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Abstract

We describe the entire phase structure of a large number of colour generalized Yang–Mills theories in
1+1 dimensions. This is illustrated by the explicit computation for a quartic plus quadratic model. We show
that the Douglas–Kazakov and cut-off transitions are naturally present for generalized Yang–Mills theories
separating the phase space into three regions: a dilute one a strongly interacting one and a degenerate one.
Each region is separated into sub-phases. For the first two regions the transitions between sub-phases are
described by the Jurkiewicz–Zalewski analysis. The cut-off transition and degenerated phase arise only for
a finite number of colours. We present second-order phase transitions between sub-phases of the degenerate
phase.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

Since ’t Hooft’s seminal work, the Yang–Mills theory in 1+1 dimensions (YM2) has become
a laboratory for testing ideas and concepts about Yang–Mills and also string theory. The YM2
theory has an exact stringy description in the limit of a large numberN of colours[1–3]. It is also
known that one can build generalizations of the YM2 theory[1,4] and that such generalizations
have also a stringy behaviour at largeN [5]. It was also shown that YM2 has different phases,
and in particular a third-order transition was present by Douglas and Kazakov[6] (here after
DK transition). Recently, new progress has been made in YM2. In particular it was shown that
its time evolution could be interpreted as a Brownian motion into the gauge group[7–9]. The
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equivalent of the cut-off transition, well known for Brownian motion, has also been identified in
YM2, and is different from the DK one.

The relevant parameter for both cut-off and DK transitions is the area of the manifold, which
plays the role of an inverse temperature. The phase space is then a half-line for the area running
from zero to infinity. As fermions do the YM2 state density is limited by 1 and the fermionic
picture can be used to help understand the phase structure: at very low temperature the system
behaves as a degenerate Fermi liquid. Raising the temperature, we found the cut-off transition
and above it a strong interacting phase where the exclusion principle is at work. At high temper-
ature the fermions dilute and finally the density falls down below 1. Above this point (the DK
transition) the fermionic nature is irrelevant, and we have a weak interacting system.

Working with generalized Yang–Mills (GYM) theory the phase space opens from the half-line
of the YM2 case to a hyper plane.

All generalized YM2 theories have the same structure. It is therefore possible to capture all
essential features of their phase space by studying a particular model. In this paper we pick up
a quartic plus quadratic model and describe its phase space and transitions. From this study we
deduce the general case. In particular, we show that the cut-off and the DK transitions are general
features that extend into generalized YM2 and that such transitions coexist with those described
by Jurkiewicz and Zalewski[13] (hereafter JZ transitions).

This paper is organized as follows. We first recall in Section2 how the generalization of YM2
is obtained. We define the model we use in Section3. We present the phase space and our main
results in Section4. Detail of the computations are given in the following sections: DK and JZ
transition in Sections5, 6 and 7, cut-off transition in Section8, transition between the degenerate
phases in Section9. We draw some conclusions in Section10.

2. Generalized YM2

The action is the key for building the generalized YM2. Rather than writing the usual action
with theFµνFµν term, we follow Ref.[1] and use an equivalent action with an auxiliary fieldφ.
For thed = 2 case, this action is

(1)I = −1

4

∫
d2x

(
i
∑
a

φaε
µνFµν a + g2

2

∑
a

φaφa

)
.

The generalized YM2 theories (GYM2) are obtained by replacingg2

2

∑
a φaφa by a sum contain-

ing other terms of higher order inφ with other coupling constant. Building a generalized heat
kernel equation[4] and using the holonomy variable, we obtain a Hamiltonian of the form

(2)HG =
∑

k

λkL

Nk−1
Ck,

with a higher order Casimir operatorCk rather than only the usual quadratic one. This Hamil-
tonian replaces the YM2 one which is1

(3)H2 = λ/2L

N
C2.

1 Note that the 1/2 is re-absorbed intoλ2 for the generalized case.
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In the above expressions we have absorbed the coupling constant into the generalization of the
’t Hooft couplingλk , which is held fixed at largeN [4].

The YM2 partition function[1,10] on an orientable surfaceM of genusg, with p boundaries
and surfaceA, is a sum over the irreducible representationsR of the gauge group:

(4)ZM =
∑
R

d
2−2g−p
R χR(U1) · · ·χR(Up)exp

{
−λ2A

2N
C2(R)

}
,

wheredR is the dimension of the representation andχR(Uj ) the character of the holonomyUj .
Its generalized counterpart is simply

(5)ZM =
∑
R

d
2−2g−p
R χR(U1) · · ·χR(Up)exp

{
−

∑
k

λkA

Nk−1
Ck(R)

}
.

