) differences
between 122ASO and control mice could not be ac-
counted for by different transcription rates. These
findings indicated that miR-122 probably assumes rhyth-
mic functions despite its constant levels (see the Dis-
cussion). Importantly, the circadian clock per se did
not appear to be affected by 122ASO treatment, as the
mRNA levels of core clock and clock output genes were
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Figure 5. miR-122 targets in 122ASO and Rev-erba knockout mice around the clock. (A) pre-mRNA (top panels) and mRNA (bottom
panels) levels for the indicated transcripts in 122ASO and PBS-injected control mice around the clock. For each data point, transcript
levels were measured in triplicate by qPCR using a pool of total liver RNA isolated from three to four mice. Due to low abundance, the
detection of pre-mRNA levels was less robust, as indicated by generally larger error bars (standard deviations) in the qPCR analysis. (B)
As in A, pre-mRNA (top panels) and mRNA (bottom panels) levels measured around the clock in Rev-erba knockout and wild-type
littermate animals, using a pool of whole-cell liver RNA isolated from five female mice.
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essentially unchanged in 122ASO mice (Supplemental
Fig. 9).

As shown in Figure 2, the circadian amplitude of mir-
122 transcription was blunted in Rev-erba knockout
mice (Fig. 2B,C), leading to ~1.6-fold higher miR-122
levels (Fig. 2D). We wanted to examine whether these
alterations in miR-122 production were sufficient to
perturb the rhythmic expression of any of the targets
analyzed above. When measuring mRNA and pre-mRNA
abundances around the clock in Rev-erba knockout
and control animals, we observed the strongest post-
transcriptional perturbations of thythms for Rell1, a ubig-
uitously expressed member of the tumor necrosis factor
(TNF) receptor family (Cusick et al. 2006). The amplitude
of Relll mRNA, but not that of its pre-mRNA, was
blunted in the Rev-erba knockout (1.7-fold amplitude)
as compared with the control mice (2.6-fold amplitude)
(Fig. 5B). This further supported our conclusion that Relll
was an example for an mRNA whose circadian rhythm
was partially shaped by post-transcriptional mechanisms.
In view of its up-regulation in 122ASO mice on the
mRNA but not the pre-mRNA level (Figs. 4C, 5A) and
the fact that the Relll 3'UTR conferred sensitivity to
miR-122 in the reporter assay (Fig. 4B), it is likely that
miR-122 was directly implicated in this process. The
cyclic accumulation of other miR-122 targets, such as
Smarcd1/Baf60a, was unchanged in Rev-erba knockout
mice, whereas some changes already occurred on the pre-
mRNA level (Fig. 5B).

Cross-talk between miR-122 and PPARs

The down-regulation of enzymes associated with lipid
and cholesterol metabolism (see Krutzfeldt et al. 2005;
Esau et al. 2006; Elmen et al. 2008a; this study) in
miR-122-depleted mice implies that the corresponding
mRNAs are regulated by indirect mechanisms. However,
the direct miR-122 targets responsible for these control
mechanisms remained to be identified. We suspected that
these direct targets were also expressed in a circadian
manner, since the down-regulation of mRNAs encoding
lipid and cholesterol enzymes was daytime-dependent
(Supplemental Fig. 5A). Interestingly, recent work has
suggested that SMARCD1/BAF60a, a component of the
SWI/SNF chromatin-remodeling complex, specifically
regulates hepatic lipid metabolizing genes (Li et al.
2008). In our experiments, Smarcdl/Baf60a mRNA ap-
peared as a circadian and direct miR-122 target, as it was
robustly up-regulated in 122ASO mice (Figs. 4A,C, 5A)
and as its 3'UTR was responsive to miR-122 in our
cotransfection experiments (Figs. 4B, 6A). Li et al. (2008)
further demonstrated that SMARCD1/BAF60a interacts
and cooperates with the metabolic regulator PPAR«q, and
that SMARCD1/BAF60a and PPARa share a large num-
ber of target genes.

PPARs belong to the nuclear hormone receptor super-
family and are well-known metabolic regulators. They
are activated upon binding to their mainly amphipathic
ligands, which are mostly derived from dietary fat or
endogenous fatty acid metabolism. Of the three PPAR
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Figure 6. Cross-talk between miR-122 and PPAR receptors. (A)
The effect of the miR-122 mimic in a 3'UTR luciferase assay as
in Fig. 4B, using the PparB/5 and Smarcd1/Baf60a 3'UTRs.
Values are mean = SEM (n = 9 per transfection). (***) P <
107% (two-tailed Student’s t-test). (B) Expression levels of PparB/
& mRNA quantified from Northern blots. Data are mean + SEM
(n = 3 animals per condition). (C) Immunoprecipitation-Western
blot of PPARB/3 protein from 122ASO and PBS-treated mice, as
described in the Materials and Methods. Each immunoprecipi-
tation was performed from a pool of extracts from three mice.
U2AF65 protein levels in the input of the same pool served as
a loading control. (D) FFA levels in liver pieces from 122ASO-
and PBS-injected animals, as determined by GC/MS. Values are
mean = SEM (n = 6). (*) P < 0.05 (two-tailed Student’s t-test).

isotypes, PPARq, and the less-studied PPARRB/3, serve pre-
dominantly catabolic functions, whereas PPARy mainly
promotes lipid storage in adipose tissue. In liver, all
PPARs show circadian expression (Yang et al. 2006).
Although we did not find PPAR transcripts misregulated
using microarrays with RNA from 122ASO mice, we
noticed that the PparB/8 3'UTR contained four miR-122
seed sites that could be predicted to confer strong target-
ing by miR-122. We therefore tested if the PparB/5
3'UTR showed sensitivity to miR-122 in our cotrans-
fection experiments. Indeed, this 3'UTR caused a miR-
122-dependent reduction of luciferase activity by 56%,
which was among the highest down-regulation effects we
observed in these assays. Only the two positive controls,
the artificial 3xbulge and the Cat-1/human Slc7a1 3'UTR
showed a slightly stronger repression (Fig. 6A; Supple-
mental Fig. 7). Consistent with these findings, we ob-
served that whereas Pparf/6 mRNA levels remained
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unchanged upon miR-122 depletion (Fig. 6B), the protein
was up-regulated around twofold to threefold, as judged
by Western blot experiments with 122ASO liver extracts
(Fig. 6C). These findings strongly suggested that PparB/s
was a bona fide miR-122 target that thus far had been
overlooked, supposedly because it is not regulated on the
level of mRNA stability.

Unsaturated fatty acids are probably the most impor-
tant endogenous PPAR ligands, and their levels are
known to be tightly regulated in vivo. The perturbation
of lipid metabolism associated with miR-122 depletion
may thus also lead to changes in PPAR ligand availability.
We therefore determined the concentrations of free fatty
acids (FFAs) in livers from 122ASO and control mice by
GC/MS. Several unsaturated FFA species were indeed
significantly changed, including palmitoleic acid (C16:1;
up by 51% in 122ASO mice) and vaccenic acid (C18:1n7;
up by 24%) (Fig. 6D). The latter constitutes a significant
proportion of the total unsaturated FFA pool and has
previously been proposed as a PPARB/S ligand (Fyffe et al.
2006). We therefore deemed it likely that PPAR activity in
122ASO mice was additionally modulated by changes in
ligand concentration.

We conclude that miR-122 has several ties to the PPAR
family of nuclear receptors, via PparB/s, Smarcd1/Baf60a,
and possibly ligand availability. Given the important
functions PPARs possess in regulating metabolism in
liver, these connections are very likely to contribute
to the overall metabolic phenotype observed in 122ASO
mice.

Discussion

Circadian mir-122 transcription and function

In the present study, we show that miRNA miR-122
expression and function are embedded in the output
system of the circadian clock. Thus, we found that the
miR-122 locus was transcribed in a circadian manner,
manifesting itself in rhythmic pri-mir-122 and pre-
mir-122. expression. Based on genetic loss-of-function
and gain-of-function experiments we concluded that the
orphan receptor REV-ERBu is the dominant regulator of
circadian mir-122 transcription. On a genome-wide scale,
we observed that the portion of the transcriptome sensi-
tive to miR-122 depletion was highly enriched for circa-
dian mRNAs, and it appeared that these were biased
toward specific circadian phases (Supplemental Fig. 10).
This temporal gating was particularly evident for mRNAs
encoding cholesterol and lipid metabolizing enzymes,
which were identified previously as indirectly regulated
miR-122 targets (Krutzfeldt et al. 2005; Esau et al. 2006;
Elmen et al. 2008a,b). Further analyses of individual up-
regulated transcripts around the clock enabled us to
identify several circadian transcripts that were likely
candidates for direct miR-122 targets. The rhythmic
accumulation of these mRNAs showed changes in am-
plitude (Smarcd1/Baf60a, Ddc, and Hist1h1c), magnitude
(Rell1), and phase (Smarcd1/Baf60a and Hist1hlc) upon
miR-122 depletion. In Rev-erba knockout animals, miR-
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122, synthesis was nearly constant over the day and
steady-state miR-122 levels were 1.7-fold elevated. REV-
ERBa regulates many clock-controlled genes directly by
repressing their transcription in a cyclic manner (see also
Supplemental Fig. 6; G Le Martelot, T Claudel, O Schaad,
B Kornmann, G Lo Sasso, A Moschetta, and U Schibler, in
prep.). Irrefutable evidence that changes in miR-122
levels and/or production account for the circadian mis-
regulation of target transcripts in Rev-erba knockout
mice is therefore difficult to obtain. However, as in-
dicated by our analysis of pre-mRNA and mRNA expres-
sion, miR-122 misregulation is likely to be responsible
for the altered circadian amplitude of Relll mRNA
accumulation in Rev-erba knockout mice. Interest-
ingly, Rev-erba knockout mice show a cholesterol- and
lipid-related phenotype opposite to 122ASO mice (G Le
Martelot, T Claudel, O Schaad, B Kornmann, G Lo Sasso,
A Moschetta, and U Schibler, in prep.). Again, REV-ERB«
probably regulates these pathways mainly by more direct,
transcriptional mechanisms, but miR-122 up-regulation
is likely to contribute to these phenotypes as well.

The regulation of lipid metabolism by miR-122 may
involve PPAR receptors

The direct miR-122 targets involved in hepatic lipid
metabolism have not yet been identified. The decrease
in hepatic fatty acid and cholesterol synthesis and the
increase in hepatic fatty acid oxidation are paralleled by
an increased activation of AMP-activated protein kinase
(AMPK) in 122ASO mice (Esau et al. 2006). Thus, miR-
122, may act through the modulation of this central
sensor of metabolism. Our experiments also uncovered
several connections of miR-122 to the nuclear receptors
of the PPAR family, which are well-known regulators of
metabolism. Specifically, we found that upon miR-122
inactivation, PPARB/S protein was up-regulated by
around twofold to threefold. The PparB/6 3'UTR contains
seed sites for miR-122, and among the >30 3'UTRs we
tested, it conferred one of the strongest levels of miR-12.2-
mediated repression. In liver, PPARa and PPARB/S, the
two PPARs executing catabolic functions, are both
expressed in a circadian manner with a phase difference
of ~8 h (Yang et al. 2006). Since PPAR«a is the pre-
dominant isoform in this organ, hepatic functions of
PPARB/d have not yet been studied in detail. Although
PPAR functions can vary in different tissues, it is in-
teresting to note that recently an interaction between the
PPARB/3 and AMPK pathways was shown in muscle.
Thus, a constantly active VP16-PPARB/3 transgene led to
constitutive AMPK stimulation (Narkar et al. 2008).
Therefore, it is tempting to speculate that at least in part
the AMPK activation (Esau et al. 2006) could be the result
of higher PPARB/S protein levels in the livers of miR-122-
depleted mice.

The newly identified miR-122 target Smarcd1/Baf60a
provides a second link to PPARs. Smarcd1/Baf60a is
a core subunit of the SWI/SNF chromatin remodeling
complexes and was very recently identified in a screen for
transcription factors whose activity is augmented by
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PPARY coactivator-la (PGC-1a) (Li et al. 2008). In this
study, SMARCD1/BAF60a overexpression in hepatocytes
was shown to have surprisingly specific effects on the
transcriptional activation of genes involved in fatty acid
oxidation, and many of these were also activated by
a synthetic PPARa agonist. In addition, SMARCD1/
BAF60a was found to physically interact with PPAR«a
and to be required for its function. Both proteins are
corecruited with PGC-la to PPAR response element
(PPRE)-containing promoters.

A third connection of miR-122 to PPARs was provided
by the observation that the livers of miR-122-depleted
animals contained higher levels of FFAs, known to serve
as PPAR ligands. All in all, our results suggest that PPARs
might act as mediators to link miR-122 function to the
control of circadian gene expression and hepatic lipid
metabolism, although the detailed genetic and biochem-
ical dissection of this network will require many addi-
tional experiments.

Speculations about the circadian action of miR-122

Generally, RISC-bound miRNAs are thought to be long-
lived (Lee et al. 2003; Lund et al. 2004), and we estimated

Figure 7. Models for how miR-122 could A
impart on circadian gene expression of its 4
targets. (A) Even constant miR-122 levels
(dark gray) could shape the circadian
rhythm of a target (light gray) by constantly
repressing basal levels of translation (repre-
sented by the overlap of the two areas).

abundance

the miR-122 half-life to exceed 24 h. In the light of the
large, stable steady-state pool of miR-122 the question
thus arises of how circadian miR-122 production could
nevertheless have an impact on its targets. Below we
present three possible mechanisms through which miR-
122 could modulate circadian gene expression on the
post-transcriptional level. The first involves the attenu-
ation of basal mRNA accumulation and/or translation by
invariant miR-122 activity, the second implies chemi-
cally different subpopulations of miR-122 with distinct
purposes, and the third a different availability of newly
assembled and old RISC complexes for being loaded on
target mRNAs.

Strictly speaking, there is no requirement for a miRNA
to be circadian itself in order to contribute to the
circadian accumulation of a target transcript. For exam-
ple, the constant repression of basal levels of translation
from such mRNA could strongly increase the circadian
amplitude of the produced protein, as depicted in Figure
7A. Such a mechanism could have the additional benefit
of conferring robustness to low protein expression in the
trough: Rather than relying on very low transcription
rates, which inevitably contain a stochastic component,
low expression levels might thus be achieved more

i miR-122

Only the amount of target mRNA repre-
sented by the dotted area would be avail-
able for translation into protein. As shown
in the cartoon, this mechanism could in-
crease the amplitude of cycling and convert
a low-amplitude mRNA rhythm into
a higher amplitude protein rhythm. In addi-
tion, this regulation could confer robust-
ness to low protein expression levels in the
trough, as described in the Discussion. The
mechanism depicted in this cartoon would
require a high affinity of the miRNA-target
interaction and an excess of targets over
the miRNA. Considering that miR-122
probably has hundreds of targets, of which
many contain several seed sites, this as-
sumption is quite plausible even for this
highly abundant miRNA (B) Conceivably,
chemically distinct, short-lived miR-122
subpopulations (dark gray) could exist

L0

abundance

O

abundance

Zeitgeber Time (ZT)

—

MRNA ) ' protein pathways

/\]\/\ - PPAR
/\]\/\ -

clock output genes

within the pool of bulk miR-122. If these distinct miR-122 species also had specific functional properties, this speculative model
would imply that target mRNAs would be subject to circadian repression. Consequently, the transcript available to produce protein
(dotted area) would show circadian oscillations. (C) Conceivably, newly assembled RISC complexes could immediately get committed
to their target mRNAs and remain stably associated with them, as described in the Discussion. The availability of such newly
assembled miR-122 RISC would be expected to closely follow circadian miR-122 production (dark gray). If targets are transcribed
circadianly as well, the phase relationship of the two rhythmic processes will determine to what extent a target will encounter miR-122
RISCs in the cell, and what influence this has on the circadian amplitude, magnitude, and phase of the produced protein (dotted area).
As in A, this model would demand that the miRISC-mRNA affinity be high and that the targets are in excess. (D) Model for the
integration of miR-122 in circadian hepatic gene expression. MiR-122 is depicted as a tissue-specific modulator of circadian output
genes, with PPAR-dependent regulation of gene expression as one of the regulated output pathways.
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precisely by simultaneously producing a mRNA and
its inhibiting miRNA, which will partially annul each
other. A related role for miRNAs in denoising and con-
ferring robustness to gene expression has previously been
suggested in developmental timing (Stark et al. 2005;
Cohen et al. 2006; Li et al. 2006, 2009). With regard to
liver-specific miR-122, this mechanism could also repre-
sent a way of modulating the circadian rhythm of outputs
in a tissue-specific manner.

As mentioned above the high metabolic stability of
miR-122 prevents its cyclic accumulation. However, our
experiments do not exclude that functionally distinct, less
stable subpopulations exist within the large pool of miR-
122 molecules. This speculative scenario is schematically
depicted in Figure 7B (see the figure legend for explana-
tion). Although we currently have no direct evidence for
such distinct miR-122-containing RISC subpopulations,
they could be produced by miRNA editing, RISC protein
composition or subcellular localization. It is interesting to
note in this context that miR-122 was recently shown to
undergo cytoplasmic 3' adenylation, affecting miR-122
stability (Katoh et al. 2009). Hence, different miR-122
subpopulations with varying metabolic stabilities may
indeed coexist. Nocturnin, a rhythmically expressed dead-
enylase, is also involved in the regulation of lipid metab-
olism (Green et al. 2007). Although bona fide target
mRNAs have not yet been identified for this enzyme,
the regulation of poly(A) length is known to contribute to
translational repression also in the case of miRNA-medi-
ated mechanisms (Liu 2008; Eulalio et al. 2009). Circadian
deadenylation may thus also contribute to the post-tran-
scriptional control of protein synthesis. It should be
emphasized in this context that almost half of the cycling
liver proteins identified by mass spectrometry are trans-
lated from stably expressed mRNAs (Reddy et al. 2006).

Recent work has suggested that the ternary RISC-
miRNA-target complex is remarkably stable, allowing
for the immunopurification of RISC-bound targets (e.g.,
Beitzinger et al. 2007; Karginov et al. 2007). One might
therefore speculate that mainly uncommitted, “fresh”
miRNA-loaded RISCs are available for the silencing of
newly synthesized targets, whereas “old” RISCs, which
are already engaged in silencing, are less so (Fig. 7C). Since
“fresh” miR-122 RISC is produced in a circadian fashion,
the extent of target capture and silencing may well be
daytime-specific. If targets are transcribed circadianly as
well, it becomes evident that the phase relationship of the
two rhythmic processes will determine to what extent
a target will encounter miR-122 RISCs in the cell. For
several of the circadian miR-122 target profiles we de-
termined in 122ASO livers (e.g., Smarcdl/Baf60a and
Ddc; see Fig. 5A), the factor of up-regulation upon miR-
122 depletion was indeed especially high around ZT4,
just after the peak of miR-122 production. These tran-
scripts were transcribed in phase with miR-122, and miR-
122 could function to buffer against and counteract too
extreme target oscillations. Future experiments will need
to address whether and to what extent the three miR-122-
related mechanisms contribute to the post-transcriptional
regulation of circadian output rthythms.
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Materials and methods

Animal care and treatment

Animal studies were conducted in accordance with the regula-
tions of the veterinary office of the State of Geneva. Mice were
maintained under standard animal housing conditions (12-h
light/12-h dark cycles; free access to food/water). Rev-erba
knockout/transgenic mice have been described (Preitner et al.
2002; Kornmann et al. 2007a). ASO treatment was performed in
11-wk male C57BL/6 mice (Elevage Janvier) by intraperitoneal
injection. ASOs were chimeric 2'-fluoro/2’-O-methoxyethyl-
modified oligonucleotides with a completely modified phosphor-
othioate backbone. The exact chemistry is available on request.
Mice received four doses of 20 mg of ASO per kilogram of body
weight in 150 pL, or 150 pL of saline alone (PBS control), over the
course of 2 wk. Two days to 3 d after the last injection, animals
were sacrificed at the respective ZTs, and livers were snap-frozen
in liquid nitrogen.

RNA analysis

RNA was prepared as in Kornmann et al. (2007a), except that the
LiCl wash was omitted to prevent loss of small RNAs. mRNA
Northern blots were performed as in Kornmann et al. (2007a).
Single-stranded ?P-labeled DNA probes were generated by lin-
ear PCR using standard methods. Templates were obtained
by PCR amplification from liver cDNA or genomic DNA us-
ing gene-specific oligonucleotides (Supplemental Table 1). For
miRNA Northern blots 10-30 pg of total RNA per sample were
separated by 15% denaturing PAGE/1X TBE, electroblotted (36
min; 3.3 mA/cm?; 0.5X TBE; 4°C) to Genescreen Plus (NEN|
membrane, and immobilized by UV and baking. Hybridizations
with radioactively labeled oligonucleotide probes were per-
formed overnight in 5X SSC, 20 mM Na phosphate at pH 7.2,
7% SDS, 2X Denhardt’s solution at 50°C, followed by four 15-
min washes (3% SSC, 25 mM Na phosphate at pH 7.5, 5% SDS,
10X Denhardt’s) and a 5-min wash with 1X SSC and 1% SDS.
The sequences of oligonucleotide probes are listed in Supple-
mental Table 1. Quantification of Northern blots was performed
by phosphorimaging using Quantity One Software (Bio-Rad).

Global transcriptome profiling using Affymetrix
oligonucleotide microarrays

Whole-cell liver RN As from ASO-injected mice (ZTO and ZT12)
were analyzed individually on a total of 18 microarrays. Five
micrograms of RNA were employed for the synthesis of biotiny-
lated cRNA, of which 8.75 g were hybridized to Affymetrix
Mouse Genome 430 2.0 arrays according to the supplier’s
instructions. To identify differentially expressed transcripts,
pairwise comparisons were carried out using Affymetrix GCOS
1.2 software. Transcripts were considered as expressed if they
were detectable in at least two of three replicates in at least one
of the experimental conditions. To compare two experimental
conditions, each of the triplicates of one condition was compared
with the triplicates of the other condition, resulting in nine
pairwise comparisons. This approach is based on the Mann-
Whitney pairwise comparison test, and allows the ranking of
results by concordance and the calculation of significance (P-
value) for each identified change in gene expression (Hubbell
et al. 2002; Liu et al. 2002). Genes whose concordance in the
pairwise comparisons exceeded the imposed threshold of 77%
(seven of nine comparisons) were considered to be statistically
significant. Transcripts were considered as up- or down-regulated
in 122ASO samples when their accumulation had an average
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change of at least 1.5-fold with regard to both control samples,
124ASO, and PBS. The extraction of circadian genes from
Affymetrix data sets (Fig. 4A) has been described previously
(Kornmann et al. 2007b). The ArrayExpress repository (http://
www.ebi.ac.uk/arrayexpress) accession number for the micro-
array data is E-TABM-692.

gPCR analysis

c¢DNA was synthesized from 2 pg of DNase-digested whole-cell
RNA using random hexamers and SuperScript II reverse tran-
scriptase (Invitrogen) following the supplier’s instructions.
c¢DNAs were PCR-amplified (7900HT Sequence Detection Sys-
tems, Applied Biosystems) using TagMan Universal Master Mix,
No AmpErase UNG (Applied Biosystems), and raw threshold
cycle (Ct) values were calculated with SDS 2.0 software (Applied
Biosystems). Mean levels were calculated from triplicate PCR
assays for each sample and normalized to those obtained for the
control transcripts Eeflal, Gapdh, GusB, and 45S pre-rRNA.
RT ™ samples were included to exclude contaminations with ge-
nomic DNA. For primers and probes, see Supplemental Table 1.

miR-122 target predictions and enrichment statistics

We relied on the Ensembl version 50 mapping of the Affymetrix
probes to transcripts. Up-regulated, down-regulated, and un-
changed transcripts were selected as described above. The seed
sequence of the miRNA was defined as 6-8 bases from the second
position of the miRNA 5’-end, not allowing mismatches except
a single G:U in 7-mers and 2 G:U in 8-mers. Duplex energies
were computed with the cofolding function from the RNA
Vienna Package (Hofacker 2003). The statistical significance of
the putative miR-122 target site enrichment in the up, equal, and
down fractions was evaluated using a x° test.

