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Abstract

Antimicrobial resistance is a major worldwide public health problem. The misuse of

antimicrobial agents and the delay in spotting emerging and outbreak resistances in

current biosurveillance and monitoring systems are regarded by health bodies as un-

derlying causes of increasing resistance. In this thesis, we explore novel methods to

monitor and analyze antimicrobial resistance trends to improve existing biosurveil-

lance systems. More specifically, we investigate the use of semantic technologies to

foster integration and interoperability of interinstitutional and cross-border microbiol-

ogy laboratory databases. Additionally, we research an original, fully data-driven trend

analysis method based on trend extraction and machine learning forecasting to enhance

antimicrobial resistance analyses.

In the first part of the thesis, we derive the main requirements for an e↵ective

antimicrobial resistance monitoring system, from which we design a decentralized, real-

time and source-independent architecture based on the Semantic Web stack. The ar-

chitecture uses an ontology-driven approach to promote the integration of a network

of sentinel hospitals. Then, in the second part, we study a robust model for extrac-

tion and forecasting of antibiotic resistance trends. Our method consists of breaking

down the resistance time series into di↵erent oscillation modes to extract the trends.

Furthermore, a learning algorithm based on the k-nearest neighbor framework uses the

decomposed series to project mappings from past events into the forecasting dimension.

The results indicate that the Semantic Web-based approach provides an e�cient and

reliable solution for development of e-health architectures that enable online antimicro-

bial resistance monitoring from heterogeneous data sources. In addition, our method for

trend extraction improves resistance trend analyses by describing short-term trends and

their periodicity. Finally, statistically significant performance improvements are found

for the machine learning forecasting methods that decompose the resistance time series
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and filter out noise components in comparison with baseline approaches. The meth-

ods developed here could serve thus to enhance biosurveillance systems by providing

complimentary tools for the monitoring and timely analysis of antimicrobial resistance

trends.



Résume

Dans le monde entier, la résistance aux antimicrobiens est un problème de santé

publique majeur. La mauvaise utilisation des antimicrobiens, ainsi que le retard dans la

détection des épidémies et des émergences des phénotypes résistants dans les systèmes

actuels de biosurveillance, sont considérés par les organismes de santé comme les causes

sous-jacentes de la croissance de la résistance. Dans cette thèse, nous explorons de

nouvelles méthodes pour surveiller et analyser les tendances de la résistance aux an-

timicrobiens dans le but d’améliorer les systèmes existants de biosurveillance. Plus

précisément, nous étudions l’utilisation de technologies sémantiques pour favoriser

l’intégration et l’interopérabilité des bases de données des laboratoires de microbiologie

interinstitutionnelles. De plus, nous recherchons des méthodes d’analyses originales,

entièrement pilotées par les données, qui sont basées sur l’extraction de tendances et

sur l’apprentissage automatique appliqué aux prévisions, pour améliorer l’analyse des

résistances aux antimicrobiens.

Dans la première partie de la thèse, nous établissons les principaux besoins d’un

système e�cace de surveillance de la résistance antimicrobienne, à partir desquels nous

concevons un système décentralisé, fonctionnant en temps réel, indépendant de la source

et basé sur les principes du Web Sémantique. L’architecture utilise une approche

axée sur l’ontologie pour promouvoir l’intégration d’un réseau d’hôpitaux sentinelles.

Puis, dans la deuxième partie, nous étudions un modèle robuste pour l’extraction et

la prévision des tendances de la résistance aux antibiotiques. Notre méthode consiste

à décomposer les séries temporelles de résistance dans di↵érents modes d’oscillation

pour extraire les tendances. Ensuite, un algorithme d’apprentissage basé sur les k plus

proches voisins utilise les séries décomposées pour projeter d’événements passés dans

la dimension prospective.
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Les résultats indiquent que l’approche basée sur le Web Sémantique fournit une

solution e�cace et fiable pour le développement d’architectures de cybersanté qui per-

mettent en utilisant des sources de données hétérogènes d’obtenir la surveillance en

ligne de l’antibiorésistance. En outre, notre méthode d’extraction de tendance améliore

l’analyse des résistances en décrivant des tendances à court terme et leurs périodicité.

Enfin, des améliorations des performances statistiquement significatives sont trouvées

pour les méthodes de prévision basées sur l’apprentissage automatique qui décompo-

sent les séries chronologiques de résistance et filtrent le bruit, par rapport aux approches

de base. Les méthodes développées ici pourraient ainsi servir à améliorer les systèmes

de biosurveillance en fournissant des outils complémentaires pour la surveillance et

l’analyse en temps réel des tendances de la résistance aux antimicrobiens.
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1

Introduction

Since the development of the first sulfonamide drugs in early 1930s, antimicrobial

agents, which include antibiotics but also other similar drugs such as antimycotics,

have been used to treat patients with infectious diseases. They have become an in-

dispensable therapeutic agent in modern medicine to reduce morbidity and mortality

caused by infectious agents. Their widespread use in the subsequent decades has led

to the natural appearance and selection of resistant microbes. Unfortunately, in the

last two decades, the level of antimicrobial resistance to many antimicrobials has been

increasing at such a fast rate that it became a worldwide public health concern. Increas-

ing antimicrobial resistance is a natural and longstanding phenomenon [1]. However,

due to the frequency in which new emerging resistant strains are occurring among many

pathogens it has turned into an ever more alarming situation. Consequently, it has been

recognized by many international health institutions, including the European Centre

for Disease Prevention and Control (ECDC), the Pan American Health Organization

(PAHO) and the World Health Organization (WHO), as one of the major global human

health problems [2, 3, 4].

Worldwide, health agencies have identified e↵ective surveillance systems as a key

aspect in the fight against resistant pathogens. The implementation of such surveillance

system involves the integration and interoperability of distributed healthcare systems

but also the development of intelligent tools to support clinicians and infection control

o�cers in decision making. In the first part of this thesis, we investigate the use of

semantic technologies to integrate distributed and heterogeneous microbiology data

sources to support translational monitoring of antimicrobial resistance. In the second

1



part, we explore machine learning techniques to model resistance trends and provide

short-term resistance forecasting for the analysis of resistance evolution. Despite the

di↵erent tasks – data management and data analysis – the overall system can be seen

as a monolithic information technology framework to help in the battle against ever

more resistant bugs.

This chapter provides a brief overview of the thesis content. In Section 1.1, we

introduce the reader to antimicrobial resistance surveillance and its application on

resistance monitoring and control. Section 1.2 presents the semantic tools used in the

integration of heterogeneous microbiology data sources. In Section 1.3, we introduce the

machine learning techniques that we will use to model resistance time series. Section

1.4 summarizes the motivation of this work. Finally, Section 1.5 provides the outline

of the thesis.

1.1 Antimicrobial Resistance Surveillance

Antimicrobial resistance surveillance is the “systematic, ongoing data collection, analy-

sis and reporting process that quantitatively monitors temporal trends in the occurrence

and distribution of susceptibility and resistance to antimicrobial agents, and provides

information useful as a guide to medical practice, including therapeutics and disease

control activities” [5]. It is an essential mechanism to provide information on the resis-

tance magnitude and trends, and to monitor the e↵ect of clinical interventions and of

public health policies upon resistance evolution.

Antimicrobial resistance has a large impact on public health. Pneumonia, tuber-

culosis, diarrhoeal diseases, malaria, measles and HIV/AIDS account for about 90% of

deaths caused by infection diseases worldwide [6, 4]. Pathogens that cause these diseases

are often highly resistant to first-line drugs and, in many cases, treatment with second-

and third-line antimicrobials is seriously compromised. Additionally, resistance to an-

timicrobials is often verified in hospital-acquired and viral infections and is emerging in

parasitic diseases such as African trypanosomiasis and leishmaniasis [7]. Furthermore,

according to the ECDC, just within the European Union Member States, about 25,000

patients die each year from infections caused by only six antibiotic-resistant bacteria -

Enterococcus spp., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,

Staphylococcus aureus and Streptococcus pneumoniae [2]. Whereas in the United States,



for example, methicillin-resistant Staphylococcus aureus alone is responsible for more

deaths than emphysema, HIV/AIDS, Parkinson’s disease and homicide combined [8, 9].

Amongst several interconnected factors that contribute to the emergence of an-

timicrobial resistance, healthcare agencies claim that current substandard or absent

surveillance and monitoring systems is an underlying reason for increasing resistance

[5, 7, 10]. Unless antimicrobial resistant pathogens are detected as they are selected

and actions are taken quickly to isolate and control their spread, the healthcare system

may soon be confronted by (re-)emerging infectious diseases, similar to those faced in

the pre-antibiotic era. Integration of data from electronic healthcare systems, such

as computerized prescription order entry (CPOE) and laboratory information system

(LIS), into monitoring and surveillance frameworks is seen as a key requirement for

the success in understanding and controlling resistant agents. The following applica-

tions further illustrate the importance of e↵ective biosurveillance systems in resistance

management [11].

• Decision Support for Empirical Treatment. In infection cases, clinicians

may be required, at least in the first therapy, to select an antimicrobial based

on guidelines only to abrogate the delay in performing a susceptibility test or

perhaps due to the incapability to isolate the pathogen causing the infection.

Furthermore, in many countries, access to antibiogram tests is rare and most

patients are actually treated empirically throughout the whole treatment course

[11]. In these cases, the clinician must estimate based on several variables, such

the infection location, the e↵ectiveness of the antiinfective agent and the drug

cost, both the pathogen causing the infection and the antimicrobial that will

target most e�ciently the infection agent. However, empirical therapy comes at

some cost. Discordant therapy not only contributes to increased resistance but

also to excessive morbidity and mortality [12]. Enhanced biosurveillance systems

can provide real-time1 and on demand statistics, for example, on the current

prevalence of a given pathogen in a clinical setting and the pathogen’s resistance

to the di↵erent drugs recommended for treatment. Therefore, the system can

o↵er evidence to the prescriber to support or contradict a particular treatment
1Throughout this thesis, the term real-time is employed to describe an online process that provides

access to antimicrobial resistance data as soon as they are available in the microbiology database, as

opposed to batch-mode access.



regime during an empirical decision event, eventually improving the accuracy of

the treatment.

• Infection Control. Pathogens migrate from patient to patient usually through

direct contact with fomites or hopping through healthcare workers. The patho-

gens that carry resistance genes persist and are likely to spread and select hosts

receiving antimicrobials1. Real-time monitoring systems can help infectiologists

and public health o�cers to track the prevalence of pathogenic species and the

evolution of resistance against di↵erent antimicrobial classes. Moreover, it can

help spot the emergence or outbreak of resistant genes at di↵erent locations,

either within the hospital or the community, especially if connected through a

sentinel network [13]. Hence, monitoring systems working on real-time data of

microbiology laboratory can help to track and control virulent infections within

the clinical setting and in the community.

• Guideline Generation. Health agencies, professional societies and healthcare

institutions develop and maintain guidelines for use of antimicrobial agents. These

guidelines are generated using evidence on the use of antimicrobials and are de-

rived from several information sources, including surveillance programs based on

microbiology laboratory data, the scientific literature and clinical narratives. Up-

to-date biosurveillance systems that publicly expose resistance data can foster

directly the fast development and updating of clinical guidelines, by providing on

demand information on resistance status at the local, and, if connected through a

network, at national and international levels. Moreover, they are a valuable source

of information for expert systems to create guidelines for bacterial treatment and

hospital infection control policies [14]. As demonstrated in [15], the injection of

resistance models significantly improves the system’s precision in selecting the

most appropriate antibiotic for a given treatment.

1.2 Transnational Resistance Monitoring

More e↵ective multinational monitoring systems are essential to guide policy makers

in public health and hospital infection control. Inappropriate use of antimicrobials is
1Antimicrobial consumption reduces the within host competition by killing other non-resistant

germs, facilitating then the life of resistant strains.



considered as the main reason for increasing resistance. Improving drug usage, through

better prescribing, and infection control and public health policies are critical actions

in the fight against antimicrobial resistance. Whether for daily clinical practice or de-

veloping infection control policies, access to up-to-date resistance information through

monitoring systems is crucial for decision making. Unfortunately, this is often not the

case in healthcare. Resistance information provided by monitoring and surveillance

systems is usually outdated and many times unavailable, especially in developing coun-

tries. Additionally, with the ever seen frequency and widespread of resistant phenotypes

among many pathogens, antimicrobial resistance is no longer a localized problem. There

is a consensus amongst health agencies that due to the constant movement of people

and trading, no country will be able to tackle this issue without international collabo-

ration [16, 17]. Therefore, antimicrobial resistance monitoring should be regarded as a

multinational public health issue.

Data sets needed for antimicrobial resistance surveillance are found in clinical and

laboratory digital databases worldwide. Several types of database management systems

are used to store and control access to these data. In essence, these databases are

very heterogeneous not only in the technology used but especially in their information

model. Data are stored and organized in various formats, including structured as

found in relational databases, but also free text contents, such as clinical notes. In

this work, we argue that, in order to monitor resistance coming from such diverse and

distributed data sources, semantic-aware information technologies for data integration

and analyzes are essential. Berners-Lee [18] has coined the term Semantic Web to define

methods and standards that allow machines to comprehend the underlying meaning of

the information available in a heterogeneous network. These methods provide formal

description of concepts, terms and relationships within a given knowledge domain,

and means to store and access remote web resources. Thus, they can be used to

interoperate, share and aggregated data unambiguously, fostering the integration of

distributed microbiology databases.

Semantic Web technologies include several standards and tools, such as the Re-

source Description Framework (RDF)1, a variety of data interchange formats (e.g.,

RDF/eXtensible Markup Language (XML), Notation 3 (N3), Turtle, N-Triples) and

1http://www.w3.org/RDF/

http://www.w3.org/RDF/


notations such as RDF Schema (RDFS)1, the Web Ontology Language (OWL)2 and fi-

nally query languages (e.g., SPARQL Protocol and RDF Query Language (SPARQL)3)

for web resources. In his original article, Berners-Lee claimed that the availability of

machine-readable metadata would enable automated agents and other software to ac-

cess the Web more intelligently. The agents would be able to perform tasks automati-

cally and locate related information on behalf of the user.

To make such approaches possible the deployment of ontologies and of terminologies

is crucial. Ontologies define models and concepts in a formal language understandable

by machines. Many ontological resources are already available in the Web, especially

in the bioinformatics field, and many others are being created [19, 20]. Using Se-

mantic Web technologies, these ontologies can be defined (e.g., using the RDF/OWL

languages), stored (e.g., in RDF data stores) and accessed (e.g., via the SPARQL query

language). In addition to ontologies, terminologies such as the Systematized Nomen-

clature of Medicine – Clinical Terms (SNOMED CT)4, the International Classification

of Diseases (ICD)5, the Universal Protein Resource (UniProt/NEWT) and the WHO’s

Anatomical Therapeutic Chemical (ATC)6, are essential to provide a common way to

harmonize the syntax of biomedical concepts across heterogeneous and multinational

data sources. Despite not normally being Semantic Web-compatible, particularly be-

cause some were developed before the definition of Semantic Web, these terminolo-

gies are being incorporated into RDF/OWL ontologies. Additionally, they are being

wrapped by some semantic web resources such as DBPedia7 and Linked Life Data8 so

that they can be accessed seamlessly by SPARQL and other semantic web resources.

1.3 Forecasting Antimicrobial Resistance Trends

At the point of care, the resistance information of pathogens causing a given infection

tends always to be outdated due to the delay necessary to perform a microbiology

1http://www.w3.org/2001/sw/wiki/RDFS
2http://www.w3.org/2004/OWL/
3http://www.w3.org/TR/rdf-sparql-query/
4http://www.ihtsdo.org/snomed-ct/
5http://www.who.int/classifications/icd/en/
6http://www.whocc.no/atc/structure_and_principles/
7http://dbpedia.org/About
8http://linkedlifedata.com/

http://www.w3.org/2001/sw/wiki/RDFS
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf-sparql-query/
http://www.ihtsdo.org/snomed-ct/
http://www.who.int/classifications/icd/en/
http://www.whocc.no/atc/structure_and_principles/
http://dbpedia.org/About
http://linkedlifedata.com/


susceptibility test. Even if real-time monitoring systems are in place, the resistance

status is available at the best case only after the pathogen has been isolated, cultured

and the antibiogram or the genetic screening test has been performed. Although some

o↵-the-shelf tests can provide faster results, such as strep test, the standard and mass

adopted phenotype-based antibiograms take in average two to three days to provide

the answer on the agent’s e↵ectivity. Hence, the current resistance information is only

accessible some time in the future after the infection symptoms are detected by the

physician. Frequently, this delay is not compatible with the infection severity and the

physician decision timing, and, as a result, in clinical practice many times physicians

are obliged to prescribe without the ultimate evidence on the agent’s e↵ectivity. How-

ever, given the current alarming resistance rates, physicians should have access to the

most up-to-date and accurate possible resistance information in order to make optimal

decisions.

Due to the delay observed in obtaining access to susceptibility test results, but

also the application of forecasts in outbreak detection models, accurate prediction of

antimicrobial resistance trends might have a significant impact on reduction and control

of resistance by providing reference levels of the current and future resistance states.

While pathogen isolation and antimicrobial testing cannot be performed fast enough

to keep up with the progression of infection, short-term resistance forecasting could

be used as an alternative to o↵er prescribers better evidence of the e↵ectiveness of

an antimicrobial agent. Moreover, predictive models for resistance trends are key in

outbreak detection biosurveillance systems, serving as a reference value between an

endemic and pandemic judgment [21].

The literature provides a large number of theoretical and applied works describing

methods and applications of time series forecasting tools [22, 23, 24, 25]. Most of them

are focused on classical statistical models, such as the autoregressive integrated mov-

ing average (Box-Jenkins) [23, 24], exponential smoothing (Holt-Winters) [26, 27] and

state space (Kalman) [28, 29] models. In general, these forecasting methods consist

in fitting the data sequence into a mathematical function, a process also called regres-

sion, and predict future values using the fitted function. In the past decade, machine

learning models have established themselves as serious contenders to classical statistics

in regression problems [30]. In particular, machine learning has been used to forecast

financial data [31, 32], trends of physiological data [33], electric load [34], among others.



However, to our knowledge, no original work has been published exploiting the use of

machine learning to forecast resistance trends.

Hence, to complement our transnational biosurveillance system, we investigate a

robust model to extract and predict antimicrobial resistance rates based on empirical

oscillation modes of resistance time series and machine learning. Using antimicrobial

susceptibility test data, we extract waveforms that describe di↵erent variation modes

of resistance, whose dynamics may theoretically represent outbreaks, seasonal e↵ects

and periodic antimicrobial resistance trends. The extraction of the di↵erent wave-

forms is performed using the Empirical Mode Decomposition (EMD) algorithm [35],

an adaptive and data-driven technique that represents the signal as a set of oscillation

functions, called Intrinsic Mode Functions (IMFs), plus a monotonic residual acting

as the underlying trend. The decomposed waveforms are further used as the input

to the machine learning forecaster. Instead of deploying the full signal spectrum in

the learning algorithm, we select only those sequences that contribute significantly to

the underlying signal, that is, those that di↵er from the noise. The learner uses the

delay coordinate embedding technique [36, 37] to capture the dynamics of the di↵erent

time series components and a k-Nearest Neighbor (k-NN) algorithm to project observed

resistance events into the future dimension.

1.4 Thesis Statement

A system of excellence for antimicrobial resistance surveillance requires building an

information technology framework that shares real-time resistance information from

distributed and heterogeneous data sources and provides intelligent data analysis tools.

This task involves the development of an integration platform for healthcare information

systems that captures the semantics of the diverse data sources and that is able to

exploit intelligently this data and knowledge intensive environment.

In this thesis, we propose to investigate the use Semantic Web technologies, in

particular SPARQL, RDF and OWL together with standard biomedical terminologies,

to provide a decentralized monitoring infrastructure where healthcare institutions can

share online microbiology information to be used by bodies concerned with antimicro-

bial resistance surveillance. In the second part of our work, we propose a novel machine

learning model for analysis of short-term resistance trends, featuring trend extraction



and forecasting capabilities. We use our data integration framework to fetch resistance

data, which will serve as the training examples for our learning algorithms. Precisely,

we investigate the use of decomposed time series to improve the learner’s accuracy.

We hypothesize that the forecasting models we build can provide better evidence to

prescribers by predicting accurately short-term resistance evolution.

The main contributions of our work are twofold. First, we introduce an architec-

ture for sharing and monitoring real-time multinational antimicrobial resistance data.

Our architecture scales to a large network of heterogeneous sentinel endpoints, while

complying with healthcare constraints of data sharing, such as source autonomy and

patient privacy. Additionally, we present a novel machine learning model based on em-

pirical mode decomposition and complex system theory for extraction and forecasting

of resistance trends. Our model provides further insights on the dynamics of resistance

trends and improves the performance of baseline forecasting approaches. To the best

of our knowledge, it is the first attempt to use machine learning with decomposed time

series to forecast resistance rates.

1.5 Thesis Outline

This thesis describes methods for integrating biomedical data sources for biosurveillance

and learning-based modeling approaches for antimicrobial trend forecast. To improve

the readability, we have organized the thesis in two parts. From Chapter 2 to Chapter

5, we develop and assess our data integration architecture for transnational monitoring.

Then, from Chapter 6 to Chapter 8 we present the learning-based time series forecasting

model. Finally, Chapter 9 concludes the thesis. The following headings describe in more

detail each chapter.