Until this point the analysis has been completely general. In order to perform the sum over the
irreducible representations, we now specify the gauge group. We are interested inSU(N). These
groups have irreducible representations labeled by maximal weight{hi}. A Young diagram can
be associated to each representation with rows of a length given by{hi}. We make the usual
change of variables{ni = hi + N+1

2 − i}. The computation of the symmetrized quartic Casimir
for SU(N) can be found in[5]. We have

(6)C2
({ni}

) =
N∑

i=1

n2
i − 1

N

(
N∑

i=1

ni

)2

− N(N2 − 1)

12
,

C4
({ni}

) =
N∑

i=1

n4
i − 2N2 − 3

6

N∑
i=1

n2
i − 4

N

N∑
i=1

n3
i

N∑
j=1

nj + 6

N2

N∑
i=1

n2
i

(
N∑

j=1

nj

)2

(7)+ N2 − 3

6N

(
N∑

i=1

ni

)2

− 3

N

(
N∑

i=1

ni

)4

+ N(N2 − 1)(11N2 − 9)

720
.

3. Quartic model

We focus on the case of the sphere, i.e., we study the model for a surfaceM with g = 0 and
no boundary. For YM2, the partition function reduces to

(8)ZS =
∑

n1>n2>···>nN

(∏
i<j

(ni − nj )

j − i

)2

exp

{
−λ2A

2N

∑
n2

i

}
exp

{
λ2A(N2 − 1)

12

}
.

As the denominator
∏

i<j (j − i) is the same for all the representations, one can see it as a
normalization constant and forget it. Note that the rescaled areaλ2A plays the role of an inverse
temperature and that in the large-N limit this model is equivalent to fermions in a potential (in
the sense that the state density cannot be greater than 1). The transitions we consider arise in the
large-N limit for very different values of the rescaled area.

Rather than dealing with the general case, one can capture the essential features of the GYM
by studying the quartic Casimir case.2 We use the case of a GYM2 model with a mix of the

2 Models where the higher Casimir is odd do not lead to an energy bounded from below and therefore do not produce
a well defined theory.
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quartic and quadratic Casimir instead of only the quadratic one. The Hamiltonian is now given
by

(9)Hm = λ2/2L

N
C2 + λ4L

N3
C4 = λ4L

(
µ/2

N
C2 + 1

N3
C4

)
,

whereµ is the ratio of the 2 coupling constantsµ = λ2/λ4, and we have kept explicit the factor 2
of λ2/2 in order to make the contact between the limitsµ → ∞ and YM2. The partition function
is

(10)ZS =
∑

n1>···>nN

∏
i<j

(ni − nj )
2 exp

{
−λ4A

(
µ

2N
C2

({ni}
) + 1

N3
C4

({ni}
))}

.

From now on we will work with theSU(N) group, thereforeC2({ni}) andC4({ni}) are given by
(6) and (7).

4. Phase space

The phase space is described by the variablesAλ4 andµ. We can also recast these two vari-
ables into the Jurkiewicz–Zalewski description[13]:

(11)β2 = λ2A = µλ4A,

(12)β4 = λ4A.

In this paper, we will use both parameterizations.
Anticipating our results, we plot the complete phase space (seeFig. 1) for theβ ’s parameter-

ization.
As in the YM2 case, we have three kinds of phases.
For smallβ ’s (high temperature) we have dilute phases where the state density is everywhere

below 1. There are two different dilute phases. The first one has a continuous state density and
the other one a gapped state density. Between these two phases a third-order phase transition
takes place as expected from JZ work[13]. The dilute phases and the transition in between are
described in Section5.

Raisingβ ’s, we cross the DK transition (seeSections 5 and 6). The DK transition is a high-
temperature process. It is easier to have intuition about it in the fermionic picture. Raisingβ ’s
corresponds to lets the temperature go down. The dilute fermions concentrate until the maximum
of the state density is 1. Below this critical temperature, the fermionic nature comes into play. We
bring the DK transition to light by reversing this conceptual chain: we compute the state density
in a bosonic picture. The DK transition takes place for the value of theβ ’s for which the state
density goes above 1.

After the DK transition we enter into strongly interacting phases. Again these are separated in
different subspaces, which are the continuation of the JZ ones.