Plasmids, clonings, and analysis of 3'UTRs

3'UTR sequences were amplified by PCR from mouse liver
c¢DNA or genomic DNA with specific oligonucleotides (Supple-
mental Table 1) and cloned 3’ to the renilla luciferase (RL)
sequence in vector pRL-control. The identity of the UTRs was
verified by sequencing. Plasmids pRL-control and pRL-Cat-1 are
as in Bhattacharyya et al. (2006) and pRL-3xbulge is similar to the
homonymous plasmid in Pillai et al. (2005), except that bulges
match miR-122 instead of let-7. For normalization, a CMV-
driven firefly luciferase-expressing plasmid on the basis of
pEGFP-C1 was used. Details on all plasmids are available on
request. For 3'UTR assays, 2 ng of pRL, 40 ng of FL plasmid, and
10 pmol of miRNA mimic (miR-122 and control mimic cel-miR-
67 from Dharmacon) were transfected into 10* HeLa cells per
well of a 96-well plate by reverse transfection using Lipofect-
amine 2000 (Invitrogen) according to the supplier’s instructions.
Transfection mixes were replaced by normal growth medium
after 6 h. Luciferase activities were measured 28 h after trans-
fection with the Dual-Glo Luciferase Assay System (Promega).
Renilla luciferase signals were normalized to firefly luciferase
and for each 3'UTR construct set to 100% for the cotransfection
with the control mimic. Each transfection was repeated at least
six times. Growth medium was DMEM, 10% FCS, 1% PSG
(Gibco).

Immunoprecipitation-Western blotting

Liver pieces of 122ASO and control mice, ZTO and ZT12
(triplicates) were homogenized in three volumes of RIPA (150
mM NaCl, 1% NP40, 0.5% Na-deoxycholate, 0.1% SDS, 50 mM
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Tris-HCI at pH 8.0, protease inhibitors) using a motorized hand
tool (Xenox). Insoluble material was removed by centrifugation
(15 min, 20,000g, 0°C). Supernatants were kept at —80°C. For the
immunoprecipitation, extracts were further diluted to 5 vol of
RIPA per volume of liver and adjusted to 0.2% SDS. After another
spin (as above), equal amounts of protein extract from the
triplicates of the same experimental condition were pooled
(~600 ng protein/liver). An aliquot was kept for the input
sample, and immunoprecipitation was performed from the
remaining pool using standard protocols with a rabbit polyclonal
antibody to PPARB/S (ab8937, Abcam) and protein A-agarose
(Roche). Immunoprecipitated complexes and inputs were an-
alyzed by SDS-PAGE/Western blotting using antibodies to
PPARB/d and U2AF65 (Sigma, U4758). Semiquantitative analy-
sis of Western blots was performed using Quantity One Software
(Bio-Rad).

FFA analysis

Liver homogenates in MeOH (0.1% BHT) were spiked with
heptadecatrienoate, TAG (17:0/17:0/17:0) and heptadecanoic
acid (FFA C17:0) and extracted by chloroform after addition of
0.9% sodium chloride. The lower organic phase was separated,
evaporated under nitrogen flow, and dissolved into petroleum
ether (bp 40°C-60°C). The samples were transesterified with
sodium methoxide (NaOMe, 0.5 M in MeOH), acidified (15%
NaHSO, in H,O) and extracted with petroleum ether. The
organic phase containing fatty acid methyl esters (FAME) from
bound fatty acids and FFAs was separated, evaporated under
nitrogen flow, and redissolved into hexane. Two-microliter
aliquots were used for GC injection (splitless 1 min) at 280°C
and the analyses were performed on an FFAP fused silica
capillary column (25 m, i.d. 0.32 mm) by using helium as the
carrier gas (pressure program). The oven temperature was in-
creased from 70°C to 240°C at 7°C per minute, and the fatty acids
were detected by flame ionization detector (FID, 300°C). Identi-
fication was based on retention times and GC/MS spectra of re-
ference substances.
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4.3 Silencing of c-Fos expression by microRNA-155 is critical for dendritic
cell maturation and function

The regulation mediated by miRNAs is involved in immune system functions (Xiao and
Rajewsky [72]). In particular, miR-155 expression, derived from an exon of the B-cell inte-
gration cluster (BIC), is induced during the activation of immune cells, notably the dendritic
cells (DCs). To investigate the role of miR-155 in DCs maturation, miR-155 homozygous KO
mouse were used (Rodriguez et al. [73]). In the miR-155 KO mouse, bone marrow—derived
DCs (BM-DCs) functions were significantly impaired. In particular, the repression of c-Fos
expression, mediated by miR-155, is essential for DC maturation. Moreover, a de-regulated
expression of c-Fos led to the same phenotype as a miR-155 KO, confirming the essential role
of miR-155 in DC maturation and function.

Involvement of miR-155 in the maturation of BM-DCs was investigated by mRNA pro-
filing of immature and mature BM-DCs for wild-type and miR-155 KO. I analyzed the Il-
lumina arrays and examined the target enrichment similarly to my previous analysis (Gat-
field et al. [74]). I found the effect of miR-155 to be significant in mature BM-DCs (Table 2
in Dunand-Sauthier et al. [75]). I also calculated the enrichment for all mouse miRNAs
(Figure 2 in Dunand-Sauthier et al. [75]), and confirmed this effect was only attributable to
miR-155.
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Silencing of c-Fos expression by microRNA-155 s critical for dendritic cell

maturation and function
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MicroRNAs (miRNAs) are small, noncod-
ing RNAs that regulate target mRNAs by
binding to their 3’ untranslated regions.
There is growing evidence that microRNA-
155 (miR155) modulates gene expression
in various cell types of the immune sys-
tem and is a prominent player in the
regulation of innate and adaptive immune
responses. To define the role of miR155 in
dendritic cells (DCs) we performed a de-
tailed analysis of its expression and func-
tion in human and mouse DCs. A strong

increase in miR155 expression was found
to be a general and evolutionarily con-
served feature associated with the activa-
tion of DCs by diverse maturation stimuli
in all DC subtypes tested. Analysis of
miR155-deficient DCs demonstrated that
miR155 induction is required for efficient
DC maturation and is critical for the abil-
ity of DCs to promote antigen-specific
T-cell activation. Expression-profiling
studies performed with miR155~/~ DCs
and DCs overexpressing miR155, com-

bined with functional assays, revealed
that the mRNA encoding the transcription
factor c-Fos is a direct target of miR155.
Finally, all of the phenotypic and func-
tional defects exhibited by miR155~/~ DCs
could be reproduced by deregulated c-
Fos expression. These results indicate
that silencing of c-Fos expression by
miR155 is a conserved process that is
required for DC maturation and function.
(Blood. 2011;117(17):4490-4500)

Introduction

MicroRNAs (miRNAs) are small, single-stranded, noncoding
RNAs that regulate mRNAs by binding to their 3" untranslated
(3'UTR) regions.!> More than 9000 miRNAs have been identified
in more than 100 species. Most miRNA genes are transcribed by
RNA polymerase II into primary miRNA transcripts that are
processed in the nucleus by a complex containing the RNase III
endonuclease Drosha.! The resulting precursor miRNAs are trans-
ported to the cytoplasm, where the mature miRNAs are excised by
a complex containing the endonuclease Dicer.! Mature miRNAs
are incorporated into the RNA-induced silencing complex, which
binds to the 3'UTRs of target mRNAs, inducing their degradation
and/or repressing their translation. Posttranscriptional regulation of
gene expression by miRNAs is critical for a wide range of
physiologic and pathologic processes, including cell proliferation,
apoptosis, differentiation, morphogenesis, development, and
oncogenesis. '

Several miRNAs play pivotal roles in the immune system.>-’
MicroRNA-155 (miR155) has emerged as a particularly prominent
player in innate and adaptive immune responses.>’ miR155 is
derived from an exon of the B-cell integration cluster (BIC) gene,
which was identified as a common integration site of avian leucosis
virus in chicken B-cell lymphomas.®® BIC is a non-protein-coding
gene for which the only known function is the production of
miR155. Subsequent studies revealed that miR155 expression is
deregulated in diverse cancers.'!! The molecular mechanisms
underlying the oncogenic role of miR155 remain unclear.

miR155 expression is induced during the activation of T cells,
B cells, monocytes, macrophages, and dendritic cells (DCs), sug-
gesting that it plays multiple roles in the immune system.’ In
agreement with this, the immune system of miR155-deficient mice
is compromised by defects in several cell types.'>!3 Activated
T cells from miR 1557/~ mice exhibit a bias toward Th2 differentia-
tion and express elevated levels of 1L4, ILS, and IL10. This was
attributed to the fact that miR155 targets the mRNA coding for
c-Maf, a transcription factor implicated in IL-4 expression and Th2
differentiation.'> The B-cell compartment in miR1557/~ mice
exhibits defects in germinal center development and in the
generation of efficient antibody responses. miR155 is critical for
affinity maturation because the generation of plasma cells produces
high-affinity isotype-switched antibodies and the development of
memory B cells.'>!* The B-cell defects in miR155~/~ mice result
at least in part from miR155 repressing the expression of the
transcription factor PU.1' and activation-induced cytidine deami-
nase.'>1¢ Lastly, bone marrow—derived DCs (BM-DCs) from
miR1557/~ mice are impaired in their ability to activate T cells.!?

We recently reported that the induction of miR155 expression in
human monocyte—derived DCs (Mo-DCs) exposed to the TLR4
ligand lipopolysaccharide (LPS) leads to modulation of the ILI
signal transduction pathway.!” Another study found that miR155
induces down-regulation of DC-specific intercellular adhesion
molecule-3 grabbing nonintegrin in human Mo-DCs by inhibiting
the expression of PU.1.'"® Neither study elucidated the T cell-
activation defect exhibited by miR155-deficient BM-DCs.
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To define the role of miR155 in DCs, we analyzed its expression
and function in human and mouse DCs exposed to various stimuli.
Activation of miR155 expression was found to be a general
evolutionarily conserved process that was correlated with matura-
tion induced by diverse stimuli in all DC subtypes tested. Microar-
ray experiments revealed that silencing of c-Fos expression is a key
function of miR155 in DCs. Finally, functional experiments
performed with miR155-deficient DCs and DCs in which c-Fos
expression was deregulated demonstrated that the repression of
c-Fos by miR155 is required for DC maturation and the ability of
DCs to promote antigen-specific T-cell activation.

Methods

Mice

2D2, OTII, and miR155~/~ mice have been described previously.'219:20

Mice were bred under specific pathogen—free conditions and used for
experiments at 8-10 weeks of age. Animal experiments were performed
with permission of the cantonal and national veterinary authorities.

Cells

The mouse DC?'"'* cell line?' was cultured in IMDM supplemented with
10% FCS, 0.05mM B-mercaptoethanol, 1000 units/mL of penicillin, and
1000 pg/mL of streptomycin. 293T cells were cultured in DMEM
supplemented with 10% FCS, 1000 units/mL of penicillin, and 1000 pg/mL
of streptomycin. Cells were cultured under 5% CO, in a humidified
incubator.

Human Mo-DCs were prepared as described previously.?> Bone marrow—
derived plasmacytoid DCs (BM-pDCs) were derived from tibia and femur
bone marrow suspensions from 8- to 10-week-old mice, as described
previously.”> BM-DC differentiation was performed by incubation of
1 X 10 bone marrow cells per milliliter in DMEM medium supplemented
with 10% FCS and 5% of a supernatant from a hybridoma-producing
GM-CSF. CDllc™ BM-DCs, CDI11¢™B220" BM-pDCs, and splenic
CDI11c*CD8a™ and CD11c*CD8a~ DCs were purified by sorting with a
FACSVantage SE (Becton Dickinson). DC maturation was induced with
25 ng/mL of LPS (Alexis), 0.05 mg/mL of poly (I:C) (Amersham
Biosciences), 0.2nM CpG oligodeoxynucleotide 1826 (TriLink BioTechnolo-
gies), 10 pg/mL of peptidoglycan (PGN; Sigma), 500 ng/mL of
Pam3CysSerLys4 (PAM3CSK4; InvivoGen), 200 ng/mL of flagellin (Invi-
voGen), 100 ng/mL of TNFa, 100 ng/mL of fibroblast-stimulating lipopep-
tide-1 (FSL-1), 10 pwg/mL of muramyl dipeptide (MDP; Calbiochem),
3 pg/mL of imiquimod (InvivoGen), or CpG plus anti-CD40 antibodies (rat
FGK45 hybridoma). Splenic CD4" T cells were purified from 2D2 or OTII
mice using a CD4" T cell-isolation kit (Miltenyi Biotec).

Lentiviral transductions

A fragment of the BIC gene encoding miR155 was amplified by PCR from
mouse genomic DNA using the primers 5'-GTGCTGCAAACCAG-
GAAG-3" and 5'-CCTTACAAAGAGTTGTTCATC-3'. This BIC fragment
was cloned into the pDONR221 vector using the Gateway BP Clonase
Enzyme Mix (Invitrogen). This vector was recombined with pDONRP4-
PIR into the 2K7 green fluorescent protein (GFP) lentiviral vector?* using
the Gateway LR Plus Clonase Enzyme Mix (Invitrogen) to generate a
vector expressing the BIC precursor under control of the EFla promoter.
This vector also expresses GFP to permit the evaluation of transduction
efficiencies and the purification of transduced cells. The mutated BIC
expression vector was generated by mutating the miR155 sequence in the
BIC expression vector. ¢-Fos ¢cDNA was amplified using the primers
5'-ATGACGTTTAAACGCCACCATGATGTTCTCGGGTTTC-3" and 5'-
ATGACGTTTAAACTCACAGGGCCAGCAGCGT-3'. This c-Fos cDNA
was cloned into the lentiviral pWPI vector. Transduction of mouse DC2!!4
cells was performed as described previously.?
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Microarray experiments

Microarray experiments and miRNA target site analyses were performed as
detailed in supplemental Methods (available on the Blood Web site; see the
Supplemental Materials link at the top of the online article). Microarray
data reported in our study have been deposited in the ArrayExpress database
under accession numbers E-MTAB-497 (Figure 2B array) and E-MTAB-
498 (Figure 2C array).

Quantitative RT-PCR

RNA was extracted with TRIzol. Human and mouse miR155 cDNAs were
generated using specific primers and MultiScribe Reverse Transcriptase,
and real-time PCR was performed using hsa-miR155 and Mmu-miR155
TagMan MicroRNA Assays (Applied Biosystems). Mouse and human
mRNAs were quantified by real-time RT-PCR using the iCycler iQ
Real-Time PCR Detection System (Bio-Rad) and iQ SYBR Green Super-
mix (Bio-Rad). Expression levels were normalized using 3-actin mRNA,
TATA-binding protein mRNA, or 18S rRNA. Results were quantified using
a standard curve generated with serial dilutions of input cDNA. Primers are
listed in supplemental Table 1.

Luciferase reporter assays

The complete 3'UTRs of human (762 bp) and mouse (800 bp) c-Fos
mRNAs were amplified by PCR and inserted downstream of the Renilla
luciferase gene in the dual luciferase reporter plasmid psiCHECK-2
(Promega). The QuikChange Multi Site-Directed Mutagenesis Kit (Strat-
agene) was used to mutate the putative miR155-binding sites. Luciferase
reporter assays were performed as described previously.!?

Flow cytometry

Flow cytometry was performed with a FACSCalibur (Becton Dickinson)
and analyzed with WinMDI 2.8 software. Staining was performed in the
presence of saturating concentrations of 2.4G2 anti-FcyRII/III monoclonal
antibodies. Antibodies are listed in supplemental Table 2.

Western blotting

Protein extracts were fractionated by SDS-PAGE and Western blotting was
performed with the antibodies listed in supplemental Table 2.

T-cell stimulation

LPS-treated BM-DCs or CpG-treated DC?!'*4 cells were loaded with
20 pg/mL of myelin oligodendrocyte glycoprotein (MOGs;s.ss) peptide,
1 pg/mL of OVA peptide, or I mg/mL of OVA protein, and cocultured with
10° 2D2 or OTII T cells. Control cultures contained equal numbers of
unloaded DCs. T-cell activation was assessed after 18 (BM-DC cocultures)
or 6 (DC?'* cocultures) hours. CD69" cells were quantified by flow
cytometry. Secretion of IL2 was measured by ELISA according to the
manufacturer’s instructions (eBioscience). T-cell proliferation was assessed
by [*H]-thymidine incorporation.

Immunofluorescence microscopy

Cells were seeded on glass coverslips, cultured for 24 hours in the absence
or presence of LPS (BM-DCs) or CpG (DC?'* cells), and fixed for
10 minutes at room temperature with 1% paraformaldehyde in PBS.
BM-DCs were stained using the antibodies indicated in supplemental Table
2. Nuclei were stained with DAPI. DC?!''“ cells were visualized on the basis
of endogenous GFP expression. Cells were observed in a Zeiss Axiocam
microscope using Axiovision LE software.

Statistical analysis

P values were calculated using the Student # test with 2-tailed distribution
and 2-sample unequal variance parameters.
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Results
Induction of miR155 expression in human Mo-DCs

miRNA expression profiles were compared between immature
Mo-DCs and Mo-DCs activated with LPS using a human miRNA
microarray and a multispecies miRNA microarray (supplemental
Figure 1A-B). Maturation was verified by examining the up-
regulation of MHC class II (MHCII), CD83, CD86, and CD40
expression (supplemental Figure 1C). The miRNA that was up-
regulated the most strongly and reproducibly was miR155.

Real-time RT-PCR experiments confirmed that miR 155 expres-
sion was increased strongly in mature Mo-DCs relative to mono-
cytes and immature Mo-DCs (supplemental Figure 2A). Matura-
tion was controlled by assessing the induction of IL6 and IL12-p40
mRNA expression and the reduced expression of the mRNA coding
for the MHCII transactivator CIITA.?> Time-course experiments
indicated that miR155 accumulation was induced rapidly and
increased progressively, reaching maximal levels after 24-48 hours
of stimulation with LPS (supplemental Figure 2B). Quantification
of its corresponding precursor miRNA indicated that miR155
accumulation resulted from a rapid and strong transcriptional
activation of the BIC gene (supplemental Figure 2B). In addition,
time-course experiments indicated that miR155 and BIC expres-
sion were induced by poly (I:C) with kinetics similar to those
observed for stimulation with LPS (supplemental Figure 2B).

miR155 and BIC transcripts were next quantified in Mo-DCs
exposed to the TLR2 ligand PGN, the TLR3 ligand poly (I:C), the
TRS ligand flagellin, and TNFa (supplemental Figure 3A). Matura-
tion was again controlled by examining IL12-p40, IL6, and CIITA
mRNA expression. miR155 and BIC expression were induced by
all 4 stimuli, although the increase was weaker than that observed
for exposure to LPS. BIC expression was also induced in Mo-DCs
by IFNa (supplemental Figure 3B). These results indicate that
ligands that trigger DC maturation induce an increase in miR155
expression.

Maturation-induced miR155 expression is conserved in
mouse DCs

To determine whether the induction of miR155 expression during
DC activation is a conserved process, we extended our analysis to
mouse DCs. miR155 expression was first studied in a DC cell line
(DC?'14) derived from a transgenic mouse—expressing SV40
T-antigen under control of the CD1lc promoter.?! DC?''* cells
correspond to CD8a ™ DCs and reproduce faithfully most of the key
features of their in vivo counterparts: they can capture, process, and
present antigens to CD4" T cells; cross-present antigens to CD8*
T cells; be activated by classic maturation stimuli; and produce a
pattern of chemokines and proinflammatory cytokines typical of
primary DCs. A potent maturation stimulus for DC?''* cells is the
TLRY ligand CpG in combination with anti-CD40 (aCDA40)
antibodies. Maturation induced by CpG + aCD40 was assessed by
examining cell-surface MHCII (I-AP), CD80, CD86, and CD40
expression (supplemental Figure 4A). We performed miRNA
expression-profiling experiments to identify miRNAs that undergo
changes in expression in DC?''* cells stimulated with
CpG + aCD40, and miR155 was found to be up-regulated strongly
and reproducibly (supplemental Figure 4B).

Real-time RT-PCR experiments confirmed that miR155 expres-
sion increased dramatically in CpG + aCD40-stimulated DC?!14
cells (supplemental Figure 4C). This induction was correlated with
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Table 1. DC numbers in miR155~/~ mice

WT C57BL/6 miR155~/~ P
Total splenocytes 189.10¢ + 57.10° 128.10° + 27.10° 1752
CD11c*CD8a~ cDCs, % 1.06 = 0.13 0.86 = 0.17 1730
CD11c*CD8a" cDCs, % 0.37 £ 0.07 0.34 + 0.06 .5257
CD11c*B220* pDCs, % 1.00 = 0.13 1.33 +0.18 .0610

Means = SDs were derived from 3 mice of each genotype.

efficient maturation, as assessed by quantifying IL6, IL12-p40, and
CIITA mRNA expression (supplemental Figure 4C). Time-course
experiments indicated that miR155 accumulation in DC?''* cells
was induced rapidly and increased progressively, reaching maxi-
mal levels after 12-24 hours of stimulation with CpG + aCD40
(supplemental Figure 4D). Induction of miR155 expression re-
sulted from a rapid and strong activation of the BIC gene
(supplemental Figure 4D). We also studied miR155 and BIC
expression in DC2!!# cells subjected to other signals (supplemental
Figure 4E). Stimuli that promoted efficient maturation (PGN and
poly (I:C) induced a strong increase in miR155 and BIC expres-
sion. Conversely, neither miR155 nor BIC expression was induced
by stimuli that failed to promote efficient maturation (PAM3CSK4,
LPS, and flagellin).

We next studied the activation of miR155 and BIC expression
in primary mouse DCs. miR155 expression was induced strongly
upon the maturation of conventional BM-DCs, BM-pDCs, and
splenic CD8a~ and CD8a* DCs (supplemental Figure SA). Further-
more, BIC expression was induced in BM-DCs by all maturation
stimuli tested, including LPS, poly (I:C), PGN, PAM3CSK4,
flagellin, FSL-1, imiquimod, CpG, MDP, and IFNa (supplemental
Figure 5B-C).

miR155 is required for DC maturation and function

Numbers of conventional DCs (CD11¢"CD8a*, CD11¢™CD8a ™)
and pDCs (CD11¢™B220") were unaffected in miR155~/~ mice
(Table 1). The differentiation of BM-DCs and BM-pDCs was also
unchanged in BM cultures from miR155/~ mice. The deficiency
in miR155 does therefore not lead to a general defect in DC
development.