Chapter 2 provides a review of methods to integrate and interoperate heterogeneous

life science databases. We review the existing data integration methodologies,

focusing on semantic approaches. These methods are used in the design of our

model for integration of distributed microbiology databases.

Chapter 3 introduces the reader to basic aspects of antimicrobial resistance that are

relevant to model the decentralized monitoring architecture. We discuss the rep-



resentation of microbial data and sources, and ways to describe them in a formal

and standard model.

Chapter 4 presents the integration architecture of the interinstitutional antimicrobial

resistance trend monitoring system. It details the di↵erent levels of the architec-

ture, the ontologies used and how we can align data from heterogeneous systems

into a common framework for antimicrobial resistance monitoring.

Chapter 5 presents the results of the clinical evaluation of the integrative monitoring

architecture designed in Chapter 4. First, we assess the system at the technical

level, where the performance of the distributed engine and the clinical pertinence

of the results are measured. Second, we evaluate the clinical and infection control

usefulness of the system from the infectious disease specialists viewpoint.

Chapter 6 provides a review of existing time series forecasting methods from the

machine learning viewpoint. These methods serve as the starting point in the

design of our model for prediction of short-term antimicrobial resistance trends.

Chapter 7 describes our resistance trend extraction and forecasting model. We pro-

vide basic descriptive statistics of antimicrobial resistance time series and ways

to represent it in a machine learning model. Then, we develop our machine learn-

ing algorithm, which employs the k-NN framework to capture the dynamics of

short-term antimicrobial resistance time series.

Chapter 8 presents the results of the trend extraction and forecasting model devel-

oped in Chapter 7. The system is evaluated using a large time series data set of

real antimicrobial resistance rates.

Chapter 9 concludes the thesis and presents the future works.
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2

Biomedical Data Integration and

Interoperability Review

2.1 Introduction

The expansion of biomedical knowledge, reduction in computing costs and availability of

information technology commodities, such as network bandwidth, store and processing

power, have led to an explosion of the life sciences electronic data stored in databases

all around the world. Information ranging from clinical findings of a given patient to

the genetic structure of virtually all species are stored in digital media and accessed

through remote devices. However, especially in the medical field, there is still modest

secondary usage of this information in order to improve further the quality of care,

public health and clinical research.

This observation seems particularly verified in the domain of biosurveillance. Very

few systems are able to exploit the rich content of local clinical information systems to

improve further infection and resistance control. This situation gets worse for multi-

institutional and -national monitoring and surveillance. Most of the available systems

use data aggregated on a yearly basis, which are no longer suitable to monitor faster ever

increasing antimicrobial resistant phenotypes. Current cases of resistance outbreaks

[17, 38, 39] are clear evidence that multinational monitoring systems should provide

more comprehensive but critically faster answer so that control agencies and local

authorities can act accordingly.
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2.2 Data Integration and Interoperability

In the literature, data integration refers to the process of harmonization of heteroge-

neous data sources and content to provide the user with a unified and homogenous view

of these data [40]. The concept of data integration is normally associated with interop-

erability, that is, the “ability of two or more components to exchange information and

to use the information that has been exchanged” [41]. In an integration system, at least

three levels of interoperability are required. First, the system has to interoperate at the

technical level. The di↵erent access and storage protocols have to be in synchrony so

that data can be reached and retrieved. Second, the information syntax has to be ho-

mogenous across the di↵erent data sources. The system’s syntax defines the grammar

that carries the data semantics and structure. Finally, the integration system has to

provide semantic interoperability amongst the di↵erent components, that is, the ability

of computers to understand and automatically process the exchanged information.

2.3 Challenges to Integration of Microbiology Data Sources

Amongst several other issues, to enable secondary usage, like monitoring and knowledge

discovery, the information stored in the distributed, heterogeneous and, to some extent,

chaotic healthcare storage system needs to be first integrated. However, numerous chal-

lenges are faced to develop a system that provides interoperability and homogeneity to

biomedical data sources. The following headings list some of the major issues involved

in the task of integrating biomedical data.

2.3.1 Lack of Technical Interoperability

Integrating proprietary and heterogeneous clinical and non-clinical databases and sys-

tems from distributed sources is still a highly challenging technological task. The

integration system will have to interoperate with di↵erent hardware platforms, oper-

ational systems, database management systems, query languages, data models, access

protocols, transport formats and programming languages [42]. Despite considerable ad-

vances in portability of computer systems in the last decades, with prominence in the

JAVA virtual machine and web services, healthcare systems are based usually on non-

standard proprietary and technology dependent architectures. For example, WHONET



[43], the system most used internationally to report microbiology results, is dependent

on the Microsoft Windows c� operational system.

2.3.2 Lack of Semantic Interoperability

Semantics is widely the main concern when integrating heterogeneous sources. Various

pieces of information and data must have the same meaning in order to be analyzed as

part of the same set. However, conceptual ambiguities may occur in the data models of

the data sources. For example, attributes of two information models may have di↵erent

labels but refer to the same concept, a phenomenon referred as synonymy. Conversely,

attributes may have the same label but refer to di↵erent concepts, known in linguistics

as polysemy [44].

2.3.3 Low Data Quality

Low quality is the intrinsic character of real-world clinical data, which are full of missing

values, abbreviations and errors. Low quality jeopardizes the integration process since

it reduces the confidence on the whole system, invalidating further analysis of the

integrated data. Nevertheless, data quality is often not taken into account in limited

research studies [45].

2.3.4 Missing Transparency about Reliability

Even if data are available and accessible, there is no guarantee that they are valid. Prior

to any analysis of the data, one should be able to access information that characterizes

the data provenance [46]. However, this information is rarely available from the local

sources, if at all.

2.3.5 Multimedia Barrier

New knowledge and information often lie in the ability to merge several di↵erent sources

and modalities of data. One of the complex characteristics of data in life sciences is the

multiplicity of media types, ranging from simple number and controlled text fields to

images, audio and video, and the ability to analyze these information as time evolves.

As an example, the medical literature is rich in findings, such as risks associated with

pregnancy and other collateral e↵ects, which many times are not explicitly present



in the structured information of a data warehouse, either permanently or for a given

period. However, the correlation of both information (and sources) would be crucial in

an e↵ective decision support system for prescription.

2.3.6 Security, Privacy and Confidentiality

The power gained in aggregating data from many sources can lead to unacceptable

and unforeseen risks for the patient’s and the citizen’s privacy rights [47, 48, 49]. Dif-

ferently from publicly available (non-human) biological data, such as some genomic

and proteomic banks, medical data are very sensitive concerning sharing of patient

identifiers. Protection of patient’s identity needs to be taken into account prior to

any action towards data integration. Sophisticated mechanisms of data encryption and

anonymization are found in the literature. However, storing patient data out of the

healthcare intranet would still violate many ethical and legal specifications.

2.4 Electronic Health Record Interoperability

Electronic health record (EHR) [50, 51, 47] is the core information of a health in-

formation system. According to Iakovidis [50], EHR is a “digitally stored healthcare

information about an individual’s lifetime with the purpose of supporting continuity of

care, education and research, and ensuring confidentiality at all times”. In the past

decades, the main goal of health informatics has been the development of EHRs that

can capture and preserve faithfully the clinical meaning of facts related to healthcare.

With the advent of the di↵erent systems, several interoperability standards that try to

address the requirements of the individual EHR systems were created.

2.4.1 HL7

The Health Level Seven (HL7)1 organization was created in 1987 in the United States

of America (USA) from the need to cope with the growing diversity of messaging

exchange protocols in the health insurance industry [47]. HL7 is the most widely

used healthcare interoperability framework to share EHRs between clinical institutions.

HL7 version 3 provides a set of standards for the structuration, markup, exchange,

management and integration of medical data. All the protocol specification standards of
1http://www.hl7.org/

http://www.hl7.org/


the third version are derived from the Reference Information Model (RIM). The RIM is

a formal information model that represents the classes and attributes needed to express

healthcare information. It defines three top level classes: entity, such as people, places

and devices; role, such as that of patient or university healthcare institution; and acts,

such as laboratory observations and procedures. These classes are connected by three

other main relationship classes: role relationship, which relates roles; act relationship,

which connects acts; and participation, which connects roles to acts. The model is

very generic and allows large expressivity of healthcare concepts. However, as pointed

by Smith and Ceusters [52], HL7 has still many incoherences, especially concerning

the duality of reference ontology and information model, and its application as a fully

operational platform for health interoperability is contested.

2.4.2 openEHR

openEHR1 is an international not-for-profit foundation that works in the development

of open specifications, open-source software and knowledge resources for the interoper-

ability of EHRs. Unlike HL7’s RIM, the openEHR model architecture represents the

information and ontological models using two distinct systems: the Reference Model

and the Archetype Model. The Reference Model contains basic building blocks that rep-

resent the information in the EHR and is responsible for the syntactic interoperability

between di↵erent EHRs. The Archetype Model formalizes the medical domain knowl-

edge contained in the EHR. It defines constraints from which clinical information can be

represented using the Reference Model in consistent and interoperable ways. Thus, the

model and specifications can represent independently technical and semantic aspects

of the system. Despite having a better design, especially due to its dual-information

architecture model, openEHR is less adopted by healthcare institutions than HL7.

2.4.3 CEN/ISO 13606

The 13606 Health informatics – Electronic health record communication standard is a

European Committee for Standardization (CEN)2 and an International Organization

1http://www.openehr.org/
2http://www.cen.eu/cen/pages/default.aspx

http://www.openehr.org/
http://www.cen.eu/cen/pages/default.aspx


for Standardization (ISO)1 standard that defines a protocol for semantic interoper-

ability in EHR data exchanging. It is closely related to openEHR, particularly in the

dual-model system development methodology, where the information about the EHR

and the knowledge expressed in its content are kept into di↵erent models; but also in

the Reference Model. The main di↵erence is that CEN/ISO 13606 is a specification

for exchanging EHRs as opposed to the full EHR management proposed by openEHR.

Moreover, the development philosophy of CEN/ISO 13606 is guided by the idea of fit-

ting all existing EHRs whereas openEHR is designed to find the best representation and

highest quality of an EHR. The similarity between the openEHR and 13606 reference

models allow them to be mapped with some e↵ort [53]. However, this mapping comes

at the cost of losing some information due to the incompatibility of the richer openEHR

concepts and the more generic 13606 model.

2.5 Terminologies and Ontologies

Standard terminologies and formal ontologies are largely used in data integration

systems to foster the syntactic and semantic interoperability between heterogeneous

systems[54, 19, 55, 56]. The term ontology comes originally from philosophy, where it

refers to the subject of existence, the nature of being. In computer science, the artifi-

cial intelligence community has adopted the term ontology as the logic representation

of formal knowledge [57]. According to Gruber, an ontology is “a specification of a

conceptualization” [58]. That is, an ontology describes formally concepts and their re-

lationships in a certain knowledge domain. The main value added of an ontology in a

computer system is the possibility of sharing and reusing knowledge in a formalized way.

A terminology, or terminological resource, is simply a standard and usually structured

set of terms defined for use in a specific subject field to enable clearer communication

between di↵erent resources. For example, a drug terminology defines a standard set of

antibiotic terms for use in the healthcare domain.

There are many di↵erent views concerning the definition and roles of terminologies

and ontologies in informatics in general, and more specifically in health informatics

[59, 57, 60]. In this thesis, we adopt the idea that the main role of an ontology in an

integration system is to assure consistence of the knowledge model, rather than the
1http://www.iso.org/iso/home.htm

http://www.iso.org/iso/home.htm


completeness. Complementary, the role of a terminology is to provide a comprehensive

set of terms that are able to express the concepts of the domain. That is, ontological

resources focus on the relationship of concepts whereas terminologies focus on descriptor

terms, which captures the essence of subject.

In the next sections, we list some of the most important clinical terminologies and

ontological resources based on their relevance to the infectious disease field and their

adoption by healthcare institutions.

2.5.1 ATC

ATC is a drug classification system developed and maintained by the WHO1. In the

healthcare domain, it is the drug classification system most used internationally. ATC

classifies drug’s active substances into five groups according to the organ or system on

which they act and their therapeutic, pharmacological and chemical properties. The

classification system favors international non-proprietary drug names and is available

only in the English language. Translation to other languages is available from the

international non-proprietary names’ catalogue.

2.5.2 ICD

ICD is an international terminology that organizes and codes diagnostic health infor-

mation for statistics and epidemiology, healthcare management, monitoring and evalu-

ation, research, primary care, prevention and treatment2. Like ATC, ICD is sponsored

and managed by the WHO and has been adopted by the WHO Member States since

1967. Currently, it is in the operational version 10 (ICD-10) and is accessible in 42 lan-

guages, including Arabic, Chinese, English, French, Russian and Spanish. ICD version

11 is under development in a collaborative and interactive process between health and

taxonomy experts, and users.

2.5.3 LOINC

The Logical Observation Identifiers, Names and Codes (LOINC) is a universal termi-

nology that provides names and codes for identifying individual laboratory and clinical
1http://www.whocc.no/atc/structure_and_principles/
2http://www.who.int/classifications/icd/en/

http://www.whocc.no/atc/structure_and_principles/
http://www.who.int/classifications/icd/en/


observations1. The laboratory part of the LOINC database covers terms from chemistry,

hematology, serology, microbiology and toxicology. Moreover, it provides auxiliary con-

cepts such as drugs, cell counts and antibiotic susceptibilities. The clinical part of the

terminology includes concepts of vital signs, hemodynamics, obstetric ultrasound, car-

diac echo, urologic imaging, survey instruments, among others. LOINC includes over

30,000 observation concepts and the original English terminology has been translated

to nine other languages, including Chinese, Spanish, Portuguese and French.

2.5.4 SNOMED CT

SNOMED CT is a standard clinical terminology2 for healthcare. SNOMED CT terms

are available in the English language and the terminology is processable by machines. It

is the most comprehensive clinical vocabulary available in any language, covering large

part of the medical vocabulary such as diseases, symptoms, operations, treatments,

devices and drugs. Currently, it contains more than 311,000 active concepts 3. The

intellectual property of SNOMED CT belongs to the International Health Terminology

Standards Development Organisation, which owns and administers the terminology.

2.5.5 UniProt

UniProt provides a knowledge base, including a set of terminologies and ontologies,

of information on protein4. The database contains high-quality manually annotated

and non-redundant protein sequence records. Moreover, it includes auxiliary resources

such as species taxonomy and literature citations. For example, the UniProt/NEWT

taxonomy database provides a comprehensive terminology of bacteria and other human

pathogens, which can be directly processed by machines, since it uses a computer for-

malized language to represent concepts. UniProt is extensively used by the biology and

bioinformatics community but not as much in health informatics. However, we see it as

a relevant resource since, as opposed to other biomedical terminologies and ontologies

aforementioned, it allows the expansion of clinical concepts to a more genomic-oriented

1http://loinc.org/
2SNOMED CT is also referred as an ontology.
3http://www.ihtsdo.org/snomed-ct/snomed-ct0/
4http://www.uniprot.org/help/about

http://loinc.org/
http://www.ihtsdo.org/snomed-ct/snomed-ct0/
http://www.uniprot.org/help/about


view. Moreover, its microorganism’s taxonomy is very comprehensive and up-to-date,

covering recent organisms identified in the literature.

Many, if not all, of these terminologies and ontologies present design problems, such

as ambiguity, sparseness, lack of operational meaning and coverage [61, 62]. Neverthe-

less, if applied properly to problems to which they were specifically designed, they can

have positive impact on data integration and interoperability [63].

2.6 Semantic Web

The literature has proposed several frameworks to foster the interoperability of hetero-

geneous data sources. Open Database Connectivity (ODBC) [64] was one of the first

standards that provided a common application program interface to access relational

databases. Additionally, the Common Object Request Broker Architecture (CORBA)

[65] standard was developed to enable the interoperability between di↵erent software

components. These standards have many successful applications to solve technical in-

teroperability [66, 67]. However, as they were not designed to provide further syntactic

and semantic homogeneity to the integrated system, they cannot be used as a full

interoperability framework.

More recently, the World Wide Web Consortium (W3C)1 has lead the development

of a set of standards and tools to model, store and access information available in

the Web. This framework, called Semantic Web, is designed to manage information

in “a web of data that can be processed directly and indirectly by machines” [68, 18].

Semantic Web has defined a set of technologies that foster the integration of heteroge-

neous data sources and data models. It provides methods that contribute to solving

problems of lack of technical, syntactic and semantic interoperability between systems

[69, 70, 71, 72], bringing formal and meaningful representation to heterogeneous infor-

mation. First, it presents a standard format to encode information called RDF2, which

models web resources in a graph structure. This generic model, in contrast to the

entity-relationship model used in traditional databases, facilitates the representation of

clinical facts to an unconstrained dimension [73]. Second, it has defined the SPARQL

standard that provides ways to access ubiquitously resources available in the Web3.
1http://www.w3.org/
2http://www.w3.org/TR/2004/REC-rdf-primer-20040210
3http://www.w3.org/TR/rdf-sparql-query

http://www.w3.org/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210
http://www.w3.org/TR/rdf-sparql-query


Finally, computer-interpretable ontologies written in the OWL1 and other languages

bring formal conceptualization to RDF resources, improving the quality of data and

fostering interoperability between heterogeneous systems.

2.6.1 RDF

RDF is a framework for formal conceptualization, description and modeling of infor-

mation in the Web. It provides a basic information model in a graph structure that

encompasses a data format, and a language to represent the definition of concepts and

their primary relationships. The RDF format builds on the document structure syntax

of the XML language to provide the main language of the Semantic Web. Information

in an RDF data model is organized in the form of subject–predicate–object expressions,

where concepts are uniquely identified using an Internationalized Resource Identifier

(IRI). Hence, RDF concepts can be distinctively referred in the Web, allowing web

resources to be linked, originating the idea of linked-data.

A statement in the (subject, predicate, object) form is called triple in the Semantic

Web parlance. A set of triples composes an RDF graph. As show in Figure 2.1, an

RDF graph is a directed graph where nodes correspond to subjects or objects and

edges represent predicates and connect subjects with objects. In this context, an RDF

subject is a representation of a web resource whereas predicates assert characteristics

or aspects of a resource and define binary relationships between subjects and objects.

RDF/XML2 is the normative syntax of RDF but it can also be represented or serialized

in several other formats, including N33 and Turtle4. Many tools are freely available to

parse and read these file formats.

2.6.2 Semantic Web Ontologies

The core of the Semantic Web is composed by formal ontologies [74, 75]. They provide

the semantics, that is, formal and computer-meaningful knowledge representation, and

define the domain of applications available as web resources. RDF itself provides a core

ontology language that models basic concepts of an RDF document, such as data type
1http://www.w3.org/TR/owl-features
2http://www.w3.org/TR/rdf-syntax-grammar/
3http://www.w3.org/TeamSubmission/n3/
4http://www.w3.org/TeamSubmission/turtle/

http://www.w3.org/TR/owl-features
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/turtle/


Subject Predicate Object 

taxonomy:562 

rdfs:subClassOf

taxonomy:Species taxonomy:rank

taxonomy:561 

taxonomy:scientificName
Escherichia coli 

taxonomy:scientificName

taxonomy:Genus 

taxonomy:rank

Escherichia 

Figure 2.1: RDF triple and graph example - Example extracted from UniProt for
the representation of Escherichia coli taxonomy using a RDF graph.

(rdf:type) and group of elements (rdf:List, rdf:Bag, rdf:Seq). RDFS extends RDF to

provide further constraint and meaning to the RDF concepts. It allows the definition

of classes (rdfs:Class) and subclasses (rdfs:subClassOf ), enabling thus the creation of

more complex hierarchical structures such as “is-a” and “part-of” [75].

OWL is the standard semantic web language. It is derived from description logics

[76], and extends RDF and RDFS to improve expressiveness and reasoning power of

ontologies available in the Semantic Web. The language can be represented using the

same syntax of an RDF document and, as RDF, it also provides formal semantics. OWL

is available in three versions: OWL Lite for describing a basic system in terms of class,

property, subclass relation, and restrictions; OWL DL for system with common formal

semantics and inference decidability; and OWL Full for unrestricted OWL vocabulary

and syntactic freedom of RDF, but without assuring decidability by the reasoner [77].

Together, the vocabulary and axioms of RDF, RDFS and OWL creates a comprehensive

meta-ontology that provides the building blocks for the development of more complex

top-level or upper ontologies, and application ontologies.



2.6.3 SPARQL

Several query languages, such as the RDF Data Query Language (RDQL) [78] and

the Sesame RDF Query Language (SeRQL) [79], have been proposed to access and

manage semantic resources in the Web [80, 81]. As of January 15, 2008, the W3C

had recommended SPARQL as the standard query language for the Semantic Web and

thus, it has become the de facto language for querying RDF data sources. As shown

in Figure 2.2, SPARQL is a SQL-like language that uses RDF triples and resources

for both the matching part and returning results of the query. The protocol has four

querying options: SELECT, which is used to select parts of an RDF graph; CONSTRUCT,

which is used to construct a new RDF graph using an existing RDF graph; DESCRIBE,

which is used to describe a resource matching a query constraint; and finally ASK, which

is used to test for the existence of a triple in an RDF graph. The language provides

powerful query expressivity for a graph. However, it still presents some limitations,

especially for dealing with date/time data types.

PREFIX drugbank: <http://example.com/drugbank/>

SELECT distinct ?drugname ?indication

FROM <http://example.com/graph/>

WHERE {
?drug drugbank:genericName ?drugname.