Working at finiteN , we encounter another phase transition for highβ ’s. This is the cut-
off transition (see Section8). This takes place at low temperature, when the fundamental state
ceases to dominate the partition function. This transition was discovered as an analogy of the
cut-off transition for random walk on a finite surface[7–9]. In the fermionic picture it simply
corresponds to the temperature crossing of the Fermi energy. The cut-off transition takes place
along the two (N -dependent) curves:

(13)β2 = 4 ln(N) − β4

3
,
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Fig. 1. The (β2, β4) plane forN = 10000, with the typical form of the density function for each phase. The 2 red dots are
the DK and cut-off transitions for YM2 at the usual valuesβ2|DK = π2 andβ2|cut-off = 4 ln(N). The actual location of
the thin lines sketched into the strongly interacting phase (phases with tray) areN -dependent and not computable with
the methods used in this article. The dashed lines correspond to second order phase transitions and (apart for the gray
line of the cut-off transition) the continuous lines to third order phase transitions. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

(14)β2 = 7

24
β4 − 4 ln(N) + 1

8

√
β2

4 + 64β4 ln(N).

These lines draw a triangle with summit

(15)(β2, β4) =
{(

0,−4 ln(N)
)
,
(
0,4 ln(N)

)
,

(
4

3
ln(N),8 ln(N)

)}
.

The last summit lies on the lineµ = β2/β4 = 1/6.
For largerβ ’s (and finiteN ) the system is in degenerate phases. There are two degenerates

phases (the fundamental state being given by the trivial or a stepped representation; see Sec-
tion 8), which are separated by theβ4 = 6β2 line. We show in Section9 that a second-order
phase transition between the two degenerate phases occurs along this line.

5. DK transition for GYM2

The DK transition manifests itself as a saturation of the state density. In the large-N limit,
after passing to a continuous variable, one can show that the state densityρ cannot exceed 1.
This constraint is not built in the Gaussian matrix model that we use to computeρ [9]; we can
therefore track the state density only until its maximum reaches 1. After which the DK transition
takes place. Therefore, finding a value of the parameter (the rescaled area) for whichρ reaches
the value 1 is sufficient to claim the presence of the DK transition.
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We start by presenting the YM2 DK transition. In order to compute the state density, we
perform a saddle-point analysis of the partition function(8), rewriting it as

(16)ZS =
∑

n1>n2>···>nN

eN2Seff,

(17)Seff = 2

N2

∑
j<i

ln
(|ni − nj |

) − λ2A

2N3
C2.

Taking as zero the variation ofSeff with respect toni , and passing to continuous variables through
ni

N
= n and 1

N

∑ = ∫
dnρ(n), we obtain forρ(n) a singular integral equation[11]

(18)P

∫
dn′ ρ(n′)

n − n′ = λ2A

2
n,

whereP
∫

is the principal value integral. This equation can be solved under the assumption that
n varies continuously on a single interval (one-cut solution) and we obtain[11,12]

(19)n ∈
[
− 2√

λ2A
,

2√
λ2A

]
,

(20)ρ(n) = λ2A

2π

√
4

λ2A
− n2.

The maximum ofρ arises forn = 0 and is equal to 1 ifλ2A = π2. The DK transition takes place
for the valueπ2 of the rescaled areaλ2A.

We tract out the DK transition for the quartic plus quadratic GYM2 following the above steps.
The effective action that replaces(17) is computed using(6) and (7)and is

(21)Seff = −λ4A

(
1

N5
C4 + µ

2N3
C2

)
+ 2

N2

∑
j<i

ln
(|ni − nj |

)

= −λ4A

[
1

N

∑
i

(
ni

N

)4

−
(

3µ − 2

6
− 1

2N2

)
1

N

∑
i

(
ni

N

)2

− 4
1

N

∑
i

(
ni

N

)3 1

N

∑
j

nj

N
+ 6

1

N

∑
i

(
ni

N

)2
(

1

N

∑
j

nj

N

)2

− 3

(
1

N

∑
i

ni

N

)4

+
(

1− 3µ

6
− 1

2N2

)(
1

N

∑
i

ni

N

)2]

(22)+ 1

N2

∑
j<i

(
2 ln

(|ni − nj |
) + λ4A

ninj

3N2

)
+ const.

After taking the variation and changing for continuous variables,3 we obtain the singular
integral equation

P

∫
dn′ ρ

(
n′) 1

n − n′ − λ4A

2

(
4n3 + 3µ − 2

3
n

)

3 As the continuous limit is valid for largeN , we can drop the sub-leading contributions.
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= λ4A

2

[∫
dn′ ρ

(
n′)(−12n2n′ − 4n′3 + 1− 3µ

2
n′

)

+ 12
∫

dn′ ρ
(
n′)∫

dn′′ ρ
(
n′′)(nn′n′′ + n′2n′′)

(23)− 12
∫

dn′ ρ
(
n′)∫

dn′′ ρ
(
n′′)∫

dn′′′ ρ
(
n′′′)n′n′′n′′′

]
.