Unstimulated wild-type (WT) and miR155~/~ BM-DCs exhib-
ited similar frequencies of cells displaying a dendritic morphology
characterized by long cellular protrusions (Figure 1A). However,
the fraction of cells exhibiting this morphology after LPS treatment
was significantly lower for miR155~/~ BM-DCs (Figure 1A).
LPS-induced increases in the cell-surface expression of MHCII
(I-AP) and costimulatory molecules (CD86, CD40, and CD80)
were attenuated in BM-DCs from miR155~/~ mice (Figure 1B).
This was particularly evident for CD86 and CD40 (Figure 1C).
BM-DCs from both WT and miR155-deficient mice exhibited
strong induction of IL12-p40, IL12-p35, IL1B, IL6, and TNF«a
mRNA expression after exposure to LPS (supplemental Figure 6).
However, the induction of IL12-p40, IL12-p35, and TNFa mRNAs
tended to be slightly attenuated in miR155~/~ BM-DCs. These
findings indicate that miR 155/~ BM-DCs exhibit selective defects
in key processes associated with DC maturation.

Antigen-specific T cell-activation assays were performed to
determine the functional consequences of the impaired maturation
of miR155-deficient BM-DCs. OVA-specific CD4* T cells from
TCR-transgenic OTII mice were stimulated with LPS-treated WT
or miR1557/~ BM-DCs that had been loaded or not with OVA
peptide or OVA protein. OTII T-cell activation was assessed by
examining CD69 expression and IL2 secretion. OVA-specific OTII
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Figure 1. Phenotypic and functional defects exhibited by . .
miR155-~ DCs. (A) Unstimulated and LPS-treated BM-DCs A miR155
prepared from WT and miR155~/~ mice were stained with 4 > 70
antibodies against CD11c, and the frequencies of cells exhibiting @ _87 60 —L
a characteristic dendritic morphology were determined. Represen- -LPS 2 *k
tative images are shown at the left; dendritic protrusions are g 50 ns 3
indicated with arrows. The bar graph represents the means and £ 40
SDs derived from 3 independent BM-DC preparations; ns, not = 30
significant; **P < .01. The numbers of cells examined are indi- 5 20| o < © =
cated for each bar. (B) Cell-surface CD86, CD40, CD80, and I-AP 10l Q8] ]& 3
expression was analyzed by flow cytometry for unstimulated and ~ * LPS :; 0
LPS-treated BM-DCs from WT and miR155~/~ mice. Histograms ° WT miR155"~ WT miR1557
are representative of 3 experiments. (C) The mean fluorescence -
intensity (MFI) for cell-surface CD86 and CD40 expression was unstimulated LPS
determined by flow cytometry for unstimulated and LPS-treated
BM-DCs from WT and miR155~/~ mice. The means and SDs B 1 unstimulated WT — miR155"-
derived from 3 independent experiments are shown; *P < .05; "
**P < .01. (D) LPS-treated BM-DCs from WT and miR155 /- ) R
mice were loaded with OVA peptide (left panels) or OVA protein | ) CD86 1 CD40 CD8o | A
(right panels) and cocultured with OVA-specific CD4" T cells “‘,\‘3 L A, ] i
purified from TCR-transgenic OTII mice. BM-DCs that had not A VAR LTy
been loaded with antigen (—OVA) were used as negative con- /\:‘ N // " N [ k
trols. T-cell activation was determined by the analysis of cell- |t A ) e :
surface CD69 expression (top panels, relative frequencies of
CD69" cells) or secretion of IL2 into the supernatants (bottom C
panels, relative IL2 secretion). The means and SDs derived from CcD86 *k CcD40 *
3 independent experiments are shown; *P < .05; **P < .01. 80 T 200 .
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T-cell activation induced by miR155-deficient BM-DCs was signifi-
cantly impaired (Figure 1D). Similar results were obtained by
assessing T-cell activation and proliferation induced by the presen-
tation of MOGss.s5 to MOG-specific CD4" T cells purified from
TCR-transgenic 2D2 mice. MOGg3;s_ss-specfic 2D2 T-cell activation
and proliferation induced by miR155-deficient BM-DCs were
significantly reduced (supplemental Figure 7). BM-DCs from
miR 1557/~ mice therefore exhibit marked defects in their ability to
promote antigen-specific T-cell activation.

Identification of mMRNAs regulated by miR155 in DCs

Microarray experiments were performed to document differences
between the global gene-expression profiles of mature WT and
miR1557/~ BM-DCs. Direct targets of miR155 were expected to be
enriched among mRNAs that are up-regulated in the miR155-
deficient BM-DCs relative to WT DCs. mRNAs that were signifi-
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cantly increased in mature miR155~~ BM-DCs were therefore
analyzed for the presence of potential miR155-binding sites. Six to
8 nucleotide sequences showing complementarity to the “seed”
region situated at the 5’ end (positions 2-9) of miR155 were
significantly enriched in the 3'UTRs of mRNAs that were up-
regulated in mature miR155~/~ BM-cDCs (Table 2). The enrich-
ment of miR155-binding sites was also confirmed using 3 addi-
tional prediction models relying on favorable binding energy,
sequence context, or evolutionary conservation (Table 2). As
expected, no significant enrichment of miR155 targets was ob-
served in mRNAs that were down-regulated in mature miR155~/~
BM-DCs or in mRNAs that were increased or decreased in
immature miR1557/~ BM-DCs (Table 2). We next scanned the
mRNAs that were up-regulated in miR155~/~ BM-DCs for the
presence of target sites for all mouse miRNAs included in the
miRBase database (Version 14). miR155 was the only miRNA for
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Table 2. Analysis of miR155 signature in miR155~/- BM-DCs
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Immature BM-DCs

Mature BM-DCs*

Targets in Targets in Targets in Targets in
up-regulated mRNAst down-regulated mRNAst up-regulated mRNAst down-regulated mRNAst
% P % P % Pt % P

5% significance threshold for differential

mRNA expression§

Seeds 22 9 22 9 37 10-¢ 19 .98

Conserved seeds 9.7 .6 4.7 1.0 15 .004 4 1.00

Targetscan 4 4.5 1.0 6.5 8 12 .003 4 .99

AG duplex 1.2 7 1.0 2.4 .082 .97
1% significance threshold for differential

mRNA expressionf

Seeds 22 7 28 4 42 .001 27 .33

Conserved seeds 4.2 .9 4.8 9 17 .024 5.1 9

Targetscan 4 588 7 71 6 13 .08 10 .24

AG duplex .0 1.0 1.6 7 4.3 14 0.0 1.0

*Treated with LPS for 24 hours.

tExpression in miR155~/~ BM-DCs relative to WT BM-DCs.
3One-sided Fisher test (bold indicates P < .05).

§541 up-regulated mRNAs in miR155~/~ DCs (ttest).

91139 up-regulated mRNAs in miR155~/~ DCs (ttest).

which target site enrichment was observed using each of the
4 prediction models (Figure 2A). These results indicate that the
altered mRNA expression profile of miR155~/~ BM-DCs exhibits a
clear miR155 signature.

The expression levels of several mRNAs that were known or
suspected to be regulated by miR155 or a viral ortholog (miR-
K12-1) encoded by Kaposi-sarcoma-associated herpes virus!4182627
were increased in mature miR155~/~ BM-DCs (Figure 2B).
Increased expression was statistically significant for some of these

A B

mRNASs (Picalm, Pu.1, and Smad5) but not for others (c-Fos and
Ship), suggesting that down-regulation of target mRNAs by
miR155 is variable in efficiency. This is consistent with the fact that
repression by miRNAs can occur mainly at the translational level,
with little or no reduction in mRNA abundance.

As a complementary approach to identifying targets of
miR155, we studied the impact of overexpressing miR155 in
DCs. DC?!4 cells were transduced with a lentiviral BIC
expression vector that drives miR155 expression to a level

2 T
all seeds

—— miR155 (No. 1)

conserved seeds

5 )
—— miR155 (No. 3)

miR155-BM-DCs

Figure 2. Identification of mMRNAs that are regulated by
miR155 in DCs. (A) Microarray experiments were per-
formed to compare the gene-expression profiles of mature
LPS-treated BM-DCs from WT and miR155~/~ mice. The
3'UTRs of mRNAs that were significantly up-regulated in
miR155~/~ DCs were analyzed for the presence of poten-
tial target sites of all mouse miRNAs using 4 prediction
models (all seeds, conserved seeds, Targetscan 4, and
AG duplex). The graphs represent the fold enrichment of

T T T T T T T

Targetscan 4

Fold enrichment

WT BM-DCs

104 target sites for each miRNA. The position of miR155 and
its ranking with respect to target-site enrichment are

indicated for each graph. (B) Microarray data for mature
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108 ;
— MiR155 (No. 15)

= N W » O

BIC-transduced DC?!14
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Mouse miRNAs Ry * 3

LPS-treated BM-DCs from WT and miR155~/~ mice are
represented as a scatter plot showing average normalized
signal intensities derived from 3 independent experiments.
Each dot represents a probe set corresponding to one
mRNA. Only dots corresponding to mRNAs exhibiting
7 greater than a 1.5-fold difference in expression between
the 2 genotypes are shown. Dots corresponding to Picalm,
c-Fos, Pu.1, Ship, and Smad5 mRNAs are indicated.
. (C) Microarray experiments were performed to compare
the gene-expression profiles of control and BIC-trans-
duced DC2'"4 cells. Results are represented as a scatter
plot showing average normalized signal intensities derived
from 3 independent experiments. Each dot represents a
probe set corresponding to one mRNA. Only dots corre-
sponding to mRNAs exhibiting greater than a 1.5-fold

102

Control-transduced DC?!14

difference in expression between control and BIC-
transduced cells are indicated. The dot corresponding to
c-Fos mRNA s indicated.
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Figure 3. c-Fos expression is regulated by miR155. (A) Expres-
sion of c-Fos mRNA was analyzed by real-time RT-PCR in

>
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c-Fos mRNA c-Fos mRNA

unstimulated and LPS-stimulated BM-DCs from WT or miR155~/~

1.0

mice (left) and in DC2'"4 cells transduced with empty vector or the
BIC expression vector (right). Results are represented as relative

0.8

c-Fos mRNA expression. The means and SDs derived from
3 independent experiments are shown; *P < .05. (B) Expression

N W BN

0.6

of c-Fos protein was analyzed by Western blotting in BM-DCs

Fold change

0.4
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Fold change
*

prepared from WT and miR155~/~ mice. Actin was used as
internal control. A gel representative of 3 independent experi-
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ments is shown (left). c-Fos signals were quantified and normal-

WT

miR155"  WT  miR1557 control BIC

ized relative to actin (right). The results represent the mean fold
increase derived from 2 independent experiments. (C) Schematic
representation of mouse c-Fos mRNA. The sizes in nucleotides of
the 5'UTR, open reading frame (ORF), and 3'UTR are indicated.
The 3'UTR contains 2 predicted binding sites (black boxes) for
miR155. The sequence of mouse miR155 is shown aligned with
its predicted target sites in the 3'UTR of c-Fos mRNAs from the
indicated species. A-U and G-C base pairs are represented by
solid lines; G-U base pairs are represented by dotted lines. The
miR155 seed region and its complementary sequences in c-Fos
mRNAs are enclosed by boxes. Sequences of the mutated (Mut)
3’UTRs of human (Hs) and mouse (Mm) c-Fos mRNA are
indicated. (D) Luciferase reporter constructs containing the WT or
mutated 3'UTRs of human or mouse c-Fos mRNA were trans-
fected into 293T cells. A reporter construct containing the 3'UTR
of BACH1 mRNA, a known target of miR155, was used as
positive control. The constructs were transfected together with the
indicated amounts of human or mouse miR155. Luciferase
activity was measured 24 hours after transfection, normalized
with respect to the activity obtained with a control reporter vector,
and is expressed as relative luciferase activity. The means and
SDs derived from 3 independent experiments are shown.
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comparable to that observed in DC2!'* cells stimulated with
CpG + aCD40 (supplemental Figure 8A). Examinations of
cell-surface maturation markers revealed that enforced miR155
expression in DC?!'# cells did not trigger spontaneous matura-
tion or hinder maturation induced by CpG + «CD40 (supplemen-
tal Figure 8B). Microarray experiments were performed to
document differences between the global gene-expression pat-
terns exhibited by DC?!'# cells transduced with the BIC
expression vector and a control vector. Only minor changes in
gene expression were induced by miR155 overexpression
(Figure 2C). Among the target mRNAs that were up-regulated in
miR1557/~ BM-DCs (Figure 2B), only c-Fos mRNA was
reduced in DC?!''* cells overexpressing miR155 (Figure 2C).
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Repression of c-Fos expression by miR155

The microarray data suggested that c-Fos mRNA could be a critical
target of miR155 in DCs. Real-time RT-PCR experiments confirmed
that c-Fos mRNA abundance was indeed significantly increased in
miR 1557~ BM-DCs, whereas it was markedly decreased in DC?!14
cells transduced with the BIC expression vector (Figure 3A). Further-
more, transduction with the BIC expression vector also induced a
decrease in c-Fos mRNA levels in WT and miR155~/~ BM-DCs, as
well as in a control c-Fos—expressing mouse epithelial cell line (MLE12)
(supplemental Figure 9A-C).

Western blot experiments demonstrated that the low levels of
c-Fos detected in WT BM-DCs was strongly increased in miR1557/~
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A B c Figure 4. c-Fos expression is silenced during DC maturation.
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BM-DCs (Figure 3B). The fact that c-Fos protein was increased to
a greater extent than c-Fos mRNA (25-fold versus 2- to 3-fold)
suggested that miR155 represses c-Fos expression mainly at the
level of translation.

Computational approaches for identifying miRNA target se-
quences based on well-established criteria, including complementa-
rity to the miRNA seed region, favorable sequence context,
stability of the miRNA-mRNA duplex, and conservation across
multiple species,?®3! predicted 2 miR155-binding sites in the
3'UTR of c-Fos mRNA in all species examined (Figure 3C).
Conservation was strongest in the segments showing complemen-
tary to the seed region of miR155 (Figure 3C).

The complete 3'UTRs of mouse and human c-Fos mRNA were
inserted into reporter vectors downstream of the Renilla luciferase
gene. As controls we used vectors in which the seed regions of the
2 predicted miR155-binding sites within the c-Fos 3'UTRs were
mutated. These constructs were transfected into 293T cells with or
without the corresponding human or mouse miR155 precursors.
Cotransfection of the nonmutated construct with the miR155
precursors resulted in a significant reduction in luciferase activity
(Figure 3D). In contrast, no reduction was observed when the
mutated constructs were cotransfected with the miR 155 precursors.
These results confirmed that the predicted miR155-binding sites in
the 3'UTR of c-Fos mRNA were indeed targeted directly by miR155.

c-Fos expression is silenced during DC maturation

Time-course RT-PCR experiments were performed to quantify the
changes in c-Fos mRNA expression that occur in mouse DC?!!4
cells stimulated with CpG + aCD40 and in human Mo-DCs
treated with LPS or poly (I:C). In each system, maturation was
accompanied by a rapid decrease in c-Fos mRNA abundance that
was correlated with the concomitant increase in miR 155 expression
(Figure 4A). c-Fos expression was also decreased in CD8a* and
CD8a™ splenic DCs after exposure to LPS (Figure 4B). Analysis of
microarray expression-profiling experiments indicated that c-Fos
expression is also silenced in BM-pDCs stimulated with imi-
quimod (Figure 4C). Finally, a reduction in c-Fos mRNA expres-
sion was in BM-DCs by all stimuli that activated miR155

expression, including LPS, poly (I:C), PGN, PAM3CSK4, FSL-1,
imiquimod, CpG, and MDP (Figure 4D). Silencing of c-Fos
expression is thus a conserved and general feature of DC maturation.

Deregulated c-Fos expression recapitulates miR155 deficiency
in DCs

To determine whether impaired silencing of c-Fos expression
might be responsible for the defects exhibited by miR155~/~ DCs
(Figure 1), we analyzed the consequences of deregulated c-Fos
expression in DCs. DC?''* cells were transduced with a lentiviral
vector expressing c-Fos under the control of heterologous promoter
and 3"UTR regions. High transduction frequencies (supplemental
Figure 10A) and efficient c-Fos expression (Figure 5A) were
obtained. c-Fos overexpression in the transduced cells (Figure 5A)
attained a level similar to that observed in miR155~/~ BM-DCs
(Figure 3B). In contrast to the endogenous c-Fos mRNA in control
vector—transduced DCZ?!'* cells, c-Fos mRNA levels were not
decreased during maturation in c-Fos—transduced cells (Figure 5B).
Unstimulated DC?!'# cells transduced with c-Fos and control
vectors exhibited similar frequencies of cells displaying a dendritic
morphology (Figure 5C). However, the increase in the fraction of
cells carrying dendritic protrusions after stimulation with CpG was
significantly lower for c-Fos—transduced cells (Figure 5C). En-
hanced CD86 and CD40 expression after activation with CpG was
also significantly reduced in c-Fos—transduced DC?''* cells (Figure
5D). Furthermore, c-Fos—transduced DC2!4 cells exhibited a
strongly reduced ability to induce antigen-specific T-cell activation.
CD69 expression and IL2 secretion by OTII cells was strongly
reduced when c-Fos—transduced DC?!'* cells were used as stimula-
tors (Figure SE). This was true irrespective of whether the DC?!14
cells were loaded with OVA peptide or OVA protein (Figure 5E).
Similarly, CD69 expression and IL2 secretion by 2D2 cells was
strongly reduced when they were cocultured with c-Fos—
transduced DC?!!# cells loaded with MOGss.ss peptide (supplemen-
tal Figure 10B). Finally, although c-Fos—transduced DC2!'* cells
retained the ability to up-regulate the expression of proinflammatory
cytokine mRNAs during maturation, this induction tended to be reduced
2- to 3-fold relative to untransduced DC?!'* cells (supplemental Figure
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Figure 5. Deregulation of c-Fos expression induces pheno-
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typic and functional defects in DCs. (A) Expression of c-Fos A B  c-FosmRNA

protein was analyzed by Western blotting in untransduced DC?'14 none vector c¢c-Fos L u
cells and DC?'" cells transduced with an empty expression vector (1.0) (0.93) (8.01) S 1.0 (“»i'm c-Fos transduced
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representative gel is shown. c-Fos signals were quantified and 506 \
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the gel. (B) c-Fos mRNA was quantified by real-time RT-PCR in w 0.2 vector transduced
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11). These results indicate that deregulated c-Fos expression in
DC?!'# cells leads to phenotypic and functional defects that are
strikingly similar to those observed in miR155~/~ BM-DCs.

Discussion

We demonstrate here that miR155 expression is induced by diverse
maturation stimuli in human Mo-DCs and in all mouse DC subsets
examined. Up-regulated miR155 expression thus appears to be a
general feature of DC activation. miR155 was also found to be
required for DC maturation. This function was emphasized by the
finding that miR1557/~ DCs exhibited marked defects in their
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DC21™4 cells (x 109)

acquisition of phenotypic and functional properties of mature DCs.
These defects included a block in the appearance of a typical
dendritic morphology, a reduction in the up-regulation of costimu-
latory molecules, particularly CD40 and CD86, and a strongly
impaired ability to promote antigen-specific CD4" T-cell activation
and proliferation. Not all DC functions were perturbed, because the
production of the proinflammatory cytokines IL1@3, TNFa, 1L12,
and IL6 was affected only modestly. These findings extend the
previous observation that miR155~/~ BM-DCs are less efficient at
inducing CD4* T-cell activation.!> They are also consistent with
the finding that conditional deletion of the gene coding for Dicer in
Langerhans cells leads to impaired maturation of this DC subset.
As observed for miR1557/~ DCs, Dicer-deficient Langerhans cells
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exhibited reduced up-regulation of CD40 and CD86 expression and
an impaired ability to induce antigen-specific CD4* T-cell
activation.’?

c-Fos mRNA levels were found to decrease in a manner that
was closely correlated with increased miR155 expression during
the activation of human Mo-DCs and various mouse DC subtypes
by diverse stimuli. Analysis of data derived from published
microarray experiments®*33 confirmed that c-Fos mRNA levels are
down-regulated during DC maturation. Furthermore, c-Fos expres-
sion was de-repressed in miR1557/~ DCs, whereas it was reduced
in DCs overexpressing miR155. Finally, the 3'UTR of c-Fos
mRNA contains 2 miR155-binding sites and is a direct target of
miR155. These results indicate that silencing of c-Fos expression
by miR155 is a general mechanism associated with DC maturation.

The importance of miR155-mediated silencing of c-Fos expres-
sion in DCs was underscored by the striking similarity between the
phenotypic and functional defects displayed by miR155~/~ DCs
and DCs in which c-Fos expression was removed from its
endogenous regulatory controls. Constitutive c-Fos expression in
DCs was sufficient to reproduce all of the defects documented for
miR 1557/~ DCs. These findings imply that the abrogation of c-Fos
repression by miR155 accounts for many of the functional defects
exhibited by miR155~/~ DCs.

Earlier studies suggested that c-Fos could inhibit proinflamma-
tory cytokine production by DCs. siRNA-mediated c-Fos knock-
down experiments and analyses performed with c-Fos™~ DCs
indicated that c-Fos dampens IL12-p70 secretion by human
Mo-DCs and mouse splenic DCs stimulated with the TLR2 ligand
PAM3CSK4.3438 TNFa, IL12-p70, and IL6 secretion by mature
BM-DCs was also attenuated in a c-Fos—dependent manner by
stimuli that raise the intracellular concentration of cAMP.3 Finally,
overexpression of c-Fos in BM-DCs dampened IFNB, IL12-p40,
and IL12-p70 production in response to stimulation with CpG.*°
The inhibition of proinflammatory cytokine production by c-Fos
was of variable magnitude in different systems. It was not evident
in mouse splenic DCs activated with zymosan and only weak in
splenic and BM-DCs treated with LPS.37* Our results are
consistent with these findings, because proinflammatory cytokine
mRNA induction was attenuated only slightly in miR155~/~ DCs
activated with LPS, but was reduced more markedly in CpG-
treated DC?!'* cells overexpressing c-Fos. The strength of the
repressive effect of c-Fos on proinflammatory cytokine production
could be influenced by various parameters, including the type of
DC, the nature and potency of the maturation signal, and the level
of c-Fos expression. We have observed that there is a correlation
between the level of c-Fos overexpression in DC?''* cells and the
extent of inhibition of proinflammatory cytokine mRNA induction
(data not shown).

Our results indicate that miR 155 regulates both the stability and
translation of c-Fos mRNA. Repression at the level of translation
appears to be the dominant mechanism, because the increase in
c-Fos protein in miR1557/~ DCs was considerably greater than the
increase in c-Fos mRNA abundance. We have also found that
transcription of the c-Fos gene is silenced in Mo-DCs treated with
LPS (unpublished data). c-Fos expression in DCs is thus regulated
at the levels of transcription, mRNA stability, and translation,
suggesting that tightly controlled silencing of c-Fos expression is
critical for DC maturation and function.

It remains to be determined whether the repression of c-Fos by
miR 155 is a mechanism that is specific to DCs. miR155 expression
is also induced during the activation of other cell types, including
B cells and macrophages. We have observed that c-Fos mRNA
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levels are strongly decreased in B cells activated with CpG
(unpublished data). Down-regulation of c-Fos mRNA expression
has also been documented in macrophages stimulated with LPS.*!
Repression of c-Fos expression by miR155 may thus be of more
general importance for the activation of various cell types.

Two additional miRNAs have been implicated in the regulation
of c-Fos expression. miR101 promotes apoptosis by inhibiting
c-Fos expression in human hepatocellular carcinoma cells.*? c-Fos
translation was also reported to be repressed by miR7b in the
hypothalamus after chronic hyperosmolar stimulation.*> Our miRNA
expression—profiling experiments indicated that miR101 and miR7b
are not expressed at significant levels in immature human or mouse
DCs and are not induced upon maturation. It is therefore unlikely
that these 2 miRNAs collaborate with miR155 in regulating c-Fos
expression in DCs. However, the identification of 3 miRNAs
capable of targeting c-Fos mRNA in different systems suggests that
the regulation of c-Fos expression by cell-type—restricted miRNAs
is a widespread mechanism.

