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Abstract

We describe the entire phase structure of a large number of colour generalized Yang—Mills theories in
1+ 1 dimensions. This is illustrated by the explicit computation for a quartic plus quadratic model. We show
that the Douglas—Kazakov and cut-off transitions are naturally present for generalized Yang—Mills theories
separating the phase space into three regions: a dilute one a strongly interacting one and a degenerate one.
Each region is separated into sub-phases. For the first two regions the transitions between sub-phases are
described by the Jurkiewicz—Zalewski analysis. The cut-off transition and degenerated phase arise only for
a finite number of colours. We present second-order phase transitions between sub-phases of the degenerate
phase.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction

Since 't Hooft's seminal work, the Yang—Mills theory int1l dimensions (YM2) has become
a laboratory for testing ideas and concepts about Yang—Mills and also string theory. The YM2
theory has an exact stringy description in the limit of a large numbef colours[1-3]. It is also
known that one can build generalizations of the YM2 thdary] and that such generalizations
have also a stringy behaviour at largye[5]. It was also shown that YM2 has different phases,
and in particular a third-order transition was present by Douglas and Kajékd¢kere after
DK transition). Recently, new progress has been made in YM2. In particular it was shown that
its time evolution could be interpreted as a Brownian motion into the gauge ¢regh The
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equivalent of the cut-off transition, well known for Brownian motion, has also been identified in
YM2, and is different from the DK one.

The relevant parameter for both cut-off and DK transitions is the area of the manifold, which
plays the role of an inverse temperature. The phase space is then a half-line for the area running
from zero to infinity. As fermions do the YM2 state density is limited by 1 and the fermionic
picture can be used to help understand the phase structure: at very low temperature the systen
behaves as a degenerate Fermi liquid. Raising the temperature, we found the cut-off transition
and above it a strong interacting phase where the exclusion principle is at work. At high temper-
ature the fermions dilute and finally the density falls down below 1. Above this point (the DK
transition) the fermionic nature is irrelevant, and we have a weak interacting system.

Working with generalized Yang—Mills (GYM) theory the phase space opens from the half-line
of the YM2 case to a hyper plane.

All generalized YM2 theories have the same structure. It is therefore possible to capture all
essential features of their phase space by studying a particular model. In this paper we pick up
a quartic plus quadratic model and describe its phase space and transitions. From this study we
deduce the general case. In particular, we show that the cut-off and the DK transitions are general
features that extend into generalized YM2 and that such transitions coexist with those described
by Jurkiewicz and ZalewsKiL 3] (hereafter JZ transitions).

This paper is organized as follows. We first recall in Seclitvow the generalization of YM2
is obtained. We define the model we use in Seclowe present the phase space and our main
results in Sectiod. Detail of the computations are given in the following sections: DK and JZ
transition in Section§, 6 and 7 cut-off transition in SectioB, transition between the degenerate
phases in Sectiod. We draw some conclusions in Sectib®

2. Generalized YM2
The action is the key for building the generalized YM2. Rather than writing the usual action

with the F*¥ F,,, term, we follow Ref[1] and use an equivalent action with an auxiliary figld
For thed = 2 case, this action is

2
I:—%/dz)c(l.;‘paequuua+%Xu:¢a¢a>- (1)

The generalized YM2 theories (GYM2) are obtained by replaéjnﬁja dap, by @ sum contain-
ing other terms of higher order i with other coupling constant. Building a generalized heat
kernel equatiof4] and using the holonomy variable, we obtain a Hamiltonian of the form

ML
Ho =) ~r=1Ck )

with a higher order Casimir operatal, rather than only the usual quadratic one. This Hamil-
tonian replaces the YM2 one whicHis

_A/2L

H
257N

Cs. (3

1 Note that the 12 is re-absorbed inta, for the generalized case.
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In the above expressions we have absorbed the coupling constant into the generalization of the
't Hooft coupling A, which is held fixed at large&v [4].