In order to solve this equation forρ(n) we face two new problems. First, if we write the left-hand
side of this equation into a kernel form we have no longer a Cauchy type integral and, second, we
can learn from the study of the cut-off transition (see Section8) that the largeλ4A distribution
of n may have a gap for some range ofµ. So we have to be careful where the one-cut hypothesis
is valid and work with a two-cut case where it is not.

Looking at (22) one can see that symmetric tables (in the sensenk = −nN−k+1) are local
minimum ofSeff. Therefore, in the saddle point analysis we will look at distributionsρ(n) which
are compatible with this property. That is we restrict ourself to distributions which satisfyρ(n) =
ρ(−n). This symmetry hypotheses together with the fact that the integral range is symmetric
around 0 gives for oddk

(24)
∫

dn′ ρ
(
n′)n′k = 0,

and(23) reduces to

(25)P

∫
dn′ ρ(n′)

n − n′ = λ4A

2

(
4n3 + 3µ − 2

3
n

)
.

Working with (25), we have to ensure that the symmetry condition is fulfilled.

5.1. One-cut solution

From the study of the low-temperature case, we expect that, for large enoughµ, the distri-
bution ρ(n) will contain no gap. The corresponding solution for(25) is the so-called one-cut
solution.4 Solving(25) can be done using the same machinery as for(18) (see[11]). We obtain
the interval[−a, a] given by

(26)a2 = 1

18

(
2− 3µ +

√
9µ2 − 12µ + 4+ 432

λ4A

)

and, after some computation, the state density

(27)ρ(n) = λ4A

2π

(
3µ − 2

3
+ 2a2 + 4n2

)√
a2 − n2.

This function fulfills the symmetry condition and has a maximum atn = 0 or two maxima at

(28)n = ±1

6

√
4− 6µ +

√
9µ2 − 12µ + 4+ 432/λ4A.

4 One-cut into the plane describing the complexified variablen.
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The boundary between these two cases is a curve into the(µ,λ4A) plane given by the right
branch of

(29)B1: λ4A =
(

4

µ − 2/3

)2

.

Above this curve the maximum arises atn = 0 and we can compute the value ofλ4A such that
ρ(0) = 1; this gives a curveTDK,1(µ), which has the asymptotic forµ → ∞ (β4 → 0):

(30)TDK,1(µ) = π2

µ
+

(
2π2

3
− 4

)
1

µ2
+O

(
1

µ3

)

and crossB1 for µ ∼ 2.588. BelowB1, the two maxima ofρ are equal to 1 for a curveTDK,2(µ),
which picks a maximum atµ = 2/3 and meetsTDK,1 onB1.

We have to check the one-cut condition. In the two-maxima region,ρ(0) is a minimum and
we verify that it is positive. If it is not the case we are no longer in the one-cut case. The equation
ρ(0) = 0 is satisfied on the left branch ofB1 and the one-cut solution breaks down above this
curve.

5.2. Two-cut solution

For smallµ we have to compute the two-cut solution. Using the symmetry condition and the
asymptotic conditions from the general formalism of[11], we can compute the state density. This
function has support on two segments[−a,−b] ∪ [b, a] and is given by[14,15]

(31)ρ(n) = 2λ4A

π
|n|

√
a2 − n2

√
n2 − b2.

With a, b satisfying

(32)a2 = 2− 3µ

12
+ 1√

λ4A
,

(33)b2 = 2− 3µ

12
− 1√

λ4A
,

b is real above the left branch of the curveB1, exactly where the one-cut solution ceases to be
valid. Finding the maximum ofρ(n) we are able to compute the area at which the DK transition
takes place. We obtain the curveTDK,3 which has the asymptotic forµ → −∞:

(34)TDK,3(µ) = −π2

µ
−

(
2π2

3
+ 4

)
1

µ2
+O

(
1

µ3

)

and meetsTDK,2 when crossing the curveB1. Thus the whole DK transition forSU(N) takes
place along a continuous curve (seeFig. 2).

Above the DK transition (for smaller temperature, larger area), the solutionρ(n) cannot be
trusted.

5.3. Jurkiewicz–Zalewski structure of the dilute phase

For small coupling values, we are below the DK transition, into dilute phases. We have three
regions: the two-cut, the one-cut with two maxima and the one-cut with one maximum, separated
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Fig. 2. The (µ,λ4A) plane with the one- and two-cut regions and typical form ofρ(n) in each region. The DK transition
lines are also plotted.

by the curveB1; that is, inβ ’s language

(35)β2 = 2

3
β4 ± 1

4
β

3/2
a .