The 3'UTR of c-Fos mRNA contains adenylate- and uridylate-
rich elements (ARE) known to promote mRNA degradation.** A
link was recently established between ARE-mediated mRNA decay
and regulation by miRNAs.* This raises the attractive possibility
that c-Fos expression could be controlled in a cell-type—specific
manner by collaboration between specific miRNAs and the ARE-
mediated mRNA decay machinery.

c-Fos functions as one subunit of a group of dimeric transcrip-
tion factors collectively referred to as activating protein 1 (AP-1).
AP-1 proteins constitute a population of homo- and heterodimeric
complexes containing subunits belonging to the Fos (c-Fos, FosB,
Fra-1, and Fra-2), Jun (c-Jun, JunB, and JunD), and activating
transcription factor families. AP-1 factors have been implicated in a
wide range of processes, including proliferation, differentiation,
apoptosis, responses to stress and environmental cues, oncogenic
transformation, and metastasis.*®*’ The composition of the popula-
tion of AP-1 dimers is one of the critical parameters determining
AP-1 function in different cell types. Our finding that continued
c-Fos expression is detrimental for DC maturation suggests that
AP-1 complexes containing c-Fos might repress genes that are
implicated in DC maturation. This interpretation is consistent with
the recent finding that c-Fos can inhibit TNFa expression by
binding to the p65 subunit of NF-kB and inhibiting its recruitment
to the Tnf promoter.>® However, a change in the expression of a
specific AP-1 subunit could also affect the overall balance between
the relative abundance of different AP-1 complexes. An alternative
possibility could therefore be that silencing of c-Fos expression
induces a shift in the equilibrium between different AP-1 dimers
such that the formation of specific AP-1 complexes required for
maturation is favored. Distinguishing between these and other
possibilities will require a detailed characterization of the composi-
tion of the AP-1 population present in immature DCs and the
changes that occur in this population when maturation is induced.

The BIC gene was first identified as a frequent integration site of
avian leucosis virus in chicken B-cell lymphomas.®® It was
subsequently found that miR155 expression is frequently up-
regulated in B-cell lymphomas and in a wide range of other
cancers.!®!! Furthermore, mice carrying a transgene that enforces
miR155 expression in B cells are characterized by a preleukemic
pre—B-cell proliferation that eventually develops into B-cell malig-
nancy.*® The mechanisms underlying the oncogenic role of miR155
remain obscure, but our results raise the intriguing possibility that
these mechanisms could involve deregulated c-Fos expression.
Indeed, although oncogenic transformation and tumor progression
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were initially believed to be associated with increased c-Fos
expression, there is growing evidence that c-Fos can also exert
tumor-suppressive functions.* It is therefore tempting to speculate
that abrogation of the tumor suppressor influence of c-Fos could
contribute to the oncogenic role of miR155 in the development of
tumors.
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ABSTRACT

MicroRNAs, or miRNAs, post-transcriptionally
repress the expression of protein-coding genes.
The human genome encodes over 1000 miRNA
genes that collectively target the majority of
messenger RNAs (mRNAs). Base pairing of the
so-called miRNA ‘seed’ region with mRNAs
identifies many thousands of putative targets.
Evaluating the strength of the resulting mRNA re-
pression remains challenging, but is essential for a
biologically informative ranking of potential miRNA
targets. To address these challenges, predictors
may use thermodynamic, evolutionary, probabilistic
or sequence-based features. We developed an
open-source software library, miRmap, which for
the first time comprehensively covers all four
approaches using 11 predictor features, 3 of which
are novel. This allowed us to examine feature
correlations and to compare their predictive
power in an unbiased way using high-throughput
experimental data from immunopurification, tran-
scriptomics, proteomics and polysome fractionation
experiments. Overall, target site accessibility
appears to be the most predictive feature. Our
novel feature based on PhyloP, which evaluates
the significance of negative selection, is the best
performing predictor in the evolutionary category.
We combined all the features into an integrated
model that almost doubles the predictive power of
TargetScan. miRmap is freely available from http://
cegg.unige.ch/mirmap.

INTRODUCTION

MicroRNAs (miRNAs) are short (~22nt) non-coding
RNAs that guide the RNA-induced silencing complex
(RISC) to post-transcriptionally repress the expression
of protein-coding genes by binding to targeted messenger

RNAs (mRNAs) (1-3). The detailed mechanism of this
guidance is not yet resolved, but exact pairing between
the so-called ‘seed’ region, positions from 2 to 7 (or 8)
from the 5-end of the miRNA, and the 3’-UTR of the
mRNA is believed to be necessary for most animal
miRNA-mRNA interactions (4). Such miRNA seed
pairing with a 3-UTR of an mRNA, however, is not
always sufficient for a functional interaction (4), and in
a few specific cases, non-canonical pairing (non-Watson—
Crick pairing) with G:U wobbles or mismatches may be
acceptable (4,5). Nevertheless, in all recent large-scale
miRNA experiments (6-9), the strongest prediction
signal remains the presence of seed matching sites in
regulated mRNAs, and therefore, it is commonly used as
a mandatory signal in functional assays. Since the seed
match spans only six or seven nucleotides, many of such
matches may occur simply by chance. Searching for longer
seed matches, which are less likely to occur by chance but
also yield stronger repression, therefore increases the spe-
cificity while reducing the sensitivity of the target search.
Indeed, the seed definition has a prominent effect on the
sensitivity (10). Even with a stringent seed definition, there
are still many potential miRNA targets, and experimen-
tally testing all miIRNA-mRNA combinations having a
seed match is practically not feasible. Prioritization of
targets for any miRNA functional analysis is therefore
of critical importance. This necessitates the ranking of
potential miRNA targets bearing a seed, not only predict-
ing in a binary manner if an mRNA is a target or not.
A Dbiologically meaningful ranking criterion is the
miRNA-mediated repression strength that can be experi-
mentally measured as the effect on mRNA or protein
levels. We used a collection features to computationally
predict the miRNA repression strength from additional
information beyond the seed match, and thereby rank
putative miRNA-mRNA interactions in a biologically
relevant manner.

The interaction between a miRNA and its mRNA
target site can be considered from (i) a thermodynamic,
(ii) a probabilistic, (iii) an evolutionary or (iv) a sequence-
based point of view. Several computational tools (11) for
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Table 1. Approaches used by miRNA target prediction software tools

Thermodynamic Evolutionary Probabilistic Sequence-based References
miRmap 4 v v 4
TargetScan v v Grimson et al. (6)
PITA 4 Kertesz et al. (12)
PicTar v v v Krek et al. (13)
miRanda v John et al. (14)
RNAhybrid v Rehmsmeier et al. (15)
DIANA-microT 4 v Kiriakidou et al. (16)
EIMMo v v Gaidatzis et al. (17)
PACMIT v v Marin and Vanicek (18)

“We used the TargetScan context score (6). An evolutionary approach was latter added in TargetScan (19), but it is a separated

filter not included in the context score model.

miRNA target site prediction have been developed that
use one or more of these aspects (Table 1). This overlap
hinders effective comparisons of individual predictor per-
formances, which may use overlapping sets of prediction
features and variable implementations of the same
approaches. Moreover, most of these programs are not
freely available, complicating direct comparisons (20).
To avoid this type of benchmarking bias, more recent
studies (21-23) have recomputed predictions with limited
sets of features focusing on binary predictions of target or
non-target instead of considering the strength of repres-
sion. Ignoring the fact that miRNA repression strength
displays a continuous range of strong-to-weak effects
makes the distinction between target and non-target
a matter of choosing an arbitrary cutoff. Here, we
present a thorough comparison of the power of individual
approaches to predict the repression strength of miRNA—
mRNA pairs, assessed using data from transcriptomics,
immunopurification (IP), proteomics and polysome frac-
tionation high-throughput experiments. This was achieved
using miRmap, our implementation of a comprehensive
set of prediction features that we have made available as
an open-source Python library. The features encompass
the thermodynamic, conservation, probabilistic and
sequence-based categories; eight features have been
described previously in the literature, while three are
novel features, each from a different category. We
examined correlations among the features, measured the
predictive power and combined all of them into an
integrated prediction model.

MATERIALS AND METHODS
Experimental data

Expression microarrays of miRNA-transfected HeLa cells
from Grimson et al. (6) were downloaded from GEO
(GSE8501) for miRNAs 122a, 128a, 132, 133a, 142,
148b, 181a, 7 and 9. We used expression data at 24 h
post-transfection and, similar to Grimson et al. (6), only
selected probes with signal intensities above the median in
the control transfection experiments to retain only
the transcripts expressed enough to observe miRNA
silencing.

80

Similarly, we downloaded the expression mic-
roarrays from Linsley et al. (24) from GEO (GSE6838).
We wused the experiments GSM156522, GSM156523,
GSM 156524, GSM156545, GSM156546, GSM156547,
GSM156548, GSM156553, GSM156557, GSM156559,
GSM156576, GSM 156577, GSM 156578, GSM 156579 and
GSM 156581, measured at 24 h with the same experimental
conditions. We applied the same selection filter as above (6).

We downloaded the Selbach et al. (7) proteomics
over-expression data directly from the web site dedicated
to the article. We included expression fold-changes
measured at 32h for miR-1, miR-155 and miR-16 but
excluded let-7b and miR-30a as these miRNAs exert a
negative feedback effect on the RNA silencing pathway
(7,21).

HITS-CLIP data from the Chi et al. (9) study were also
downloaded from the web site dedicated to the article.
After cross-linking Argonaute (Ago) with its neighbouring
RNAs, the authors immunopurified Ago and sequenced
the pulled-down RNAs. We used the peak height as a
measure of miRNA targeting for the 20 available most
abundant miRNAs and filtered the relevance of the
peaks using a biological complexity (BC, a measure of
reproducibility between biological replicates) criterion
strictly superior to 1 for medium stringency.

Hendrickson ez al. (25) injected miR-124 into HEK293T
cells and measured (i) the miR-RISC association with Ago
IP, (ii) transcriptome expression with microarrays and
(ii1) translation activity with polysome fractionation. We
used dataset number 5 from the Supplementary
Information which includes all measurements for each
transcript.

Sequence data

RefSeq 47 (26) mapped on the human (hgl9) and mouse
(mm9) genomes by the UCSC (27) were used to define
mRNA annotations, restricted to ‘NM_’ transcripts.
miRBase 16 (28) was used for miRNA annotations.

Target prediction features

Thermodynamics of miRNA-mRNA interactions

The miRNA-mRNA pair forms an RNA duplex. Using
the Vienna RNA Secondary Structure library (29), we
computed the minimum free folding energy (MFE) of
this duplex (with the ‘cofold’ function), and named it
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‘AG duplex’. While the structure with the lowest predicted
energy or MFE is the most stable structure, populations of
RNAs adopt different sub-optimal structures in vivo.
We computed the ensemble free energy of the binding
(with the ‘co_pf fold’ function), and named this feature
‘AG binding’. We used the ‘cofold’ function for the ‘AG
duplex’ computation as this function of the Vienna RNA
Secondary Structure library is more appropriate than the
modified ‘duplexfold’ function used in PITA (12) to
compute this feature. The ‘duplexfold’ function was
written to quickly scan for possible hybridization sites,
whereas the ‘cofold’ function, albeit being more computa-
tionally intensive, was specifically designed to compute the
duplex free energy taking into account intra-molecular
and inter-molecular pairs.

The RISC is much larger than the miRNA (30) and
must bind to the mRNA in an extended single-stranded
form. We computed the energy required to unfold the
3’-UTR region of the target site (this area can be option-
ally extended), named ‘AG open’, similarly to PITA (12),
with the ‘pf_fold’ function from the Vienna Library (29).
The computation of ‘AG open’ requires two energy cal-
culations; the free energy of the mRNA constrained to
maintain the target site single stranded is subtracted
from the free energy of the same unconstrained mRNA.
The single-strand constraint was placed on a segment of
70 nucleotides centred on the target site. Finally, ‘AG
open’ summed with ‘AG duplex’ or ‘AG binding’ gives
the total system energy: we named it ‘AG total’ (named
AAG in PITA (12)).

Probability of the motif occurrence

We modelled the 3’-UTR sequence as a Markov process
(order 1, as 3-UTR sequences are too short to para-
meterize higher orders) and determined the expected prob-
ability of finding at least n occurrences of the motif defined
as either an exact seed match or the full miRNA binding
site, using two different methods. In the first method, the
probability distribution was approximated with a
binomial distribution, as in Marin and Vanicek (I8),
while in the second method, we computed the exact prob-
ability distribution based on the theoretical work of
Nuel et al. (31).

Conservation of the target site
Using the UCSC (27) MultiZ multiple genome sequence
alignments (hgl9, MultiZ 46-way; mm9, MultiZ 30-way),
we searched for conserved miRNA target sites in the align-
ment blocks defined by the 3-UTRs of the reference
species (human or mouse for the HITS-CLIP data).
From a mammalian species tree (UCSC (27)), we first
pruned all the species that did not contain the target
site. We then summed the lengths of the remaining
branches (as in (32)) to obtain the branch length score
(BLS). As implemented by Friedman et al. (19), we
summed the branch lengths of the species topology fitted
for each 3’-UTR alignment with the REV model using the
PhyloFit program from the PHAST suite (33). Tree ma-
nipulations were done with the DendroPy (34) library.
To test for evidence of negative selection acting on
miRNA target sites, we used the Siepel, Pollard and

Nucleic Acids Research, 2012 3

Haussler (SPH) test implemented in the PhyloP program
of the PHAST suite (33). This test evaluates if the branch
lengths of the tree built from the target sites are signifi-
cantly shorter (less divergent because of negative selection)
than the background (the 3’-UTR as for the previous
method). The reported values in the text are the test
—log(P-value).

PhastCons 46-way run data from UCSC (27) were used
to compute the average seed match probability to be a
conserved element. The PhastCons scores of each base
in the seed were averaged to obtain the seed score (23,35).

Sequence features

We implemented the three sequence features of the
TargetScan context score (6): (i) the A and U nucleotide
ratio over G and C, weighted around the seed match,
(ii) the 3’-compensatory pairing feature and (iii) the
distance between the target site and the nearest 3'-UTR
end.

Relative importance of features

We computed the relative importance of features in the
multiple linear models with the CAR method (36) which
decomposes the proportion of the variance explained by
each variable of a model while taking the correlations
among variables into account.

RESULTS
miRNA target prediction library

We developed a comprehensive prediction model imple-
mented as the miRmap open-source Python library
(Figure 1) with a total of 11 features covering a wide
range of published and novel methods (Table 2). With
our own implementation, we compared the different
features without the biases inherent to comparison of
pre-computed predictions. We evaluated the features’ in-
dividual predictive power, measured their intercorrel-
ations and examined different combinations of methods.
Additionally, in order to facilitate the library usage, five
features are implemented in pure Python.

Novel methods include (i) a more accurate way to
compute the binding energy between the miRNA and
the mRNA based on the ensemble free energy instead
of the minimum free energy, (ii) an exact method to
compute the probability that the seed match is an
over-represented motif in the 3-UTR and (i) a
non-empirical statistical test to assess the significance of
target site evolutionary conservation.

AG binding

miRNAs bind to their targeted mRNAs forming a helix.
The minimum free folding energy (MFE) of these duplexes
can be computed (‘AG duplex’) but the structure with
the MFE only represents a fraction of the possible and
existing structures. Additionally, ‘AG duplex’ is a
measure of the energy of the entire double-stranded struc-
ture, it does not describe the binding energy itself. This is
captured by the ‘AG binding’ measurement, which
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represents only the binding energy computed from the
ensemble free energy.

P exact

Within 3’-UTRs, only certain sequence regions have regu-
latory or structural roles. These regions can therefore be
considered as islands of natural selection in a sea of mostly
neutrally evolving sequence; ~5% of the human 3’-UTR

>>> import mirmap
>>> import mirmap_library_link
>>>
>>> mimset = mirmap.mm(<ENSTO0000354719 sequence>,
'"UUGUGCUUGAUCUAACCAUGU ")
>>> mimset.find_potential targets_with_seed( \
. allowed_lengths=[7])
>>>
7 >>> mimset.libs = \
... mircap_library_link.LibraryLink(<path=>)
8 >>>
9 >>> mimset.eval tgs_au()
10 >>> mimset.eval tgs_position()
11 >>> mimset.eval_tgs_pairing3p()
12 >>> mimset.eval_dg_duplex()
13 >>> mimset.eval dg _open()
14 >>> mimset.eval dg_total()
15 >>> mimset.eval _prob_exact()
16 >>> mimset.eval prob_binomial()

B WNPE

al

17 >>>
18 >>> print mimset.report()

19 1707 1737

20 | |

21 GUCCUGUAAUCUGUUUCUAGGUGAAGCAUACUCCAGUGUUU
22 [T

23 UGUACCAAUCUAGUUCGUGUU

24 AU content 0.02802
25 UTR position -0.03272
26 3' pairing -0.01050
27 AG duplex (kcal/mol) -14.10000
28 AG binding (kcal/mol) -14.30905
29 AG open (kcal/mol) 16.87775
30 AG total (kcal/mol) 2.77775
31 Probability (Exact) 0.20204
32 Probability (Binomial) 0.15780
33 >>>

Figure 1. miRmap library usage: after importing the library
(lines 1 and 2), a ‘mimset’ object is created containing the mRNA
and miRNA sequences. We then call a method of the mimset object
to search (line 5) for seeds with a length of 7 (all parameters have
defaults that can be changed this way). The link with the C libraries
is initalized on line 7. We then manually evaluate the repression
strength with differents methods (lines 9-16). Each of these methods
have modifiable parameters. We finally print a report (line 18).

Table 2. miRNA target prediction features of the miRmap library

bases are constrained (37). This distinction can be
exploited within a probabilistic (or evolutionary, see
next paragraph) framework to distinguish the background
sequence composition from the target site composition.
Having modelled the background sequence composition
(with a Markov process, see ‘Materials and Methods’
section), it is possible to compute a probability
distribution of motif occurrences in order to assess the
significance of the site presence. Several approximations
(e.g. Gaussian, Poisson, binomial or large deviation) can
be used to compute the probability distribution depending
on the sequence length and the expected number of motif
occurrences. As 3-UTR sequences are relatively short, we
computed not only an approximate distribution (‘P.over
binomial’) but also an exact distribution (‘P.over exact’).

PhyloP
Empirical distributions described previously (19,32) can
be used to assess the statistical significance of the ‘BLS’
(see ‘Materials and Methods’ section). Alternatively, a
theoretical framework (33) may be used to test for signifi-
cant natural selection; the SPH test evaluates the probabil-
ity that part of a sequence is under selection, in our case
negative selection. This framework relies on a comparison
of the reference tree built from the complete 3-UTR
multiple sequence alignment and the tree built from the
target site (the sequence region delineated by the seed
match or the full target site) multiple sequence alignment.
For a meaningful comparison of a potential target site
to the complete 3-UTR, each of the sequences in the
target site alignment should be a recognizable miRNA
binding site. In other words, for the ‘PhyloP’ feature to
produce meaningful results, target site positions should be
conserved among species. To test this condition, potential
target sites were identified by searching the 3’-UTR align-
ments of all human mRNAs for matches to all known
human miRNA seeds. Positions are conserved for the ma-
jority of human seed matches; on average, 76% of the
human seed matches are found at the same position in
the alignment for the other mammalian species. For this
analysis, sequences of species in the alignment without any
seed match were discarded. According to this analysis, the
turn-over of miRNA target sites in mammals seems to be
low. The conservation of target site positions in the
alignment supports our usage of PhyloP. Moreover, the

Category Feature Description Python-only Remarks

Thermodynamic AG duplex MFE with RNAcofold
AG binding Binding energy based on ensemble free energy New feature
AG open mRNA opening free energy—Accessibility As in PITA (12)
AG total AG Duplex + AG open Similar to AAG in PITA (12)

Probabilistic P.over binomial Site over-representation prob. (binomial dist.) 4 As in PACMIT (18)
P.over exact Site over-representation prob. (exact dist.) New feature

Conservation BLS Branch length score on 3-UTR fitted tree v Similar to Stark et al. (32)
PhyloP SPH test from PhyloP New feature

Sequence AU content AU nucleotide composition around the seed v As in TargetScan (6)
UTR position Distance from the nearest 3-UTR end v As in TargetScan (6)
3/-pairing 3’-compensatory pairing v As in TargetScan (6)
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percentages vary from 47 to 99% if we analyse each
miRNA individually. The miRNAs with low complexity
sequences tend to have low percentages, which also
support the choice of this test as low complexity
miRNAs have less specific target sites.

Correlation among features

We identified potential miRNA target sites by searching
for matches to canonical 7-mer seeds on all 3'-UTRs of the
human transcripts and predicted their strengths using the
11 methods of our miRmap library (see above and
‘Materials and Methods’ section). We focused our
analysis on 7-mer seeds rather than shorter 6-mer seeds
as stronger mRNA repression is associated with longer
seeds. While this choice results in greater confidence in
our feature performance analysis, target prediction with
increased sensitivity could be easily obtained by
integrating shorter seeds (see below). To evaluate the
target site rankings computed with each feature and
ignore other differences, e.g. their variances, we
computed the Spearman rank correlation between
feature pairs (Supplementary Table S1). The absolute
values are plotted in Figure 2A.

The three most highly correlated feature pairs are those
that measure the same underlying parameters using
slightly different approaches: ‘AG duplex’ and ‘AG
binding’ with 0.962, ‘P.over exact’ and ‘P.over binomial’
with 0.806 and ‘AG open” and ‘AG total’ with 0.725. ‘AG
open’ and ‘AU content’ show a correlation of —0.635; as

A

3' pairing
UTR position
AU content .
PhyloP

BLS

P.over exact

P.over binomial

AG total
AG open .
AG binding
AG duplex
60@3::@??0\’62\9\?0“‘\\?@*@0\ ?’ﬁ\\\\oio\e(\;&fogé\{\@
N be‘v; pqe PQ\C*)« N
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folding algorithms rely on pairing and stacking energies
that are stronger for GC than AU pairs, AU-rich
sequences form potentially less stable structures, which
explains the inverse correlation between ‘AG open’ and
‘AU content’. Since these two features evaluate the acces-
sibility of mRNA to miRNA repression, we grouped them
in an ‘accessibility group’ together with ‘AG total’.

As only the top miRNA target predictions are often
used in experimental studies, we measured the overlap
among features for their best quartiles. On the first Venn
diagram (Figure 2B), we present one feature per group
(accessibility, conservation and probabilistic), revealing
the low overlap among these methods. The second Venn
diagram (Figure 2C) confirms that ‘AG open’ and ‘AU
content’ features belong to the same accessibility group
whereas ‘AG duplex’ is a distinct feature not related to
the target accessibility. However, target prediction
program comparisons (see ‘Introduction’ section) often
include PITA (12) which combines both ‘AG open’ and
‘AG duplex’, making any conclusions made in these com-
parisons about individual feature performance inaccurate.