The YM2 partition functior{1,10] on an orientable surfac®&t of genusg, with p boundaries
and surfaced4, is a sum over the irreducible representati®af the gauge group:

_2g_ A2
Zpm=Y dy # P xr(Un) - xr(Up) exp{ CZ(R)} (4)
R

wheredy, is the dimension of the representation gndU;) the character of the holononty; .
Its generalized counterpart is simply

Zym=Y dy 27 xr(U)- -~xR(Up>exp<—Z ;k 1ck<R>} (5)

R k
Until this point the analysis has been completely general. In order to perform the sum over the

irreducible representations, we now specify the gauge group. We are intereSté@vip. These

groups have irreducible representations labeled by maximal wgightA Young diagram can

be associated to each representation with rows of a length givéh; hyWe make the usual

change of variable§:; = h; + NT“ — i}. The computation of the symmetrized quartic Casimir

for SU(N) can be found if5]. We have

2 2
2({ni}) Zn ——(Zm) —M, (6)
N

(i) Z Z 2__Zn32n,+ zgn,z(é"j)z

=1 i=1 j=1

_3( Y 3/ N\ NvE—paw?-o
(an) —N(Zni) + X 7);0 ), (7)
i=1

i=1

3. Quartic model

We focus on the case of the sphere, i.e., we study the model for a suwfagigh ¢ =0 and
no boundary. For YM2, the partition function reduces to

2
ni—n; A2A A2A(N? -1
oo B (M) e el 2
n1>ng>>nN \i<j

As the denominatof[;_;(j — i) is the same for all the representations, one can see it as a
normalization constant and forget it. Note that the rescalediaréglays the role of an inverse
temperature and that in the largedimit this model is equivalent to fermions in a potential (in
the sense that the state density cannot be greater than 1). The transitions we consider arise in the
large-V limit for very different values of the rescaled area.

Rather than dealing with the general case, one can capture the essential features of the GYM
by studying the quartic Casimir caddlNe use the case of a GYM2 model with a mix of the

2 Models where the higher Casimir is odd do not lead to an energy bounded from below and therefore do not produce
a well defined theory.
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quartic and quadratic Casimir instead of only the quadratic one. The Hamiltonian is now given
by

Hy, =

Ao /2L gL 2 1
ZJ/V C +ic4—A4L<ﬂcz+ C4> 9)

wherepu is the ratio of the 2 coupling constants= A,/14, and we have kept explicit the factor 2
of A2/2 in order to make the contact between the limits> oo and YM2. The partition function
is

Zs= Y []mni-np? exp{ MA(Z—CZ({n )+ 1 Ca({n; }))} (10)

n1>--->nyN l<j

From now on we will work with theSU (N) group, therefore>({n;}) andC4({n;}) are given by
(6) and (7)

4. Phase space

The phase space is described by the variaAlesand . We can also recast these two vari-
ables into the Jurkiewicz—Zalewski descriptid3]:

B2 =A2A = puraA, (11)
Ba=A4A. (12)

In this paper, we will use both parameterizations.

Anticipating our results, we plot the complete phase spaceHiged) for the 8’s parameter-
ization.

As in the YM2 case, we have three kinds of phases.

For smallg’s (high temperature) we have dilute phases where the state density is everywhere
below 1. There are two different dilute phases. The first one has a continuous state density and
the other one a gapped state density. Between these two phases a third-order phase transitiol
takes place as expected from JZ wiB]. The dilute phases and the transition in between are
described in Sectioh.

Raisingg’s, we cross the DK transition (s&ections 5 and)6 The DK transition is a high-
temperature process. It is easier to have intuition about it in the fermionic picture. RAlsing
corresponds to lets the temperature go down. The dilute fermions concentrate until the maximum
of the state density is 1. Below this critical temperature, the fermionic nature comes into play. We
bring the DK transition to light by reversing this conceptual chain: we compute the state density
in a bosonic picture. The DK transition takes place for the value ofgtedor which the state
density goes above 1.

After the DK transition we enter into strongly interacting phases. Again these are separated in
different subspaces, which are the continuation of the JZ ones.