Along the minus branch, between the one- and two-maximum one-cut regions, we have no phase
transition. The densityρ and its support[−a, a] are determined by the same functions, which
have no singularity of any type along this line; the free energy in the saddle approximation is
uniquely determined byρ.

Along the upper branch we expect from the JZ classification[13] a third-order phase transi-
tion, since a gap opens in the support ofρ. That is easily checked by noting that

(36)ρ2-cut(a,n)
∣∣
B1

= ρ1-cut(a,n)
∣∣
B1

= 2β4

π
n2

√
a2 − n2,

and that the support borna1-cut and a2-cuts have the same value and first derivative but have
a different second derivative. Detailed computation of the dilute phase structure can be found
into [16]

6. Degree of the DK phase transition for GYM2

We study the transition between the one-cut one-maximum phase and the corresponding phase
above the DK transition. Crossing the DK transition causes the maximum of the state density to
be replaced by a tray.

Working into the saddle approximation, the free energy depends only on the state densityρ.
We computeρ for the one-tray phase. The idea, see[6], is to set the density at 1 into an interval.
We expect a symmetric function and we can parameterizeρ by

(37)ρ(n) = 0, |n| > a,

(38)ρ(n) = ρ̃(n), c � |n| � a,

(39)ρ(n) = 1, |n| < c.
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Making the substitution into Eq.(25), we obtain a two-cut problem for̃ρ

(40)P

∫
dn′ ρ̃(n′)

n − n′ = λ4A

2

(
4n3 + 3µ − 2

3
n

)
− ln

(
n + c

n − c

)
.

We can use the same setup as in Section5.2(see[11] for details): we compute the resolvent forρ̃

(41)ω0(p) =
∮
C

dz

2πi

λ4A
2

(
4z3 + 3µ−2

3 z
) − ln

(
z+c
z−c

)
p − z

√
p2 − c2

√
p2 − a2

√
z2 − c2

√
z2 − a2

.

Deforming the contour to the pole at infinity we also enclose the cut of the logarithm. Taking the
discontinuity equation and coming back from̃ρ to ρ we eventually obtain the state density

(42)ρ(n) =
√

a2 − n2
√

n2 − c2

π

c∫
−c

ds

(n − s)
√

a2 − s2
√

c2 − s2
,

and from the asymptotic conditions a couple of equations

(43)0= λ4A

(
a2 + c2 + 3µ − 2

6

)
− 2

a
K(c/a),

(44)1= λ4A

(
a2c2

2
+ 3

4

(
a4 + c4) + 3µ − 2

12

(
a2 + c2))2a

(
K(c/a) − E(c/a)

)
,

whereK andE are the standard complete elliptic integrals. For a fixedλ4A andµ (β4, β2) we
can computea andc from the above equation. We can also fix other of these four variables.

In order to study the phase transition we look at thec → 0 limit. Keepingµ fixed we expand
a andλ4A = β4 in series ofc. The zeroth-order equation matches the values of the dilute phase
and the first correction is of orderc2. Plugging these solutions intoρ and computing the free
energy in the saddle approximation leads to a third-order phase transition. One can also find a
special case of this computation into[16]

7. Jurkiewicz–Zalewski structure of the strongly interacting phase

We present in this section the transition between the different phases with trays (strongly
interacting phase).

From the above section we know the form of the one-tray phase. We compute the two-tray
(and no-gap) phase. We are looking for the state densityρ to be an even function ofn with a
parameterization given by

(45)ρ(n) = 0, |n| > a,

(46)ρ(n) = ρ̃(n), c � |n| � a,

(47)ρ(n) = 1, c > |n| > d,

(48)ρ(n) = ρ̃(n), |n| � d.

Using resolvent method we obtain the state density for the two-tray (no-gap) phase which is
given by

(49)ρ(n) = 2

π

c∫
−c

ds
√

a2 − n2
√

c2 − n2
√

n2 − d2

(n − s)
√

a2 − s2
√

c2 − s2
√

d2 − s2
,
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we have also four asymptotic conditions. Only two of them are non-trivial and are

(50)0= λ4A

(
a2 + c2 + 3µ − 2

6

)
− 2

c∫
d

ds s√
a2 − s2

√
c2 − s2

√
d2 − s2

,

1= λ4A

(
a2c2 + a2d2 + c2d2

2
+ 3

4

(
a4 + c4 + d4) + 3µ − 2

12

(
a2 + c2 + d2))

(51)− 2

c∫
d

ds s3

√
a2 − s2

√
c2 − s2

√
d2 − s2

.