Individual feature performance

We evaluated the performance of each feature using data
from seven experiments coming from five studies (Table 3)
that cover different aspects of miRNA repression and use
different assay techniques. (i) Chi et al. (9) performed
an Ago-RNA cross-linking experiment followed by IP
and sequencing from which miRNA binding sites

B AU content
1.00
617630
243259
0.75 P.over exact

642110 582190
BLS
0.50
AU content
C
498259
0.25
559581
41
AG duplex A874
453969
0.00
85776 AG open

970667

Figure 2. Correlation among features based on prediction for human miRNAs and mRNAs. (A) A heatmap of the absolute values of Spearman
correlation coefficients between pairs of features classified in methods categories. Venn diagrams (B) and (C) show the overlaps among the first best
prediction quartiles of selected features. One feature per category (sequence-based with ‘AU content’, conservation with the ‘BLS’ and probabilistic
with ‘P.over exact’) is shown on (A). Venn diagram (C) underlines the high overlap between ‘AU content’ and “AG open’ that we grouped in the
‘accessibility group’, whereas ‘AG duplex’ has a very low overlap with these two features. We grouped ‘AG duplex’ with ‘AG binding’ in the ‘binding
energy’ group. Numbers of predicted relationships between human miRNA and mRNA are written in the corresponding overlaps of the Venn

diagrams.

83

2102 ‘ST 18go100 Uo feub A s3|reyDd Aq /Bio'sjeulnolpioxo’ reu//:dny wouj papeojumoq



RESULTS

miRmap: Comprehensive prediction of microRNA target repression strength

6 Nucleic Acids Research, 2012

were assayed. (ii)) Hendrickson et al. (25) performed an
Ago-IP without cross-linking that we included to under-
line the effect of the cross-linking step. To measure the
effect on mRNA levels, we used studies based on
miRNA transfections followed by microarray measure-
ments from (iii) Grimson et al. (6), (iv) Linsley et al.
(24) and (v) Hendrickson et al. (25). To assess the effect
of miRNA on translation, we took advantage of polysome
fractionation experiments from (vi) Hendrickson et al.
(25), and of proteomics experiments from (vii) Selbach
et al. (7) based on the pSILAC technology to obtain the
final translation output.

We identified potential miRINA target sites by searching
for matches to canonical 7-mer seeds on the transcripts
involved in each experiment and predicted their strength
with the 11 methods implemented in our miRmap library,
and an additional feature derived from the PhastCons

Table 3. Experimental studies used to evaluate miRNA target
prediction features

Dataset name Type Publication
Trans.Grimson Microarray Grimson et al. (6)
Trans.Linsley Microarray Linsley et al. (24)
Prot.Selbach pSILAC Selbach et al. (7)
IPcross.Chi HITS-CLIP Chi et al. (9)
IP.Hendrickson Immunopurification Hendrickson et al. (25)

Trans.Hendrickson  Microarray Hendrickson et al. (25)

UCSC track (see ‘Materials and Methods’ section) to fa-
cilitate comparisons with Wen et al. (23) results. We then
evaluated the correlations between the measured and pre-
dicted miRNA repression strengths.

We focused our first analysis on the transcriptomics
data, as these experiments measure a predominant
effect of miRNA repression (38,39) and have the
largest scale (‘“Trans.Grimson’, ‘Trans.Linsley’ and
‘Trans.Hendrickson” involve a total of 24 miRNAs).
Figure 3 shows the linear regressions and correlations
between each feature and the observed reductions
in mRNA levels for the ‘Trans.Grimson’ dataset
(Supplementary Table S2). The correlation coefficients
range from 0.000 for the worst performing feature, ‘AG
duplex’, to —0.229 for the best feature, ‘AU content’. The
next best features are ‘PhyloP’, ‘PhastCons’, ‘AG total’,
‘AG open’, followed by ‘P.over exact’ and ‘BLS’. Two of
our novel features show better correlations than their
related features: (i) ‘PhyloP’ is the best performing conser-
vation method (—0.205) and (ii) ‘P.over exact’ performs
better than ‘P.over binomial’, i.e. computing the exact
probability distribution is better than using the binomial
approximation (0.170 versus 0.147). In addition, (iii) con-
sidering the ensemble energy outperforms using only the
MFE (‘AG binding’: 0.023 versus ‘AG duplex’: 0.000).

In our second analysis, we examined all the datasets in
order to compare the performance of each feature across
additional aspects of miRNA repression, assessed through
IP, proteomics and polysome fractionation experiments.

RibN.Hendrickson  Polysome fractionation Hendrickson et al. (25) N .
Correlations for each feature and each experimental
AG duplex AG binding AG open AG total
-0.10F T ° T o .— T T T e ool T T T
° -0.10}- -
[ ] [ ]
- ° a .o -0.1f- —
-0.15~ e ® o, B ° r
¢ -0.15)® oe -
b ®ee ° -0.2- —
r=0.000 r'=0.039 r=0.023 r'=0.320 ®  r=0.204r'=0.939
-0.20 | I ° 1 1 ) 1 * 1 1
=20 -15 -10 -20 -15 -10 0 10 20
P.over binomial P.over exact PhyloP
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0.0 0.2 0.4 0.0 0.1 0.2 0.3 0.4 0 1 2 3 4 0 2 4 6
PhastCons AU content UTR position 3' pairing

-0.3

r=-0.205 r’:;0.920

B r:—O.%ZQ r’:—O.?67
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-010 -0.15
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Figure 3. Correlation between each feature and the expression fold-changes of mRNAs following miRNA injection (‘Trans.Grimson’ dataset). Data
points were binned in 15 equally sized bins. The average in each bin is represented by a blue dot. We fitted a linear regression model (red line) on the
blue dots. r is the correlation on the full dataset; /' is the correlation on the binned dataset. P-values can be found in Supplementary Table S2.
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Figure 4. Correlation between each feature and the seven experimental miRNA repression measures (the name of the first author of each dataset is
shown in grey) classified in transcriptomics, proteomics, IP and polysome fractionation experiment types. Target prediction features are organized
into groups that aim to evaluate the same type of information. The radial axis represents the correlation coefficient (the highest correlations are the

furthest from the centre of the circle).

dataset are plotted in Figure 4 (Supplementary Table S2).
Remarkably, feature performances show high consistency
between each of the experimental datasets: accessibility
features (red) always perform well, while binding
energies (light blue) are always poorly predictive. As
target sites in our study contain a seed, the part of
the binding energy discriminating target sites is due to
the seed nucleotide composition and to the pairing
outside the seed. This energy does not drive the miRNA
repression strength, as confirmed by the low performance
of ‘3-pairing’. Moreover, the ranking of each feature
performance is very similar between datasets using the
same experimental techniques, e.g. the ‘Trans.Grimson’
and ‘Trans.Linsley’ datasets. While based on only a
single miRNA, the ‘Trans.Hendrickson’ dataset shows
better overall performance with only minor differences:
‘UTR position’ improved its ranking while ‘PhastCons’
is outperformed by ‘BLS’.

‘AU content’ consistently provides the best measure of
target site accessibility. This is in agreement with findings
from Wen et al. (23), but in contrast to results from
Hausser et al. (21), which described better performance
with ‘AG open’ for an IP experiment. However, for the
‘IP.Hendrickson’ dataset, which, like Hausser ez al. (21)
involved IP without cross-linking, ‘AU content” and ‘AG
open’ perform equally well. The ‘IP.Hendrickson’ experi-
ment is also distinguished by the probabilistic (purple) and
‘UTR position’ (green) features that outperform the con-
servation features (grey), which may be explained by the
lower precision of this method (i.e. IP without
cross-linking), performed with a single miRNA.

The best conservation feature performance is generally
slightly lower than the best accessibility feature, but it
outperforms ‘AU content’ for the proteomics and
HITS-CLIP datasets. ‘PhastCons’ performance on the
HITS-CLIP dataset is consistent with findings from Wen

et al. (23). Our novel conservation feature, ‘PhyloP’,
shows the best or tied-best performance for five out of
the seven datasets. When outperformed, it is only margin-
ally outperformed implying that ‘PhyloP’ is the best
overall conservation feature.

Hendrickson et al. (25) polysome fractionation
measured the miRNA effects as ribosome occupancy
(fraction of a given gene’s transcripts associated with ribo-
somes) and ribosome density (the average number of ribo-
somes bound per unit length of coding sequence). Effects
caused by the miRNA on both parameters were detected
by the authors, but were substantially higher on the
ribosome density, in agreement with the absence of cor-
relation with the ribosome occupancy that we observed,
i.e. this measurement is not quantitative. However, the
ribosome density is a quantitative measure of the
miRNA effect, as the correlations were as high or higher
than those of the large-scale transcriptomics experiments.
We observed again, as for all Hendrickson et al. (25)
datasets, a higher correlation for the ‘UTR position’
feature, probably caused by the experimental setup.

Combining prediction features

The features correlate linearly with experimentally
measured miRNA repression levels. We combined 10
features of our miRmap library (we excluded ‘AG total’,
as this feature is simply the sum of ‘AG duplex’ and ‘AG
open’) with a multiple linear regression on the ‘Trans.
Grimson’ dataset (P =4.9x107""% Supplementary
Figure S7). This model explains 12.7% of the variance,
close to a 2-fold increase over TargetScan context score
(6): with the same type of regression, the three features of
TargetScan context score (‘AU content’, ‘3'-pairing’ and
‘UTR position’) explain only 7.49% of the variance. This
improved performance of our model is confirmed by the
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higher correlations with the experimental measurements,
computed in the same manner as the individual feature cor-
relations (Figure 5A). The contribution of each feature
(on ‘Trans.Grimson’ dataset, Figure 5B) generally mirrors
the rankings based on individual feature correlations: ‘AU
content’ is the most explanatory feature, but ‘P.over exact’
contributes more in the regression model than its correl-
ation rank suggests. Interestingly, the conservation
features ‘PhyloP’ and ‘BLS’ contribute ~14 and ~11%, re-
spectively, despite using the same input data (multiple
genome sequence alignments) both contribute substan-
tially to the explanation of the variance. Among the acces-
sibility features, ‘AG open’ contributes only half as much
as ‘AU content’ (15 and 30%, respectively). A model limited
to the five features with the greatest contributions in the
model with all the features (they represent 90.5% of the
variance explanation of the full model) still explains
11.6% of the variance.

Instead of evaluating the model directly in terms of
the explained variance, the quality of the ranking can be
estimated by ordering the target sites by predicted
strength, binning them and computing the mean expres-
sion fold-change of each bin. This approach, also used in
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Figure 5. (A) Performance comparison (as coefficient correlations with
experimental miRNA repression measures; order of the experiments is
the same as Figure 4) of the best performing feature (brown),
TargetScan context score (red) and miRmap (blue). (B) Feature
relative importance in the miRmap multiple linear regression model
predicting miRNA repression strength. R> is the proportion of
variance explained by the model. ‘AU content’ is the most explanatory
variable with 29% of R>.
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(40) to evaluate the ranking of different tools for predict-
ing miRNA repression strength on translation with prote-
omics data, was applied to 10 quantiles of the ordered
predictions (Supplementary Figure S2). The overall distri-
bution was shifted to lower fold-changes for miRmap
compared with TargetScan context score, indicating a
better ranking as a decrease in fold-change corresponds
to greater repression. For the first quantile, the mean
fold-change was reduced from —0.32 to —0.39 with
miRmap.

Multiple linear regressions with the other datasets
further support the conclusions from the analyses of indi-
vidual feature performance (Supplementary Figures Sl
and S3). They confirmed (i) the importance of ‘PhyloP’
for the ‘IPcross.Chi’ dataset (64% of R?) over 24% for
‘AU content’, (ii) the similar importance of ‘PhyloP’ and
‘AU content’ for proteomics (31% and 39% of R’
respectively) and (iii) the relevance of polysome fraction-
ation experiment (‘RibN.Hendrickson’ dataset) to
measure miRNA repression strength compared with
proteomics as 10.6% of the variance was explained by
the model (5.75% for proteomics). We also observed
that the model computed on the “Trans.Linsley’ dataset
explains only 4.36% of the variance even though this
dataset is larger and based on the same techniques as
the “Trans.Grimson’ dataset (R* = 12.7%).

Shorter seeds may also promote miRNA repression, but
usually with lower efficiencies (4). We therefore tested our
approach on canonical 6-mer seeds by computing a model
with these seed matches on the ‘Trans.Grimson’ dataset.
While the global importance of each feature remained gen-
erally similar, with accessibility features being the most
explanatory, R> dropped to 8.31% of the variance
(Supplementary Figure S4A), which still outperforms
TargetScan context score (R”>= 4.70%). Interestingly,
the importance of the ‘P.over exact’ probabilistic feature
was reduced from 22 to 7% —falling from second position
to fifth—as expected with shorter seeds where matches
occur more frequently by chance and are therefore less
statistically distinguishable from the background. We
also evaluated the model by computing the distribution
of fold-changes (Supplementary Figure S4B). As
expected, the mean fold-changes were not as low as with
the 7-mer seeds, nevertheless they confirmed the better
ranking achieved with miRmap compared with
TargetScan context score, e.g. the mean fold-change of
the first quantile was reduced from —0.16 to —0.21.
These results were further supported by the analysis of
the other datasets (Supplementary Figures S5 and S6).

Combining multiple target sites

Each mRNA can contain many miRNA target sites.
Although most experimental datasets focus on a single
miRNA at a time (or all miRNAs for the ‘IPcross.Chi’
dataset), a framework that can capture the multiplicity of
these interactions should improve the predictive power. We
examined three simple functions to combine the individual
scores of target sites into a global metric at the mRNA
level: the best (minimum or maximum depending on the
sign of the correlation), the sum and the log of the sum of
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the exponentials. For this analysis, we selected transcripts
from the ‘“Trans.Grimson’ dataset with exactly two target
sites, resulting in a sample size of 370 mRNAs (only 53
mRNAs have exactly three target sites). For this study,
only features predicting different strengths for each target
site in a 3’-UTR are appropriate as they would show dif-
ferent correlations for each function, thereby allowing
function comparison. As the probabilistic features
compute the probability of a fixed number of seed
matches in the 3-UTR, and as the ‘BLS’ score is also
computed for the entire 3’-UTR, they could not be used.

The log of the sum of the exponentials function is
designed to approximate interaction kinetics on the
principle that stronger sites would drive the observed
repression at the mRNA level. However, this function
performed poorly for every feature as opposed to the
sum (Supplementary Figure S8), which means that every
target site has the same importance, indicating that the
quantity of miRNA molecules is not limiting the repression
reaction in this experiment. Regarding the binding energy
features, ‘AG duplex’ and ‘AG binding’, the minimum
energies provided the best predictors, i.e. the best site
drives the repression for these two features. In contrast to
their relatively poor performance with single site predic-
tions, their performance was substantially increased (with
correlations from 0 to 0.094 (P = 0.072) and 0.023 t0 0.119
(P =0.022) for ‘AG duplex’ and ‘AG binding’, respect-
ively) but they still did not outperform the other features.
The performance ranking among the remaining features
was not substantially different to the single site predictions
and, as already observed before (7), summing was the best
option for the majority of them.

DISCUSSION

We examined the performance of 12 features designed to
predict the strength of miRNA repression on targeted
mRNAs independently, and combined them into a linear
model. This approach allowed us to assess feature accuracy
to rank miRNA targets and avoid the choice of a threshold
or the definition of a negative dataset (see ‘Introduction’
section). Overall, our combined features predict the
strength of miRNA target repression more accurately: on
the ‘Trans.Grimson’ dataset, our model explains 12.7% of
the variance whereas TargetScan context score (‘AU
content’, ‘3’-pairing’ and ‘UTR position’) explains 7.49%
with the same type of linear model. We tested a more elab-
orate method than linear regression, the ensemble rule
fitting, but it did not improve the predictions (data not
shown). In our linear model, the feature explaining the
largest part of the variance is the ‘AU content’ (29% of
R?) which measures the accessibility of the miRNA target
sites to the RISC. This result is consistent with TargetScan,
but the proportion of the variance explained by this feature
decreased from 74% of R* in TargetScan to 29% in our
model, as we included an additional method to compute
the accessibility (‘|AG open’). Indeed, the correlations
among the features, and their individual performance
across different datasets, revealed five distinct groups of
prediction features. In particular, the accessibility group
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includes the thermodynamic evaluation of the cost to
open the target site and the neighbouring structures (‘AG
open’), and the ‘AU content’ feature, which are well
correlated and performed similarly across all experimental
datasets. Interestingly, ‘AG open’ is outperformed by ‘AU
content’: computing a weighted partial (the stacking energy
is ignored in the ‘AU content’ feature) accessibility feature
is better than the allegedly more accurate feature that
attempts to compute the ‘true’ accessibility.

Other miRNA target prediction tools (Table 1) consider
a single or subset of our features. For example, PITA (13)
considers only ‘AG total’, and PACMIT (18) a combin-
ation of ‘AG open’ and ‘P.over binomial’. As the perform-
ance of each of these features is lower than the combined
approach of miRmap (Figure 4), these tools have less pre-
dictive power. While assessment of tools with different seed
lengths, features and annotation sets have its caveats (see
‘Introduction’ section), TargetScan context score was the
best performing tool according to large-scale proteomics
experiments (7,8). As miRmap’s ranking of miRNA
targets outperforms that of the TargetScan context score,
we can speculate that our approach is the most predictive.
Although we concentrated on 7-mer seeds, we showed that
the same approach can be applied to 6-mer seeds, and it
may also be used for the rarer centred seeds (41) to increase
the overall prediction sensitivity (10).

The natural selection measured by either the ‘BLS’ or
our ‘PhyloP’ feature is remarkably well correlated with the
strength of repression: selected target sites are also sites of
stronger repression. It is also known that older miRNAs
have higher expression levels (42). Natural selection is
acting on both the miRNA expression level and the re-
pression strength to maximize the repression efficiency.
Furthermore, a correlation between the mRINA accessibil-
ity and the target site conservation has been shown in
Drosophila (43) which can partially explain the good per-
formance of the accessibility features (‘AG open’ and
‘AU content’) as this parameter is naturally selected.
This dependence among the features partially explains
why their individual performance is not additive in the
global model. The probabilistic features also correlate
with the conservation features but they are usually outper-
formed by the conservation features, even if they
sometimes have similar performance (e.g. the probabilistic
features are similar to the ‘BLS’ performance for the
‘Trans.Grimson” dataset). In terms of computation,
and more importantly of input data (multiple alignments,
etc.), the probabilistic features are undoubtedly less expen-
sive than the conservation features. They can therefore be
seen as an alternative to an evolutionary approach,
especially for organisms with long 3'-UTRs [between
Drosophila and human their accuracy significantly drops
in Drosophila (18)].

While we observed generally consistent results among
the transcriptomics, polysome fractionation and prote-
omics experimental methods, they were distinguishable
from IP experiments. The experimental methods mea-
suring the repression, i.e. the effect of the miRNA, are
more accurate to measure the repression strength than
methods measuring only miRNA binding. Chi et al. (9)
observed that 86% of conserved miR-124 seeds were
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present within the Ago footprint region, ie. the
HITS-CLIP method accurately identifies miRNA target
sites but does not provide a quantitative measure of
miRNA repression. We also noticed that, although
polysome fractionation is not commonly used to test
miRNA targets, the ribosome number measure performs
as well as most other methods.

According to our model, a large part of the variance of
the miRNA repression observed from experimental meas-
urements remains to be explained. Indeed, the overall
variance includes miRNA indirect effects, such as regula-
tion feedback loops. The proportions of variance
explained by our model or TargetScan are therefore
underestimates of the explainable variance by miRNA
direct repression. An improved understanding of the
molecular mechanisms of repression, beyond the currently
considered thermodynamic, evolutionary, probabilistic or
sequence-based aspects will undoubtedly lead to better
predictions. Nevertheless, our model shows that capturing
more information with complementary features already
significantly improves the predictive power. Additional
considerations may extend these improvements. For
example, our ‘PhyloP’ feature is based on a ‘per base’
model, i.e. positions in the alignment are considered inde-
pendently. However, for RNAs in general, stacking
energies are important, so a context-dependent model,
when integrated in PHAST (33), should increase perform-
ance and would also quantify the importance of stacking
energies. Other considerations are, for the moment, less
tractable, e.g. taking the kinetics of the repression into
account. The availability of the different components,
such as enzymes, miRNAs and mRNAs is ignored in the
existing models. However, this system approach requires
substantially more information, notably the concentration
of different components.