?drug drugbank:indication ?indication.

filter(regex(?indication, ‘escherichia coli’, ‘i’))

}

Figure 2.2: Example of SPARQL query - This example retrieves the drugs that
are indicated to treat Escherichia coli infections using an RDF graph such as the one
of DrugBank1. The PREFIX clause associates a label with an resource to short and make
cleaner the query statement. The SELECT clause specifies the variables that will be returned
by the query. The WHERE clause asserts the basic graph pattern to match against the RDF
data.

2.7 Data Integration Approaches

There are several methodologies used to integrate distributed heterogeneous data sources

in the literature [42, 82, 83, 84, 85, 86, 44, 87, 88, 89, 90, 91, 92]. They usually fall in



one the categories: link integration, data warehousing, view integration, workflows or

mashups [49]. Depending on the physical location of the databases, these approaches

can be classified either as centralized, where there is only one persistent storage, or

decentralized, where the data are stored throughout several logically and, generally,

physically distributed databases. Moreover, integration systems can be characterized

as horizontal or vertical based on the data overlapping. In horizontal systems, there are

no overlapping of the data sources content. In contrast, in vertical systems, di↵erent

data sources store information about the same data. For example, the same patient

identifier may be distributed amongst many hospitals in universal healthcare system.

Finally, they are also theoretically classified as global-as-view (GAV), where concepts

in the global schema are mapped to views over the sources and as local-as-view (LAV),

where the sources are mapped into views over the global schema [40].

2.7.1 Data Warehousing

Data warehousing is a data integration architecture that aggregates the data of the

sharing sites into one central database, so called data warehouse, and queries are ex-

ecuted against this central instance (see Figure 2.3). A unified data model is defined

in order to accommodate the information contained in the source sites. Data source

specific processes, known as wrappers, are created for each participant site in order to

extract, transform and clean the local data, so that it fits into the new information

model, and to load into the data warehouse. Then, queries can be submitted directly

to the central database. Data warehousing favors the transformation of the local data

to fit the constraints of the central information model. Some projects that follow this

approach are the Integrated Genome Database (IGD) [93], Atlas [88], BioWarehouse

[94] and BioDWH [90].

High performance is considered the main advantage of this model. In addition,

it allows the data obtained from the sources to be modified, annotated and enriched,

since this is a replica, not the production database [95]. There are also well-known

techniques to build upon data warehouses dynamic and online data navigation [96]

that improve user’s data analysis capability. However, to keep the information stored

in a data warehouse up to date with respect to the source data and schema model,

there is a high maintenance cost, especially for dynamic local sources like LIS and

CPOE. As a result, many of the systems that follow this approach end up as data



morgues [49]. Additionally, if there is need for moving data out of the intranet, as

in multi-institutional data integration, this approach may shown impracticable. This

is particularly valid for medical data integration, where storing patient data out the

healthcare’s intranets can infringe many patient’s privacy and confidentiality rights.

Even if identifiers are encrypted or blurred, data owners are reluctant to export full

data sets persistently.

DB DB DB

Data 

warehouse

DB

Figure 2.3: Data warehouse sketch - Local data are transformed to fit in the central
information model. Local wrappers are defined for each data source. They periodically
extract, transform and load the data into the central warehouse

2.7.2 View Integration

In the view integration approach, the local data are kept only in the source site and

a homogenous environment (or view) using all the databases that share information

within the system is created at the query time (see Figure 2.4). It o↵ers to the user a

unique view of the data even if they are located in di↵erent sites with di↵erent mod-

els. When the query is submitted, it is converted to a common query language that

is later handled by a query processor, also called mediator. The mediator discovers

the source data that needs to be accessed to retrieve the result. Then it splits the

query in many subqueries that are passed to di↵erent drivers (or wrappers) that will

each transform its subquery to the local language using mapping rules metadata and

actually access the data. Once the data are fetched in the di↵erent sources, the results

are globally integrated and returned to the user. Mapping rules are used again to align



the local information into the global information model. The HEterogeneous Multi-

database System (HEMSYS) [97], the Stanford-IBM Manager of Multiple Information

Sources (TSIMMIS) [83], the Target Informatics Net (TINet) [85], BioKleisli [98] and

IBM’s Websphere Information Integrator [99] are examples of systems that follow this

approach.

View

DB DB DB DB

Figure 2.4: View integration sketch - Central queries are transformed into local
subqueries. Data are fetched locally and aggregated by the central query processor. There
is no persistent central storage

Mediated architectures provide two implementation methods that can be used by

the mediator to access the local data. First, in the pull mode, data are provided

to the user at the query time. Local databases are accessed instantaneously after

the query is launched. It avoids further delays, but if the system is connected to the

production databases, it may disturb normal production operations when there is a high

volume of access to the central system, similarly to what happens in a denial of service

attack [100]. In the second implementation, push mode, once the query is launched the

local databases are notified, but they only provide the data after a certain fixed delay

delimited by the system. It helps to resolve local performance or/and volume issues in

favor of increasing the retrieval time.

Di↵erent from the data warehousing approach, view integration is based on the

transformation on-the-fly of the central query into local subqueries. Thus, there is no

need to centralized the data into a single warehouse, the data are always up to date

and there is a (relative) decoupling of the data sources from the integration system. In



the downside, usually the performance is not good, or at least not as good as it could

be if the data were centralized in a single data source.

2.7.3 Ontology-Driven Data Integration

Ontologies provide common definitions of real-world entities (or concepts) and their

relationships using a formal language [19, 77]. As such, they are used as semantic refer-

ences for the data sources and to make explicit the local and global information models

in the data integration systems [101]. Whether applied in centralized or decentralized

systems, ontologies may be used to represent the global information model. In this

case, they usually serve as terminological or thesaurus services. Applications of lexi-

cal ontologies are seen in the Mediator envirOnment for Multiple Information Sources

(MOMIS) [86] and the Shared Health Research Information Network (SHRINE) [102]

projects. They can also be used to align automatically local and global concepts, having

therefore an important role in the data mediation process. In this approach, ontologies

are built using a strong formalization language in order to be processed by mediators.

Formal ontologies are applied in the COntext INterchange (COIN) [103], PICSEL [84]

and Transparent Access to Multiple Bioinformatics Information Sources (TAMBIS)

[104] projects.

The literature describes three main methods where ontologies are deployed to sup-

port the interoperability of heterogeneous data sources and provide an explicit and

machine-understandable conceptualization of a domain (see Figure 2.5): i) integration

using a single global ontology, ii) integration using multiple local ontologies and iii) a

hybrid approach, with local ontologies and global ontologies [101, 54].
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Figure 2.5: Ontology-driven integration methods - a) Global (single) ontology, b)
Local (multiple) ontology and c) Hybrid (global and local) ontology [101].



In the first approach, a global ontology provides a shared, common vocabulary to

define the system’s semantics. All information contained in the data sources, which are

pertinent to the system’s domain knowledge, are represented by this global ontology.

The global ontology can be a single monolithic ontology but also the combination

of more specific ontologies. Combination is useful especially if several domains need

to be represented in the ontology. For example, in drug prescription, the ontology

shall model classes of antibiotics but also provide measures to quantify the dose and

frequency. Combining smaller ontologies keeps the global ontology modular. In order

to represent local information, mappings are created from each local information source

model to the global ontology. Thus, local concepts can be unambiguously represented

throughout the system. The Scientific Image Management System (SIMS) [105] and

TAMBIS [104] are examples of integration systems that follow this model.

In the multiple ontology approach, local information models are formalized by local

ontologies. To make local knowledge consistent across the system, mapping amongst

the local ontologies are created. For example, in the Knowledge Reuse And Fu-

sion/Transformation (KRAFT) [106] system, the semantics of the information sources

are described by local ontologies. Despite of having several ontologies, this model fa-

cilitates the development of the ontologies, since the ontologies developed are simpler,

fits exactly to the knowledge presented in the local sites and can be developed by local

data experts. However, due to the lack of a common model, mapping between local on-

tologies is very di�cult. Thus, in practice, this approach is followed by few integration

systems [101].

The third approach uses a combination of a global domain ontology with local infor-

mation source ontologies [103, 84]. In this hybrid of local and global formalization, local

ontologies describe the semantics of each local source and the global ontology describes

the basic, common terms of the domain. To make the information consistent across

the sources, the local ontologies subscribe to the common, top-level global vocabulary.

Thus, there is no need to link the local ontologies. For example, the INtelligent Data

Understanding System (INDUS) [107] uses a query-centric approach, where concepts

in the global ontology are mapped to concepts in the local ontologies. The global on-

tology, which is created by the user, defines entities and relationships in the domain of

discourse and is used to hide the complexity of the information in the data sources. The

user specifies the mappings between the global and the local ontologies and INDUS is



responsible for discovering the data sources, creating the query plan and aggregating

the results. The drawback of the INDUS’s model is that the user has to know precisely

how information in the global model is represented in the local sources, an expertise

rarely found, especially in multinational integration systems.

2.7.4 Other Integration Methods

Link integration is a successful though limited approach to database integration. It

is employed by systems like the Sequence Retrieval System (SRS) [82], Entrez [108]

and Integr8 [109]. Integration between disparate data sources, usually web pages, is

performed using cross references links, which are managed by the integration system

(see Figure 2.6). The system provides references to the source data but does not o↵er

any further computing or reasoning power.
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Figure 2.6: Link integration approach - The data integration system indexes web
resources (ws) and provides links (references) as answers to the user queries

Workflows are techniques to describe and connect series of related process. The

integration system tries to streamline the workflow creation and execution process so

that users can design and execute analytical procedures repeatedly with minimal e↵ort.

Taverna (academic) [87] and InforSense (commercial) [110] are examples of workflow

environments.

Finally, mashups provide means to integrate information from multiple web re-

sources into a single new web application [70]. One of the first healthcare and life

science mashup examples was the use of Google Earth to track the global spread of



avian flu [89]. Mashups development framework such as Yahoo! Pipes [111] speeds up

the creation of new integrated web resources. They make the design of mashups similar

to a workflow development but using only web-based resources. Figure 2.7 shows an

overview of a basic mashup system.
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Figure 2.7: Mashups - Web resources (ws) are integrated on-demand using mashup
technologies.

2.8 Existing Integration Systems in Life Sciences

In the literature, many systems had been designed to integrate data from heteroge-

neous life sciences data sources. In this section, we discuss some representative of link

integration, data warehousing, (ontology-driven) view integration and service-oriented

systems that were introduced in the last decades.

2.8.1 SRS

SRS is a link integration system designed to work with molecular biology data banks in

the Web. The system uses indexed flat files to store cross-reference links from di↵erent

data sources. The SRS model is based on a document retrieval engine, working similarly

to web-based search tools, where the user can create queries using keywords terms (title,

author name, etc.) in Boolean combination [82]. SRS is popular among biologists

because it is easy to use and was one of the first data integration systems to provided

a specialized search tool for heterogeneous bioinformatics web resources.

SRS model is reasonably e↵ective because there is a strong overlap of terms in in-

dexed the corpora, enabling their linkage. However, the system does not extend readily



to data types other than sequence databanks, for which it was originally designed. Even

for sequence data, it neither provides a rich query language nor optimization capabili-

ties. In addition, there is no conceptual model and, like BioKleisli [98], the integration

and location details are not transparent. Thus, a large part of the integration onus

is on the user side. Furthermore, output results are not machine readable, requiring

further parsing if the system is used by other applications.

2.8.2 BioDWH

BioDWH is an open source data integration software kit. It intends to increase cus-

tomization of the data warehouse concept with the advantages of better performance,

scalability, synchronization and data quality [90]. The system architecture provides

a data warehouse infrastructure that is independent from the underlying relational

database management system. It has a monitoring component that tracks changes

on the various data sources. When a source is updated, it downloads the data from

the original source and extracts the compressed data in a local directory. Then, it is

possible to start the synchronization of the data warehouse. BioDWH claims to have

advantages when compared to other systems by providing up-to-date information, plat-

form and database independence as well as high usability and customization. However,

the system is not suitable to integrate data sources that change frequently, since it will

not scale up with data updating.

2.8.3 TAMBIS

TAMBIS project was designed to help bioscientists with tasks of choosing, combining

and interacting with biological data resources in order to retrieve research informa-

tion. The system architecture is service oriented and based on an extensive source

independent, global and formal ontology, created using the Description Logic GALEN

Representation and Integration Language (GRAIL) (currently updated to the DARPA

Agent Markup Language+Ontology Inference Layer (DAML+OIL)) [104]. A terminol-

ogy server is responsible for the ontology management. The ontology is deployed in the

user interface for data navigation and to transform queries into an intermediate lan-

guage, understandable by the Collection Program Language (CPL), TAMBIS’ common

query language.



In TAMBIS, the query process is realized in three phases. First, there is a query

formulation process, where the user creates the request using terms and relationships

formalized in the TAMBIS ontology. The result is a source independent conceptual

query. Second, this conceptual query is transformed into local queries understandable

by the local databases. The system looks for the ontology terms present in the concep-

tual query and selects the data sources needed to answer the query constraints. Then,

a query plan is constructed for each local source. Finally, the tool executes the queries

against the selected data sources and returns the results to the user.

2.8.4 caGrid

The caGrid system was developed inside the cancer Biomedical Informatics Grid (caBIG)

project, supported by the National Cancer Institute (USA). It intended to address the

need for standard applications, common data models and software infrastructure to

enable e�cient access to and sharing of distributed computational resources in cancer

research [112]. caGrid is based on a model-driven and service-oriented architecture

that provides a framework for the advertising, discovering and invocation of data and

analytical resources in a Grid environment. The framework is built using three Grid

middleware frameworks: Globus Toolkit [113], OGSA-DAI [114] and Mobius [115].

In the caGrid approach, distributed resources are represented as Grid services and

communications between services and clients are done using Grid protocols. The Globus

Toolkit is used as the core Grid middleware for creation, deployment and invocation of

Grid services. Other Grid services are built on top of toolkit. OGSA-DAI virtualizes

the local data sources as Grid data services and manages the queries in the distributed

environment. Finally, Mobius is employed to support Grid-wide management of XML

schemas representing the structure of common data types in the caBIG domain.

2.8.5 OntoFusion

OntoFusion was designed within the INFOGENMED framework to provide unified

access to data sources that are publicly available over the internet [116]. The sys-

tem architecture is based on a multi-agent platform and the integration approach is

ontology-driven, where source databases are mapped and unified using ontologies. The



JADE platform1 is used to enable the execution of di↵erent parts of the system on dif-

ferent machines. The user interface allows the user to explore the hierarchy of virtual

data repositories, that is, virtual schemas obtained through the mapping or unification

process of the heterogeneous data sources, and to issue queries over the unified system.

In OntoFusion, a data mediator module coordinates the access to the virtual reposi-

tories. Each virtual repository is assigned to an individual agent, which execute queries

issued against its repository and returns the output to the mediator. In addition, an

agent can provide its virtual schema to other agents. Virtual schemas are stored using

DAML+OIL ontology language and RDQL is used as the query language. The me-

diator distributes the user queries to the di↵erent agents and merges the results. A

database access module is responsible for the communication with the physical database

systems. It contains wrappers that translate queries from the intermediate query lan-

guage (RDQL) into the local query languages.

OntoFusion adopts a query translation approach. In contrast to systems like TAM-

BIS, it does not use a single conceptual schema, avoiding changes on the global concep-

tualization when adding or removing a database. The vocabulary issue is solved with

the multiple virtual schema, where conceptual schemas for all databases are created

using terminology from a domain ontology. Hence, objects from one schema and all

their semantic counterparts from conceptual schemas of other databases will have a

standardized term.

2.8.6 SHRINE

In SHRINE [102], the authors developed a prototype federated query tool for clinical

data repositories. The system aimed to serve as a framework that would foster scalable

collaboration across di↵erent healthcare institutions, allowing secure sharing of patient

information. The query manager tool, which is based on web services, provides real-

time aggregate counts for number of patients having a certain clinical condition. It

distributes user queries to the di↵erent network peers, which return the number of

patients matching the query constraints. Queries are executed locally by local adaptors,

which can be created for each source peer to account for local specificity. However, this

is not a easy task and requires deep understanding of both the local system and the

1http://jade.tilab.com/



query manager architecture. The system was evaluated with only one type of backend

– i2b2 [117].

SHRINE is strongly focused on the security and privacy aspects of sharing patient

data on real-time. For example, the query engine provides the patient counts added

by an small variation error, so that patients can not be tracked by a combination of

di↵erent queries. The system also blocks user accounts in case they run queries using

the same parameters repeatedly. Finally, results matching less than 10 patients will be

answered symbolically as “less than 10”. All queries are logged so that audit processes

can be performed. The system uses X509 certificates to ensure that a peer is truly

allowed to retrieve information from the network.

2.8.7 The DebugIT Project

The Detecting and Eliminating Bacteria Using Information Technology (DebugIT)

project [118] was run by a consortium of 14 industrial, research and clinical institutions

from nine countries that collaborated to build a framework for sharing antimicrobial re-

sistance data from clinical information systems in a Europeanwide context. The project

aimed to reuse existing clinical data for generating new knowledge to be incorporated

in decision support and monitoring engines at the point of care and for developing

prevention strategies at policy levels. The project was funded by the European Union

Seventh Framework Programme and run from January 2008 to June 2012.

The DebugIT architecture showed in Figure 2.8 is based on distributed services that

exchange information using Semantic Web technologies. Each service is represented

as a semantic endpoint that communicates in the SPARQL protocol and uses RDF

framework to exchange messages. The DebugIT Core Ontology (DCO) [119] describes

and formalizes the DebugIT domain. A semantic interoperability platform coordinates

the access to the di↵erent systems. It uses DCO as the central glue for the semantic

endpoints. The architecture and experiments realized in this thesis, in special the

transnational antimicrobial resistance monitoring system, were developed under the

DebugIT project and follows the principles of data sharing via the Semantic Web.
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Figure 2.8: Architecture of the DebugIT framework - Components of the archi-
tecture, such as the clinical data repository (CDR), knowledge repository (KR), decision
support system (DSS), and monitoring system (MS), are interconnected using the SPARQL
protocol through the Internet bus. Messages are transferred in the RDF format, and on-
tologies formalize the data model and content.

2.9 Summary

A plethora of data integration systems can be found in the literature. Since the popu-

larization of database management systems in the middle of the past century, and, in

a ever more larger scale, lately in the past two decades with the mass adoption of the

Web in sciences, medicine and engineering, among other areas, data have been stored in

digital databases of several types (relational, XML, object oriented, etc.). In the era of

knowledge, individuals and organizations have realized the power of integrated systems

and several frameworks are being created to unify and provide easier, faster and cleaver

methods to access, visualize and analyze information stored in these distributed and

heterogeneous resources.

However, despite the large number of integration systems available, most of them

are very specific to the task that they were designed. They can work essentially in

the context for which they were created, respecting project constraints, such as data

source types, information model, etc. As an example, the architectures designed to

integrate biological data sources cannot be applied directly in the integration of medical

data sources. First, in medical data integration there is a high concern with patient’s

privacy rights. Information needs to be anonymized and centralization is usually a

constraint. While in biological data, such a bacteria and protozoa data banks, this is not

a concern. Second, the number of biological data sources that are part of a biological

integration system is relatively small. For example, the Linked Life Data1 project
1http://linkedlifedata.com/sources

http://linkedlifedata.com/sources


currently integrates 25 data sources. This situation is very di↵erent for medical data

integration, such as biosurveillance and randomized clinical trials, where the number

of sources that could eventually be part of the system is much larger (� 100).

Semantic Web, on the other hand, rather than being designed as a specific integra-

tion system, it provides a standard, generic and widely used set of tools that can be

applied to foster the development of integration systems. Amongst other benefits, this

increases the portability of the semantically-formalized data sources, allowing them to

be (re-)used relatively easier in applications for which the system was not originally

projected. Therefore, we select Semantic Web as our framework of choice to support

the design of a transnational antimicrobial resistance monitoring system.





3

Modeling and Formalizing

Antimicrobial Resistance Data

and Sources using Semantic

Technologies

3.1 Introduction

In this chapter, we first provide a brief overview of antimicrobial susceptibility tests.

Then, we propose a method to formalize microbiology data sources using Semantic Web

technologies. This is an expansion of the works presented in [120, 121]. Finally, we do

a preliminary evaluation of the performance of the formal endpoints. This model will

serve as basis for our transnational monitoring system described in the next chapters.

3.2 Antimicrobial Susceptibility Tests

Microbe’s resistance to antimicrobials is a normal biological phenomenon. In the his-

tory of antimicrobial development, the introduction of every agent into clinical practice

has triggered the selection of resistance strains. Resistance is characterized by the ca-

pability of microorganisms to survive and multiply while exposed to drug concentration

levels higher than the tolerated by the human or other living media. Pathogens are

naturally resistant to (or not a↵ected by) many antimicrobials. However, resistance

can also be developed through evolutionary processes, such as mutation and lateral
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gene transfer1 [122, 123, 124]. In both cases, genes encode di↵erent mechanisms that

inhibit the action of antimicrobials. These mechanisms may be presented in entire

species or exist only in some strains. Moreover, they may be e�cient not only with

a specific antimicrobial, but sometimes they can neutralize the e↵ect of a whole class

of drugs. Further, pathogens can become resistance to multiple drugs used in clinical

therapies, a phenomenon called multi-drug resistance. The microbes that carry these

multi-resistant genes are informally known as superbugs. Examples of such superbugs,

or super bacteria in these specific cases, are the methicillin-resistant Staphylococcus

aureus (MRSA) and the vancomycin-resistant Enterococcus (VRE) bacterium strains.