We have two equations for the five variables{a, c, d,λ4A,µ} (which reduce to Eqs.(43) and (44)
in the limit d → 0). So we can expressa andc as a function of theβ ’s and ofd . For fixedβ ’s
we obtain a family of solutions parameterized byd . All these solutions of the singular integral
equation(23)coexist and, in order to select the one to be used in the saddle-point we need another
equation. This can be done by performing the variation of the effective action with respect tod .
We can thus obtain the solutiondm as a function ofβ ’s. Note that without the symmetry condition
on ρ the system is under-constrained. Note also that solving the system is a highly non-trivial
task.

Finally, we have to take into account the fact that, by definition,b � 0 and keepb =
max(0, dm). So we are in the same situation we will encounter in Section9 and the phase transi-
tion between the one-tray and the two-tray phases has to be of second order.

This is consistent with the JZ classification if we focus onρ̃. The one-tray–two-tray phase
transition corresponds to the opening of a new interval into the support ofρ̃ and is thus of order
smaller than 3.

The same can be done for the gaped two-tray phase, looking at a four cuts solution. In this case
we have three non-trivial asymptotic conditions which together with the minimum of the effective
action are enough to fix the position of the trays and gap. According to JZ, the transition between
the two-tray and gapped two-tray phases, which is given by the opening of a new gap into the
support ofρ̃, has to be of order 3.

The fact that we can solve the position of trays and gaps is a peculiarity of the quartic plus
quadratic model under the symmetry condition. For other models multi-cuts solutions are under-
determined and extra constraints have to be imposed[17].

8. Cut-off transition for GYM2

Let us start by recalling the YM2 cut-off transition. We look at the fundamental state. The
trivial representation corresponds to the Young diagram with no box. In terms of{ni}, this gives

(52)R0: {ni} =
{

N − 1

2
,
N − 3

2
, . . . ,−N − 1

2

}
.

This representation minimizes the Casimir, and thus the energy. As explained in[9] the cut-off
transition takes place when this representation starts to dominate the other representations in
the partition function(8). This can be estimated by computing the ratio between the partition
function contribution fromR0 and the one from the “first exited” representation. In the case of
SU(N), above the trivial representation, we have the fundamental representationR1 (only one
box). We first compute the difference between the Casimir evaluate on this representation and
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the trivial one:

(53)∆2 = C2(R0) − C2(R1) = −N.

The ratio between theR0 andR1 contributions is

(54)
ZS(R0)

ZS(R1)
= 1

N2
exp

{−λ2A

2N
∆2

}
= 1

N2
eλ2A/2,

and the trivial representation starts to dominateR1 for the value ofλ2A given by

(55)λ2A = 4 ln(N).

So the system is in a degenerate phase when its rescaled areaλ2A is larger than 4 ln(N).
If we want to track the cut-off transition for the GYM2, we have to be careful: we cannot

directly extend the computation of the YM2 case, since the state with smallest energy is not
necessarily the trivial representation. We make the computation for our quartic plus quadratic
model.

8.1. Fundamental-state candidate

In order to find the fundamental state, we have to minimize the Hamiltonian over the repre-
sentations. In fact it is sufficient to find the representation{ni} that gives the smallest value for
the function

(56)E =
(

µ

2N
C2

({ni}
) + 1

N3
C4

({ni}
))

.

As already explain in Section5 symmetric table (in the senseni = −n(N−i+1)) are local mini-
mum of the effective action and also of the functionE and, we can guess that the fundamental
state is symmetric. For symmetric representations, theC4 has a term proportional to

∑
n4

i minus
a term in

∑
n2

i and theC2 will modulate this term. Using the fermionic analogy we can see the
system as fermions in a Mexican hat potential. For low Fermi energy, we expect to find two sets
of fermions, one around each minimum of the potential. Thus we expect a configuration with a
gap. Such a gaped configuration corresponds to a Young diagram with a step and we parameterize
it as

(57)ni = N + 1

2
− i + q

2
for i � N

2
,

(58)ni = N + 1

2
− i − q

2
for i >

N

2
.

Passing toQ = q/N , theQ-dependent part of the functionE takes the value

(59)E(RQ) = N2Q

8

(
Q3

2
+ Q2 + 3µ + 1

3
Q + 6µ − 1

6

)
+O(N).

This function has a minimum, solution of∂E(RQ)

∂Q
= 0, which is given by

(60)Qm = −1

2
+

√
5

12
− µ.