Working at finite N, we encounter another phase transition for higgh This is the cut-
off transition (see Sectio8). This takes place at low temperature, when the fundamental state
ceases to dominate the partition function. This transition was discovered as an analogy of the
cut-off transition for random walk on a finite surfag&-9]. In the fermionic picture it simply
corresponds to the temperature crossing of the Fermi energy. The cut-off transition takes place
along the two {V-dependent) curves:

B2=4In(N) — @ (13)
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Fig. 1. The B2, B4) plane forN = 10000, with the typical form of the density function for each phase. The 2 red dots are

the DK and cut-off transitions for YM2 at the usual valy&gpk = n? and B2 |cut-off = 4IN(N). The actual location of

the thin lines sketched into the strongly interacting phase (phases with tray)-dependent and not computable with

the methods used in this article. The dashed lines correspond to second order phase transitions and (apart for the gray
line of the cut-off transition) the continuous lines to third order phase transitions. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

7 1
Pa= 52B4— 4IN(N) + 5/ B + 645aIn(N). (14)

These lines draw a triangle with summit

4
(B2, Ba) = {(0, —4In(N)), (0, 4In(N)), (5 In(N), 8 In(N)) } (15)

The last summit lies on the line = 82/84 = 1/6.

For largerg’s (and finite N) the system is in degenerate phases. There are two degenerates
phases (the fundamental state being given by the trivial or a stepped representation; see Sec-
tion 8), which are separated by thgy = 68, line. We show in Sectio® that a second-order
phase transition between the two degenerate phases occurs along this line.

5. DK transition for GYM2

The DK transition manifests itself as a saturation of the state density. In the Nafigi,
after passing to a continuous variable, one can show that the state demsitynot exceed 1.
This constraint is not built in the Gaussian matrix model that we use to corppi@e we can
therefore track the state density only until its maximum reaches 1. After which the DK transition
takes place. Therefore, finding a value of the parameter (the rescaled area) fopwhathes
the value 1 is sufficient to claim the presence of the DK transition.



F. Dubath / Nuclear Physics B 736 [FS| (2006) 302-318 307

We start by presenting the YM2 DK transition. In order to compute the state density, we
perform a saddle-point analysis of the partition funct{8) rewriting it as

2

n1>ny>->ny

2 M A
Seft = 73 gln(mi —njl) - o3 C2

(16)

7

Taking as zero the variation 8t with respect ta;;, and passing to continuous variables through
N=n and% Y = [dn p(n), we obtain forp(n) a singular integral equatidi 1]

of a 20, 228,
n—n' 2

(18)
where P/ is the principal value integral. This equation can be solved under the assumption that
n varies continuously on a single interval (one-cut solution) and we ofit&ia?2]

2 2
nel——,—|, (29)

VA2A JA2A

A 4 2

- _ _n2. 20
pn)=—— oA " (20)
The maximum ofp arises fom = 0 and is equal to 1 if2A = 72. The DK transition takes place
for the valuer 2 of the rescaled areg A.

We tract out the DK transition for the quartic plus quadratic GYM2 following the above steps.
The effective action that replacékr) is computed using6) and (7)and is

1 u 2
Seff = —A4A<FC4+ WCZ) T N2 Zln(lni —njl)
1

— (21)
_A4A|:N2i:<r;)4_<3u6—2_2_;.]2>12( ,>2

N
L

z| =

—\ N N~ N
i J
1 4 1-3 1 1 2
nj — oM nj
_3( = _t —— )= -t
(NZI:N +( 6 2N2><NZN>:|
1 nin;
+ V2 (2In(|nl —njl) + 1A 311\/;) + const
j<i

(22)

After taking the variation and changing for continuous variaBlegs obtain the singular
integral equation

P/ dn’ p(n’) r M<4r13—}— 3u - 2n)
n

—n’ 2 3

3 As the continuous limit is valid for larg&/, we can drop the sub-leading contributions.
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M A 1-3
= %[/dn’p(n’) <—12}12n’ — 403 + T“lﬂ)

+12/dn/p(n/)/dn”p(n”)(nn/n”—}—n/zn”)
—12/dn/p(n/)/dn//,o(n//)/dn///,o(nm)n’n//nm]. (23)

In order to solve this equation far(n) we face two new problems. First, if we write the left-hand
side of this equation into a kernel form we have no longer a Cauchy type integral and, second, we
can learn from the study of the cut-off transition (see Sedjothat the larger4A distribution
of n may have a gap for some rangeofSo we have to be careful where the one-cut hypothesis
is valid and work with a two-cut case where it is not.