The miRmap library implements 11 features from 4
categories, making it currently the most comprehensive
miRNA target prediction resource. All the features and
the model evaluated in this study are available as an
open-source Python library on a public revision control
service, allowing tracking of all contributions. As such,
miRmap establishes a solid foundation for the future de-
velopment of approaches to miRNA target prediction,
facilitating meaningful comparisons between existing and
new features, and providing the community with direct
access to state-of-the-art analytical tools.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2 and Supplementary
Figures 1-8.
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The source code and documentation of the miRmap
Python library is available online at:

http:/ /cegg.unige.ch/mirmap
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AG duplex r 1000 0962 0456 0222 0.101 0097 0069 0118 0507 0029 -0.263
p 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00  0.00e+00
AG binding r 0962 1000 -0416 0241 0.102 0.098 0065  -0110 0464  0.026 -0.260
p 000e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00  0.00e+00
AG open r o -045% 0416  1.000 0.725 -0.024 0037 0058 0142 -0.635  0.019 0.041
p 000e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00  0.00e+00
AG total ro 0222 0.241 0.725 1000 0.058 0037 0005 0070 0317 0.034 -0.157
p 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 2.78¢-27 ~ 0.00e+00  0.00e+00 0.00e+00  0.00e+00
Pover binomial r  0.101 0102 -0.024 0058 1.000 0.806 0405 0002 0044 0451 -0.003
p 000e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 1.05e-06  0.00e+00 0.00e+00  4.73e-11
Pover exact r 0097 0098  -0037 0037  0.806 1.000 0.151 -0.060 0051 0.256 -0.005
p 000e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 ~ 9.41e-27
BLS r o 0.069 0065 0058  -0.005 0405 0.151 1000 038 0079 0232 -0.001
p 000e+00 0.00e+00 0.00e+00 2.78e-27  0.00e+00  0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00  1.99e-02
PhyloP ro-0118 0110 0142 0070 -0.002 0.060 038  1.000 -0186 0138 0.011
p 000e+00 0.00e+00 0.00e+00 0.00e+00 1.05e-06  0.00e+00 0.00e+00 0.00e+00 ~ 0.00e+00 0.00e+00  7.86e-114
AU content r 0507 0464 0635  -0317  0.044 0.051 0079  -0.186 1000  0.044 -0.062
p 000e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00  0.00e+00
UTR position ~ r  0.029 0026 0.019 0034 0451 0.256 0232 0138 0.044 1.000 -0.000
p 000e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00 0.00e+00  0.00e+00 0.00e+00  7.35e-01
3 pairing r-0263 0260  0.041 0157  -0.003 0005  -0.001 0011 -0.062  -0.000 1.000
p 000e+00 0.00e+00 0.00e+00 0.00e+00 4.73e-11  941e-27 199e-02 7.86e-114 0.00e+00 7.35e-01  0.00e+00

Supplementary Table1 Correlation among features for human miRNAs and mRNAs. Each
cell contains the Spearman rank correlation coefficient (r) and the corresponding p-value (p).
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Trans.Grimson Trans.Linsley Prot.Selbach IPcross.Chi IP.Hendrickson RibN.Hendrickson Trans.Hendrickson

AU content r -0.229 -0.166 -0.163 0.160 0.249 -0.228 -0.293
AU content p 117e-48 1.92e-57 1.70e-06 2.51e-05 8.02e-10 1.86e-08 3.47e-13
AU content r -0.967 -0.868 -0.922 0.944 0.994 -0.982 -0.986
AU content p’  4.68e-09 2.72e-05 8.97e-03 4.68e-03 5.13e-05 4.79e-04 2.87e-04
UTR position r 0117 0.060 0.064 -0.022 -0.278 0.125 0.206
UTR position p 1.39%-13 8.33e-09 6.26e-02 5.63e-01 5.18e-12 2.20e-03 3.92e-07
UTR position ' 0.880 0.643 0.612 -0.178 -0.921 0.774 0.804
UTR position p’ 15le-05 9.79e-03 1.96e-01 7.36e-01 9.02e-03 7.09e-02 5.36e-02
3’ pairing r -0.051 -0.041 -0.058 0.030 0.099 -0.043 -0.028
3’ pairing p 1.16e-03 7.49e-05 9.13e-02 4.26e-01 1.62e-02 2.95e-01 4.90e-01
3’ pairing ' -0.493 -0.764 -0.757 0.167 0.607 -0.441 -0.269
3’ pairing p’  6.20e-02 9.05e-04 8.17e-02 7.52e-01 2.02e-01 3.81e-01 6.06e-01
AG duplex r  0.000 -0.062 -0.017 0.017 -0.002 -0.059 -0.055
AG duplex p 9.87e-01 3.34e-09 6.13e-01 6.57e-01 9.53e-01 1.49e-01 1.79e-01
AG duplex ' 0.039 -0.657 -0.167 -0.009 0.086 -0.521 -0.430
AG duplex p’  8.89e-01 7.75e-03 7.52e-01 9.86e-01 8.71e-01 2.89%-01 3.94e-01
AG binding r 0.023 -0.050 0.001 0.020 -0.007 -0.042 -0.027
AG binding p 143e-01 1.70e-06 9.6%e-01 5.99e-01 8.63e-01 3.11e-01 5.05e-01
AG binding 0320 -0.598 0.198 0.184 0.054 -0.563 -0.272
AG binding p’ 245e-01 1.85e-02 7.06e-01 7.27e-01 9.20e-01 2.44e-01 6.02e-01
AG open r 0196 0.107 0.085 -0.108 -0.234 0.194 0.257
AG open p 442e-36 1.61e-24 1.31e-02 4.47e-03 7.40e-09 1.82e-06 1.95e-10
AG open ' 0.950 0.788 0.939 -0.914 -0.875 0.949 0.947
AG open p’  6.23e-08 4.79e-04 5.56e-03 1.09e-02 2.25e-02 3.84e-03 4.12e-03
AG total r 0204 0.086 0.078 -0.096 -0.249 0.183 0.251
AG total p 831e-39 1.95e-16 2.28e-02 1.18e-02 7.02e-10 7.08e-06 5.09e-10
AG total r 0939 0.833 0.735 -0.802 -0.824 0.865 0.940
AG total p’ 227e-07 1.17e-04 9.57e-02 5.51e-02 4.39e-02 2.60e-02 5.21e-03
P.over exact r 0170 0.065 0.073 0.015 -0.222 0.076 0.221
P.over exact p 293e-27 4.12e-10 3.32e-02 7.02e-01 4.75e-08 6.45e-02 5.27e-08
P.over exact ' 0.920 0.745 0.687 0.069 -0.875 0.914 0.837
P.over exact p’ 1.25e-06 1.45e-03 1.31e-01 8.97e-01 2.25e-02 1.07e-02 3.76e-02
P.over binomial r  0.147 0.067 0.069 0.029 -0.207 0.085 0.188
Pover binomial p  1.24e-20 1.08e-10 4.30e-02 4.40e-01 3.74e-07 3.84e-02 3.91e-06
Pover binomial 1 0.867 0.634 0.702 0.329 -0.826 0.677 0.860
P.over binomial p’ 2.84e-05 1.12e-02 1.20e-01 5.24e-01 4.29e-02 1.40e-01 2.80e-02
BLS r -0.158 -0.108 -0.124 0.112 0.148 -0.160 -0.226
BLS p  9.93e-24 2.99e-25 2.78e-04 3.36e-03 2.96e-04 8.95e-05 2.66e-08
BLS 0954 -0.815 -0.931 0.893 0.661 -0.817 -0.883
BLS p’ 3.52e-08 2.14e-04 6.97e-03 1.66e-02 1.53e-01 4.70e-02 1.97e-02
PhyloP r -0.205 -0.143 -0.172 0.196 0.116 -0.155 -0.223
PhyloP p  3.00e-39 2.97e-43 4.49e-07 2.22e-07 4.74e-03 1.49e-04 4.12e-08
PhyloP ' -0.949 -0.857 -0.946 0.856 0.719 -0.918 -0.929
PhyloP p’  6.82e-08 4.46e-05 4.31e-03 2.96e-02 1.07e-01 9.83e-03 7.34e-03
PhastCons r -0.205 -0.128 -0.143 0.223 0.020 -0.093 -0.124
PhastCons p  3.26e-39 6.51e-35 2.69e-05 3.22e-09 6.20e-01 2.35e-02 2.38e-03
PhastCons r -0.920 -0.823 -0.975 0.905 0.157 -0.704 -0.690
PhastCons p’  1.24e-06 1.67e-04 9.59%-04 1.31e-02 7.67e-01 1.18e-01 1.30e-01
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Supplementary Table 2 Correlation between each feature and the seven experimental miRNA
repression measures. Data points were binned in 15 equally-sized bins. r is the correlation
on the full dataset (p: corresponding p-value); r’ is the correlation on the binned dataset (p”:
corresponding p-value.
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Supplementary Figure 1 Feature relative importance in the miRmap multiple linear regres-
sion models predicting miRNA repression strength for all datasets used in this study consid-
ering 7-mer seeds. R? is the proportion of variance explained by the model.
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DISCUSSION

The miRmap library (Vejnar and Zdobnov [16]) predicts the strength of miRNA repres-
sion on targeted mRNA with a linear model composed of eleven features that comprehen-
sively cover thermodynamic, probabilistic, evolutionary, and sequence-based approaches.
The strength of miRNA repression is a biologically meaningful criterion to rank potential
miRNA-mRNA pairs. Three features included in the library were novel methods. The in-
dividual features and the model combining them were evaluated using high-throughput
experimental data addressing both miRNA-mediated regulation, i.e. mRNA destabilization
and translational repression. These publicly available datasets include immunopurification,
transcriptomics, proteomics, and polysome fractionation experiments. While the large size
of these datasets is beneficial for my analysis, most of them are based on artificially over-
expressed miRNAs in cell lines. During the development of the miRmap library, several
features were evaluated on more realistic systems, in particular two knock-down experi-
ments using naturally highly expressed miRNAs in mouse tissues. Target site enrichments
in the up-regulated gene fraction due to the miRNA knock-down were indeed significant for
miR-122 in hepatocytes and miR-155 in dendritic cells (see Results). Controls confirming the
enrichment were also performed via enrichment in the opposite fraction (down-regulated),
and via enrichment for all miRNAs. The overall predictive power of the miRmap model
appears to almost double that of the most renowned TargetScan software, and outperform
PITA and PACMIT that are single and double features tools respectively (see Section 3.2).

5.1 Enhancing the quality of bioinformatics tools

The miRmap library is, in the first place, a software library written in the Python lan-
guage. The computing efficiency and quick prototyping oriented the choice towards Python,
but also the ease (i) to interface with pre-existing C libraries, and (ii) to scale to multiple
genome-wide prediction runs.

Indeed, to compute the thermodynamic features, evolutionary features and one proba-
bilistic feature, C libraries were used (Hofacker [76], and Nuel et al. [77]). Their size and
complexity prohibited their reimplementation in Python. I implemented interfaces using
the ctypes module written in pure Python. Writing such interfaces has many advantages.
First, not only they are by themselves of general interest to the bioinformatics community,
but they also provided me with a deeper understanding of the libraries I was writing an in-
terface for. Second, while these libraries also have command line interfaces, some options,
and even computation, were not available through the command-line interface (the compo-
nents of AG binding for instance). Third, computing times are shorter when linking directly to
a library compared to a command-line program. The main reason for this difference in com-
puting time is the cost of forking new processes and the consequent inputs/outputs. This
cost is highly dependent on the library, and the number of times the library is called in the
global process. For example, it is about 10% for a 100000 sequence sets folded with RNAfold
(Hofacker [76]). If the overall processing requires a single call to the C library, the cost of a
single fork would not be significant to the overall processing time. While the performance
difference is not always big, the CPU usage profile is very different. Indeed, during the test
described above, for each sequence a new process was created with inputs and outputs re-
sulting in multiple small tasks distributed on multiple CPUs (but still one at a time) instead

103



DISCUSSION Enhancing the quality of miRNA target predictions

of one task using 100% of a single CPU. Fourth, related to the previous point, all the neces-
sary computation encapsulated in a single process makes program parallelelization easier.
With the multiprocessing Python module, I implemented a parallelelized version of miRmap,
making the computing time of all target site strengths for a single miRNA on a 48 CPU-core
machine a matter of a few minutes instead of hours.

Contrary to most miRNA target prediction tools (see introduction), miRmap was made
available as an open source software. It is also designed to ease the extension, making an
effort towards more integration of the different miRNA target prediction tools. Moreover,
the source code is distributed on a cooperative development platform. These platforms, such
as Bitbucket or Github, promote a novel process for open source software allowing anyone to
modify the code, in turn making any modifications easily accessible on the platform, and to
request integration of the changes in the main code by a so-called “pulling request”. While
widely adopted by the computer science community, this development model is still rarely
used for bioinformatics projects. I hope to promote the benefits of using these platforms with
my miRNA target prediction software.

The miRmap library provides an Application Programming Interface (API) usable inside
other programs that predict miRNA targets. While an example of such a program is provided
in the miRmap distribution, it requires the installation of the library. This requirement, de-
spite being small, is too large for a few queries or even small projects. To address this type of
user need, I am developing a public API, making miRmap computation accessible through
a simple HTTP query. The computation will be done on our server. Based on this public
API, I am also developing a web interface usable to browse already computed predictions
for known miRNAs and genes, and also to predict targets on user submitted sequences.

5.2 Enhancing the quality of miRNA target predictions

As about 85% of the variance of the transcriptomics data used to parameterize the
miRmap model is still unexplained (Vejnar and Zdobnov [16]), the performance of miRmap
and miRNA target prediction software in general can be largely improved. Improvements
are possible for the target recognition model but also at a higher level, for instance the mRNA
level. Itis worth noting that indirect effects are included in the global variance: miRNA direct
effects will not be able to explain 100% of the variance.

The target recognition relies in particular on the thermodynamic energies used to com-
pute RNA folding structures. The principles and parameters of these techniques are based
on a small molecule, a few base-pairs, which are then extrapolated to longer RNAs. New
software integrating high-throughput methods to fold RNAs are starting to emerge (Quar-
rier et al. [78]) and can help in obtaining better models of RNA structures (Reviewed in Wan
et al. [79]). However, proteins are ignored by these methods. First, the RISC can change
the stability of the miRNA-mRNA duplex. The energies for RNA duplex in the context of a
RISC are unknown. Second, in the extreme case, an RNA-binding protein (RBP) can mask
the miRNA binding site completely, for example PUM1 for miR-221 and miR-222 (Kedde and
Agami [80] and Kedde et al. [81]).

Improvement in the assessment of miRNA target site conservation is also possible. In-
deed, PhyloP (Pollard et al. [82]) uses “per base” evolutionary models, i.e. positions in the
alignment are considered independently. However, for RNAs in general, stacking energies
are important: a context dependent model that considers positions non-independently, when
integrated in PHAST (Pollard et al. [82]), should increase the performance of the PhyloP fea-
ture of miRmap. Interestingly, it would also quantify the importance of stacking energies.
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Conversely, the detection of naturally selected RNA structure would be more accurate, open-
ing large scale studies to detect these structures with more confidence.

The variance in expression fold-changes is large in miRNA knock-down transcriptomics
experiments. My model explains part of this variance, but a large proportion remains to be
explained. Increasing that proportion could be achieved with improved features, in particu-
lar with the few leads described above. Nevertheless, experimental noise and miRNA indi-
rect effects undoubtedly remain explanatory factors. More specific experiments are therefore
required to increase miRNA prediction tools performance. As luciferase assays are the ref-
erence experiment used in experimental biology, attempts were made to use them in predic-
tion tools (see introduction). However, a limited number of such experiments are available
in general, but in addition, there are almost as many experiments as experimentalists, induc-
ing a high experimental noise over the full dataset. Moreover the stability and turn-over of
the luciferase proteins is not constant enough between different experiments to consistently
predict the strength of the repression, parameter I am aiming to predict. Recently, immunop-
urification experiments, preceded with cross-linking Ago to the neighbor mRNA followed
by RNA-Seq (Chi et al. [42] and Hafner et al. [43]), have shown high sensitivity. Chi et al.
[42] observed that 86% of conserved miR-124 seeds were present within the Ago footprint
region, i.e. the HITS-CLIP method used by the authors accurately identifies miRNA target
sites. However, I have shown this method is not as reliable to predict the repression strength
(Vejnar and Zdobnov [16]). While the two experiments published are relevant, HITS-CLIP
experiments should be performed either on cells with a predominantly expressed miRNA
(hepatocyte for instance) or on cell lines with induced miRNA expression to be able to predict
miRNA repression strength, as such an experimental setup would reduce indirect regulation
(At least 20 miRNAs are expressed in relevant level in Chi et al. [42]).

The target recognition step is only the first level determining miRNA repression. Indeed,
mRNA can have multiple target sites for one or more miRNA(s). With the available exper-
imental data, the effects of multiple target sites have been shown to be multiplicative, as
the sum of multiple sites log-fold-changes is the most appropriate way to combine the re-
pression strength of individual sites (Grimson et al. [33], Selbach et al. [29] and Vejnar and
Zdobnov [16]). However, this multiplicative effect has been shown with mRNAs bearing tar-
get sites for the same miRNA, and with experiments involving in most cases overexpression
of a miRNA. Indeed, on a local scale, cooperativity has been described when the distance
between target sites is appropriate (Saetrom et al. [83]). This simple rule to predict global
repression, i.e. the sum, can still be enhanced while using the same available experimental
data. Saito and Seetrom [34] used an SVM to combine target sites. The main feature of the
SVM is the predicted target probability distribution transformed to a set of bins. The bin
limits were unequal and chosen to maximize the SVM performance. This method is partic-
ularly efficient for integrating the more abundant non-canonical seed-matches: the authors
were able to distinguish targeting differences caused by Single Nucleotide Polymorphisms
(SNPs) (Thomas et al. [84]).

While the effort towards better prediction of variation in mRNA levels due to miRNA-me-
diated repression is relevant, kinetic models have not yet been used to solve this problem. In-
deed, in vivo, multiple target sites must compete for RISC binding. During this competition,
both the concentrations of RISC and mRNA molecules etc are key factors in determining re-
pression strength. In support of using a kinetic model, preliminary investigations show that
an increase in available target sites (Target-site Abundance, TA) (Garcia et al. [47]), is corre-
lated with less efficient repression. However, kinetic models and their related parameters,
such as the different concentrations mentioned above, are missing from current prediction
algorithms. Moreover, experimental data are not yet available to deduce these parameters.
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While being uncertain and challenging, a systems approach to miRNA repression prediction
could increase prediction performance, and may enhance our knowledge of miRNA regula-
tion by pointing out missing parameters in the current model. A deeper understanding of
miRNA regulation will lead to greater precision in the prediction of protein concentrations,
which are influenced by miRNA-mediated repression. As tissue identity, and more generally
health, are tightly linked to the maintenance and regulation of protein concentrations in the
cell, miRmap participates in solving this challenge by providing the community with direct
access to state-of-the-art predictions of miRNA repression.
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ABSTRACT

MicroRNAs (miRNAs) are short, non-protein coding
RNAs that direct the widespread phenomenon of
post-transcriptional regulation of metazoan genes.
The mature ~22-nt long RNA molecules are pro-
cessed from genome-encoded stem-loop struc-
tured precursor genes. Hundreds of such genes
have been experimentally validated in vertebrate
genomes, yet their discovery remains challenging,
and substantially higher numbers have been esti-
mated. The miROrtho database (http://cegg.unige.
ch/mirortho) presents the results of a comprehen-
sive computational survey of miRNA gene candi-
dates across the majority of sequenced metazoan
genomes. We designed and applied a three-tier
analysis pipeline: (i) an SVM-based ab initio screen
for potent hairpins, plus homologs of known
miRNAs, (ii) an orthology delineation procedure
and (iii) an SVM-based classifier of the ortholog
multiple sequence alignments. The web interface
provides direct access to putative miRNA annota-
tions, ortholog multiple alignments, RNA secondary
structure conservation, and sequence data. The
miROrtho data are conceptually complementary to
the miRBase catalog of experimentally verified
miRNA sequences, providing a consistent compara-
tive genomics perspective as well as identifying
many novel miRNA genes with strong evolutionary
support.

INTRODUCTION

MicroRNAs (miRNAs) represent an abundant class
of short non-protein coding RNAs that direct
post-transcriptional  regulation of metazoan genes
through  repression of mRNA translation or
transcript degradation. Since their initial discovery in

Caenorhabditis elegans, the roles of miRNAs have been
recognized as a widespread phenomenon, implicated in
processes such as cell differentiation and cancer (1-6).
Intensive studies have begun to unravel the mechanisms
and characteristics of these single-stranded, ~22-nt long
RNA molecules that are processed from genome-encoded
precursor genes with a defining stem-loop RNA structure.
Nevertheless, the discovery and characterization of novel
miRNA genes have proved to be challenging both experi-
mentally and computationally, and the miRNA gene
repertoire therefore remains largely unexplored. The
human genome tops the fast growing number of miRNA
genes, with several hundreds now cataloged in the
miRBase database of published miRNA sequences (7)
and many more estimated (8,9).

The high-throughput experimental approaches usually
identify only the short mature segments of the miRNA
genes along with other types of endogenous small RNAs
(10,11) and degradation products of mRNAs or structural
RNAs. Robust computational post-processing of the
experimentally derived sequences is therefore essential to
identify the underlying miRNA genes. The widely applied
discriminatory requirement of a characteristic stem-loop
structure for the putative precursor is, however, insuffi-
cient as hairpin structures are common in eukaryotic gen-
omes and are not a unique feature of miRNAs (12).
Nonetheless, the rapid accumulation of genome-wide
sequencing data provides another line of evolutionary
evidence from comparative sequence analyses.

Computational screening methods that rely heavily on
sequence conservation criteria, such as MirScan (13), were
among the first to appear. These characteristically exhibit
high specificity [e.g. predicting 35 new miRNA candidates
in C. elegans (13) and 107 in human (14), many of which
were experimentally confirmed], but their sensitivity, the
ability to predict novel or divergent homologs in other
organisms, is low. Methods that relax sequence conserva-
tion requirements in favor of conservation patterns
specific to miRNAs (such as a more diverged loop
sequence and a more conserved hairpin stem) gained
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substantially higher sensitivity, e.g. Snarloop has been
used to predict 214 candidate miRNAs in C. elegans (15)
and miRSeeker (16) to predict 48 candidate miRNAs in
Drosophila melanogaster. A similar approach was pro-
posed that takes into account the shapes of conservation
patterns of known miRNAs, e.g. phylogenetic shadowing
(17,18). The first 7nt from the second position of the
5'-end of the mature miRNA, termed the seed sequence,
are presumed to be critical for the interaction between the
miRNA and its targets (19-22). The intra-species abun-
dance or inter-species conservation of such potential seeds
have also been proposed as alternative starting points for
miRNA gene hunting (23,24).

Secondary structure thermodynamic stability is another
important characteristic that can be used to distinguish
miRNAs from other hairpins (25). The recently devel-
oped software RNAz combines thermodynamic stability
and conservation of secondary structure to predict
non-coding RNAs (26) from multiple alignments of
orthologous regions. Methods relying on phylogenetic
conservation of miRNA structure and sequence are by
definition restricted in terms of their predictive power.
To overcome this limitation, several groups have devel-
oped ab initio approaches (12,27-32) to predict novel,
non-conserved genes. However, these approaches often
suffer from high rates of false positives.

Aiming to fuel further studies of microRNA’omes,
we present here the database of computationally derived
miRNA gene candidates using a novel comparative geno-
mics approach coupled with machine-learning techniques
that we consistently applied to a comprehensive set of
available metazoan genomes. The three-tier pipeline con-
sists of: (i) a custom designed SVM-based ab initio
predictor, plus screening for known miRNA homologs,
(i) an orthology delineation procedure and (iii) an
SVM-based classifier of the multiple sequence alignments
of the putative orthologs. These data are conceptually
complementary to the miRBase catalog of experimentally
verified miRNA sequences (7). High-throughput experi-
mental exploration of small RNAs requires rigorous
follow-up bioinformatic analyses to claim evidence of
microRNA genes. Decoupling experimental and bioin-
formatics approaches, the miROrtho data effectively
provide independent supporting evidence for the
numerous ongoing experimental interrogations of
microRNA’omes.

MATERIAL AND METHODS
Ab initio predictors

The first tier of our analysis pipeline is a novel ab initio
miRNA prediction procedure. We scanned the genomic
sequences using RNALfold (33) for locally stable hairpins
characteristic of miRNA precursors, requiring a length of
60-120nt, a minimum free-folding energy less than
—15kcal/mol, a stem of 20-60 base pairs, a maximal inter-
ior loop size of 8nt, and a maximum bulge loop size of
Snt. The loop, however, was allowed to include short
stem-loops e.g. hsa-let-7b. Those properties accommodate
the vast majority of experimentally validated miRNAs

(although there are exceptions, e.g. dme-mir-31b and
dme-mir-1017). As stem-loop structures are abundant
and not exclusive to miRNA genes, this step yields hun-
dreds of millions of candidates: 1.3 million for the
~170 Mb genome of fruitfly Drosophila melanogaster.
The availability of many experimentally validated
miRNAs revealed that although there are biases in bio-
physical properties of miRNA stem-loops in comparison
to non-miRNA sequences, such as higher thermodynamic
stability (25), no clear discriminatory features have yet
been identified. We investigated a number of the most
discriminating features, such as the minimum free-energy
index (34) or the mean base pair distance in the ensemble
of structures, and trained an SVM (support vector
machine) classifier using LIBSVM (http://www.csie.ntu.e-
du.tw/~cjlin/libsvm). The total number of features used
for this first SVM was 253. The radial basis function
kernel (RBF) was used on 1000 experimentally verified
animal pre-miRNAs from miRBase (7) and a negative
set of 3000 potent stem-loops from other confirmed
ncRNAs [Rfam (35)]. Optimal parameters for the RBF
kernel (C-SVC c¢=2.0, gamma = 0.03 125) were estimated
using a heuristic approach implemented in grid.py, which
is a part of the LIBSVM package. A non-redundant train-
ing dataset was compiled using CD-Hit-EST (36) at a
cutoff of 90% sequence identity. We tested the perfor-
mance of the SVM on a test set of 237 miRNA sequences
and 568 non-miRNA stem-loops which where not used for
training the SVM model. Using the SVM posterior prob-
ability cutoff at 0.5, the accuracy was estimated to be
95.03%, the area under the ROC curve (receiver operating
characteristic) was 0.984, corresponding to a sensitivity
and specificity of 0.84 and 0.97, respectively. Using a
10-fold cross-validation procedure on the training data,
we received an average AUC (area under the ROC
curve) of 0.982. If the potent hairpins had >70% sequence
overlap at the same locus, the one with the lower SVM
score was discarded.