By definition,Q � 0 and therefore forµ � 1
6 we haveQm = 0, i.e. the fundamental state is the

trivial representation. Below16 the fundamental state is a step given by the above equation.
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Fig. 3. The four changes for which we check the stability ofRQm .

8.2. States near the fundamental-state candidate

We check that the step representation is the lowest-energy state. Looking at the Young dia-
gram, seeFig. 3, we see that there are four ways to change a generic step representation by one
box (cases (A)–(D)).

There is a symmetry between the cases (A) and (D) (respectively, (B) and (C)). In fact, the
variation of theE function and the dimension computation give the same result for the two cases.
We obtain

• µ � 1/6. For this range ofµ, we haveQm = 0, only cases (A) and (D) apply. We have

(61)�E
(A)
µ�1/6 = �E

(D)
µ�1/6 = µ

2
+ 1

6
.

• µ < 1/6. For this rangeQm is given by Eq.(60)and the four cases are possible:

(62)�E
(A)
µ<1/6 = �E

(D)
µ<1/6 = 5

24
+ 1

24

√
15− 36µ − µ

2
,

(63)�E
(B)
µ<1/6 = �E

(C)
µ<1/6 = 5

24
− 1

24

√
15− 36µ − µ

2
,

and we have�E
(A)
µ<1/6 � �E

(B)
µ<1/6.

All these quantities are positive: the step state is the fundamental state.
We now compute the ratio between the dimension of the fundamental state and the one of the

near-by cases. We obtain

(64)�d(A) = �d(D) = 1

N

2Q + 1

Q + 1
,

(65)�d(B) = �d(C) = 1

N

2Q + 1

Q
.

The cut-off transition takes place when the fundamental state dominates all the other states. The
last state to be dominated by the fundamental stateRQm is of type (A) or (B), depending on the
value ofµ. The ratio between the contribution to the partition function of the fundamental state
and that of the first exited state is of the form

(66)
ZS(RQm)

ZS(Case(
) aroundRQm))
= (�d)2eλ4A�E.

TheRQm representation starts to dominate when the rescaled area is

(67)λ4A = 2

�E
ln(N) + const,
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where the constant is two times the logarithm of the factor after 1/N in (64), (65)and can be
neglected in the large-N limit. Using Eq.(67), the cut-off transition takes place:

• for µ � 1/6 at

(68)λ4A
∣∣
µ�1/6 = 4

µ + 1/3
ln(N),

• for µ < 1/6, using the less energetic cases (B), (C), at

(69)λ4A
∣∣
µ<1/6 = 4

−µ + 5
12 + 1

12

√
15− 36µ

ln(N).

Settingβ4 = λ4A andµ = β2/β4 and solving forβ2 the two above equations give the phase
boundary(13), (14).

9. Phase transition between the two degenerate phases

In the degenerate phase, the partition function is dominated by the fundamental state. Using
the saddle approximation, we will keep only this term in the partition function. We have

(70)Z ∼ exp

(
2 ln

(
d(RQm)

) −
(

β2

2N
C2(RQm) + β4

N3
C4(RQm)

))
,

and the free energy is the exponent divided byN2. For highµ = β2/β4 we haveQm = 0 and the
fundamental state is the trivial representation, which has

(71)C2(R0) = C4(R0) = 0 and d(R0) = 1.

In this phase the free energy is identically null. For smallerµ, Qm is a function of the ratioµ
and goes to 0 forµ = 1/6. We can compute

(72)C2 = 1

4
(Q + 1)QN3,

(73)C4 = 1

16

(
Q3 + 2Q2 + 2Q + 1

)
QN5 +O

(
N3).

As limµ→1/6 Q = 0, we have limµ→1/6 d(RQ) = 1; from this and the above Casimir value we
see that the free energy is a continuous function.

Using Eq.(60) we have∂Qm

∂µ
|µ=1/6 = −1, so that we can perform the differentiation with

respect toQ. For the Casimir we get

(74)∂QC2 = 1

4
(2Q + 1)N3,

(75)∂QC4 = 1

16

(
4Q3 + 6Q2 + 4Q + 1

)
N5 +O

(
N3)

and for the dimension using the parameterization(57) and (58)we have
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∂Q ln
(
d(RQ)

)∣∣
Q=0 = ∂Q

(
N/2∑
i=1

N∑
j=N/2+1

ln(j − i + 2Q)

)∣∣∣∣∣
Q=0

(76)=
N/2∑
i=1

N/2∑
j=1

2

N/2+ j − i
=

N/2−1∑
�=−N/2+1

2(N/2− |�|)
N/2+ �

.