In order to detect resistant strains, antimicrobial susceptibility tests are performed

in microbiology laboratories. Whether based on standard phenotypic antibiograms or

more recently on genetic screening tests, these methods follow a basic workflow com-

posed by the steps: i) specimen collection, ii) microbe culturing, iii) microbe isolation

and iv) susceptibility testing. In the first step, a clinical sample is extracted from

the patient presenting the infection symptoms. Then, this material is cultivated in a

rich organic media so that microbes that are causing the infection can grow. From

the microbes detected in the culturing media, those, which are likely pathogenic2, are

then isolated and subjected to the resistance tests. In case of standard phenotypic

antibiograms, these microorganisms will be put in the presence of several antimicro-

bials, as shown in Figure 3.1, so that their susceptibility can be tested. Escherichia

coli, for example, will be usually tested against ampicillin, ceftriaxone, gentamicin,

trimethoprim-sulfamethoxazole, ciprofloxacin and amoxicillin-clavulanic acid. Depend-

ing on how much the isolated pathogen is able to grow in the presence of these antimi-

crobials or, in other words, on the lowest concentration of the antimicrobial that will

be able to inhibit the visible growth of the microbe, that is, the minimum inhibitory

concentration (MIC), the result of the test will be defined in terms of the breakpoint

values as sensitive (S), intermediate (I) or resistant (R). Unlike phenotype-based an-

tibiograms, in genetic screening tests, the susceptibility test will search for the presence

of known resistant genes in the microbe’s DNA sequence. In this case, instead of report-

ing the breakpoint values, the test will reveal the presence or absence of the resistant

1Resistant genes are acquired from other microorganisms.
2Pathogenicity will depend among other factors on the species and the site.



gene(s). For example, it could reveal the presence of the mecA gene [125], which will

characterize methicillin resistance.

3.3 Modeling and Formalization of Microbiology Databases

Since the first discoveries of resistance, local, national and international antimicrobial

resistance data are being produced on routine daily tests in microbiology laboratories.

With the increasing availability of information systems in hospitals and laboratories,

the content of these tests have been stored in digital databases and integrated into

laboratory and clinical information systems all around the world. With the awareness

of the potential benefits that the gathered data could have on quality of care, more

and more centers have started to use them for secondary purposes, including support-

ing empirical therapy, infection control and antimicrobial policy decision making, and

helping to create prescription guidelines and clinical alerts.

However, as it has happened with other information databases, this electronic data

growth was not followed by the standardization and formalization of the information

technologies involved in the process. As a result, hospital information systems have

become data islands that are di�cult to access and integrate [126]. Still nowadays

with all the advances in storage technologies, such as cloud and grid computing, in

practice, clinical databases even within the same institution does not interoperate well.

As an example, in a study about the implementation of CPOE in the United States,

Germany, the United Kingdom, France, the Netherlands, Switzerland and Australia

[127], Aarts and Koppel found that integration of CPOE with patients electronic records

is inexistent in Germany, France, the Netherlands and Australia, and was available in

only one Swiss hospital.

In order to integrate these microbiology databases we propose an approach based on

formal and standard semantics. More specifically, our hypotheses is that Semantic Web

technologies could enable the development of eHealth surveillance networks, providing

common meaning to the integrated system while respecting local specificities. Di↵erent

from existing data integration systems, where a central query engine is designed and

the local sources are modified to adjust to the central system, in our approach we start

by modeling and formalizing the data sources to create what we call the local Clinical

Data Repository (lCDR) [120, 121]. Only then that we will define our central engine



Figure 3.1: Antimicrobial susceptibility test by disk di↵usion on Müller-Hinton
agar of an enterobacteria - It shows resistance to CRO (ceftriaxone = Rocephin =
3rd generation cephalosporin), with the synergy in-between AMC (amoxicillin-clavulanic
acid) and CRO and other cephalosporins. This is the sign of the production of an
ESBL (Extended-spectrum betalactamase). This image has being provided courtesy of
Dr. Stéphane Emonet of the Hôpitaux Universitaires de Genève, Geneva, Switzerland.



to coordinate the access to the local endpoints. That is, we perform a bottom-up

approach to data integration. We assume in our model that the institutions that we

will integrate have already a microbiology database with some content. Further, in

order to simplify our design, we consider that these data are stored and managed in a

relational database. In the next chapter, we will see that this constraint can be relaxed.

3.3.1 Microbiology Databases

Independent of the healthcare setting where an antimicrobial susceptibility test has

been performed, the report is composed essentially of four main concepts: the anatom-

ical site where the specimen was collected, the microorganism isolated, the antimicrobial

tested, and its respective susceptibility. Additionally, some complementary information

is commonly capture by the data model such as the time when the sample was collected

and when the test was reported, some demographics data including the patient gender

and age (or date of birth), which are associated to a patient identifier, and finally some

geographic or organizational data, such as the patient’s ward, the clinical setting and

the laboratory performing the test. Sometimes, in more complete reports, we can also

find the MIC values and the amount of overnight bacteria growth, which is used, among

other factors, to di↵erentiate between infection and colonization. Table 3.3 provides an

example of a basic microbiology laboratory report.

Figure 3.2 shows an example of a relational databases storing microbiology reports.

We have three main elements in these databases – the data model, the data set and

the data source. The data source is the database itself. It stores and manages all

the information contained in the microbiology reports. The data model defines the

content of the data source. It organizes the database information and specifies how

they are stored and accessed. A data model is composed of a set of concepts and their

relationships. Here, we consider that a concept is the representation of an abstract thing

and is defined by a set of relationships and, eventually, recursively by other concepts.

A data model contains also data elements, which are atomic units of information. They

are unambiguously defined with precise semantics. Finally, the data set is a result of a

data model instantiation, for example, as the product of a database query. It contains

a set of data elements and their respective values.

Our goal in the modeling of a microbiology database is to formalize these three main

elements – data model, data set and data source – so that they can be ubiquitously



Concept Data element Data value Field size (Byte)
Patient Patient ID 20639467 10

Date of birth 1991-01-01 10
Gender F 1

Organization Organization ID 105 10
Ward floor-1-ac 45
Service Cardiology 45
Department Internal medicine 45
Organization name Hospital 1 45

Culture Culture ID 1910181 10
Patient ID 20639467 10
Organization ID 105 10
Collect day 2012-01-01 10
Specimen urine 45
Organism E. coli 45
Quantity > 105 10

Total 351
Antibiogram Antibiogram ID 3180102 10

Culture ID 1910181 10
Antimicrobial cefepime 45
Susceptibility S 1
MIC 0.96 10

Total 76

Table 3.1: Example of microbiology result report - Example and size of concepts
use in a routine antimicrobial susceptibility test report.
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Figure 3.2: Antimicrobial resistance information dimension - Resistance infor-
mation varies in time and location (departments and wards in a single institution, and
di↵erent organizations in a network monitoring system) [128].



accessed using a formal query language. By formalization, we consider the process

of transforming the underlying database content into a formal language representa-

tion that computers can understand. That is achieved by defining these elements, or

more specifically, their classes, properties, instances and relationships, using a formal

ontology language. As we described in the previous chapter, semantic web ontology

languages, such as RDF, RDFS and OWL, are all formally defined and provide the

means to represent these elements in a computational and semantically formalized way.

We will employ these ontologies to formalize the microbiology databases.

3.3.2 Standardization in Laboratory Systems

Hitherto, most of the systems storing antimicrobial resistance information use local

naming conventions. Despite the availability of standard biomedical terminologies,

such as LOINC and SNOMED CT, they are still hardly adopted into local clinical

information systems. There are many reasons for that as already pointed by Rector

[61]. In the next headings, we highlight four factors we believe have significant impact

on terminology adoption into clinical systems:

• Technological momentum [129]. In general, information technologies have a cer-

tain momentum to be widely adopted. Existing systems, as long as they work,

tend to be kept in place. Since current operation systems were built before or

together with the advent of many of these terminologies, they will need some time

to be spread and actually deployed into operational databases.

• Language barrier [61]. Standard biomedical terminologies should cover concepts

in many languages because healthcare workers need to access information in their

own language, amongst other reasons, to avoid translation ambiguities. However,

despite the e↵orts from international health organization, such as the WHO, to

have terminologies in several languages, most of the main biomedical terminolo-

gies are still very restricted to western European languages, especially English.

• Growing complexity. As standard terminologies, they try to cover as much as

possible the knowledge field and many times they become very complex (size

wise) to use for both the system developer and the healthcare worker dealing with

the information system. For example, the UniProt/NEWT terminology presents a



very comprehensive and even machine readable taxonomy for microbes. However,

it includes the whole range of class, genus, species, strains, etc. Just for bacteria,

there are currently 238,662 terms. Therefore, it would not be readily suitable

for systems that, for example, are interested only in most virulent or resistant

pathogens.

• Operational names. Many times standard terminologies use labels that are very

distant from healthcare practice. For instance, methicillin, a beta-lactam drug

compound of the penicillin class, is an antibiotic no longer manufactured but the

term is still used to refer to a class of antibiotics that includes cloxacillin, oxacillin

and flucloxacillin, as in methicillin-resistant Staphylococcus aureus. However, in

some drug terminologies, antibiotics with similar e↵ect are grouped under other

labels, such as Beta-lactamase resistant penicillins (WHO-ATC - code J01CF),

and the methicillin term is inexistent. As an example, a quick search in Pubmed1

for the term methicillin retrieves more than 22 thousand documents while the

term Beta-lactamase resistant penicillins is found in less than 20 documents.

That is, these terminologies neglect some very important operational names while

some irrelevant, from the operational view point, are present in their vocabulary.

Comparable to the lack of standardization in the representation of microbiology

data sets, data models are usually not derived from standard healthcare information

models either. Regardless of standardization and formalization e↵orts such as openEHR

and HL7-RIM, microbiology information models are still developed “in-house”. The

reasons are similar to the lack of standard nomenclature in data sets, in particular, the

complexity (or generality) of the standard reference models. In addition, standard in-

formation models are sometimes not well designed for relational databases, such as the

HL7-RIM. A substantial work is required to adapt them to a relational database man-

agement system and the result is not necessary an interoperable system. Furthermore,

the lack of a single actual standard model, which would truly allow de facto interoper-

ability, compromises their adoption. Thus, we do not consider that any standardization

and formalization are presented in the local microbiology databases, neither at the data

set nor at the data model levels.
1http://www.ncbi.nlm.nih.gov/pubmed/

http://www.ncbi.nlm.nih.gov/pubmed/


3.3.3 Formal Data Model

A formal data model for a database, which we will call the data definition ontology

(DDO), defines all the concepts and data elements of the source model using a formal

language. The easiest way to formalize a data model is to create a direct map from the

database schema to an ontological model. In a direct mapping, the resulting structure

of the DDO is a copy of the data model and the DDO vocabulary directly reflects the

table and column names of the source model. In the conversion process, the structure

and the vocabulary are not modified, or at least, not significantly that it cannot be

expressed by trivial mapping rules, such as string conversion. Several authors have

used this approach to formalize relational databases [130, 131, 132]. We build on these

related works to define our formalization rules.

First, let us assume that we have a normalized relational database schema, at least

up to third normal form. In our approach, we define a set of rules that converts

the tables and columns of the source model into ontological classes and properties.

More specifically, we use the RDF graph format, the RDF(S) and OWL semantic web

languages and the XML Schema Definition Language (XSD)1 to specify the output

DDO. In our notation, we employ the Turtle syntax to facilitate reading. Italic terms

are placeholder variables for which particular values coming from the data model are

supplied. These rules are defined as follow:

Rule 1 - Tables are mapped to classes in the DDO and the table name defines the

class IRI. Hence, in the Turtle syntax, a table is formalized as:

ddo:TableName a rdfs:Class .

Rule 2 - Columns are mapped to class properties or individuals in the DDO.

Rule 2.1 - Primary key columns represents an individual, that is, an instantiation

of a class. Therefore, they are not mapped in the DDO, which represents only

information about the data.

Rule 2.2 - Foreign key columns represent relations between instances of two classes.

They are defined as object properties and the column name defines the property

IRI:

ddo:columnName a owl:ObjectProperty .

1http://www.w3.org/TR/xmlschema-2/

http://www.w3.org/TR/xmlschema-2/


Rule 2.3 - Data columns, that is, those that are neither primary keys nor foreign

keys, represent relations between instances of classes and literal values. They are

defined as datatype properties and the column name defines the property IRI:

ddo:columnName owl:DatatypeProperty .

Rule 3 - Property value ranges are restricted using the column data types or the

reference table in case of foreign keys. Restrictions are anonymous or blank node

classes.

Rule 3.1 - Properties derived from foreign key columns range within their reference

class type:

:x a owl:Restriction ;

owl:onProperty ddo:columnName ;

owl:allValuesFrom ddo:TableName .

Rule 3.2 - Properties derived from data columns range within primitive datatype

values:

:x a owl:Restriction ;

owl:onProperty ddo:columnName ;

owl:allValuesFrom xsd:dataType .

Rule 4 - In description logic models, classes are represented by a set of subsumption

relations derived from their properties. For example, let us suppose we have

an antibiogram with some antibiotic tested and some respective susceptibility.

In OWL we state this by saying: “Antibiogram is a subclass of all things that

have some tested antibiotics and some respective susceptibility”. We use the same

approach to enrich the class concepts with their restriction properties (columns):

ddo:TableName rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty ddo:columnName1 ;

owl:allValuesFrom ddo:columnDataType1 ] ,

...

[ a owl:Restriction ;



owl:onProperty ddo:columnNameN ;

owl:allValuesFrom ddo:columnDataTypeN ] .

As further demonstrated in [133], these rules can be fully automatized.

By applying the above rules to a database data model, we can formalize the data

model structure and have it processable by reasoners, such as the ones implemented

by some SPARQL engines1. For example, let us consider the data model provided

in Figure 3.3 as the representation of a microbiology laboratory report in a relational

database. Then, if we apply the aforementioned rules to the table Antibiogram, it will

result in the DDO showed in Figure 3.4.

Culture

growth

reportDay
collectDay

patientId
organizationId

id

organism
specimen

Organization

id

institutionName

service
department

ward

Patient
id
gender
dateOfBirth

Antibiogram
id
cultureId

susceptibility
mic
antimicrobial

Figure 3.3: Basic antimicrobial susceptibility test information model - An orga-
nization produces several microbiology (culturing) reports. A cultured microorganism can
be tested against several antimicrobials or not. A patient may have several microbiology
reports.

3.3.4 Formal Data Source

Having formalized the data model, we will now formalize the data source. To be

more precise, we will connect the formalized data model to the underlying non-formal

database so that it can provide data in the RDF format and be accessed using the

1http://jena.apache.org/

http://jena.apache.org/


#namespace declaration

@prefix rdfs : <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl : <http://www.w3.org/2002/07/owl#> .
@prefix xsd : <http://www.w3.org/2002/07/owl#> .
@prefix ddo : <http://localhost:8080/ddo#> .

#definition of the antibiogram class

ddo:Antibiogram a rdfs:Class ;

rdfs:subClassOf

[ a owl:Restriction;

owl:onProperty ddo:cultureId;

owl:allValuesFrom ddo:Culture ] ,

[ a owl:Restriction;

owl:onProperty ddo:antimicrobial;

owl:allValuesFrom xsd:string ] ,

[ a owl:Restriction;

owl:onProperty ddo:mic;

owl:allValuesFrom xsd:float ] ,

[ a owl:Restriction;

owl:onProperty ddo:susceptibility;

owl:allValuesFrom xsd:string ] .

#definition of the culture properties

ddo:cultureId a owl:ObjectProperty .

ddo:antimicrobial a owl:DatatypeProperty .

ddo:mic a owl:DatatypeProperty .

ddo:susceptibility a owl:DatatypeProperty .

Figure 3.4: Example of data model formalization - The DDO is an RDF graph
written using the Turtle syntax, where database tables become OWL classes and columns
become properties. Data types are derived from foreign key relations and columns types.



SPARQL query protocol. The resulting system, containing a formal data model (DDO)

and communicating via SPARQL protocol, will be our lCDR.

So far, the literature has provided two alternatives to formalize existing data sources.

First, we can store the non-formal model and data into a formal semantic-complying

storage system, such as the RDF stores provided by Sesame1 and Jena2. In this method-

ology, specific software (wrappers) shall be developed to extract the data from the rela-

tional databases, transform them to the DDO model and then load into the RDF store.

Second, we can transform on-the-fly the original data source into a semantic-complying

storage system using some transformation rules. This so called RDB-to-RDF approach

is implemented by several engines, including D2RQ[130] and Triplify [134]. In special,

W3C has been developing a standard candidate language to map relational data mod-

els to RDF – the R2RML language3. R2RML is a powerful transformation language

and is starting to be adopted by some RDB-to-RDF transformation engines, such as

Virtuoso4. Using an RDB-to-RDF approach, the relational database will be regarded

as a virtual RDF graph but the data will be only persistently stored in the relational

database. The advantage of this methodology is that it does not require to modify the

existing relational data sources to represent them as an RDF graph. Moreover, security

constraints, which usually lacks in native triple stores, can be applied to the relational

databases increasing the trust on the system.

Let us consider the example of D2R. The system o↵ers virtual access through a

SPARQL interface that queries the underlying relational database and provides the

output data set in the RDF format. The system specifies a map between D2R classes

and properties and the source database tables and columns. These mappings are used

to convert SPARQL queries into SQL when the queries are issued against the SPARQL

endpoint. The results are then converted back to RDF using a reverse engineering pro-

cess based also on the mapping constraints. For example, in the D2R map of Figure 3.5,

the d2rq:ClassMap class is used to represent a class of an ontology and to define how

instances of the class are identified in the database. The parts between @ identify the

database columns that contain the class individuals, that is, the primary key columns.

D2R properties are linked to database columns using the d2rq:PropertyBridge class.
1http://www.openrdf.org/
2http://jena.apache.org/
3http://www.w3.org/TR/r2rml/
4http://virtuoso.openlinksw.com/

http://www.openrdf.org/
http://jena.apache.org/
http://www.w3.org/TR/r2rml/
http://virtuoso.openlinksw.com/


@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .
@prefix map: <http://localhost/mapping#> .

# Table Antibiogram

map:Antibiogram a d2rq:ClassMap ;

d2rq:dataStorage map:database ;

d2rq:uriPattern ‘Antibiogram/@@Antibiogram.id@@’ ;

d2rq:class ddo:Antibiogram .

map:cultureId a d2rq:PropertyBridge ;

d2rq:belongsToClassMap map:Antibiogram ;

d2rq:property ddo:cultureId ;

d2rq:refersToClassMap map:Culture ;

d2rq:join ‘Antibiogram.cultureId => Culture.id’ .

map:antimicrobial a d2rq:PropertyBridge ;

d2rq:belongsToClassMap map:Antibiogram ;

d2rq:property ddo:antimicrobial ;

d2rq:column ‘Antibiogram.antimicrobial’ ;

d2rq:datatype xsd:string .

map:mic a d2rq:PropertyBridge ;

d2rq:belongsToClassMap map:Antibiogram ;

d2rq:property ddo:mic ;

d2rq:column ‘Antibiogram.mic’ ;

d2rq:datatype xsd:float .

map:susceptibility a d2rq:PropertyBridge ;

d2rq:belongsToClassMap map:Antibiogram ;

d2rq:property ddo:susceptibility ;

d2rq:column ‘Antibiogram.susceptibility’ ;

d2rq:datatype xsd:string .

Figure 3.5: Data source formalization - Mapping from the database schema to an
ontology. Notice the properties d2rq:uriPattern, d2rq:uriColumn and d2rq:join as-
sociating concepts in the database mapping ontology to the actual database tables and
columns.



A property bridge class also connects the properties to their respective resources cre-

ated by a class map. Further, D2R allows classes and properties to be linked to external

resources, such as the DDO, using the d2rq:property and d2rq:class clauses. Then,

we can have the data source fully formalized by linking tables and columns from the

relational database to the DDO classes and properties.

3.3.5 Formal Data Set

The formalization of the data set becomes trivial once the data source and data model

have been formalized. The DDO provides already all the formalism to express the

data elements and values of a data set in the semantic web language. Then, we only

need to instantiate the data model to have a formal data set representation. We can

do it simply by executing a construct SPARQL query against the formal endpoint.

For example, the antibiogram concept provided in Table 3.1 could be instantiated as

shown in Figure 3.6. Even using local terms, the data set can be fully formalized using

semantic web ontologies and transformed into a RDF linked data. Figure 3.7 shows

the equivalent graphical representation of the concept described Figure 3.6.

@prefix xsd: <http://www.w3.org/2002/07/owl#> .
@prefix ddo: <http://localhost:8080/ddo#> .

ddo:Antibiogram#3180102 a ddo:Antibiogram ;

ddo:susceptibility ‘S’ˆˆxsd:string ;
ddo:mic ‘0.98’ˆˆxsd:float ;
ddo:antimicrobial ‘cefepime’ˆˆxsd:string ;
ddo:cultureId ddo:Culture#1910181 .

Figure 3.6: Turtle representation of a data set - Example of a data set in the RDF
format.

If standard terminologies, such as WHO-ATC and SNOMED CT, are employed

in the local data sources, terms could be still formalized using the same approach.