This single sequence SVM filter allows the space of
likely candidates to be reduced by about 95%, yet still
yields rather high numbers of gene candidates: 42 000 for
D. melanogaster. The miRNA structure itself is likely
to contribute to these elevated numbers: miRNAs have
complementary arms in their stem-loop structure and
the reverse complement of a precursor often also folds
into a stable RNA hairpin. Nevertheless, we did not expli-
citly require a choice between the sense and the anti-sense
candidates (if both of them passed the other filters)
as there is evidence of miRNA loci with both strands
yielding a functional miRNA, e.g. dme-mir-iab-4 and
dme-mir-iab-4as.

Homology-based predictor

Screening for homologs of currently known miRNAs
(miRBase 11.0) captures putative miRNAs that either
did not pass the stem-loop screen, e.g. 13(8%) of
known D. melanogaster miRNAs, or failed the ab initio
SVM classification, another 19(13%). Our procedure
initially performs a WU-BLAST (http://blast.wustl.edu)
search using the default parameters, plus the DUST
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filter and the hspsepSmax = 30 option, which defines the
maximal separating distance between two high score pairs
to allow for a varying loop while still matching the better
conserved 5" and 3’ arms. Next, blast hits longer than 20 nt
are extended at both ends to match the length of the query
sequence. These hits are further filtered using a minimum
free energy filter (<—15kcal/mol) and a RANDFOLD
(25) filter (P<0.05 on 100 sequence randomizations).
We investigated the RNAshapes (37) filter, which predicts
the probability of a sequence to fold into a simple stem-
loop like structure, but it was not employed as several
known miRNAs, e.g. hsa-let-7a-1, would not pass the
filter. The candidate miRNAs were then aligned to the
query sequence using MAFFT (38) and the conservation
of the seed region was calculated by mapping the known
mature miRNA region on the query miRNA to the align-
ment. The hits were then tested for the following criteria: a
100% conserved seed region, >90% conservation of the
putative mature part, and a total hairpin identity >65%.
As close paralogs (like hsa-let-7, mmu-let-7, etc) can map
to the same locus when searched again one genome
(e.g. the chimp), the matches were then clustered using
GALAXY (http://main.g2.bx.psu.edu) and choosing one
representative with the lowest e-value of all queries.

Orthology delineation

Groups of likely orthologous genes were automatically
identified wusing a strategy employed previously for
protein-coding genes (39) based on all-against-all sequence
comparisons using the ParAlign algorithm (40) with NT2
substitution matrix; followed by clustering of best recipro-
cal hits (BRHs) from highest scoring ones to 10~° e-value
cutoff for triangulating BRHs or 10~'° cutoff for unsup-
ported BRHs, and requiring a sequence alignment overlap
of at least 20nt across all members of a group.
Furthermore, the orthologous groups were expanded by
genes that are more similar to each other within a genome
than to any gene in any of the other species, and by very
similar copies that share over 97% sequence identity,
which were identified initially using CD-Hit (36). The
orthology filter allowed us to reduce the space of the
miRNA candidates by a further 92%. Passing the orthol-
ogy filter provides evolutionary support for the predicted
miRNAs; however, detailed inspection highlighted the
need for further rigorous sequence classification to
remove questionable predictions.

Multi-species conservation classifier

We further analyzed the R-COFFEE (41) multiple
sequence alignments of orthologous groups of putative
miRNA sequences. From the alignments we gathered the
13 most descriptive features for conservation properties of
sequence, energy and structures such as: GC content,
number of taxa, mean pairwise sequence identity,
number of consistent mutations, conservation of the
mature part, etc. Those descriptors were chosen among
a larger set of features, in order to optimally describe
the typical conservation profile of a miRNA gene family
and to reduce false positive predictions. Alignments that
mapped to at least one known miRNA from miRBase
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11.0 were used as the positive training and testing sets
(344 and 100 alignments, respectively). Among those
alignments which did not map to any known miRNA
family, we randomly selected (with manual checking) the
negative training and testing sets (344 and 100 alignments,
respectively). The GIST SVM software package (http://
www.cs.columbia.edu/compbio) was used for training,
testing and classification using the default parameter.
The final set of newly predicted miRNAs based on the
alignment SVM was selected from all alignments which
had SVM score > 0.5, a 100% conserved seed, a mature
part >90% conserved and having representatives in at
least four taxa. Performance estimation of the alignment
SVM on the independent test set showed an accuracy of
91%, with the area under the ROC curve (AUC) of 0.97,
and sensitivity and specificity of 0.9 and 0.92, respectively.
The AUC for the 10-fold cross validation using the train-
ing data averaged to 0.998. The alignment SVM filter
allowed us to reduce the space of the miRNA candidates
by a further 98%, followed limited manual curation of
novel miRNA candidates. We further analyzed the multi-
ple alignments of novel miRNAs (without known homo-
logs) to predict the mature part using a sliding 23-nt long
sliding window and scanning for the region with the high-
est information content in the 5 or the 3’ arms. The pre-
dictions, however, should be taken with caution without
further experimental support.

DATABASE CONTENT

The miROrtho database (http://cegg.unige.ch/mirortho)
presents computationally predicted putative miRNA
genes for a comprehensive set of sequenced animal
genomes (selection of genomes in Table 1), employing
an in-house developed pipeline combining SVM-based
classifiers and orthology delineation procedure adapted
from OrthoDB (39). The alignments shown on the website
were calculated using R-COFFEE (41), which combines
MUSCLE (42), Probcons4dRNA (43), MAFFT (38) and
the secondary structures predicted by RNAplfold (33).
Based on these alignments consensus secondary structures
color-coded according to consistent/compensatory muta-
tion were calculated using RNAalifold (44) which incor-
porates a ribosome scoring matrix suited for aligned RNA
sequences. The database aims to provide a comprehensive
comparative perspective on the animal repertoire of
miRNA genes with direct reference to the putative ortho-
log multiple alignments, RNA secondary structure conser-
vation, etc. As there seem to be numerous lineage specific
miRNAs and miRNA-like sequences that are difficult
to differentiate without experimental evidence, we see
miROrtho as complementary to miRBase, the repository
of experimentally verified miRNA sequences. Overall,
miROrtho contains 7887 putative miRNA genes that are
homologous to known miRNAs in miRBase 11.0, and
1437 confident predictions that are as yet without experi-
mental support or homology to known miRNAs.
Most experimental surveys provide support for mature
miRNA sequences, while the identities of the underlying
miRNA precursor genes remain somewhat uncertain.
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Table 1. Analyzed genomes

Species name Abbreviation Size (Mb) Number of miRNA genes Source
Homologs" New® miRBase 11.0
Aedes aegypti Aaeg 1384 58 1 0 AaegL1
Anopheles gambiae Agam 273 55 1 45 AgamP3
Apis mellifera Amel 235 60 1 54 Amel_4.0
Bombyx mori Bmor 397 33 0 21 SW_scaffold_ge2k
Caenorhabditis elegans Cele 100 149 0 154 WBI170
Canis familiaris Cfam 2532 383 138 203 CanFam 2.0
Ciona intestinalis Cint 173 25 0 34 JGI2
Danio rerio Drer 1626 324 22 337 ZFISH6
Drosophila ananassae Dana 230 108 12 0 CAF1
Drosophila erecta Dere 152 136 16 0 CAF1
Drosophila grimshawi Degri 200 110 13 0 CAF1
Drosophila melanogaster Dmel 129 153 15 152 CAF1
Drosophila mojavensis Dmoj 194 98 14 0 CAF1
Drosophila persimilis Dper 188 108 16 0 CAF1
Drosophila pseudoobscura Dpse 153 106 15 76 CAF1
Drosophila sechellia Dsec 167 139 16 0 CAF1
Drosophila simulans Dsim 142 131 15 0 CAF1
Drosophila virilis Dvir 206 101 14 0 CAF1
Drosophila willistoni Dwil 237 112 12 0 CAF1
Drosophila yakuba Dyak 169 135 16 0 CAF1
Gallus gallus Ggal 1100 168 49 149 WASHUC2
Gasterosteus aculeatus Gacu 462 320 12 0 BROAD S1
Homo sapiens Hsap 3665 626 151 678 NCBI36
Macaca mulatta Mmul 3097 530 145 464 MMUL_1
Monodelphis domestica Mdom 3606 205 82 119 monDom5
Mus musculus Mmus 2661 505 117 472 NCBIM36
Ornithorhynchus anatinus Oana 2073 207 57 0 Oana-5.0
Pan troglodytes Ptro 3524 546 147 100 PanTro 2.1
Rattus norvegicus Rnor 2719 440 110 287 RGSC 3.4
Strongylocentrotus purpuratus Surc 907 13 0 0 Spur_v2.1
Takifugu rubripes Trub 393 250 13 131 FUGU4
Tetraodon nigroviridis Tnig 402 282 14 132 TETRAODON?7
Tribolium castaneum Tcas 200 37 1 0 Tcas_2.0
Xenopus tropicalis Xtro 1511 351 24 184 JGI4.1

“Homologs to miRBase 11.0 miRNAs.

"New predictions that do not show any homology to any annotated miRNA.

In contrast, computational procedures rely on recogniz-
ing characteristic sequence and structural properties of
the precursors, where even approximate prediction of
mature miRNAs is rarely possible. This complementarity
extends further, where computational predictions at
different stringencies can either be used to prioritize
experimental verification, or as direct independent support
of miRNAs identified through high throughput experi-
mental screens. Although miRBase accepts annotation
of very close homologs of experimentally supported
miRNAs, the comparative perspective is heavily biased
towards favorite experimental model species. Such a bias
is avoided in miROrtho through the consistent application
of the same procedures across all the available genomes,
delineating groups of orthologous miRNAs over distantly
related organisms. The miROrtho methodology has also
been applied to the task of miRNA gene annotation in
a number of ongoing initial genome analyses, and this
database will provide the supporting information for
these predictions.

It should be noted that there is still no defining feature
that clearly discriminates between bona fide miRNA pre-
cursors and other abundant genomic sequences capable

of similar hairpin folding. Classification filters will there-
fore inevitably suffer from false negatives and false posi-
tives (see Materials and Methods section for estimates),
leading to errors at each step along the pipeline.
Even the most inclusive initial screen for locally stable
stem-loop structures misses some miRNAs reported in
miRBase as experimentally validated (e.g. dme-
mir-1017). Despite the strict 97% specificity of our
ab initio SVM, the abundance of false positives is clear
and overloads the orthology filter. Computational meth-
ods developed for miRNA gene discovery are constantly
improving, and will continue to do so as our knowledge of
experimentally validated miRNAs grows.

WEB INTERFACE

The miROrtho database presents all predicted miRNA
genes within the context of family groups of orthologous
miRNAs. For each such family, we provide (Figure 1):
(1) a table of annotated miRNA names and genomic coor-
dinates, (ii) a multiple alignment of the miRNA sequences
displaying RNA structure conservation, (iii) the minimum
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miROrtho: the catalogue of animal microRNA genes
Your query returned 1 orthologous group(s)

Home Data

Services Links

httpT//gegg.unige.ch/mirortho

Home Search by Genomic Location Browse Blast Search Help
Species |Internal ID |Name Group ID |Family |miRBase |Chromosome Start End Strand |UCSC
Agam 223776 agam_223776|41740 CM000357.1 22427276|22427349(+
Aaeg 223782 aaeg_223782 41740 CH477494.1 120066 (120145 |-
Cpip 223788 cpip_223788 |41740 DS233046.1 55494 55573 -
Tcas 223794 tcas_223794 (41740 0i|74477186|gb|CM0D00277.1|(12045734(12045819|-
Nvit 223800 nvit_223800 (41740 SCAFFOLD26 605703 |60S787 |+
Aamel 223806 amel_223806 |41740 gnllamel_4.0|Group4.16 137092 |[137186 |+

T =

S~ T W T AL
¢ Sequence conservation is represented by grey bars
. ¢ Mature miRNAs are underlined
Types of pairs « Data:

Alig t
Incompatible ignmen

pairs

o Alignment reliability estimation (core index
Groups with same seed

°

o

o Fasta Sequences

o RNAalifold output | RNAalifold {stochastic backtracking)
o

RNAstrand output

Disclaimer | Statistics | Funding

Figure 1. miROrtho screenshot showing a novel miRNA gene family. The results page consists of three parts: (i) a table with detailed information
about the individual miRNAs; (ii) a multiple sequence alignment with the consensus secondary structure displayed above in dot-bracket format and
conservation profile bars displayed below, with the sequence of the mature miRNAs underlined; (iii) the consensus secondary structure of the
orthologous sequences. Both alignment and consensus secondary structure are color-coded according to consistent and compensatory base changes.

energy consensus mMiRNA hairpin fold, (iv) FASTA
sequences and multiple alignment files. Color coding of
the alignments and the depicted folds enables clear visua-
lization of compensatory and consistent mutations within
a given miRNA family. The mature miRNA sequences
are underlined: as annotated in miRBase for known
miRNAs or as predicted for novel families. Furthermore,
we provide detailed folding information of individual
pre-miRNAs including minimum free energy folding, the
partition function folding and the centroid structure of
the stem-loop. Three images show the secondary structure
of a single pre-miRNA with the mature part annotated
in red, color-coded according to base pairing probabilities
and positional entropy per position. The data can be
browsed by the species tree, or can be queried by
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annotation such as known families (e.g. let-7), identifiers
or chromosomes. The predictions can be also searched
by sequence homology using WU-BLAST (http://
blast.wustl.edu).
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Identification of cis- and trans-regulatory variation
modulating microRNA expression levels
in human fibroblasts

Christelle Borel," Samuel Deutsch,’ Audrey Letourneau, Eugenia Migliavacca,
Stephen B. Montgomery, Antigone S. Dimas,? Charles E. Vejnar, Homa Attar,
Maryline Gagnebin, Corinne Gehrig, Emilie Falconnet, Yann Dupré,
Emmanouil T. Dermitzakis, and Stylianos E. Antonarakis®

Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland

MicroRNAs (miRNAs) are regulatory noncoding RNAs that affect the production of a significant fraction of human
mRNAs via post-transcriptional regulation. Interindividual variation of the miRNA expression levels is likely to influence
the expression of miRNA target genes and may therefore contribute to phenotypic differences in humans, including
susceptibility to common disorders. The extent to which miRNA levels are genetically controlled is largely unknown. In
this report, we assayed the expression levels of miRNAs in primary fibroblasts from 180 European newborns of the
GenCord project and performed association analysis to identify eQTLs (expression quantitative traits loci). We detected
robust expression for 121 miRNAs out of 365 interrogated. We have identified significant cis- (10%) and trans- (11%) eQTLs.
Furthermore, we detected one genomic locus (rsl522653) that influences the expression levels of five miRNAs, thus
unraveling a novel mechanism for coregulation of miRNA expression.

[Supplemental material is available online at http:// www.genome.org. The miRNA expression data from this study has
been submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession no.
GSE24610. The genotyping data from this study have been submitted to the EMBL-EBI European Genome-phenome

Archive (http:// www.ebi.ac.uk/ega/) under accession no. EGASO0000000056.]

The discovery of microRNAs (miRNAs) (19- to 25-nt-long single-
stranded RNA molecules) has revealed a new mechanism for the
regulation of protein-coding gene expression (Ambros 2004; Bartel
2004; Baek et al. 2008; Selbach et al. 2008). Dosage alterations of
miRNA levels are thought to be involved in human disease path-
ogenesis (Bartel 2004; Kloosterman and Plasterk 2006; Bushati and
Cohen 2007; Bartel 2009; Xiao and Rajewsky 2009). One of the
least understood aspects of miRNA biogenesis concerns the regu-
lation of its expression levels. Approximately half of the miRNAs
identified to date are located in intergenic regions and are there-
fore likely to possess their own promoter and enhancer elements.
The remaining miRNAs map to introns of protein-coding genes
and are transcribed from the same strand (Saini et al. 2008). How-
ever, it is not yet clear whether these miRNAs are the by-products
of protein-coding gene transcription or whether their transcrip-
tion is controlled by independent regulatory elements. Since
miRNA genes are transcribed by RNA polymerase 1I, it is likely
that they share a similar mode of regulation with protein-coding
mRNAs.

The goal of this study was to identify genetic variation asso-
ciated with miRNA levels, as a way to dissect the elements and
mechanisms governing miRNA expression.

'These authors contributed equally to this work.

2present address: Wellcome Trust Centre for Human Genetics,
Oxford OX3 7BN, UK.

3Corresponding author.

E-mail stylianos.antonarakis@unige.ch.

Article published online before print. Article and publication date are at
http://www.genome.org/cgi/doi/10.1101/gr.109371.110.

Recent genetic analyses have demonstrated that transcription
levels of protein-coding genes behave as heritable quantitative
traits and display significant associations with genetic variants,
including single nucleotide polymorphisms (SNPs) and copy num-
ber variants (CNVs) (Morley et al. 2004; Cheung et al. 2005; Deutsch
et al. 2005; Stranger et al. 2007; Dermitzakis 2008).

In this study, we conducted an association analysis using
mature miRNA expression levels as the primary phenotype, with
the aim of identifying regulatory polymorphic variants (expres-
sion quantitative traits loci [eQTLs]) significantly associated with
miRNA expression levels in human primary fibroblasts.

Results

Primary fibroblasts were derived from the umbilical cord of 180
newborns of western European origin recruited for the GenCord
project (see Methods). All samples were genotyped using the Illu-
mina Hap550 SNP array. Mature miRNA expression phenotypes
were generated using the micro-fluidics-based TagMan Human
MiRNA Array v1.0 (Applied Biosystems). For each sample, the
expression levels for 365 known human mature miRNAs were
assayed (Supplemental Table S1). We detected expression above
the background for 57% (n = 208) of the miRNAs in cultured pri-
mary fibroblasts. These were further filtered to include miRNAs
with expression above the background in at least 50% of the
samples (7 = 90). One hundred twenty-one miRNAs were retained
for association analysis.

We identified cis-eQTLs, by testing for association between
expression levels and SNP genotypes, within 1 Mb 5" and 3’ of each
miRNA. SNPs were considered to be significantly associated with
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miRNA expression levels (i.e., eQTLs) if they passed the 0.05 per-
mutation level threshold for 10,000 permutations (see Methods).

Twelve (i.e., 10%) of the 121 miRNAs tested showed signifi-
cant evidence for cis-regulatory variation (permutated P-value <
0.05) (Table 1A; Fig. 1; Supplemental Fig. S1). Given that we tested
121 miRNAs and we expect 5% of them to have significant cis-
associations by chance at the permutation level 0.05, we estimate
that our false-discovery rate (FDR) is about 50% of the 12 miRNA
signals.

Examples of these cis-eQTLs are shown in Figure 1. The most
highly significant cis-eQTL detected was rs10750218, intronic to
UBASH3B, which associates with levels of miR-100 533 kb away
(Fig. 1). The distance between the cis-eQTLs and their respective
miRNA was variable and ranged from 13.6 kb to 886 kb (Table 1A).
In one case (miR-218-1), cis-eQTLs mapped within the protein-
coding sequences of SLIT2 that also contain the miRNA sequence.
This raises the interesting question of whether both the miR-218-1
and the SLIT2 mRNA share regulatory sequences (Table 1). To ad-
dress this, we investigated whether the specific cis-eQTL for the
miRNA was also associated with SLIT2 mRNA levels. Transcrip-
tion levels of protein-coding genes were assayed using Illumina’s
WG-6 v3 Expression BeadChip array (Dimas et al. 2009). We found
no evidence of shared regulatory variation between mRNA and
miRNA, and no correlation between the miR-218-1 and SLIT2
mRNA levels was observed (Pearson correlation = —0.023, n = 55),
implying absence of coregulation of these two transcripts in
fibroblasts.

We then aimed to identify trans-eQTLs by performing a ge-
nome-wide association study (GWAS) for the 121 miRNA expres-
sion phenotypes. We observed 18 significant trans-eQTLs for 13
miRNAs (10.7%) after Bonferroni correction for multiple testing
at the 95% significance level (Table 1B; Supplemental Fig. S2).
Since under the null hypotheses we would expect on average six
associations, we can estimate our FDR at about 30% for 18 reported
miRNAs.

The most significant trans-eQTL was detected for miR-140
(chromosome 16) with SNP rs6039847 located on chromosome
20 (unadjusted P=1.5 X 107°). The majority of trans-eQTLs (72%)
mapped to intergenic regions. We detected cases where multiple
trans-eQTLs, located in different chromosomes, associate with the
expression levels of single miRNAs (Table 1B), suggesting that mul-
tiple loci may act together to regulate miRNA expression. For ex-
ample, two significant trans-eQTLs were detected for miR-134,
the first on chromosome 21 (rs2824791, unadjusted P=1 X 1079)
and the second on chromosome 3 (rs17533447, unadjusted P =
3.6 X 107%) (Fig. 2). Similar observations were made for miR-103,
miR-130b, miR-29a, and miR-410 (Table 1B; Supplemental Fig. S2).
We also observed two cases in which a single SNP was associated
with the expression of multiple, unrelated miRNAs: 151522653 is
significantly associated with the expression of miR-103 and miR-
29a; 156039847, with miR-140 and miR-130b (Table 1B).

These observations prompted us to analyze in-depth for the
presence of statistically significant miRNA “master regulators,” de-
fined as trans-eQTLs involved in the regulation of multiple miRNA
genes.

To this end, we ascertained for each SNP the number of
miRNA associations detected using a reduced stringency (unad-
justed P-value < 107°) (Supplemental Table S2). This analysis
identified one trans-eQTL, rs1522653 on chromosome 11 that was
associated with the expression of five miRNAs (miR-15b, miR-26a,
miR-29a, miR-30c, and miR-103) (Fig. 3). To determine the sig-
nificance of this finding, we permuted 1,000 times the expression

levels of all miRNAs (preserving the miRNA expression matrix
per individual) and performed GWAS for each permuted data set.
From this, we estimated the empirical significance of our master
regulator to be equal to 0.005 (Fig. 3; see Methods).

Remarkably, rs1522653 is an intergenic SNP, located in a large
gene desert (3.29 Mb with no annotated protein-coding or non-
coding RNAs); the nearest gene, FAM181B, maps 1.59 Mb away
(Supplemental Fig. S2). The identification of regulatory variants
associated with the expression levels of multiple miRNAs may
point to potential “master regulatory” properties and suggests that
the expression levels of groups of miRNAs may be coordinated
through the use of common regulatory elements. This hypothesis
predicts that the five miRNAs associated with rs1522653 should
display related expression profiles. To test this hypothesis, we
compared the average of the correlation values of the five miRNAs
associated with 151522653 to 10,000 sets of five randomly selected
miRNAs. We found that the observed average correlation of 0.44
is higher than that expected by chance (permutated P-value of
0.0012) (Supplemental Fig. S3). We also examined whether the
predicted target transcripts of the five miRNAs associated with a
master regulator share molecular functions. We investigated Gene
Ontology (GO) terms from computational target predictions of the
five coregulated miRNAs (miRanda [John et al. 2004] from the
miRBase-Targets database [Griffiths-Jones et al. 2008]). This anal-
ysis revealed that the mRNA targets for these five miRNAs are sig-
nificantly enriched for “protein-binding process” (P = 4.4 X 108,
Fisher’s exact test), “transcription regulator activity” (P = 7.8 X
107%), and “transcription factor activity” (P = 1.2 X 10~%) (Sup-
plemental Table S3).

We therefore propose a model in which certain eQTLs act
as master regulators by comodulating the expression of multiple
miRNAs, thus revealing a novel mechanism for coregulation of
miRNA expression.