Making use of the digamma functionΨ and of its asymptotic behaviour

lim
x→∞

(
ψ(x) − ln(x)

) = 0

we obtain, for largeN ,

(77)∂Q ln
(
d(RQ)

)∣∣
Q=0 ∼ N

(
1

2
− ln(2)

)
.

Collecting all the term we get for the derivative of the free energy

(78)∂µF
∣∣
µ=1/6 =

(
β2

8
+ β4

16

)
+O(1/N),

and the derivative of the free energy is not continuous across theβ4 = 6β2 transition line. The
system undergoes a second-order phase transition along this line.

10. Concluding remarks

The fermionic analogy leads to the conclusion that the three kinds of phase (degenerate,
strongly interacting, and dilute) and the DK and cut-off transitions are completely general fea-
tures that we will find in any GYM2 model. Keeping in mind the fact that the higher Casimir of
any model has to be of the formC2m in order to guarantee a Hamiltonian bounded from below,
the state density will have as a support the union ofk intervals withk ∈ [1,m − 1]. The number
of intervals will be a function of{βj } = {λjA}. Using the fermionic analogy with fermions in a
potential given by a polynomial of degree 2m, we find intuitively that each local maximum can
rise above the Fermi level. There exists a region of phase space where the state-density support is
only one interval. Moving away from this region gaps will open, splitting the unique interval in
different pieces. In the dilute phase this structure is equivalent to the one described in[13] from
which we can deduce the order of the phase transitions between the different dilute phases. As
an illustration we can consider the case of the 6th-order model developed in[17]. in this model
we have a fixed quadratic term plus a quartic term (with its couplingg1) and a 6th-order term
(with its couplingg2). We have then 4 kind of potential for our fermions as shown inFig. 4.
Looking at the state-density support we deduce the order of the phases transitions according to
[13]. The precise location of the phase boundary can be found in[17] and the phase structure is
in agreement with the one we have sketched.

This picture is also valid in the case in the strongly interacting phase, but each interval of the
density of state may show a tray. Again, argument of[13] can be used to obtain the order of the
phase transitions between the five different tray-phases.

In the degenerate phase the state-density is a collection of pieces with value 1 separated by
gaps. The state-density support structure depends only on the ratio of the differentβ ’s and tran-
sitions between this different sub-phases have to be of second order.
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Fig. 4. Cartoon of the dilute phase structure of the sixth order model with quadratic term fixed. We have used notations
of [17]. Note that the lower part of theP2 phase (withg2 < 0) is unstable.

10.1. Remark about U(N)

We have worked withSU(N) groups and want to ask now: what aboutU(N) ones? The main
difference between theU(N) and SU(N) representations is the fact thatSU(N) are invariant
under translation, i.e., the representation{hi} is equivalent to{hi + �} with � an integer.

U(N) can be split intoSU(N) × U(1) in the language of the{ni}’s; the U(1) part is the
“center of mass” positiony = 1

N

∑
ni . TheSU(N) is given by themi = ni − y, then the sum of

themi is null. For the YM2 case, the quadratic Casimir forU(N) is given (up to some constant
term) by

C2
(
U(N)

) =
∑

(mi + y)2 =
∑

m2
i + 2y

∑
mi + Ny2

(79)=
∑

m2
i + Ny2 = C2

(
SU(N)

) + Ny2.

They is decoupled from theSU(N) part. Performing the sum overy into the partition function
gives an overall normalization and all the considerations on theSU(N) case apply to theU(N)

one. For GYM2, things are different. Higher CasimirsCk (k > 2), couple theSU(N) andU(1)

parts. The principal term ofCk for U(N) is

(80)
∑

nk
i =

∑
(mi + y)k =

∑
mk

i +
k∑

j=1

(
j

k

)
yj

∑
i

m
(k−j)
i ,

that is the term belonging to theSU(N) Casimir of orderk andy dependent terms. For a chosen
GYM2 model (with higher Casimir of even order) and with ratio between the higher Casimir
coupling and the other onesµj . We collect all they terms and obtain a polynomial of degreek

in y. Unlike k = 2 case, polynomial coefficients are given by sum ofSU(N) Casimirs of order
smaller thank and depend onµ’s. Plugging this expression into theU(N) partition function
and performing the sum overy (which is possible untilk is even) we obtain a function of the
C

SU(N)
j , j < k which multiply theSU(N) part. This term can be re-absorbed into an effective
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action which now depend on all theSU(N) Casimirs of degree�k. However, theU(N) case can
be analyzed usingSU(N) one with Hamiltonian containing product and power of Casimirs.
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