For instance, if in the antimicrobial definition of Figure 3.6 we use the equivalent

WHO-ATC code J01DE01 instead of the string cefepime. Then, the term would be

formalized as ‘J01DE01’ˆˆxsd:string. Further, complex data types could be de-

fined by ontologies in order to represent the semantics of the terminology, such as in



ddo:Culture#1910181 

ddo:mic
ddo:antimicrobial

ddo:cultureId

cefepime^^xsd:string

ddo:susceptibility

S^^xsd:string 

0.98^^xsd:float

ddo:Antibiogram#3180102  

Figure 3.7: Instantiation of a formal data model - Visual representation of a RDF
graph describing an antibiogram result. The diamond-shape purple node represents an
individual, rectangle-shape green nodes represent data type properties, and the rectangle-
shape blue node represents an object property.

the Clinical SKOS Schemes1. Then, the concept cefepime could be represented as

‘J01DE01’ˆˆclisko:atc20090101. This representation carries more semantics than

the literal cefepime, and therefore, leaves less room for ambiguities.

3.3.6 Storage Size

Space is a keystone parameter to determine the architecture of a data integration sys-

tem. The space required by a single database a↵ects especially the scalability and query

performance of the distributed system, and therefore, it influences the integration strat-

egy. In order to estimate the size of an antimicrobial resistance surveillance database,

we can compute the size of a microbiology report and how many reports are produced

in a hospital per year. If we consider the extreme case, where for every patient stay

there is a microbiology report, then the incremental yearly size of a database will be

the product of the report size t

size

by the number of stays per year s.

The amount of data that are produced by a single plain antimicrobial susceptibility

test, that is, without transforming it to one of the normal representations of relational

models, can be calculated using the typical report shown in Table 3.1. If we consider

an average of 15 antimicrobial tests per culture isolated, a single report would take

t

size

= 1491 bytes of space. The number of patient stays per hospital per year s can

1http://www.agfa.com/w3c/2009/clinicalSKOSSchemes#

http://www.agfa.com/w3c/2009/clinicalSKOSSchemes#


be estimated using Equation 3.1

s = 365⇥ n⇥ r

los

, (3.1)

where n is the number of beds, r is the occupancy rate and los is the average length of

stay in days.

To estimate the required space of a microbiology database, we can use, for example,

the statistics provided by the WHO Regional O�ce for Europe1 in 2009. According to

the WHO, a European hospital has in average n = 198 beds, which are kept occupied

r = 76% during an year, with an average length of stay per patient of los = 8.17 days.

Substituting these values in Equation 3.1, it results in average s = 6.7 thousand patient

stays per year per hospital. Multiplying this value by the size of a single report t

size

,

we conclude that in a typical healthcare setting only about 10 MB of microbiology data

are produced per year. Notice that this value is over-estimated since the normalization

of the data model will reduce the space. In addition, it is unlikely that every patient

produces a report. Nevertheless, this amount of data (e.g., 100MB in 10 years) does not

pose any challenge to current database and storage management systems, especially if

we consider the petabytes of data already managed in some scientific experiments [135].

3.4 Evaluation

To test the database modeling and formalization approach described in this chapter we

perform a preliminary evaluation using some lCDRs. We have two specific objectives.

First, we want to test the capability of the lCDR to answer to SPARQL queries and

provide RDF results. Second, we want to assess the performance of the remote SPARQL

endpoints, using real epidemiological use-cases.

3.4.1 Study Context

In collaboration with other partners of the DebugIT project, we have formalized four

microbiology databases using data from the following European healthcare institutions

– Les Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland; Georges Pompi-

dou European Hospital (HEGP), Paris, France; Swedish Intensive Care Registry (SIR),

Sweden; and Universitätsklinikum Freiburg (UKLFR), Freiburg, Germany. Each data
1http://data.euro.who.int/hfadb/

http://data.euro.who.int/hfadb/


source was deployed within its respective institution and provided a SPARQL endpoint,

powered by D2R, whose data model was formalized by a DDO (see Table 3.2).

Site SPARQL endpoint DDO
HEGP https://debugit1.spim.

jussieu.fr/sparql

https://debugit.spim.jussieu.

fr/ddo

HUG https://babar.unige.ch:

8443/cdr/sparql

http://babar.unige.ch:

8080/vocab/resource/ddo_code

SIR https://lincoln.imt.liu.se:

8443/d2r-server/sparql

https://lincoln.imt.liu.se:

8443/vocab/resource/liu_ddo

UKLFR https://codeine.averbis.

uni-freiburg.de:8443/debugIT/

sparql

https://codeine.averbis.

uni-freiburg.de:8443/vocab/

resource/uklfr_ddo

Table 3.2: Formal Microbiology Endpoints - Formal SPARQL endpoint and respec-
tive DDOs.

3.4.2 Methods

For each lCDR, we develop a SPARQL query template using the CONSTRUCT clause.

The queries are designed so that the information about the antimicrobial tested, the

antibiogram outcome and the culturing date are present in the result set. Then, real

epidemiological use-case questions, such as “What is the evolution of :bacteria resis-

tance to :antibiotic during :period?”, can be answered from the resulting graph. Figure

3.8 shows an example of SPARQL query using HUG’s DDO. The query matches any

K. pneumoniae (UniProt/NEWT code 573) antibiogram produced at HUG. If the mi-

crobiology database is properly formalized, the query result shall be an RDF graph

containing a subset of the endpoint data.

To measure the performance of the lCDRs, we use the response time of queries

submitted in serial in a link with bandwidth of 100 Mbps. For each lCDR, we query

the endpoints for the antibiograms of the following bacteria: A. baumannii, E. faecalis,

E. faecium, E. coli, K. pneumoniae, N. gonorrhoeae, N. meningitidis, P. aeruginosa,

S. aureus and S. pneumoniae. The queries match any antibiotic in order to increase

the result set. The results include up to 5 years of data, ranging from 2005-01-01 to

2009-12-31.

https://debugit1.spim.jussieu.fr/sparql
https://debugit1.spim.jussieu.fr/sparql
https://debugit.spim.jussieu.fr/ddo
https://debugit.spim.jussieu.fr/ddo
https://babar.unige.ch:8443/cdr/sparql
https://babar.unige.ch:8443/cdr/sparql
http://babar.unige.ch:8080/vocab/resource/ddo_code
http://babar.unige.ch:8080/vocab/resource/ddo_code
https://lincoln.imt.liu.se:8443/d2r-server/sparql
https://lincoln.imt.liu.se:8443/d2r-server/sparql
https://lincoln.imt.liu.se:8443/vocab/resource/liu_ddo
https://lincoln.imt.liu.se:8443/vocab/resource/liu_ddo
https://codeine.averbis.uni-freiburg.de:8443/debugIT/sparql
https://codeine.averbis.uni-freiburg.de:8443/debugIT/sparql
https://codeine.averbis.uni-freiburg.de:8443/debugIT/sparql
https://codeine.averbis.uni-freiburg.de:8443/vocab/resource/uklfr_ddo
https://codeine.averbis.uni-freiburg.de:8443/vocab/resource/uklfr_ddo
https://codeine.averbis.uni-freiburg.de:8443/vocab/resource/uklfr_ddo


PREFIX ddo: <http://babar.unige.ch:8080/vocab/resource/ddo code#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX biosko:

<http://eulersharp.sourceforge.net/2003/03swap/bioSKOSSchemes#>

CONSTRUCT {
?antibiogram a ddo:Antibiogram ;

ddo:hasTestedDrug [ ddo:hasDrugCode ?antimicrobial ] ;

ddo:hasIdentifiedBacterium [ ddo:hasBacteriumCode ?pathogen ] ;

ddo:hasOutcome ?outcome ;

ddo:hasCulture [ ddo:hasResultDate ?date ] .

}
WHERE {
?antibiogram a ddo:Antibiogram ;

ddo:hasTestedDrug [ ddo:hasDrugCode ?antimicrobial ] ;

ddo:hasIdentifiedBacterium [ ddo:hasBacteriumCode ?pathogen ] ;

ddo:hasOutcome ?outcome ;

ddo:hasCulture [ ddo:hasResultDate ?date ] .

FILTER (?date>=‘2005-01-01T00:00:00’ˆˆxsd:dateTime
&& ?date<=‘2009-12-31T23:59:59’ˆˆxsd:dateTime)

FILTER (?pathogen=‘573’ˆˆbiosko:uniProtTaxonomyDT)
}

Figure 3.8: SPARQL Query template - Example of CONSTRUCT query used to test
HUG endpoint.



3.4.3 Results and Discussion

The four formalized endpoints were able to answer to the SPARQL queries and exchange

messages in the RDF protocol. For instance, Figure 3.9 shows an RDF graph as a

result of executing the query showed in Figure 3.8 against HUG’s endpoint (limited

to 1 result). As showed in Table 3.3, in average, the remote query run time was

25.8 seconds. The SPARQL engines of the lCDR were able to execute the queries in

12.6±23.1s, responding for 49% of the total run time, while the network was responsible

for others 51%.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ddo="http://babar.unige.ch:8080/vocab/resource/ddo_code#">

<ddo:Antibiogram rdf:about="https://babar.unige.ch:8443/cdr/resource/

Antibiogram/726426">

<ddo:hasOutcome rdf:datatype="http://www.agfa.com/w3c/2009/

clinicalSKOSSchemes#sct20080731DT">131196009</ddo:hasOutcome>

<ddo:hasTestedDrug rdf:parseType="Resource">

<ddo:hasDrugCode rdf:datatype="http://www.agfa.com/w3c/2009/

clinicalSKOSSchemes#atc20090101DT">J01CR02</ddo:hasDrugCode>

</ddo:hasTestedDrug>

<ddo:hasCulture rdf:parseType="Resource">

<ddo:hasResultDate rdf:datatype="http://www.w3.org/2001/XMLSchema#

dateTime">2006-08-08T09:07:00</ddo:hasResultDate>

</ddo:hasCulture>

<ddo:hasIdentifiedBacterium rdf:parseType="Resource">

<ddo:hasBacteriumCode rdf:datatype="http://eulersharp.sourceforge.net/

2003/03swap/bioSKOSSchemes#uniProtTaxonomyDT">573</ddo:hasBacteriumCode>

</ddo:hasIdentifiedBacterium>

</ddo:Antibiogram>

</rdf:RDF>

Figure 3.9: SPARQL RDF result - Result of a SPARQL query against a formalized
endpoint. Graph representation in the RDF/XML syntax.

The organization of the data set in the RDF format increases considerably the

size of the result set, impacting directly in the network time. The representation of



the concepts as web resources, using fully qualified names, and their formalization,

including information such as data type and domain, are responsible for the increase

in the size of the data set. For instance, the result set of Figure 3.9 contains only

five concepts – antibiogram id: 726426, bacteria: 573, antibiotic tested: J01CR02,

susceptibility: 131196009 and culture time: 2006-08-08T09:07:00 – but it sizes to 1047

bytes. On the other hand, the raw five instances (no data type, no domain, etc.) would

size to only 48 bytes. The increase in size of the result set is the price paid by the

formalization and disambiguation of the data.

The lCDRs provide a common framework to access heterogeneous databases, where

data can be fetched using a single query protocol (SPARQL) and results are available

in a single and formal data format (RDF). Thus, at this stage, the system provides

a common technical platform for querying, and to some extent, a unique syntax to

express the results. However, due to the di↵erences in the local data models and data

set representation, these endpoints are still not fully semantically interoperable. So

far, we do not have either a common model or standard terminologies to represent the

local data elements. Nevertheless, this first layer of interoperability is keystone in our

integration model. As we will see in the next chapter, we will build upon the lCDRs

to developed our transnational monitoring architecture.

Endpoint n Triples/s Run Time (s)
System Network

HEGP 10 (6.6 ± 3.5)⇥ 103 31.2 ± 38.4 29.1 ± 40.0
HUG 10 (4.2 ± 2.8)⇥ 103 2.4 ± 3.6 1.5 ± 2.2
SIR 10 (2.1 ± 1.5)⇥ 103 3.3 ± 2.9 0.9 ± 1.0
UKLFR 10 (7.6 ± 3.0)⇥ 103 13.6 ± 14.5 21.2 ± 23.3
All 40 (5.1 ± 3.4)⇥ 103 12.6 ± 23.1 13.2 ± 25.5

Table 3.3: SPARQL retrieval time - The total retrieval time is the sum of the system
(the lCDR) processing time and the network time. n = number of queries.

3.5 Summary

In this chapter, we present issues and solutions involved in modeling and formalizing

antimicrobial resistance data and microbiology databases using Semantic Web technolo-

gies. We introduced an ontology-driven methodology that formalizes the databases at



three levels – data model, data source and data set. The experiments have shown that

the approach is able to homogenize the distinct data sources at the technical level, pro-

viding a common query language and a message exchange protocol. Furthermore, the

semantic endpoint provided relatively good performance (order of few seconds) using

real microbiology databases and clinical questions. However, we observe that about

50% of the query run time is spent in the network. As we will see in the next chapters,

the overall query time can be improved by pushing part of the statistical computation

to the local data sources to reduce the amount of data retrieved through the network.





4

Online and Transnational

Antimicrobial Resistance

Monitoring Architecture

4.1 Introduction

In this chapter, we introduce an architecture for integrating interinstitutional microbi-

ology databases, featuring real-time access to antimicrobial resistance information and

being generic with respect to data sources, in order to support multinational antimicro-

bial resistance surveillance. In special, we investigate the use of Semantic Web-based

architecture in the integration and interoperability of heterogeneous and cross-border

databases to support such a framework. The work developed here and in Chapter 5 is

an expansion of the paper originally published in [136].

4.2 Previous European Antimicrobial Resistance Moni-

toring and Surveillance Initiatives

Several projects have been implemented to provide monitoring and surveillance of an-

timicrobial resistance evolution in a European context. WHONET was one of the first

initiatives to standardize and aggregate results from laboratories in a cross-country

environment [43]. Since 1995, the WHO has been developing the WHONET software,

in which participating microbiology laboratories present their tests using a specific
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susceptibility testing terminology defined by the WHO.

The most successful European surveillance project is the European Antimicrobial

Resistance Surveillance System [137] developed by the European Centre for Disease

Prevention and Control. According to the agency, 900 public health laboratories serving

over 1400 hospitals in Europe participate in the network, providing results on a yearly

basis. To improve data quality, external control is applied to the susceptibility testing

methods used by the participating laboratories. The project has recently evolved into

the European Antimicrobial Resistance Surveillance Network (EARS-Net) 1.

A few other public initiatives were introduced in parallel. In 1998, the European

Society of Biomodulation and Chemotherapy created the European Surveillance of

Antibiotic Resistance project 2. The goal was to establish a representative network

of sentinel diagnostic laboratories across Europe to provide antimicrobial resistance

monitoring and early detection of new resistant pathogens. In the same year, the

Centers for Disease Control and Prevention (USA) launched the International Network

for the Study and Prevention of Emerging Antimicrobial Resistance [138] with 79% of

participant countries, out of 40, from Europe. The main objective of the project was

to serve as an early warning system for emerging resistant pathogens. Finally, in 1999,

the Antimicrobial Resistance Information Bank [139] was derived from the WHONET

informal network. Results were reported to the WHO and an additional external audit

quality control was performed on the data. All of these projects have been discontinued,

and some were characterized more as a survey than as a surveillance system.

In contrast to the previous initiatives, The Surveillance Network is a corporate-

funded surveillance project [140]. It started in 1992 in the United States and later

enrolled European laboratories as well. The data extraction and aggregation processes

are done by Focus Technologies Inc. (Herndon, VA, USA), the company responsible for

the project. Unfortunately, despite having probably the biggest antimicrobial resistance

database worldwide, this network provides no antimicrobial resistance information free

to the public.

Over a decade ago, Monnet et al. [141] had already described and compared the

above European surveillance systems. Since then, no new public transnational surveil-

lance initiatives have been developed [142]. Consequently, most projects in use are

1http://www.ecdc.europa.eu/en/activities/surveillance/EARS-Net/Pages/index.aspx
2http://www.esbic.de/esbic/ind_esar.htm

http://www.ecdc.europa.eu/en/activities/surveillance/EARS-Net/Pages/index.aspx
http://www.esbic.de/esbic/ind_esar.htm


based either on reporting and manual data acquisition or on outdated information

technologies, especially concerning data integration and semantics. Furthermore, no

cross-country monitoring system that provides online, direct and real-time access to

antimicrobial resistance information is available. All the systems implemented so far

are dependent on delayed data warehouses, usually compiled yearly, which, among

other weaknesses, fail to capture antimicrobial resistance outbreaks [142, 13]. Finally,

these systems do not provide easy ways to export data. Participating institutes have

to comply with the surveillance system standards, a labor intensive task, especially for

newcomer institutions or newly discovered resistance pathogens [13].

In order to improve upon existing monitoring architectures, we have designed the

Antimicrobial Resistance Trend Monitoring System (ARTEMIS). ARTEMIS architec-

ture illustrates how Semantic Web technologies can support online monitoring of an-

timicrobial resistance trends in heterogeneous networks of healthcare institutions. It

demonstrates how semantically interoperable endpoints can provide on-demand in-

formation on resistance evolution. Furthermore, it describes ways to automate the

monitoring process through a state-of-the-art clinical data integration system, which

provides mechanisms to adapt to existing electronic health records and laboratory in-

formation systems. The architecture was implemented and deployed in a network of

healthcare institutions that participated in the DebugIT project.

4.3 Methods

4.3.1 System Requirements

We design ARTEMIS with the help of other experts from the DebugIT project, who

have di↵erent backgrounds, including infectiologists, epidemiologists, knowledge en-

gineers and eHealth service providers. Over the course of 2 years, we held weekly

meetings with these experts to discuss the status of the tasks involved in the system

development [143]. In the process, we reviewed the existing distributed integration

and interoperable eHealth systems and European antimicrobial resistance monitoring

programs. Thereafter, we elaborated the requirements and designed the system model.

To provide a monitoring system that can be e↵ectively used in the fight against

antimicrobial resistance, we derived the following six main requirements based on the

published literature and on the expertise of the DebugIT consortium.



• The System Shall Provide Online Information. All public European supra-

national monitoring systems provide resistance information in batch mode–that

is, data are collected into batches of laboratory tests and processed periodically,

usually on a yearly frequency. While online resistance information is useful on

a daily basis at local levels, recent infectious pandemic threats have shown how

important this information would be at a multinational level for decision mak-

ers. Thus, changing this paradigm to online trends is crucial for antimicrobial

resistance surveillance, especially for early warning of emerging resistance trends

[142, 13].

• The system shall provide aggregated information from numerous na-

tional sources. Increasing antibiotic resistance is a worldwide public health

concern, and for its e↵ective combat, a successful surveillance system has to o↵er

multinational resistance information [144].

• The system shall not store data centrally. Sharing biomedical data raises

several ethical concerns [145]. To comply with international standards on shar-

ing biomedical information, increase the trust of data providers and encourage

collaboration in the surveillance network, central aggregation must be avoided.

• The system shall implement a formal and semantic-aware data model.

Most of the available systems do not use formalized biomedical data models, nor

computable terminologies and ontologies. As a result, the process of extracting

resistance information and data analysis in a heterogeneous environment is done

manually or semiautomatically. In addition to the overhead work, the lack of

formal conceptualization of the raw laboratory data can have a negative influence

on the quality of the data.

• The system shall be high performing. To be operatively used by health-

care professionals, whose working environment is recognized to be very time con-

strained, eHealth systems must provide a fast response time.

• The system shall provide reliable results. Automatic extraction of antimi-

crobial resistance trends from heterogeneous data sources poses several challenges

to accurate data analysis, including concept ambiguity and the common denom-

inator, which can degrade the quality of the examination. However, especially if



the system is used by clinicians at the point of care, the accuracy of the results

must be equivalent to those obtained by semiautomatic processes, where data

cleansing and audit are performed prior to integration and interpretation.

4.3.2 System Model

To fulfill the ARTEMIS desiderata, we envisage a system according to the Semantic

Web-complying architecture presented in Figure 4.1. The system’s semantic interoper-

ability schema (Figure 4.1-a) is based on an ontology-driven data integration approach,

where multiple semantically flat local data definition ontologies are mapped to a com-

mon domain ontology, the DCO ontology [119]. Semantic mappings at local and global

levels align concepts from the local ontologies with the domain knowledge.
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Figure 4.1: ARTEMIS architecture - (a) Ontological components. Models: Data
Definition Ontology (DDO), DebugIT Core Ontology (DCO) and Interface Ontology
(IO). Mappings: local-terminology-to-DCO (LT2DCO) and global-terminology-to-DCO
(T2DCO). (b) Run-time business components. (1) Data layer components are deployed
within the demilitarized zone of the healthcare institution. (2) Controller and view layers
contain central services, which are deployed in the Internet.

In the architecture’s data model layer, local laboratory databases are connected

online to semantic-aware endpoints, the lCDRs [120, 121], which are further described



in Chapter 3. The lCDRs formalize the local sources and provide a query interface to

the controller layer. The semantic mediator, implemented at the controller layer, rep-

resents antimicrobial resistance clinical questions as query templates for each endpoint

and coordinates the access to the di↵erent sites. It performs the query’s data aggre-

gation operations locally to improve query performance and the site’s data integration

on the fly to avoid central storage. Finally, in the view layer, query templates with

parameters extracted from the domain ontology are used to represent antimicrobial

resistance clinical questions.

The user interface provides methods for users to interact with the system. It imple-

ments two main modules: querying input and data visualization. The querying input

interface presents a set of clinical question templates with input boxes for the query

parameters and the Interface Ontology input menu, which is used to fill in the template

parameters. To improve usability and user-friendliness, query templates are expressed

in natural language as in the template “What is the prevalence of :antimicrobial :suscep-

tibility :pathogen in :sample extracted from :gender patients at :clinical setting during

period :begin date - :end date?”. The visualization module provides functions to ex-

tract trends, cumulative sum and other statistics from the data retrieved. Ultimately,

it implements a set of charts in order to cover comprehensively the interpretation of

the data.