Discussion

This study provides an initial assessment of the expression level
variation of mature human miRNAs and explores how these levels
are regulated by common genetic variants in fibroblasts from Eu-
ropean individuals. Since we only studied one cell type, the eQTLs
identified here are likely to represent a small subset of regulatory
variation affecting miRNA levels. Indeed, many miRNAs are ex-
pressed in a tissue-restricted manner (Landgraf et al. 2007) and are
thus likely to have tissue-specific regulators, as reported recently
for protein coding genes (Dimas et al. 2009).

Earlier studies have shown that common genetic variants
contribute significantly to the individual differences in protein-
coding gene expression variation (Cheung et al. 2003, 2005;
Morley et al. 2004; Deutsch et al. 2005; Stranger et al. 2005, 2007;
Spielman et al. 2007; Storey et al. 2007) and transcript isoform
variation (Hull et al. 2007; Kwan et al. 2007, 2008; Zhang et al.
2009). Our study adds a level of complexity to cellular gene ex-
pression regulation by revealing that cis- and trans-eQTLs can af-
fect the expression of miRNAs that are themselves regulatory
molecules. eQTLs identified in this study are potential candidates
for the involvement in human phenotypes. Differences in the
quantity of mature miRNAs have a clear impact on the level of
targeted proteins and result in phenotypic differences (Sethupathy
et al. 2007; Baek et al. 2008; Selbach et al. 2008; Bartel 2009). The
subsequent identification of the functional variation related to
each eQTL type may provide important genomic targets for dis-
secting the molecular basis of susceptibility to genetic disorders.
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Examples of cis-eQTLs for miR-100 (A), miR-320 (B), and miR-218-1 (C). The panels show the distribution of —log;o P-values for SNPs across

a 1-Mb region surrounding the miRNA (0" position). The highest significant —log, ¢ P-values are shown as red dots. Also shown are the mapping of RefSeq
genes in blue and miRNAs in red. The boxplots depict the relationship between miRNA relative expression levels (log;) and genotypes for the most

significant SNPs. Boxplots are divided by median values.

Methods

Cell culture and RNA preparation

We obtained primary fibroblasts from 180 individuals of the
GenCord project. This collection was established from umbilical
cords of newborns of western European origin (following appro-
priate informed consent and approval by the Geneva University
Hospital’s ethics committee). All cell lines were grown in DMEM
with Glutamax I (Invitrogen) supplemented with 10% fetal calf
serum (Invitrogen) and 1% penicillin/streptomycin/fungizone mix
(Amimed, BioConcept) at 37°C and 5% CO,. Confluent cell lines
were trypsinized and diluted at a density of 7 X 10° cells/mL (40%
of confluence) and harvested the following day. Total RNA was
isolated using TRIzol (Invitrogen) according to the manufac-
turer’s instructions. RNA quality was assessed using RNA 6000
NanoChips with the Agilent 2100 Bioanalyzer (Agilent), and RNA
was quantified with a NanoDrop spectrophotometer (NanoDrop
Technologies).

miRNA expression measurement and data normalization

Expression of 365 known human miRNAs was analyzed using
the TagMan Human MiRNA Array v1.0 early access (Applied Bio-
systems), according to the manufacturer’s instructions. Briefly,
800 ng of total RNA samples was used as template for eight mul-
tiplex reverse transcriptions containing up to 48 specific primers,
using the Multiplex RT for TagMan miRNA Assays Kit (Applied
Biosystems) under conditions defined by the supplier. Each cDNA
generated was amplified by quantitative PCR using 365 sequence-
specific primers from the TagMan miRNA Assays Human Panel on
an Applied Biosystems 7900 Fast Real Time PCR system. Absolute
threshold cycle values (Ct) were determined with the SDS 2.2
software (Applied Biosystems). A threshold value was determined
for each miRNA and used for all the 180 samples. All signals with
a Ct value of =34 (background threshold) were manually set to
undetermined. Indeed, we considered miRNA with a Ct value of
<34 as an “expressed miRNA.” Values were normalized across in-
dividuals using median normalization and were reported as an
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Figure 2.

Example of trans- eQTLs for miR-134. (A) Manhattan plot displays —logqo P-values of a GWAS for miR-134 expression variation. Each chro-

mosome is depicted as different shades of blue. Chromosome Y and mitochondrial genotypes have not been included in this study. Red dots indicate SNPs
with the highest significant P-values after Bonferroni correction for multiple testing (see Table 1). Those two eQTLs, rs2824791 on chromosome 21 and
rs7533447 on chromosome 3, are detailed in panels Band C, respectively. (B,C, left panels) The location of associated SNPs, as well as RefSeq transcripts,
conservation, and LD information (LOD scores for CEU population). (B,C, right panels) Boxplots for miRNA expression for different genotypic groups.

expression relative to the population mean for each miRNA as
described (Deutsch et al. 2005; Prandini et al. 2007). Log, values
were used for the association analysis. TagMan miRNA data sets
have been submitted to the NCBI Gene Expression Omnibus
(GEO) database under accession number GSE24610.

Genotyping

Genotyping was performed using the Illumina Hap550 or Hap550-
duo arrays. Genotype calling was performed using the BeadStudio
3.1 software. SNPs were filtered in a stepwise fashion using the
following criteria: (1) a SNP call frequency of at least 99%, (2)
cluster separation greater than 0.3, (3) SNPs with Het Excess values
between [—1.0 to —0.1] and [0.1 to 1.0] were removed, (4) SNPs
that violate Hardy-Weinberg equilibrium (HWE = P < 0.05) were
removed, (5) SNPs with a minimum allele frequency (MAF) < 0.02
were removed (at least seven heterozygous in our sample). After
filtering, 479,314 SNPs were retained for statistical analyses.
Genotyping data sets have been submitted to the European Ge-
nome-phenome Archive (EGA) database under accession number
EGAS00000000056.

Genome-wide and cis-association analysis

eQTLs were detected using linear regression as implemented in
the PLINK package (Purcell et al. 2007). For the cis-analysis, the
association of genotype with expression levels was calculated for

each miRNA within a 2-Mb window around its transcription start
site (1 Mb either side). Association was also calculated using
Spearman’s rank correlation and was compared to the extreme
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7
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Figure 3. Master miRNA trans-eQTLs. Plot shows SNPs associated with
the expression variation of multiple miRNAs (using a threshold of an un-
adjusted P-value < 107° per association) (see Supplemental Table S2).
Each circle represents a single SNP. Only SNPs with at least one association
below the P < 107° threshold are shown. One SNP (rs1522653) is sig-
nificantly associated with the expression of five miRNAs (*, permutated
P-value of 0.005). The identities and unadjusted P-values for these miRNAs
are shown.
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P-value distribution of similar associations calculated for 10,000
permutations of the expression phenotype for each miRNA (per-
mutation threshold) as previously reported (Stranger et al. 2007;
Dimas et al. 2009). We applied a permutation threshold of 0.05 per
gene, and we subsequently estimated the FDR on our number of
discoveries based on the fact that we expected 5% of the miRNA
genes to have a significant signal under the null. This design,
which we have extensively applied in the past (Stranger et al. 2005,
2007; Bartel 2009; Dimas et al. 2009; Montgomery et al. 2010),
allows for simultaneous assessment of the multiple testing effect
of all markers tested within a 2-Mb window as well as across all
phenotypes tested. For visualization and graphical displays, we
used WGAviewer (Ge et al. 2008).

Gene Ontology annotation analysis

Analysis were conducted using Bioconductor GO stats version
2.8.0 and annotation Ms.eg.db version 2.2.6 packages (FDR ad-
justed P-value < 0.05) (Falcon and Gentleman 2007).

Expression clustering analysis

Hierarchical clustering was performed using Pearson correlation as
a similarity measure and average linkage as an agglomerative hi-
erarchical clustering algorithm.

Statistical analysis for master regulator identification

We tested for each SNP how many miRs were associated using an
unadjusted P-value < 107°. To estimate the significance for our
findings, we permuted 1000 times the miR expression phenotypes
(preserving the miR expression matrix per individual) and per-
formed GWAS for each permuted data set.
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miRmap library is Python library organized with ...

The miRmap library is a Python library predicting the repression strength of microRNA (miRNA) targets. The model
combines:

 thermodynamic features: AG duplex, AG binding, AG open and AG total,
* evolutionary features: BLS and PhyloP,
* probabilistic features: P.over binomial and P.over exact, and

* sequence-based features: AU content, UTR position and 3’ pairing.
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CHAPTER
ONE

DOWNLOAD

miRmap distribution is available http://cegg.unige.ch/mirmap/miRmap-1.0.tar.gz.

Note: To the reviewers.
This section is temporary.

After acceptance of the article, we will open the public repository hosted on BitBucket http://dev.vejnar.org/mirmap.
The source code will be separated from the binaries. Features of BitBuket, including bugs and issues trackings, wiki,
etc... will be available at the same time.
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CHAPTER
TWO

INSTALLATION

2.1 Requirements

The miRmap library has the following requirements:

L.

miRmap requires Python 2.7 but it can be used with Python 2.6 if the collections module is installed (A
version compatible with Python 2.4-2.6 is available as the ordereddict module.).

. For the evolutionary features, the Python library DendroPy is needed for tree manipulation. You can install

DendroPy directly from the Python Package Index.

. Clibrairies. A compiled version of the 3 libraries (*.so) is included in the miRmap distribution. If you want/have

to compile them, please follow these intructions:
* For the thermodynamic features, the Vienna RNA library is required.
Download the latest Vienna RNA tarball (Versions 1.8.x were successfully tested), then do:

cd ViennaRNA-<version>

./configure --without-kinfold --without-forester --without-svm —--without-perl
make

gcc -shared -Wl,-02 -o lib/libRNAvienna.so ‘find 1ib/ -name "x.o"' -1m

* For the evolutionary features, the PHAST library is required (The CLAPACK has to be compiled
first, please follow the instructions in Phast package).

svn co http://compgen.bscb.cornell.edu/svnrepo/phast/trunk phast
cd phast/src

In the file make-include.mk, add the -DUSE_PHAST MEMORY_HANDLER
parameter to the line starting with CFLAGS += —-IS${INC}
-DPHAST_VERSION=${PHAST_VERSION}. Then replace the path to the CLAPACK and
compile with:

make CLAPACKPATH=../CLAPACK-3.2.1 sharedlib

* For the Pover exact feature, the Spatt library is required (You will need a working copy of CMake
on your system).

Download the latest Spatt tarball (Version 2.0 was successfully tested), then do:

cd spatt-<version>
mkdir build

cd build
cmake -DWITH_SHARED_LIB=ON ..
make
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From the directory you compiled the C libraries:

mv spatt-<version>/libspatt2/libspatt2.so mirmap/libs/default
mv ViennaRNA-<version>/lib/libRNAvienna.so mirmap/libs/default
mv phast/lib/sharedlib/libphast.so mirmap/libs/default

136
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CHAPTER
THREE

USAGE

Example with the pure Python features.

>>>
>>>

>>>
>>>
>>>

>>>

import mirmap

seq_target = ’GCUACAGUUUUUAUUUAGCAUGGGGAUUGCAGAGUGACCAGCACACUGGACUCCGAGGUGGUUCAGACAAGACAGAGGGGAG(
UCCCGCCAGGAGCUUCUUCGUUCCUGCGCAUAUAGACUGUACAUUAUGAAGAAUACCCAGGAAGACUUUGUGACUGUCACUUGCUGCUUUUUCUGC(
GUUGGCAAACGAGACUUUCUCCUGGCCCCUGCCUGCUGGAGAUCAGCAUGCCUGUCCUUUCAGUCUGAUCCAUCCAUCUCUCUCUUGCCUGAGGGG!
AGGCAGAGAACAGAACUGGAGGCAGUCCAUCUA’

seq_mirna = ’'UAGCAGCACGUAAAUAUUGGCG’

[186]

>>>
>>>
>>>
>>>

mim = mirmap.mm(seq_target, seqg_mirna)
mim.find_potential_targets_with_seed(allowed_lengths=[6,7], allowed_gu_wobbles={6:0,7:0},\
allowed_mismatches={6:0,7:0}, take_best=True)

mim.end_sites # Coordinate(s) (3’ end) of the target site on
mim.eval_tgs_au(with_correction=False) # TargetScan features manually evaluated with
mim.eval_tgs_pairing3p(with_correction=False) # a non-default parameter.
mim.eval_tgs_position(with_correction=False)

mim.prob_binomial # mim’s attribute: the feature is automatically

0.03311825751646191

>>>
155
\

print mim.report ()
186
\

CAGGAAGACUUUGUGACUGUCACUUGCUGCUUUUUCUGCGCU

FEErrrn.
GCGGUUAUAAAUGCACGACGAU

AU content 0.64942

UTR position 166.00000

3’ pairing 1.00000

Probability (Binomial) 0.03312
With the C libraries installed:

>>>
>>>
>>>
-13.
>>>

import mirmap.library link

mim.libs = mirmap.library_link.LibraryLink(’libs/compiled’) # Change to the path where you unzipj
mim.dg_duplex

5

mim.dg_open

12.180591583251953
>>> mim.prob_exact
0.06798900807193115
>>> print mim.report ()

155
\

186
\

CAGGAAGACUUUGUGACUGUCACUUGCUGCUUUUUCUGCGCU

137



APPENDIX

miRmap Documentation, Release 1.0

GCGGUUAUAAAUGCACGACGAU

AG duplex (kcal/mol) -13.50000

AG binding (kcal/mol) -11.91708

AG open (kcal/mol) 12.18059

AU content 0.64942

UTR position 166.00000

3’ pairing 1.00000

Probability (Exact) 0.06799

Probability (Binomial) 0.03312

8 Chapter 3. Usage
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CLASSES

mm and mmPP base classes of miRmap that inherit their methods from all the modules. Each module define the
methods for one category.

class mirmap .mm (farget_seq, mirna_seq, min_target_length=None)
Bases: mirmap.evolution.mmEvolution, mirmap.model.mmModel,
mirmap.prob_binomial .mmProbBinomial, mirmap.prob_exact.mmProbExact,
mirmap.report.mmReport,mirmap.thermo.mmThermo,mirmap.targetscan.mmTargetScan

miRNA and mRNA containing class.
Parameters
* target_seq (str) — Target sequence (mRNA).
¢ mirna_seq (str) — miRNA sequence.

* min_target_length (inf) — Target site length, base-pairing independent.

eval_cons_bls (aln_fname=None, aln=None, aln_format=None, aln_alphabet=None,
subst_model=None, tree=None, fitting_tree=None, use_em=None,
libphast=None, motif_def=None, motif_upstream_extension=None, mo-

tif_downstream_extension=None)
Computes the Branch Length Score (BLS).

Parameters
* aln_fname (str) — Alignment filename.
* aln (str) — Alignment it-self.
* aln_format (str) — Alignment format. Currently supported is FASTA.

« aln_alphabet (l/ist) — List of nucleotides to consider in the aligned sequences (others get
filtered).

* subst_model (str) — PhyloFit substitution model (REV...).

tree (str) — Tree in the Newick format.

fitting_tree (bool) — Fitting or not the tree on the alignment.

* use_em (bool) — Fitting or not the tree with Expectation-Maximization algorithm.

libphast (LibraryLink) — Link to the Phast library.

motif_def (str) — ‘seed’ or ‘seed_extended’ or ‘site’.
* motif_upstream_extension (int) — Upstream extension length.

* motif_downstream_extension (inf) — Downstream extension length.
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eval_dg_duplex (librna=None, mirna_start_pairing=None)
Computes the AG duplex and AG binding scores.

Parameters
* librna (LibraryLink) — Link to the Vienna RNA library.
* mirna_start_pairing (inf) — Starting position of the seed in the miRNA (from the 5’).

eval_dg_open (librna=None, upstream_rest=None, downstream_rest=None,

dg_binding_area=None)
Computes the AG open score.

Parameters
* librna (LibraryLink) — Link to the Vienna RNA library.
* upstream_rest (int) — Upstream unfolding length.
* downstream_rest (int) — Downstream unfolding length.

* dg_binding_area (int) — Supplementary sequence length to fold (applied twice: upstream
and downstream).

eval_dg_total ()
Computes the AG total score combining AG duplex and AG open scores.

eval_prob_binomial (markov_order=None, alphabet=None, transitions=None, motif_def=None,

motif_upstream_extension=None, motif_downstream_extension=None)
Computes the P.over binomial score.

Parameters
* markov_order (int) — Markov Chain order
« alphabet (list) — List of nucleotides to consider in the sequences (others get filtered).
* transitions (/ist) — Transition matrix of the Markov Chain model
¢ motif_def (srr) — ‘seed’ or ‘seed_extended’ or ‘site’.
* motif upstream_extension (int) — Upstream extension length.
* motif_downstream_extension (inf) — Downstream extension length.

eval_prob_exact (libspatt=None, markov_order=None, alphabet=None, transi-
tions=None, motif_def=None, motif_upstream_extension=None, mo-

tif_downstream_extension=None)
Computes the P.over binomial score.

Parameters
* libspatt (LibraryLink) — Link to the Spatt library.

* markov_order (int) — Markov Chain order

alphabet (l/ist) — List of nucleotides to consider in the sequences (others get filtered).

transitions (/ist) — Transition matrix of the Markov Chain model

motif_def (str) — ‘seed’ or ‘seed_extended’ or ‘site’.
* motif_upstream_extension (int) — Upstream extension length.

* motif_downstream_extension (inf) — Downstream extension length.

10 Chapter 4. Classes
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eval_selec_phylop (aln_fname=None, aln=None, aln_format=None, aln_alphabet=None,
mod_fname=None, libphast=None, method=None, mode=None,
motif_def=None, motif_upstream_extension=None, mo-

tif_downstream_extension=None)
Computes the PhyloP score.

Parameters
¢ aln_fname (str) — Alignment filename.
e aln (str) — Alignment it-self.
* aln_format (str) — Alignment format. Currently supported is FASTA.

* aln_alphabet (/ist) — List of nucleotides to consider in the aligned sequences (others get
filtered).

¢ mod_fname (str) — Model filename.

libphast (LibraryLink) — Link to the Phast library.

* method (str) — Test name performed by PhyloP (SPH...).

* mode (str) — Testing for conservation (CON), acceleration (ACC) or both (CONACC).
* motif_def (sir) — ‘seed’ or ‘seed_extended’ or ‘site’.

* motif_upstream_extension (int) — Upstream extension length.

* motif_downstream_extension (inr) — Downstream extension length.

eval_tgs_au (ts_types=None, ca_window_length=None, with_correction=None)
Computes the AU content score.

Parameters
* ts_types (object) — Parameters by seed-type.
* ca_window_length (inf) — Sequence length to compute the score with.
 with_correction (bool) — Apply the linear regression correction or not.

eval_tgs_pairing3p (ts_types=None, with_correction=None)
Computes the 3’ pairing score.

Parameters
* ts_types (object) — Parameters by seed-type.
» with_correction (bool) — Apply the linear regression correction or not.

eval_tgs_position (ts_types=None, with_correction=None)
Computes the UTR position score.

Parameters
* ts_types (object) — Parameters by seed-type.
» with_correction (bool) — Apply the linear regression correction or not.

eval_tgs_score (ts_types=None, with_correction=None)
Computes the TargetScan score combining AU content, UTR position and 3’ pairing scores.

Parameters
* ts_types (object) — Parameters by seed-type.

» with_correction (bool) — Apply the linear regression correction or not.

11
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find potential_ targets_with_seed (mirna_start_pairing=None, allowed_lengths=None, al-
lowed_gu_wobbles=None, allowed_mismatches=None,

take_best=None)
Searches for seed(s) in the target sequence.

Parameters
* mirna_start_pairing (int) — Starting position of the seed in the miRNA (from the 5”).
« allowed_lengths (l/ist) — List of seed length(s).

« allowed_gu_wobbles (dict) — For each seed length (key), how many GU wobbles are
allowed (value).

« allowed_mismatches (dict) — For each seed length (key), how many mismatches are al-
lowed (value).

take_best (bool) — If seed matches are overlapping, taking or not the longest.

report ()
Returns a formatted report of already computed features for all target site(s).

cons_bls
Branch Length Score (BLS) with default parameters.

dg_duplex
AG duplex score with default parameters.

dg_open
AG open score with default parameters.

dg_total
AG total score with default parameters.

prob_binomial
P.over binomial score with default parameters.

prob_exact
P.over exact score with default parameters.

selec_phylop
PhyloP score with default parameters.

tgs_score
TargetScan score with default parameters.

class mirmap .mmPP (target_seq, mirna_seq, min_target_length=None)
Bases: mirmap.model.mmModel, mirmap.prob_binomial .mmProbBinomial,
mirmap.report.mmReport, mirmap.targetscan.mmTargetScan

miRNA and mRNA containing class with pure Python methods only.
Parameters
* target_seq (str) — Target sequence (mRNA).
* mirna_seq (str) — miRNA sequence.
* min_target_length (inr) — Target site length, base-pairing independent.

eval_prob_binomial (markov_order=None, alphabet=None, transitions=None, motif_def=None,

motif_upstream_extension=None, motif_downstream_extension=None)
Computes the P.over binomial score.

Parameters

12 Chapter 4. Classes
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¢ markov_order (inf) — Markov Chain order

alphabet (/ist) — List of nucleotides to consider in the sequences (others get filtered).

transitions (/ist) — Transition matrix of the Markov Chain model

motif_def (str) — ‘seed’ or ‘seed_extended’ or ‘site’.
* motif_upstream_extension (inf) — Upstream extension length.
* motif_downstream_extension (int) — Downstream extension length.

eval_tgs_au (ts_types=None, ca_window_length=None, with_correction=None)
Computes the AU content score.

Parameters
* ts_types (object) — Parameters by seed-type.
* ca_window_length (inf) — Sequence length to compute the score with.
 with_correction (bool) — Apply the linear regression correction or not.

eval_tgs_pairing3p (ts_types=None, with_correction=None)
Computes the 3’ pairing score.

Parameters
* ts_types (object) — Parameters by seed-type.
» with_correction (bool) — Apply the linear regression correction or not.

eval_tgs_position (ts_types=None, with_correction=None)
Computes the UTR position score.

Parameters
* ts_types (object) — Parameters by seed-type.
» with_correction (bool) — Apply the linear regression correction or not.

eval_tgs_score (ts_types=None, with_correction=None)
Computes the TargetScan score combining AU content, UTR position and 3’ pairing scores.

Parameters
* ts_types (object) — Parameters by seed-type.
» with_correction (bool) — Apply the linear regression correction or not.

find _potential_targets_with_seed (mirna_start_pairing=None, allowed_lengths=None, al-
lowed_gu_wobbles=None, allowed_mismatches=None,

take_best=None)
Searches for seed(s) in the target sequence.

Parameters
* mirna_start_pairing (int) — Starting position of the seed in the miRNA (from the 5”).
« allowed_lengths (l/ist) — List of seed length(s).

« allowed_gu_wobbles (dict) — For each seed length (key), how many GU wobbles are
allowed (value).

« allowed_mismatches (dict) — For each seed length (key), how many mismatches are al-
lowed (value).

take_best (bool) — If seed matches are overlapping, taking or not the longest.

13
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report ()

Returns a formatted report of already computed features for all target site(s).

prob_binomial
P.over binomial score with default parameters.

tgs_score
TargetScan score with default parameters.

classmirmap.library_link.LibraryLink (library_path=None)

Parameters library_path (str) — Path to the C dynamic libraries.

14
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CHAPTER
FIVE

COPYRIGHT, LICENSE AND
WARRANTY

The miRmap library is:
Copyright 2011 Charles E. Vejnar

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License version 3 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program (in /LICENCE). If not,
see GNU Licenses.
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PYTHON MODULE INDEX

mirmap, 9
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