Looking at(22) one can see that symmetric tables (in the sense —ny_;+1) are local
minimum of Sesr. Therefore, in the saddle point analysis we will look at distributiers) which
are compatible with this property. That is we restrict ourself to distributions which satisfy=
p(—n). This symmetry hypotheses together with the fact that the integral range is symmetric
around 0O gives for odd

/dn’ ,o(n')n'k =0, (24)
and(23)reduces to
! AgA 3u—2
P/ dn’ pln) =247 (403 4 Rz, (25)
n—n 2 3

Working with (25), we have to ensure that the symmetry condition is fulfilled.
5.1. One-cut solution

From the study of the low-temperature case, we expect that, for large epqubh distri-
bution o (n) will contain no gap. The corresponding solution {@b6) is the so-called one-cut
solution? Solving (25) can be done using the same machinery a8} (see[11]). We obtain
the interval[—a, a] given by

1 432
2_ 2
=—(2-3 9us—1 44 — 26
a 18( M+\/M 2u+ +X4A> (26)
and, after some computation, the state density
AgA (3u—2
pmy =22 (2 4 202 4 452 Va2 — n2, 27)
27 3
This function fulfills the symmetry condition and has a maximum &t0 or two maxima at
1
n:j:é\/4—6u+\/9/L2—12M+4+432/A4A. (28)

4 One-cut into the plane describing the complexified variable
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The boundary between these two cases is a curve int@ithesA) plane given by the right
branch of

4 2
B1: MaA= (u — 2/3) } (29)

Above this curve the maximum arisesrat 0 and we can compute the value)afA such that
p(0) = 1, this gives a curv@pk 1(u), which has the asymptotic for — oo (84 — 0):

2 2r2 1 1
tocaon =T+ (2 ) Lo 4) @)
o w i

3

and cross; for u ~ 2.588. BelowB, the two maxima op are equal to 1 for a curvEpk 2(u),
which picks a maximum gt = 2/3 and meetdpk, 1 on Bi.

We have to check the one-cut condition. In the two-maxima regiod), is a minimum and
we verify that it is positive. If it is not the case we are no longer in the one-cut case. The equation
0(0) = 0 is satisfied on the left branch @& and the one-cut solution breaks down above this
curve.

5.2. Two-cut solution

For smallu we have to compute the two-cut solution. Using the symmetry condition and the
asymptotic conditions from the general formalisnjIf], we can compute the state density. This
function has support on two segmeftsz, —b] U [b, a] and is given by14,15]

pn) = 244 [n|v a2 —n2v/n?2 — b2, (31)

b g
With a, b satisfying

_, 32

12 + AgA (32)
2—3u 1

b2 = - : 33

12 VA4A (33)

b is real above the left branch of the curBe, exactly where the one-cut solution ceases to be
valid. Finding the maximum of (n) we are able to compute the area at which the DK transition
takes place. We obtain the cur¥gk_ 3 which has the asymptotic for — —oo:

2 272 1 1
Tok (1) =~ — (i +4) 1y 0(—3) (34)
0 3 u w

and meetdpk 2 when crossing the curvBi. Thus the whole DK transition foBU(N) takes
place along a continuous curve (3€g. 2).

Above the DK transition (for smaller temperature, larger area), the solytion cannot be
trusted.

5.3. Jurkiewicz—Zalewski structure of the dilute phase

For small coupling values, we are below the DK transition, into dilute phases. We have three
regions: the two-cut, the one-cut with two maxima and the one-cut with one maximum, separated
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Two-cuts

% h

0 n
Fig. 2. The {«, 14A) plane with the one- and two-cut regions and typical fornp 6f) in each region. The DK transition
lines are also plotted.

by the curveBy; that is, ing’s language

p2= §ﬂ4 + % 2. (35)
Along the minus branch, between the one- and two-maximum one-cut regions, we have no phase
transition. The density and its supporf—a, a] are determined by the same functions, which
have no singularity of any type along this line; the free energy in the saddle approximation is
uniquely determined by.