4.3.3 Participants

To assess ARTEMIS, we connected a network of seven data providers: National Heart

Hospital (NHH), Sofia, Bulgaria; HUG; HEGP; Internetový Pristup Ke Zdravotńım

Informaćım Pacienta (IZIP), Prague, Czech Republic; SIR; Athens Chest Hospital

“Sotiria” (ACH), Athens, Greece; and UKLFR. Table 4.1 summarizes antimicrobial

resistance-related data shared by these institutions.

We obtained permission to use de-identified data from the ethics committees of the

respective participant hospitals. Privacy-sensitive information accessible through the

local endpoints was pseudoanonymized to conform to the European legal and ethical

patient data-sharing framework [146]. Data values such as date of birth were truncated

to the year, and concepts such as episode of care (or encounter) and patient identifiers

were encrypted. Furthermore, query templates are pathogen and population centric–

that is, the information collected concerns the resistance and treatment of a pathogen



population for a given antibiotic in a set of microbiology results. It is therefore not

related to a specific patient.

Data ACH HEGP HUG IZIP NHH SIR UKLFR
Group Element

Demographics Age ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ –
Sex ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ –

Organization Department – ⇥ – – – – ⇥
Laboratory Bacteria ⇥ ⇥ ⇥ – ⇥ ⇥ ⇥

Antibiotic ⇥ ⇥ ⇥ – ⇥ ⇥ ⇥
Specimen ⇥ ⇥ ⇥ – ⇥ ⇥ ⇥
S.I.R. ⇥ ⇥ ⇥ – ⇥ ⇥ ⇥

Medication Drug ⇥ ⇥ ⇥ ⇥ ⇥ – –
Triples (M) 0.05 25.20 19.87 2.79 0.02 3.81 19.10

Table 4.1: Data used in ARTEMIS - ⇥ for availability of concepts in the lCDR and –
for unavailability. S.I.R. stands for the breakpoint values susceptible (S), intermediate (I)
and resistant (R).

4.3.4 Outcome Measures

In this chapter, we present the results by describing the implementation of the func-

tional features defined in the first four design requirements introduced in Section 4.3.1

using design patterns [147, 148]. In Chapter 5, we present the evaluation for the last two

requirements, which was performed within a larger clinical assessment of the system at

HUG.

4.4 Results

ARTEMIS was implemented and deployed in a pilot network of seven European health-

care institutions sharing 70+ million triples of antimicrobial resistance information.

As shown in Figure 4.2, near real-time resistance trends can be extracted from the

distributed network using the system’s web interface. The tool can be accessed at

http://babar.unige.ch:8080/artemis. In the next sections, we present the design

patterns describing the main functional features of ARTEMIS.

http://babar.unige.ch:8080/artemis


Figure 4.2: ARTEMIS interface - The menu on the left displays the interface ontology concepts, which are used to fill in the
template parameters. Each of the view tabs represents a di↵erent query template. The data visualization interface displays several
graphical representations to provide a comprehensive view of the data.



4.4.1 Online Information Provider

Requirement

The system shall provide online information.

Design

In the architecture presented in Figure 4.1, local semantic-aware endpoints, realized by

RDF stores, are plugged into the laboratory databases. Thus, microbiology tests are

accessible as soon as they are available in the production databases. These endpoints

are formalized by local ontologies and exposed in the Web so that data are reachable

by other parts of the system. In cases where local laboratory databases communicate

in the SPARQL protocol, they can be directly connected to the network. To avoid dis-

closing patient’s sensitive information, data are anonymized either persistently in the

local database, as shown in Figure 4.3-a, or on-the-fly, using constraints in the lCDR

mapping, as shown in Figure 4.3-b. Hence, no sensitive information is available out of

the healthcare intranet.

Example

In ARTEMIS, the technical interoperability with the di↵erent data sources is provided

by D2R [130] engines complemented by site-specific extract, transform and load pro-

cesses (see Figure 4.3-a), which can exploit autocoding methods [149]. Alternatively, for

cases where there is an accessible production laboratory database, D2R can be plugged

directly into the existing system to transform the local data source into a semantic

endpoint (see Figure 4.3-b). The preference for an RDB-to-RDF engine like D2R in-

stead of a native RDF triple store to formalize local data sources was due to scalability

issues. As Schmidt et al. [150] noted, native RDF triple stores can hardly be scaled to

answer queries when their size is bigger than a few million triples. The anonymization

of the data is performed in D2R using database functions, such as string truncation

and encryption.

4.4.2 Distributed Storage

Requirement

The system shall provide aggregated information from numerous international sources.

Design
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Figure 4.3: Local CDR deployment and population model - a) Production data
are extracted daily to a local mirror database, which is sparqlized by an RDB-to-RDF
engine. b) RDF view is created directly on top of the legacy system. Data anonymization
is performed on the fly.

The technical and semantic heterogeneity within models and concepts from di↵er-

ent clinical data sources poses an important barrier for data aggregation and anal-

ysis. ARTEMIS architecture relies on a layer of semantically formalized endpoints, the

lCDRs, to solve part of the integration problem. These endpoints provide a first level

of interoperability, modeling the local systems and the data content and providing a

common protocol to access data, the SPARQL protocol. The semantic mediator de-

signed in the controller layer builds on top of the lCDR layer and allows the creation

of homogeneous aggregated views over the distributed data sources. Thus, the sys-

tem becomes a grid of semantic-aware sentinels that provide antimicrobial resistance

information from heterogeneous supranational data sources.

The query mediator defines, for each lCDR, SPARQL representations of a limited

set of antimicrobial resistance clinical questions presented in the view layer. The clini-

cal question SPARQL queries are built as templates, which are parameterized queries

using DCO concepts. Assigning values to a clinical question template results in a

new SPARQL query. For example, the template “What is the antimicrobial resistance

evolution to :antimicrobial of :pathogen cultured from :sample origin from :begin date

to :end date?” might be instantiated as “What is the antimicrobial resistance evolu-

tion to cefepime of Escherichia coli cultured from blood sample from 2011-01-01 to

2011-12-31?”. Thus, a template represents an infinite number of queries.



At the query run-time, templates expressed through global concepts are translated

into local SPARQL queries with terms from the local ontologies. The query parameters

are expanded employing the hierarchical information modeled in the domain ontology

and are translated to local terms using the semantic mappings. For example, the

DCO concept “3rd generation cephalosporin” shown in Figure 4.4 is expanded to its

DCO subclasses, which are further mapped to local DDO terms. In order to optimize

network performance and reinforce patient confidentiality, aggregation operations are

pushed down to the lCDRs. The SPARQL operators COUNT and GROUP BY are

used to perform local result aggregation. Results are fetched respecting the query filter

constraints, which perform logical disjunction operations for the expanded parameters.

An inverse process is performed on the results retrieved – local terms are translated

to global terms, which are aggregated in the root concept, that is,“3rd generation

cephalosporin” in the example.
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Figure 4.4: Global-to-local concept translation and query expansion model -
Ontology properties, such as subClassOf, and the SKOS semantic mapping exactMatch are
used for query expansion and translation.

Example

In ARTEMIS, the lCDRs are provided by RDF-like stores to create the first semantic

layer on top of the local databases. The DDOs formalize the local endpoints and

expose linkable data in the Web. The JENA Framework1 is used for querying the

remote lCDRs and for reasoning over the RDF models.
1http://jena.apache.org/

http://jena.apache.org/


4.4.3 Institutional Autonomy

Requirement

The system shall not store data centrally.

Design

ARTEMIS changes the centralized integration paradigm used in antimicrobial resis-

tance surveillance. Unlike other systems [141, 142, 13], the distributed architecture

presented here does not require centralization of microbiology test results. At the

query time, a global aggregated view on the local endpoints is created by the semantic

mediator, solving the problem of interoperability while avoiding a central repository,

which would violates the DebugIT project’s legal requirements. Additionally, since

there is no need to move data across the healthcare border, this design gives full con-

trol to participating sites, allowing them to stop sharing data at any moment. Further,

no historical information for the respective site is kept on the system.

Example

In the model-view-control pattern [147] presented in Figure 4.1, persistent data stores

are deployed only within the demilitarized zone of the data providers. The central me-

diator processes and aggregates query constraints locally. In this configuration, there is

no need to move data sets with information at the patient level out of the institutional

borders. Only aggregated population data are retrieved at the query time. Further-

more, institutions can stop sharing data at any moment by shutting down the lCDR

server. This change will be automatically reflected in ARTEMIS, which will not be able

to retrieve any data from the respective data source – other sources remain seamlessly

reachable.

4.4.4 Knowledge Representation

Requirement

The system shall implement a formal and semantic aware data model.

Design

In a multinational environment, content of EHRs and LISs are expressed in several lan-

guages and di↵erent terminologies. Additionally, spelling mistakes and abbreviations

are commonly found in concept definitions. These ambiguities reduce the quality of the

statistical analysis. In order to have unified semantics across the di↵erent data sources,



in ARTEMIS’s knowledge model, antimicrobial resistance concepts are represented us-

ing a formal language based on RDF/OWL (see Figure 4.5). Further, they are aligned

into common syntaxes defined by biomedical terminologies. Finally, to have a common

meaning across the whole system, these formally represented terminologies are mapped

to a shared domain ontology.

Example

DCO is the core ontology that formalizes the domain knowledge of ARTEMIS. DCO

uses the OWL language to represent classes and properties. Currently, it contains

1665 classes that cover the antimicrobial resistance subject. The main clinical areas

described by DCO are microbiology laboratories, diagnoses and medication actions. In

order to facilitate the interaction of the end-user with the domain ontology, a subset of

DCO is used in the ARTEMIS interface. It omits classes that are not relevant to the

antimicrobial resistance queries.

Standard terminologies such as SNOMED CT, WHO-ATC and UniProt/NEWT

are mapped to DCO using the SKOS ontology and Notation 3 rules (see Figure 4.5-

b). If local concepts represented in the DDOs are not already defined using these

terminologies, they are normalized against them using automatic classification tools

[151, 149]. Alternatively, local concepts represented in the SKOS notation can be

directly mapped to DCO. This step is important, as it can easily be adapted to support

local needs and evolutions. Finally, DDOs are exposed in the Web so that local concepts

can be linked to the domain knowledge.

4.5 Discussions

In this chapter, an online and source independent architecture that enables monitoring

of multinational microbiology databases was presented. The system was implemented

and deployed in a pilot surveillance network distributed across Europe. The architec-

ture is able to interoperate heterogeneous networks via the use of semantic maps that

account for local specificity. The data integration is performed on-the-fly using stan-

dard endpoints, powered with RDF/SPARQL communication, which are mediated via

a central engine. The local endpoints are directly connected to the laboratory databases

and as such are able to provide (near) real-time resistance information, while avoiding

centralization of the data.
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The data integration architecture proposed in ARTEMIS distinguishes from exist-

ing antimicrobial resistance surveillance systems as it implements a loosely coupled

data federation design [49], which is realized by the formalization of the data sources

and of the data semantics. Thus, the data layer is detached from the central system,

which allows the system to operate in a decentralized architecture, guaranteeing then

full control over the local information to care providers. Moreover, online semantic

data repositories automatize the access to local antimicrobial resistance databases en-

abling the system to retrieve near real-time antimicrobial resistance trends. Therefore,

emerging and outbreak resistances can be easily monitored in a multinational scale.

Finally, instead of predetermined and static monitored bacteria/antibiotic pairs, the

architecture introduced here facilitates the expansion of the concept coverage, making

the process of tracking resistance of new antimicrobials and pathogen trivial. Since con-

cepts are fully formalized by ontologies through the whole architecture, to add a new

item to be monitored it is only necessary to create the respective class in the domain

ontology and represent it in the semantic mappings (global and/or local). Thus, it is

automatically reflected in the user interface, including past occurrences of the given

class in microbiology tests.

ARTEMIS uses open Semantic Web technologies to provide technical and semantic

interoperability. Semantic data sources create a common technical layer over the lo-

cal microbiology databases, which can be accessed through a standard query protocol

(SPARQL). Since local endpoints are fully formalized and accessible through the Web,

they can be linked to external web resources, such as the Linked Life Data [152], or

reused in other clinical research projects to leverage knowledge on infectious diseases

by combining di↵erent sources of information. Another benefit of using ontologies to

represent data is the hierarchical structure, which allows higher level representation of

concepts. Therefore, the system can handle complex queries expressed at group levels

allowing, for example, automatic clustering of antibiotic classes such 3rd generation

cephalosporin or bacteria families such as Enterobacteriaceae.

Finally, the powerful query interface allied to the availability of near real-time results

make ARTEMIS not only useful to bodies concerned with supranational resistance but

also potentially beneficial to local needs, especially if connected to online prescribing

systems for empirical treatments. In addition, it might make for the maintenance of

the system by healthcare institutions. As it has been discussed in [49], data integration



systems tends to be become “data mortuaries” once the research funds ends. Local

appeal can possibly help to change this pattern.

4.5.1 Limitations

In an ontology-based integration system, automatic mapping from global to local on-

tologies using first-order logic reasoners creates logical inconsistencies because knowl-

edge from the various local ontologies cannot be completely reconciled in the global

model [153]. For example, if at site 1 vancomycin-resistant Enterococcus is preva-

lent, this fact is not necessary true for all other sites. A solution, as implemented in

ARTEMIS, is to create query templates over the local ontologies. However, as the

system expands to a large number of clinical providers, this approach may prove dif-

ficult to maintain, since query templates must be defined centrally for each new data

source. Nevertheless, this limitation could be easily overcome if local sources provide

a datamart with a common data model as proposed in Figure 4.3-a.

Aligning multinational microbiology laboratory results presents several issues. For

example, it has been shown [138] that, for a given sample test, independent laboratories

will present di↵erent outcomes. The di↵erence in susceptibility breakpoint across coun-

tries is also a complex issue involving standardization of antibiogram methodologies.

Additionally, results of second-line antibiotics tend to present bias toward resistance,

since they are normally tested when isolates show resistance to first-line drugs [142].

The methodology proposed here cannot solve most of the intrinsic divergence between

di↵erent laboratory procedures. Regardless, ARTEMIS does not aim to tackle these

issues but rather to promote access to distributed antimicrobial resistance information

as soon as data are available in a formalized and semantically defined way.

4.6 Summary

In this chapter, we present the design of the ARTEMIS architecture. The system was

implemented and deployed in a small-scale biosurveillance network of European hospi-

tals, providing real-time access to multinational, heterogeneous microbiology databases.

In the next chapter, we provide the results of a larger scale technical and user-based

clinical evaluation of the system.



5

Assessment of ARTEMIS

5.1 Introduction

In this chapter, we present the results of the clinical evaluation of ARTEMIS. We use

two di↵erent approaches to assess the system. First, we perform a technical evaluation,

where we measure the performance of the semantic mediator and the clinical pertinence

of the answers provided by the system. Second, we conduct a user-based evaluation,

where we assess the perceived usefulness of the tool to help in the fight against an-

timicrobial resistance. Our main goal is to find out whether and to what extent our

architecture can be used strategically for infection control decisions at organization,

country or multinational level and to support decision making at the point of patient

care. Our secondary goal is to evaluate the ability of Semantic Web technologies to

foster the development of transnational eHealth architectures.

The four specific objectives of the clinical validation of ARTEMIS are the following:

1. To evaluate the performance of the technology in a transnational surveillance

network. We want to test whether ARTEMIS can cope with a recognized time-

restricted healthcare operational environment.

2. To evaluate the reliability of the tool. We aim to verify whether the framework

provide clinical pertinent results and therefore can be trusted for decision support.

3. To evaluate the utility of the technology from the healthcare worker perspective.

We want to confirm the perceived value of the tool to support the prevention of

antibiotic resistance, if deployed within a healthcare setting.
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4. To evaluate the usability of the technology, as implemented in a particular hospi-

tal. We aim to check if the implemented version is complete and usable enough

to be occasionally productized, promoted, and well adopted.

5.2 Methods

5.2.1 Theoretical Background

To evaluate ARTEMIS we use the theoretical framework of Nielsen for software engi-

neering [154]. As shown in Figure 5.1, the model presents a hierarchical structure of

factors that influence the acceptability of a system by the end user. These factors can

be translated as the likelihood that the technology will be adopted by a given institution

or type of users. We employ three dimensions of the original model – reliability, utility

and usability. Additionally, we extend the model with the dimension responsiveness in

order to capture factors related to the response time of the distributed query system.

Usefulness

Utility

Usability

Reliability

Responsiveness

Practical
acceptability

Social
acceptability

Learnability

System
acceptability

Efficiency

Memorability

Errors

Satisfaction

Figure 5.1: An extended version of Nielsen’s hierarchical representation of
system acceptability - We used the original utility, usability and reliability dimensions
to evaluate ARTEMIS. We added the responsiveness dimension to the model to represent
the performance of the system.

5.2.1.1 Responsiveness

In our model, responsiveness concerns the performance-in-time of the system to execute

a given task. We add this dimension to the original Nielsen’s model to di↵erentiate be-



tween other time-related dimensions. For example, the original model contains already

the dimension e�ciency. However, it refers to the capability of a user to accomplish

a task e�ciently, including then, the time spent in the interface but also the system’s

processing time. With responsiveness, we are only interested in the system’s response

time, particularly the performance of the distributed query engine. This dimension is

independent of the system’s interface, reason why it is not included under e�ciency.

We measure the responsiveness of the system using the mediator’s query retrieval time.

5.2.1.2 Reliability

The dimension reliability defines the level of accuracy, validity and clinical pertinence

of the answers provided by ARTEMIS queries. It focuses on the elements that may

contribute to the user trust. To assess reliability, resistance rates extracted using the

query template “What is the evolution of resistance to :antimicrobial of :pathogen cul-

tured from :sample extracted from :gender patients at :clinical setting during period

:begin date - :end date?” are compared with data from two publicly available surveil-

lance systems: EARS-Net and the Sentinel Surveillance of Antibiotic Resistance in

Switzerland (SEARCH)1.

5.2.1.3 Utility

In Nielsen’s model, utility refers to the capability of a system to provide the function-

alities that are potentially useful for the user to accomplish certain tasks. We choose

focus groups for the evaluation of the utility dimension of ARTEMIS. The aim of a

focus group is to elicit experts’ knowledge in a specific domain. This may include ex-

perts’ factual knowledge and experience, but also ideas, opinions and attitudes. The

goal is not consensus building, but to have a wide range of opinions on a given subject.

Experts have a broad meta knowledge in their domain and have the capability to fore-

see the system’s impact on the work flow in their medical divisions. In order to gain

valid information, questions must be open and leave room for discussion.

1http://www.search.ifik.unibe.ch/en/

http://www.search.ifik.unibe.ch/en/


5.2.1.4 Usability

Usability concerns the practical use of the system’s features and how users can apply

them to accomplish tasks. For instance, a system may provide a specific functionality to

support the user in his/her daily work, but this functionality is never used because the

user is unaware of its existence. In our case, usability relates to the experience of actual

users of the monitoring system and measures how easy and pleasant the functionalities

can be used. Together with utility, usability composes one of the underlying dimensions

of Nielsen’s model, the usefulness of the technology, which refers to the ability of the

system to achieve some desired goals. Questionnaires are an established method when

it comes to conduct summative usability evaluation of a system. They are standardized

and can be applied independent of the system at hand.

5.2.2 Participants

We use the seven data sources that joined the ARTEMIS network in the assessment of

the system’s responsiveness and reliability dimensions. In the user-based evaluation,

the system was deployed at HUG. The target group is composed by infectious disease

specialists, such as infectiologists, epidemiologists and microbiologists, in charge or not

of patients with infectious disease. In the focus group, members of HUG’s infectious

disease group participated in the discussions. The participant list included experts

from di↵erent departments of the hospital, so that diverse view points are expressed.

The usability evaluation is performed using potential users of the system, including

attendants of the focus group. The system was available for the participants of the

utility and usability tests during two months and they have used ARTEMIS at least 6

times and for 3 days.

5.2.3 Study Flow and Evaluation Criteria

In this section, we detail how the studies are designed and performed for each evalu-

ation dimension. In addition, we describe the outcome measures that are used in the

dimensions.

5.2.3.1 Response Time Assessment

We use the three query templates:



Template 1 What is the evolution of resistance to :antimicrobial of :pathogen cultured

from :sample extracted from :gender patients at :clinical setting during period

:begin date - :end date?

Template 2 What is the prevalence of :antimicrobial :susceptibility :pathogen in :sam-

ple extracted from :gender patients at :clinical setting during period :begin date

- :end date?

Template 3 What is the rate of :gender patients that get :antimicrobial to treat

:pathogen infection found in :sample at :clinical setting during period :begin date

- :end date?

to measure the system’s response time. A query mix composed of 225 unique queries,

spanning four years in daily, monthly and yearly periods were created. Combinations

of pathogens, antibiotics and sample types were employed to vary the queries and thus

avoid database caching e↵ects. Each query mix was submitted 10 times against the

seven endpoints and the average response time was measured. Results of the local

aggregation mode employed in the ARTEMIS’ query mediator are compared with a

central aggregation strategy (baseline).