Along the upper branch we expect from the JZ classificatl®} a third-order phase transi-
tion, since a gap opens in the supporpofThat is easily checked by noting that

2
p2-cut(@, n)| 5, = pr-cua, )| 5 = %nzv a? —n?, (36)

and that the support bora-cy: and az-cuts have the same value and first derivative but have
a different second derivative. Detailed computation of the dilute phase structure can be found
into [16]

6. Degreeof the DK phasetransition for GYM2

We study the transition between the one-cut one-maximum phase and the corresponding phase
above the DK transition. Crossing the DK transition causes the maximum of the state density to
be replaced by a tray.

Working into the saddle approximation, the free energy depends only on the state gensity
We computeo for the one-tray phase. The idea, $€k is to set the density at 1 into an interval.

We expect a symmetric function and we can parameterizg

pn)=0, |n|>a, (37)

p(n)=pn), c<|n|<a, (38)
pn)=1 |n|l<c. (39)
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Making the substitution into E¢25), we obtain a two-cut problem fgr

<0
P/ dn’ :Yln)/ A‘;A (4 3 3“3 Zn) — |n<Z fi) (40)

We can use the same setup as in Sedi@tsee[11] for details): we compute the resolvent for

de 242 (4% + ¥522) —In(E) /p2 =2 /p2 — 42

wo(p) :f o P NNk

Deforming the contour to the pole at infinity we also enclose the cut of the logarithm. Taking the
discontinuity equation and coming back frgimo p we eventually obtain the state density

(41)

Jva? —n?yn? —¢ ds
p(n) = f (42)
(n —s)Va? —s2/c2 — 2
and from the asymptotic conditions a couple of equations
3u—2 2
0=A4A<a2~|-c2+ MG )— —K(c/a), (43)
a
a’c® 3 3u—2
1= A4A< > 4(a4 +c%) + Ml—z(a2 + c2)>2a(IC(c/a) —&(c/a)), (44)

where/C and £ are the standard complete elliptic integrals. For a fixgd and i (84, B2) we
can compute: andc from the above equation. We can also fix other of these four variables.

In order to study the phase transition we look atdéhe 0 limit. Keepingu fixed we expand
a andi4A = B4 in series ofc. The zeroth-order equation matches the values of the dilute phase
and the first correction is of orde®. Plugging these solutions infe and computing the free
energy in the saddle approximation leads to a third-order phase transition. One can also find a
special case of this computation irjfi6]

7. Jurkiewicz—Zalewski structure of the strongly interacting phase

We present in this section the transition between the different phases with trays (strongly
interacting phase).

From the above section we know the form of the one-tray phase. We compute the two-tray
(and no-gap) phase. We are looking for the state denpstty be an even function of with a
parameterization given by

p(n)=0, |n|>a, (45)
p(n)=p(m), c<|n|<a, (46)
pn)=1 c>|n|>d, (47)
pm)=pn), |n|<d. (48)

Using resolvent method we obtain the state density for the two-tray (no-gap) phase which is
given by

(49)

() = E/c ds a2 —nVc?2 —n2Vn? —
pE = (n — s)VaZ — s2/c2 — s2/d2 — 52’
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we have also four asymptotic conditions. Only two of them are non-trivial and are

c
3u—2 dss
0=MAQF+¥+ )—2/ , (50)
6 y Va2 =522 = 2/d2 — 52

22, 252, 22
a“cc +a“dc + cd 3 3u—2
1=14A + 2@t A+ dY) + S (24 2 d?)
2 4 12
C
ds s3
—2/ i : (51)
y Va2 — 52?2 — s23/d? — 2

We have two equations for the five variablesc, d, 244, u} (which reduce to Eq$43) and (44)

in the limit d — 0). So we can expressandc as a function of theg’s and ofd. For fixedg’s

we obtain a family of solutions parameterized dyAll these solutions of the singular integral
equation(23) coexist and, in order to select the one to be used in the saddle-point we need another
equation. This can be done by performing the variation of the effective action with respkct to
We can thus obtain the solutialp, as a function of8’s. Note that without the symmetry condition

on p the system is under-constrained. Note also that solving the system is a highly non-trivial
task.

Finally, we have to take into account the fact that, by definitibri; 0 and keepb =
max(0, d,,,). So we are in the same situation we will encounter in Se@iand the phase transi-
tion between the one-tray and the two-tray phases has to be of second order.

This is consistent with the JZ classification if we focus@nThe one-tray—two-tray phase
transition corresponds to the opening of a new interval into the suppgraoti is thus of order
smaller than 3.

The same can be done for the gaped two-tray phase, looking at a four cuts solution. In this case
we have three non-trivial asymptotic conditions which together with the minimum of the effective
action are enough to fix the position of the trays and gap. According to JZ, the transition between
the two-tray and gapped two-tray phases, which is given by the opening of a new gap into the
support ofp, has to be of order 3.

The fact that we can solve the position of trays and gaps is a peculiarity of the quartic plus
guadratic model under the symmetry condition. For other models multi-cuts solutions are under-
determined and extra constraints have to be impfkéd

8. Cut-off transition for GYM2

Let us start by recalling the YM2 cut-off transition. We look at the fundamental state. The
trivial representation corresponds to the Young diagram with no box. In terias}othis gives

N—-1 N-3 N—l}

I 5 (52)
This representation minimizes the Casimir, and thus the energy. As explaif@die cut-off
transition takes place when this representation starts to dominate the other representations in
the partition function(8). This can be estimated by computing the ratio between the partition
function contribution fromRg and the one from the “first exited” representation. In the case of
SU(N), above the trivial representation, we have the fundamental represenkati@mly one

box). We first compute the difference between the Casimir evaluate on this representation and

Ro: {ni}={
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the trivial one:

Az =C2(Rg) — C2(R1) =—N. (53)

The ratio between th&p and R1 contributions is

Zs(R 1 —A2A 1
S( 0) — "~ ex 2 Al = )»2A/2 (54)
Zs(R1) N2 2N = n2°¢
and the trivial representation starts to dominRiefor the value ofi,A given by
A2A =4In(N). (55)

So the system is in a degenerate phase when its rescaletharémlarger than 416V).

If we want to track the cut-off transition for the GYM2, we have to be careful: we cannot
directly extend the computation of the YM2 case, since the state with smallest energy is not
necessarily the trivial representation. We make the computation for our quartic plus quadratic
model.

8.1. Fundamental-state candidate

In order to find the fundamental state, we have to minimize the Hamiltonian over the repre-
sentations. In fact it is sufficient to find the representation that gives the smallest value for
the function

1
£ = (3 Caltna) + Caltn) ). (56)

As already explain in Sectioh symmetric table (in the sensg = —n(y_;+1)) are local mini-

mum of the effective action and also of the functiBrand, we can guess that the fundamental
state is symmetric. For symmetric representationsCthleas a term proportional tp’ nf minus

aterm inZni2 and theC> will modulate this term. Using the fermionic analogy we can see the
system as fermions in a Mexican hat potential. For low Fermi energy, we expect to find two sets
of fermions, one around each minimum of the potential. Thus we expect a configuration with a
gap. Such a gaped configuration corresponds to a Young diagram with a step and we parameterize
it as

N+1 N
= —it gy for i<, 7
n > l+ > or i > (57)
N+1 | ¢ . N
nl—T—l—E f0r1>3. (58)
Passing taQ = ¢/N, the O-dependent part of the functidf takes the value
3u+1 6u—1
E(Rg )—NZQ Q + 0%+ & 0+ " + O(N). (59)
8\ 2 3 6
This function has a minimum, solution Sﬁfg;@ = 0, which is given by
1 5
== = 60
0 stV # (60)

By definition, 0 > 0 and therefore fop > we haveQ,, = 0, i.e. the fundamental state is the
trivial representation. Belové the fundamental state is a step given by the above equation.