5.2.3.2 Comparison with Existing Systems

We assess the clinical pertinence of the antimicrobial resistance rates extracted by

ARTEMIS using EARS-Net and SEARCH as reference systems. ARTEMIS data

sources that do not contain either more than 1 million triples or data elements to

answer the queries (see Table 4.1) were excluded from the analysis, resulting then in

four sites: Georges Pompidou European Hospital, Hôpitaux Universitaires de Genève,

Swedish Intensive Care Registry and Universitätsklinikum Freiburg. We compare re-

sults from Georges Pompidou European Hospital, Swedish Intensive Care Registry and

Universitätsklinikum Freiburg with the resistance rates of their respective EARS-Net

countries – France, Sweden and Germany – and results from Hôpitaux Universitaires

de Genève with SEARCH.

Yearly resistance trends of seven key pathogenic bacteria – Enterococcus faecalis,

Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aerugi-

nosa, Staphylococcus aureus and Streptococcus pneumoniae – extracted based on their



presence in ARTEMIS, EARS-Net and SEARCH are used in our comparison. Antibi-

otics are selected if they are present on both ARTE-MIS and the reference system.

Resistance rates of the last 4 years (2006 to 2009) available in EARS-Net are used,

whereas all years (2008 to 2010) available in SEARCH are taken into account. We

report correlation and equivalence results using the Spearman rank correlation and the

two one-sided convolution [155, 156] tests, respectively.

5.2.3.3 Focus Group

At the beginning of the focus group, participants are introduced to each other and

to the focus group moderator. The discussion is done in an informal atmosphere, in

order that the participants discuss freely on the topics. They are informed that the

focus group aim to evaluate the utility of ARTEMIS and that the discussion is voice

recorded, but their identity are not revealed in the analysis and reports. Then, the

following introductory questions are asked in order to evaluate their experience with

information technologies to help with antimicrobial resistance control and ARTEMIS:

• “What computer programs do you currently use to track resistance patterns?”

• “Have you all used ARTEMIS?”

Subsequently, a demo of the main functionalities of the tool is provided using some

basic use cases of antimicrobial resistance queries. Then, the moderator introduces the

following questions to actually open the discussion on ARTEMIS’ utility and hands it

over to the participants:

• “What would the deployment of ARTEMIS change in your service?”

• “What kind of problems would you expect when ARTEMIS is used for studies on

a population level?”

When all utility-related questions are discussed, the moderator asks two final questions

on the aspects of trust and social acceptability and closes the focus group:

• “What makes you to trust in the information provided by an antimicrobial resis-

tance monitoring system?”

• “Are there any medico-legal concerns for such type of population monitoring sys-

tem?”



We assess qualitatively the utility of ARTEMIS at the functional and technical

levels using content analysis. At the functional level, we are interested in high level

factors that influence the usefulness of the tool, that is, its actual epidemiological and

clinical relevance. At the technical level, we are particularly interested in factors of the

interface design that might influence on the utility of ARTEMIS. We are guided by the

following key questions:

• “Is there a positive influence of up-to-date knowledge of resistance patterns on

infection control?”

• “Is there a positive influence of prescribers’ access to up-to-date resistance infor-

mation on appropriate antimicrobial prescription?”

• “Does the ontology menu add value to the query construction?”

• “Do the charts provide useful information on the subject?”

Notice that these key questions are not presented directly to the focus group partici-

pants.

5.2.3.4 Usability Questionnaire

To assess of the usability dimension, we provide paper-based questionnaires to users

during the focus group. We also set up a web form1 for those who are not present or

able to provide the answers during the focus group. The questionnaires contain five

items according to the model of Nielsen (see Figure 5.1):

Learnability - ARTEMIS is easy to learn when starting to use it. This dimension

measures how easy it is to accomplish basic tasks when the user interacts with

ARTEMIS for the first time.

E�ciency - ARTEMIS is e�cient to use when functions are known. This dimension

measures how quickly the user can perform tasks in the interface once he/she has

learned the design of ARTEMIS.

Memorability - ARTEMIS’ functions are easy to find again. This dimension mea-

sures how easily the user can reestablish proficiency in performing tasks when

he/she returns to the interface after a period of not using it.
1https://docs.google.com/spreadsheet/viewform?formkey=dHFMTkdmcEgyamE5U0hGVHdBVFVpLWc6MQ

https://docs.google.com/spreadsheet/viewform?formkey=dHFMTkdmcEgyamE5U0hGVHdBVFVpLWc6MQ


Errors - ARTEMIS enables you to make queries with few errors. This dimension

measures how many errors the user makes when using the interface, how severe

they are and how easily he/she can recover from these errors.

Satisfaction - The design of ARTEMIS is pleasant. This dimension measures how

the user is satisfied with the interface.

Each item can be ranked according to the Likert 1-7 scale: 1 = Strongly disagree, 2

= Disagree, 3 = Somewhat disagree, 4 = Neither agree nor disagree, 5 = Somewhat

agree, 6 = Agree and 7 = Strongly agree. The answers to the five questions provide

quasi-quantitative measures on the users’ perception of ease of use.

5.2.4 Methods for Data Acquisition and Analysis

In this section, we provide all the relevant aspects of the data acquisition and analysis

methods so that our evaluation experiments can be replicated.

5.2.4.1 System Log

ARTEMIS logs most of the user interaction with the web interface. In special, it

registers the views accessed, the queries launched, including their parameters and the

response time. We use the query logs and basic statistics to analyze the responsiveness

of the system.

5.2.4.2 Equivalence Test

Two one-sided t-test is an equivalence test widely applied in bioequivalence studies [157]

but also in model comparison [158]. We use its variation for non-normal distribution,

the two one-sided convolution test (TOSC), in the susceptibility equivalence test as part

of the reliability assessment. The TOSC test is based on a Wilcoxon test to derive the

confidence interval (CI) [159]. The null hypothesis is that resistance rates of ARTEMIS

and of the reference surveillance system di↵ers by at least an interval �. ARTEMIS

results are deemed equivalent to the reference trends at the ↵ = 0.05 level if the CI for

the di↵erence in resistance rates is completely contained within a region of similarity,

delimited by the endpoints �� and +�. The susceptibility results’ standard deviation

of di↵erent countries in EARS-Net is used to estimate the region of similarity. Since

ARTEMIS rates come from di↵erent data samples, this interval is extrapolated as a



level of acceptance of the results. A similar procedure is applied for SEARCH but

instead of di↵erent countries, the standard deviation among the di↵erent regions of

Switzerland (East, Mid and West) is used.

5.2.4.3 Content Analysis

Focus groups are relatively easy to conduct but di�cult to evaluate. We recur to

a method from social sciences called content analysis that belongs to the family of

qualitative research methods [160] to analyze the arguments discussed during the focus

group . In our experiment, the content analysis is performed according to the flow

diagram presented in Figure 5.2. The preliminary classification used in step 3 to classify

the text passages is derived from the four main topics of the focus group questions:

Functional, Medico-legal, Technical and Trust.

5.2.4.4 Questionnaires

We collect the anonymous responses to the paper-based and web form questionnaires

and apply basic descriptive statistics, such as median and median absolute deviation

(MAD), to evaluate the dimension usability and its subdimensions learnability, e�-

ciency, memorability, errors and satisfaction.

5.3 Results

5.3.1 Responsiveness

Table 5.1 resumes the results of the responsiveness test for the distributed query engine.

The mean query response time was µ = 4.3s and the standard deviation � = 0.1⇥102

s.

Comparing the local reasoning approach used in ARTEMIS with a di↵erent aggregation

strategy, based on central reasoning, the average retrieval time increases almost 30 fold

(µ = 130.5 ± 0.1⇥ 103

s).

Figure 5.3 shows how the response time of ARTEMIS queries varies with the number

of rows retrieved for di↵erent query templates and aggregation periods. As we can see,

the response time is highly correlated with the number of rows retrieved (⇢ = 0.81, P <

.001).



Transcription verbatim of the 

focus group discussion

Lecture of text and identification of 

text passages that respond to the 

research question

Coding of text passages according 

to the preliminary classification

Addition of new classes to the 

classification

Reduction of classes if redundant

Is content sufficiently 

exploited?

Qualitative description of results

Discussion of results

No

Yes

Figure 5.2: Content analysis flow diagram - Methodology used to analyze the content
of the focus group discussion.



Template n Baseline ARTEMIS
t

a

(s) t

g

(s) t

a

(s) t

g

(s)
T1 75 311.0 ± 0.9⇥ 103 308.3 ± 0.1 8.4 ± 0.1⇥ 102 4.2 ± 0.1
T2 75 74.7 ± 0.6⇥ 102 72.1 ± 0.1 2.3 ± 0.6⇥ 10 1.3 ± 0.1
T3 75 5.9 ± 0.8⇥ 10 2.7 ± 0.1 2.0 ± 0.2⇥ 10 1.7 ± 0.1
All 225 130.5 ± 0.1⇥ 103 39.2 ± 0.1 4.3 ± 0.1⇥ 102 2.1 ± 0.1

Table 5.1: Mediator performance - Arithmetic (t
a

) and geometric (t
g

) mean execu-
tion times for the two di↵erent query mediation strategies: local (ARTEMIS) vs. central
(Baseline) reasoning. n: number of distinct queries.
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Figure 5.3: Query performance - Response time and rows retrieved by template and
aggregation period. As expected, the response time tends to increase with the number of
rows retrieved.



5.3.2 Reliability

Following the data selection criterion, 221 queries for EARS-Net and 153 for SEARCH

were created based on template T1. The geometric mean resistance rates extracted

from the three systems are displayed in Table 5.2. The results yielded a strong positive

correlation coe�cient between ARTEMIS and both EARS-Net (⇢ = 0.86, P < .001)

and SEARCH (⇢ = 0.84, P < .001) reference systems.

n Resistance rate ⇢ P -value
EARS-Net SEARCH ARTEMIS

221 0.032 ± 0.002⇥ 102 NA 0.038 ± 0.002⇥ 102 0.86 < 0.001
153 NA 0.042 ± 0.001⇥ 102 0.053 ± 0.002⇥ 102 0.84 < 0.001

Table 5.2: Resistance rate geometric mean and correlation results - n: number
of queries. ⇢: Spearman rank correlation coe�cient.

The within countries geometric standard deviation of EARS-Net resulted in �

ears

=

0.130. This value was extrapolated to the TOSC similarity region � (|�| = �

ears

). Fig-

ure 5.4-a (all results) and 5.4-b (without outliers) present the correlation between the

two systems and Figure 5.4-c shows the regions of similarity. As one can see, the

confidence interval lies in the region of similarity (95% CI 0 to 0.030; P < .001), con-

firming the equivalence between ARTEMIS and EARS-Net resistance rates. Similarly,

for SEARCH, the Swiss region’s geometric standard deviation was �

search

= 0.042, in-

dicating a small susceptibility rate variation in the di↵erent regions. In this scenario, as

Figure 5.5 shows, the results of ARTEMIS cannot be considered equivalent to SEARCH

(95% CI 0 to 0.052; P = 0.18). However, removing outliers (10 out of 153 data points),

that is, those results that fall within a di↵erence in resistance rate bigger than 3�

search

,

leads also to an equivalent outcome (95% CI -0.004 to 0.028; P = 0.004).

5.3.3 Utility

The focus group was composed of seven participants (P1 to P7) with mixed back-

grounds, involved in epidemiological surveillance but also having a role in clinical care.

The participants have already used other software to track resistance patterns, includ-

ing local applications but also at the national (SEARCH) and European (EARS-Net)

levels. The discussion was guided by four main subjects: the application of the tool in



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

ARTEMIS

E
A
R
S
-N
e
t

σ

σ

High level gentamicin

High level gentamicin

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

ARTEMIS
E
A
R
S
-N
e
t

-0.15 -0.05 0.05 0.15

(c)

Δ

a

b

Figure 5.4: ARTEMIS vs. EARS-Net - a) Resistance rates (n = 221). Black line:
exact match (100% equivalence). Grey line: best fit. Grey dashed lines: � = ±0.130. b)
Resistance rates without outliers (n = 213). c) Grey vertical dashed lines: similarity region
�. Grey horizontal bars: TOSC confidence interval. 95% CI

a

0 to 0.030 (P < .001); 95%
CI

b

-0.002 to 0.026 (P < .001).



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

ARTEMIS

S
E
A
R
C
H

σ
σ

Aminoglycoside

Amoxicillin-clavulanic acid

Aztreonam

Clindamycin

Fluoroquinolone, older

Gentamicin HLAR

Macrolide

Penicillin

Gentamicin HLAR

Penicillin

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

ARTEMIS

S
E
A
R
C
H

-0.06 -0.02 0.02 0.06

(c)

Δ

a

b

Figure 5.5: ARTEMIS vs. SEARCH - a) Resistance rates (n = 153). Black line:
exact match (100% equivalence). Grey line: best fit. Grey dashed lines: � = ±0.042.
b) Resistance rates without outliers (n = 143). c) Grey vertical dashed lines: similarity
region �. Grey horizontal bars: TOSC confidence interval. 95% CI

a

0 to 0.052 (P = .17);
95% CI

b

-0.004 to 0.028 (P = .004).



healthcare, the technical components of ARTEMIS, including the quality of the data

and the interface design, the factors that influence trust in a decision supporting tool

and medico-legal issues involved in data sharing. After the transcription verbatim of

the focus group discussion and the identification of text passages that were associated

to the research questions, the original classification was further refined as shown in

Figure 5.6.

Technical

Data 
quality

Trust

Medico-
legal

Functional

Efficiency

Ontology

Graphs
Responsiveness

Interface

Role

Application

Figure 5.6: Categories for the content analysis classification - The four main initial
categories – Functional, Medico-legal, Technical and Trust – were further refined to reflect
the focus group discussion.

Overall, participants were positive about the utility of the tool. 6 out of 7 partici-

pants mentioned explicitly that the tool is useful or that they see a clear application to

healthcare. In their view, provided that the content is reliable, ARTEMIS would serve

as a complementary tool to existing frameworks used in epidemiological surveillance.

It would be useful to provide a broader view of resistance patterns and evolution. How-

ever, more detailed tools that allow looking at the individual patient level would be

still required in the investigation and analysis of antimicrobial resistance.



5.3.3.1 Functional Dimension

While answering to the question “What would the deployment of ARTEMIS change

in your service?”, the participants have identified several application roles for the tool.

The roles varied from a day-to-day working tool for epidemiological studies, to a decision

support system for empirical treatment and generation of guidelines, and finally, to a

research tool, where correlation with other data could be tested. For example, in the

passage:

(P1) For us in infection control, [ARTEMIS would be useful] to follow the trends of

resistance, to follow the emergence of new pathogens, new resistance mechanisms. It

can be even a sort of an early warning system that we can use. But that’s mostly on

ecologic basis. Then, this can help us to link it to other data we already have, either

antibiotic usage data or data on infection control, like hand hygiene. So, it could be

also a sort of research tool where we can do some ecologic correlation analysis, time

series analysis, all kind of di↵erent things.

However, despite believing it could be used for empirical treatment, some partici-

pants have argued that most of clinicians would not change their treatment based on

the up-to-date resistance patterns provided by ARTEMIS. For example, in the following

two passages:

(P1) I don’t think that at this point it’ll have a direct impact on patient care for many

colleagues. It may have a impact first on guidelines. And second, for those who are

knowledgeable, specially, for instance, advanced clinicians like in the ICU, or specific

units, that they will adjust their empirical treatment pattern.

(P6) Let’s say we do an aspiration on the respiratory tract and we see there is an

enterobacteria among di↵erent types of germs and they don’t go to the antibiograms.

We still want to treat that patient and would like to know what is the profile of resistance

of enterobacteria on our wards and that might be helpful [for empirical treatment], for

example. That’s the only utility [in clinical practice] I find by looking at the patterns.

But, in any case, we’ll use large spectrum antibiotics for this type of patients. So, I

don’t think it will change our practice.



5.3.3.2 Technical Dimension

Surprisingly, the interface ontology has received very negative comments by several

participants. In general, the users found it too complicated and not useful. They

preferred to try to find the terms directly in the query input box than to search in the

ontology tree. For example, in the passages:

(P5) I don’t know the classification used for it. Why don’t you specify the most frequent

fungi which are responsible in the human infection?

(P3) Even the microbiologists don’t [know the classification]. But you can go directly

in the [query input] field and look for it. Because the left side [of the interface] there is

no use. No one knows this. Even the microbiologist don’t know it. Even for bacteria

because they are really the old family names of bacteria.

To be useful, the interface ontology should be simplified and adapted to a more operatio-

nal-oriented nomenclature.

The second component of the user interface discussed was the visualization module.

According to the users, most of the views (resistance trends, number of antibiograms,

statistics, etc. - see Figure 4.2) were relevant, utile and added value. However, few

plots were regarded as presenting redundant information and some modifications were

suggested. For instance, to stratify aggregated resistance results into age groups:

(P3) There is no added information in this chart. If you replace it for example by just

separating less than 16 years old and more than 65, and then the third part is between

the two.

5.3.3.3 Trust Dimension

One of the main points raised by the participants during the focus group was the

quality of the data. They have identified several inconsistencies in the results and were

in general negative about the quality of ARTEMIS content. For example:

(P2) That’s the problem with some of the queries. When you ask hospital wide you can

have the real information. But when it comes for special wards you’ll not have all the

information.

(P3) We’ve always been under 8% [of resistance of pneumococcus to penicillin]. I did

a detailed statistics for pneumococcus in 2008 and I’ll do it again this year but had not



time to bring for this section. But you can see here that if I trust ARTEMIS I have to

worry a lot because since 2008 to 2011 it’s reaching over 11%.

This was considered as a dangerous situation, where in the worst case scenario, treat-

ment guidelines would be based on wrong evidence, impacting directly on the quality

of care.

5.3.3.4 Medico-legal Dimension

The last topic of the focus group was related to medico-legal issues involved in sharing

microbiology data within the ARTEMIS network. In general, the participants did not

find medico-legal problems in ARTEMIS data content. However, they were not in favor

of a fully open system. As shown in the next two passages, they have identified positive

points on sharing data with other hospitals to create benchmarks, but also negative

points (in a fully open system), claiming that the pharmaceutical industry could direct

their marketing using local information:

(P6) But, maybe it should be shared with the di↵erent hospitals, or university best

hospitals, to have a sense of benchmarking. To see how people... the evolution... We

know where our resistance’s come from. And that might be one way to improve our

practice by acknowledging the fact that there might be better for such a level of resistance

in Zurich, or we might be better than Lausanne, or another one.

(P1) It could also be misused by industry. Because pharmaceutical industry is very

interested in this kind of data. Because then, they can tailor their propaganda to our

local situation. And they can also say ok, the other competitor drug is now losing

ground, they’re getting more resistance, so please use the new drug.

5.3.4 Usability

Eight participating specialists in infectious diseases completed the usability question-

naire. As shown in Table 5.3, the median usability score was 6.0 (MAD=1.0), indicating

that overall the participants have perceived ARTEMIS, including all its features, as an

easy to use and pleasant system. The dimension that received more negative comments

was error (median 4, MAD=1.0). Indeed, there were some mistakes while executing

the queries in the interface or interpreting the results. Based on the comments in the

focus group and the query logs, we grouped the errors in the following categories:



• Global semantic errors – The semantics of the interface ontology were not clear

and sometimes misleading. For example, users used the class penicillin, which

includes all penicillin-like antimicrobial agents in our ontology (and in the WHO-

ATC terminology), in place of the specific benzylpenicillin agent (penicillin G),

which is normally referred to simply as penicillin by practitioners.

• Local semantic errors – For some query parameters, due to inadequate maps in

the local ontology mapping files, ARTEMIS was not able to capture fully the

local semantics. For example, at HUG, most of the ward names have changed

over time (at least once in the last decade) and it was not reflected properly in

the mapping files. Only the snapshot of the current ward names was included.

• Constraint errors – Users were not fully aware of the contents of the local database,

as it is expected in a distributed system, but the interface was not able to con-

straint the queries based on existing data. For example, the antibiotic reported

in HUG tests as representative of the methicillin class is flucloxacillin. How-

ever, several queries were issued using oxacillin and the interface would just show

empty plots, which confused the users. Indeed, looking at the query logs, 10% of

the queries issued at HUG did not return any result.

The dimension satisfaction has also received some critical comments. For example, to

improve some plots (or remove the redundancy of information), but also to simplify the

interface ontology to fit more with the operational needs. Nevertheless, this dimension

was still well evaluated (median 6, MAD=0.0).

Dimension Median Mode Range Inter-quartile Median Absolute
Range Deviation

Learnability 6.0 6 2 0.50 0.5
E�ciency 6.0 6 2 0.25 0.0
Memorability 5.5 5 2 1.25 0.5
Errors 4.0 3 3 2.25 1.0
Satisfaction 6.0 6 3 0.25 0.0
All 6.0 6 4 1.00 1.0

Table 5.3: Usability descriptive statistics - All is the combination of the five usability
dimensions assessed.



Figure 5.7 shows the distribution of answers per usability dimension and the overall

score of the interface. As we can see, the overall perception of a system easy to use and

pleasant is clearly positive.
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Figure 5.7: Perceived usability - Perceived usability results. All is the combination of
the five usability dimensions assessed.

5.4 Discussion

5.4.1 Responsiveness

All SPARQL performance benchmarks presented in the literature are focused on local

single-source servers [161]. Thus, they are not adequate to assess the performance of

data integration systems. Hence, the ARTEMIS semantic mediator was compared with

a standard approach of retrieving and aggregating centrally. As Table 5.1 shows, the

push-down procedure has reduced the retrieval time by 30-fold (19-fold considering

the geometric mean). Indeed, as shown in Figure 5.3, response time is nearly linearly

correlated (⇢ = .81, P < .001) with the amount of data retrieved in a distributed

system. Thus, local reasoning is crucial for systems that require fast response time.