314 F. Dubath / Nuclear Physics B 736 [FS| (2006) 302-318

(A) (B) © (D)

Fig. 3. The four changes for which we check the stabilityRef

8.2. Sates near the fundamental-state candidate

We check that the step representation is the lowest-energy state. Looking at the Young dia-
gram, sed-ig. 3, we see that there are four ways to change a generic step representation by one
box (cases (A)—(D)).

There is a symmetry between the cases (A) and (D) (respectively, (B) and (C)). In fact, the
variation of theE function and the dimension computation give the same result for the two cases.
We obtain

e 1 < 1/6. For this range oft, we haveQ,, =0, only cases (A) and (D) apply. We have

@ (D) w1
AE >e=AE >1e=75+ 5 (61)
e 1 < 1/6. For this rangd),, is given by Eq(60) and the four cases are possible:
5 1
(4) (D) / M
AEM<1/6:AEM<1/6:ﬂ+ﬂ 15—36,&—5, (62)
5 1
(B) ©) / ld

(A) (B)
and we have\E /) 5 > AE, 7, 6.
All these quantities are positive: the step state is the fundamental state.
We now compute the ratio between the dimension of the fundamental state and the one of the
near-by cases. We obtain

AdP® = pg@ — 220 +1 (64)
N Q+1
120+1

Ad® = pg© = 22211 (65)
N Q

The cut-off transition takes place when the fundamental state dominates all the other states. The
last state to be dominated by the fundamental sRafe is of type (A) or (B), depending on the

value of . The ratio between the contribution to the partition function of the fundamental state
and that of the first exited state is of the form

Zs(Rg,,)
Zs(Case(x) aroundRy,,))

The Ry,, representation starts to dominate when the rescaled area is

= (Ad)%MANE (66)

2
MA = —In(N) +cons 67
4 NG (N) + { (67)
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where the constant is two times the logarithm of the factor aftéf th (64), (65)and can be
neglected in the larg&* limit. Using Eq.(67), the cut-off transition takes place:

e foru>1/6 at

AaA| In(N), (68)

4
n>1/6 = nw+1/3
e for u < 1/6, using the less energetic cases (B), (C), at

4
5 1
—pn+ D+ /15— 36

AaA| IN(N). (69)

,u<l/6:

SettingB4 = A4A andu = B2/ B4 and solving forB, the two above equations give the phase
boundary(13), (14)

9. Phasetransition between the two degenerate phases

In the degenerate phase, the partition function is dominated by the fundamental state. Using
the saddle approximation, we will keep only this term in the partition function. We have

Z ~ exp(z In(d(Ro,)) — (f—;CZ(RQm) + %C4(RQ”1))), (70)

and the free energy is the exponent divided\; For highi = B2/ 84 we haveQ,, = 0 and the
fundamental state is the trivial representation, which has

C2(Rp) =C4(Ro)=0 and d(Rg)=1. (71)

In this phase the free energy is identically null. For smalleiQ,, is a function of the ratiqu
and goes to 0 forr = 1/6. We can compute

1
Co=7(0+ 1)ON?3, (72)
Ca=15(0°+20%+20 +1)ON° + O(VY). (73)

As lim,_.1/6 O =0, we have lim_,1/6d(Rp) = 1; from this and the above Casimir value we
see that the free energy is a continuous function.

Using Eq.(60) we have%m:l/e = —1, so that we can perform the differentiation with
respect taQ. For the Casimir we get

39Ca = % (20 + N3, (74)
39Ca= 1—16(4Q3+6Q2+4Q +1)N°+ O(N?) (75)

and for the dimension using the parameteriza{®f) and (58we have
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N/2 N
aQ|n(d(RQ))|Q:0=aQ<Z > In(j—i+2Q)>

i=1 j=N/2+1 0=0
N/2N/2 N/2-1
_ Z/Z/ 2 /Z 2(N /2 |e]) 75
i=1j=1 N2+ j—i t=—N/2+1 N2+t

Making use of the digamma functiah and of its asymptotic behaviour
lim (¢ (x) —In(x)) =0
X—>00

we obtain, for largeV,

1
do |n(d(RQ))\Q=0~N<E —In(2)>. (77)
Collecting all the term we get for the derivative of the free energy
(B2 Ba

and the derivative of the free energy is not continuous acrosgsthe6p, transition line. The
system undergoes a second-order phase transition along this line.

10. Concluding remarks

The fermionic analogy leads to the conclusion that the three kinds of phase (degenerate,
strongly interacting, and dilute) and the DK and cut-off transitions are completely general fea-
tures that we will find in any GYM2 model. Keeping in mind the fact that the higher Casimir of
any model has to be of the for@, in order to guarantee a Hamiltonian bounded from below,
the state density will have as a support the uniok biftervals withk € [1, m — 1]. The number
of intervals will be a function of8;} = {A; A}. Using the fermionic analogy with fermions in a
potential given by a polynomial of degree:2we find intuitively that each local maximum can
rise above the Fermi level. There exists a region of phase space where the state-density support is
only one interval. Moving away from this region gaps will open, splitting the unique interval in
different pieces. In the dilute phase this structure is equivalent to the one descrjh8tifiom
which we can deduce the order of the phase transitions between the different dilute phases. As
an illustration we can consider the case of the 6th-order model developEd]iin this model
we have a fixed quadratic term plus a quartic term (with its cougdi)cand a 6th-order term
(with its couplingg2). We have then 4 kind of potential for our fermions as showikim 4.

Looking at the state-density support we deduce the order of the phases transitions according to
[13]. The precise location of the phase boundary can be foufidZijrand the phase structure is
in agreement with the one we have sketched.

This picture is also valid in the case in the strongly interacting phase, but each interval of the
density of state may show a tray. Again, argumeritl8] can be used to obtain the order of the
phase transitions between the five different tray-phases.

In the degenerate phase the state-density is a collection of pieces with value 1 separated by
gaps. The state-density support structure depends only on the ratio of the diffsrant tran-
sitions between this different sub-phases have to be of second order.
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New gaps: third order
New interval: second order

£
New interval: second order \

Fig. 4. Cartoon of the dilute phase structure of the sixth order model with quadratic term fixed. We have used notations
of [17]. Note that the lower part of thB, phase (withgo < 0) is unstable.

10.1. Remark about U (N)

We have worked witt8U (N) groups and want to ask now: what ab&UtV) ones? The main
difference between th& (N) and SU(N) representations is the fact th@t)(N) are invariant
under translation, i.e., the representatisr} is equivalent td; + ¢} with £ an integer.

U(N) can be split intaSU(N) x U (1) in the language of thén;}'s; the U(1) part is the
“center of mass” positioy = % > n;. TheSU(N) is given by then; = n; — y, then the sum of
them; is null. For the YM2 case, the quadratic Casimir td¢N) is given (up to some constant
term) by

Co(UN)) =D (mi+y)*=Y m?+2y Y m;+ Ny
=Y m?+ Ny?=C(SU(N)) + Ny% (79)

The y is decoupled from th&8U (N) part. Performing the sum overinto the partition function
gives an overall normalization and all the considerations or8thgV) case apply to thé/ (N)
one. For GYM2, things are different. Higher Casimifs (k > 2), couple theSU(N) andU (1)
parts. The principal term af for U(N) is

k .
Znﬁ?:Z(mi+y)k=2mf+z<i>yj2m§k_j), (80)
j=1 i

that is the term belonging to tH&J(N) Casimir of ordek andy dependent terms. For a chosen
GYM2 model (with higher Casimir of even order) and with ratio between the higher Casimir
coupling and the other ongs;. We collect all they terms and obtain a polynomial of degree

in y. Unlike k = 2 case, polynomial coefficients are given by sun8df~N) Casimirs of order
smaller thank and depend om’s. Plugging this expression into tHé(N) partition function

and performing the sum over (which is possible untik is even) we obtain a function of the

C?J(N), j < k which multiply theSU(N) part. This term can be re-absorbed into an effective
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action which now depend on all tlgJ (N) Casimirs of degreeck. However, thd/ (N) case can
be analyzed usin§U (N) one with Hamiltonian containing product and power of Casimirs.
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