At the mediation level, the use of a push-down approach while performing aggre-

gation has proved its e�ciency. The average query response was in the order of a few

seconds (µ = 4.3, � = 0.1 ⇥ 102 seconds), which could contribute to the adoption of

the system by healthcare workers, who consider a good response time as an important

requirement in the system design [162]. This result was confirmed by the usability test,



where users were satisfied with the e�ciency of the querying process as a whole (median

6 and MAD=0.5). In addition, during the focus group they have explicitly mentioned

positively the performance of the system:

(P3) Also, the time where it’s extracting the data is much faster [than the other tool

currently used in the hospital].

5.4.2 Reliability

Existing surveillance systems normally use semiautomatic methods to extract antimi-

crobial resistance rates [163]. Validation and cleansing steps are taken by experts before

statistical analysis. In ARTEMIS, this process is fully automated and, as such, errors

can be introduced. To validate ARTEMIS content, we compared antimicrobial the re-

sistance rates with European and national reference systems. The results indicated a

strong positive correlation between the antimicrobial susceptibility test outcomes. We

carried out a second evaluation based on equivalence tests to confirm the trustworthi-

ness of the results. The tests showed that at the limit of 3� ARTEMIS trends are

deemed equivalent to both EARS-Net and SEARCH.

Some di↵erences in concept definition in ARTEMIS and in the reference systems

a↵ected negatively the results. The majority of outliers (18 out of 33) presented in Fig-

ure 5.4-a and Figure 5.5-a were caused by semantic ambiguities between concepts. For

example, the gentamicin definition, which is not related to concentration in ARTEMIS,

is defined as Gentamicin HLAR in SEARCH and High level gentamicin in EARS-Net.

This issue was not accentuated in the comparison with EARS-Net because, as expected,

the region of similarity was wider than that of SEARCH, which considers only within-

country variations. Adoption of standard and formalized terminologies in the eHealth

care field and a more dynamic evolution of terminological resources so that they can

cover operational needs are part of the semantic solution.

These findings were confirmed during the utility assessment. In the focus group,

the users have mentioned that the resistance rates of the major pathogens hospital

wide, that is, what was actually assessed in the multinational reliability test, were in

general convergent with local gold standard data. However, for some specific cases of

sample types and local wards, the system provided inconsistent results. In order to fix

these local inconsistencies, the participants recommended to cross-check with existing

local studies in order to gain trust in the system. We have proceed accordingly in an



interactive validation phase were the ontology was modified, local mappings validated

and results re-checked.

5.4.3 Utility

In general, the infectious disease specialists that participated in the focus group found

ARTEMIS utile as a complementary tool for epidemiological surveillance, providing

easy and broad view on resistance patterns. On the other hand, despite the potential

of ARTEMIS to support appropriate antimicrobial therapy during prescription, in prac-

tice, they believe it would not be e↵ective as a decision support tool because clinicians

would stick to standard procedures. It would be more utile in providing evidence to

guidelines generation and infection control benchmarks of intra- or inter-institutional

services and departments. Resistance patterns could be applied, for instance, as fur-

ther evidence of hand hygiene compliances within the di↵erent groups of the institution.

Hence, the main role of the tool would be on epidemiological surveillance analysis rather

than directly on clinical care.

Further, the ARTEMIS ontology was designed as a general knowledge model to

align heterogeneous data sources and to attend the needs of infectious disease and

public health specialists in di↵erent countries and institutions. As such, it was based

on international terminological resources, like the WHO-ATC, UniProt/NEWT and

SNOMED CT. This was important to align successfully local terms to a global infor-

mation model, against which queries could be issued. However, when we assessed the

utility of a subset of this ontology using infectious diseases specialists from a specific

healthcare institution, it was not seen as importan. We identify two situations there.

First, a global ontology is essential to align information from multinational microbiol-

ogy databases, harmonizing the semantics across the system and providing access to

the distributed data. However, this core ontology should not be used as the system

information interface. Local users are likely to stick to their original nomenclature and

ways of organizing the data. These results were confirmed in a recent work by Li et

al. [164]. Therefore, we believe that our model should be changed to provide local

flexibility also at the user side. That is, the interface ontology should be completely

independent of the domain ontology, instead of a subset, as in our case.



5.4.4 Usability

The usability evaluation showed that overall the users perceived the ARTEMIS in-

terface as easy to use and pleasant. To some extent, they were able to perform real

antimicrobial resistance queries and interpret the results without exhaustive system

training. Additionally to the suggestions provided by the users during the focus group,

such as simplification of the ontology and improvement of some plots to reduce redun-

dant information, we believe that the system could profit greatly from a concise help,

explaining some fundaments of the query interface, ontology and charts.

5.4.5 Batch vs. Real-Time Antimicrobial Resistance Monitoring

The monitoring system introduced here advances the state-of-the-art in surveilling evo-

lution of antimicrobial resistance by providing an architecture that aggregates and de-

livers resistance information as soon as it is available in the local databases of the

surveillance network data sources. Currently, even the most advanced antimicrobial

resistance biosurveillance systems, like the European-wide EARS-Net or the national-

wide SEARCH, are based on delayed, yearly-processed antibiograms. Participants of

their surveillance network provide data that are aggregated and processed in yearly-

batches before being available to bodies concerned with antimicrobial resistance surveil-

lance. This operation mode is no longer suitable giving the alarming and fast increasing

resistance rates for most of the pathogens. Conversely, our system provides real-time

access to resistance data by accessing directly and in real-time the local databases where

the data are originally generated. As a consequence, it allows outbreak and emerging

resistant phenotypes to be spot readily as they are selected, being thus more e↵ective

for antimicrobial resistance surveillance.

5.4.6 Limitations

This study has a few potential limitations. The sample size of the focus group and of the

usability evaluation was relatively small (n = 7 and n = 8 respectively) for a transna-

tional surveillance system. Further, all participants came from a single healthcare

institution. Nevertheless, the samples were composed by a mix of infectious disease spe-

cialists, including infectiologists, microbiologists and experienced clinicians, with wide

experience in antimicrobial resistance surveillance and in public health. Moreover, the



findings across the di↵erent evaluation methods were overlapping and complementary,

indicating that the main issues were identified, that is, data saturation among these

user-based and the technical evaluation was achieved. Finally, our strict adherence to

established methods of qualitative research increases potential confidence in considering

the utility results.

5.5 Conclusion

We have performed a comprehensive evaluation of ARTEMIS, where four dimensions of

the tool were assessed – responsiveness, reliability, utility and usability. Results indicate

that the distributed monitoring architecture introduced in Chapter 3 and Chapter

4 can potentially be used to build transnational antimicrobial resistance surveillance

networks. The architecture showed e�cient and reliable, while complying with local

legal and regulatory frameworks. The Semantic Web-based approach of ARTEMIS

proved to be an e↵ective solution for development of eHealth architectures that enable

online antimicrobial resistance monitoring from heterogeneous data sources. In the

future, we plan to investigate local mediation models, paving the way to a more easily

maintainable system.
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6

Review on Machine Learning

Forecasting

6.1 Introduction

Artificial intelligence is the branch of computer science that studies and designs com-

puter systems that present some intelligent behavior [165]. According to John Mc-

Carthy, a pioneer in the field, it is “the science and engineering of making intelligent

machines, especially intelligent computer programs” 1. Artificial intelligence studies the

human cognitive process and ways to simulate and improve it using machine’s larger

computing and storage powers. A basic element of artificial intelligence is learning.

In intelligent systems, learning algorithms provide methods for storing, updating and

inferring knowledge from data examples.

Machine learning [166] is the subfield of artificial intelligence that designs algo-

rithms that allow computers to learn behaviors or patterns from large, complex and

noisy example data sets. In this context, learning is regarded as inductive inference,

by which machines process and memorize examples that describe a particular phe-

nomenon in order to execute a certain task. Machine learning algorithms di↵er from

standard algorithms in their capacity to improve performance and e↵ectiveness depend-

ing on the learning method (the student), the quality of the example data (quality of

the teacher) and the amount of data (amount of teaching time) available. Learning

algorithms are based on several knowledge fields such as logics, statistics, cognitive sci-

1http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
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ences (psychology, neurology, etc.), and human and animal biological process modeling.

While cognitive and biological models help to understand the process of learning and

executing intelligent tasks, logics, probability and statistics provide the mathematical

foundations so that computers can process information and infer knowledge from the

model learnt. Thus, despite relying on statistics, machine learning algorithms are the-

oretically more powerful since they can employ also logics, conditionality and other

process optimization strategies to improve modeling.

In 1958, when the first ideas of artificial intelligence were created, A. Turing had

already identified learning as a requirement for intelligent systems [167]. Since then,

machine learning has been deployed successfully in many fields to help in decision mak-

ing and knowledge discovering. Applications include, for example, weather and climate

analyzes [168, 169], drug discovery [170], gene selection and cancer classification [171],

brain computer interfacing [172, 173], elementary particle searching in high-energy

physics [174], stock market forecast [175], fraud detection [176], text categorization

[177], handwriting recognition [178], image recognition [179] and many others in sci-

ence, engineering and medicine, where intricate problems need to be solved and there

exists su�cient volume of example data.

6.2 Machine Learning in Healthcare

Machine learning has been often applied to solve medical problems [180, 181, 182, 183,

184, 185]. Hospitals have been collecting and storing large amount of data with the

increasingly deployment of information systems, such as electronic health records and

computerized physician order entry, as part of their normal operational workflow. Add

to that the daily production of genomic, proteomic, and diagnostic and imaging data in

an scale never seen before in research and clinical environments. Paradoxically, while for

humans this huge amount of information gathered makes it each time more di�cult to

analyze and visualize the big picture, for computers, due to their much larger storage

capacity and processing power, it actually improves their capability of learning and

providing correct answers the intricate problems. Thus, as in other fields, in healthcare

more and more computer systems are being used to assist humans in complex and

specific tasks that need to deal with data intensive environments, containing sizable

and diverse data sets.



In the literature, there are substantial machine learning works applied to the analy-

sis of clinical conditions and their influence in small specialized problems [186, 187]. In

a review, Cruz and Wishart [184] found that from 1994 to 2005 the number of published

papers applying machine learning algorithms for cancer prediction and prognosis grew

exponentially. These studies showed that machine learning methods could improve risk

assessment and outcome prediction up to 25% when compared to classical statistical

methods. Syeda-Mahmood et al. [188] applied a method for non-rigid alignment of

electrocardiogram shapes in the diagnosis of heart diseases. Their image learning algo-

rithm identified the similarity between shapes in di↵erent electrocardiogram readouts

and helped in recognizing some types of heart disease by the characteristic shape of

waves produced by an electrocardiogram. In [189], Visweswaran et al. developed an al-

gorithm based on the Markov blanket and Bayesian models for learning patient-specific

outcome applied to the classification of sepsis and hearth failures outcomes. For small

samples, the patient-specific learning method outperformed population-centric models.

Finally, Ramoni et al. [190] used a robust version of the naive Bayes classifier to predict

mortality in intensive care. Their robust algorithm improved the classification accuracy

when the training sample contained missing data, however at the cost of coverage.

In the infectious diseases field, machine learning algorithms have been applied in

predictive scenarios to assist healthcare workers and o�cers with outbreak alerts, gen-

eration of guidelines and antimicrobial prescription [191, 192, 14]. In [193], a hidden

Markov model was deployed in the characterization of outbreak of resistant pathogens.

The authors developed an epidemic model using 157 weeks of vancomycin-resistant en-

terococci prevalence data to quantify cross-transmission and sporadic colonization of

the strain. The system successfully estimated the transmission rate of 89% while geno-

typing methods varied between 84% and 90%. Gierl et al. [194] developed a case-based

reasoning using a hierarchical categorization tree for antibiotics prescription decision

support based on previously documented clinical cases. Despite having a high approval

rate among the physicians, due to divergent opinions amongst the experts evaluating

the system, it failed to develop a gold standard advisor. Leibovici et al. [195] developed

TREAT, a decision support system for aiding antibiotic prescription for the treatment

of inpatients with bacteria infections. TREAT used Bayesian networks (causal prob-

abilistic networks) fed by up-to-date clinical and laboratory data, and antibiotic cost-

benefit models to create an intelligent antibiotic advisor. The system was evaluated in



a randomized controlled trial in three hospitals from di↵erent countries. Treatments

supported by the system’s recommendations improved the percentage of appropriate

antibiotic usage and reduced the mean duration of hospital stay.

6.3 Machine Learning Design

The goal of a learning algorithm is to create a model that, when receiving new unknown

inputs, will be able to associate them to example data, whether the example data are

kept in their original form or transformed into more abstracts formalisms. The design

of a machine learning system can be divided into a two-fold process. First, a pre-

processing step is required to prepare the data set to fit the machine learning’s input

format. It involves the collection, formatting and selection of the most appropriate

features that will be used to model the system. The pre-processing phase is estimated

to account for around 80% of the designing work [196]. It is a data dependent task

and despite of not being an end per se, it is an indispensable task in the modeling of a

learning algorithm. In our work, this task is partially performed by the data integration

system described in the first part of the thesis. The second step is the actual design

of the learning algorithm. The most appropriate algorithm will depend on the system

that is being modeled. The algorithm is conditioned on the type of data available

(symbolic, numeric, continuous, discrete, labeled, unlabeled, etc.), the type of task

(classification or regression), the performance and accuracy required for the machine,

and other constraints. Theoretically, it is very di�cult to define the best algorithm to

use in a given problem. It is often determined experimentally using validation data sets

[197]. This phase is developed in the second part of the thesis. As shown in Figure 6.1,

in practice, in a machine learning system there is also a third phase, which is the post-

processing of the information inferred by the machine for decision support, knowledge

discovery or to feed other intelligent systems.

Independent of the task in which the machine learning system is involved, the

algorithm needs a data set to be used as training examples. In a typical problem, this

training data have a set of features, such as weight, height and time, and an outcome

measurement associated to them. The features as well as the outcome can assume

numeric or symbolic values. Symbolic and discrete outcomes are found in classification

tasks while continuous numeric values are the output of regression tasks.
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6.3.1 Supervised and Unsupervised Learning

Supervised learning is the most used approach in machine learning and has been applied

successfully in many real world applications [198]. Supervised algorithms are trained

using examples of existing classified data. A supervised learning problem consists in

learning a model P (X) based on a set of examples or instances D = {x
i

, f(x
i

)}N

i=1

,

where x

i

is the input and f(x
i

) is the respective output training examples. The ensemble

of examples D is called the training set. A learning algorithm, also called inducer, will

induce a function f using the training set as basis for the model. The function f should

generalize the model since the training set D represents only an observable part of the

real model P (X). Supervised learning normally requires large amount of labeled data

for the system to learn the model P (X) and many times these data are not available

or are very expense to obtain. In contrast, unsupervised learning uses existing data

without any classification. It tries to create generic classes in the sample data using

algorithms that determine how existing data should be labeled. This model is applied

when the classes are not known in advance. A classical example of unsupervised learning

is clustering, where data are grouped based on a distance function implemented by the

clustering algorithm. In this thesis, we deal specifically with supervised learning, since

we have the labels for our training set, the outcome of the resistance rates themselves.

6.3.2 Classification and Regression Algorithms

Machine learning tasks can be broadly divided into two categories: classification and

regression (see Figure 6.2). Algorithms that classify the inputs into a finite set of

discrete classes are called classifiers and the respective learning task classification [199,



200]. For example, patent o�ces, such as the World Intellectual Property Organization

(WIPO), classify medical, biotech and other inventions according to the International

Patent Classification (IPC) system. Patent o�cers manually assign IPC classes to

each patent document. Using the classified corpus as training data, this task can be

automatized to a certain level via automatic text classifiers. The aim is to design

a classification system that, based on existing classified documents, will assign the

most appropriate IPC class to a new unseen document. This is also a supervised

learning process, since there exists examples of the correct answer. Classifiers are

usually evaluated in terms of precision, that is the number of correct answers amongst

the set answers provided, and recall, which is the number of correct answers retrieved

amongst the set of correct answers. Näıve Bayes [201] is an example of a baseline

classification algorithm.

In cases where the output values of the learning algorithm are continuous, the task

is called regression [30]. The aim of the learning algorithm is to find the best model

that will fit to the data, taking into account current observations but also unobserved

data. For example, in stock markets, financial analysts want to model share price time

series to forecast how a given price will behave in the future. Regression is usually

evaluated in terms of the error (absolute, mean squared, etc.) between the observed

output and the forecasted value. Depending on the algorithm and the system modeled,

the input data can take both continuous and discrete values, whereas the output is a

continuous value. Sometimes the output might need to be restricted (or normalized)

to a given range, for example between 0 and 1, in order to comply with the regression

algorithm. Random walk [202] is the standard machine learning baseline algorithm for

the evaluation of forecasting problems. In this thesis we focus on regression algorithms

since they are the only ones that can be used in time series forecasting.

6.3.3 Generalization and Specification

One of the challenges of machine learning systems is to find the right balance between

generalization and specification. Generality is a property of the model that measures

how well the learning algorithm will classify instances that are not part of the training

set. Conversely, specificity refers to the property of finding the most specific function

that will include all positive and none of the negative training examples [203]. The fail-

ure to find the best fit between these two properties can lead to two known problems in



Figure 6.2: Classification vs. regression - Left - black points represent the observed
data and the dashed grey lines show the estimated models; Center - classification task
finds the best curve (or surface) that splits the di↵erent classes; Right - regression task
finds the best curve that fits the data, taking into account unobserved values. Red and
green points: unobserved data.

machine learning – underfitting and overfitting. As shown in Figure 6.3, in underfitted

systems the accuracy of an algorithm is below its learning capability. It is usually a

result of lack of training and poorly estimated parameters. Di↵erently, in overfitted

systems the model is too specific to the training data that when new unseen examples

are tested, it will no longer be able to generalize and recognize the example as part of

the learnt classes.
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Figure 6.3: Generalization and specialization - As the model complexity increases,
after a certain turning point, the actual performance on unseen data starts to decrease.

6.4 Time Series Forecasting

Time series analysis has been extensively exploited in the literature [22, 25]. Accurate

time series forecasting has always been the ultimate goal in the study of time varying



processes. Given a time series, the aim of a forecasting algorithm is to predict the

outcome of the system using observed patterns embedded into the time series so that

the predicted value is as close as possible of the real future value.

More recently, with the increase in memory and computing power, several data

driven forecasting methods based on machine learning have been proposed in the lit-

erature. Machine learning algorithms have been successfully applied in the analysis of

time series data, including trend detection, outliers and forecasting problems [204, 30].

Without doubts, forecasting is the most popular application used extensively in the

financial sector, economics but also in medicine and biology.

In time series forecasting, the data set is represented by chronologically ordered

events data defines the state of a given variable. In machine learning regression, time

series are decomposed into small sequences, or chunks, which are associated to an

outcome. Figure 6.4 shows an example of basic a representation, where a chunk is

associated with a 1-step ahead outcome. These sequences compose the supervised

training set and are used by the learning method to learn the behavior of the system.

Depending of the algorithm more complex representations may be used [205, 206, 207].

It is essential though that they are designed so that the properties of the dynamic

system represented by the time series are captured.

...

input output

Figure 6.4: Example of time series representation in machine learning - The
data sequence is decomposed into smaller chunks, which are associated to an output to
compose the supervised training set.

The machine learning field provides several algorithms for time series regression

and forecasting. In the following sections, we provide a brief overview of classical



statistical approaches and list the machine learning methods that we will investigate

on our antimicrobial resistance forecasting algorithm.

6.4.1 Classical Statistics

Autoregressive integrated moving average (ARIMA) [23] is the classical model for time

series analysis in statistics. ARIMA models assume that the system can be modeled

using a linear combination of parameters, that is, x(t) = f(a
0

, a

1

, . . . , a

n

, t) + "

t

, where

a

i

is the vector of parameters to be discovered and "

t

is the error associated [23, 24].

They regard the time series as the realization of a stochastic process [208, 25], which

can be represented using a linear combination of autoregressive, integrative and moving

average terms. Mathematically, it can be written as

�(B)(1�B)d

x

t

= ✓(B)e
t

, (6.1)

where B is the backward shift operator, such that Bx

t

= x

t�1

, e

t

is a purely random

process with zero mean and variance �

2, �(B) = 1 � �

1

B � �

2

B

2 � . . . � �

p

B

p is a

polynomial in B of order p, ✓(B) = 1+ ✓

1

B + ✓

2

B

2 + . . .+ ✓

q

B

q is a polynomial in B of

order q, and �(B)(1�B)d is the combined derivative and autoregressive operator [24].

In [209, 210], the authors explored the relationship between antimicrobial consump-

tion and resistance using microbiology susceptibility testing together with pharmacy

data. ARIMA models were deployed to create antimicrobial resistance forecasting mod-

els, which were employed to quantify empirically the impact of resistance prevalence

and antimicrobial use on future resistance rates. Abeku et al. [211] applied an ARIMA

model to forecast the monthly incidence of malaria using historical morbidity patterns.

Despite the very good fit produced in the training data, the model was outperformed

by a simple seasonal adjustment model in the out-of-sample forecast.

Exponential smoothing is another branch of linear models that use simple recursive

updating formulae to produce time series forecasts [24]. Regardless of the model sim-

plicity, it is able to capture the dynamics of processes with changes in the local level,

trend and seasonality. The simplest exponential model can be represented in the form

x̂

N+1

= ↵x

N

+ ↵(1� ↵)x
N�1

+ ↵(1� ↵)2x
N�2

+ . . . , (6.2)

or recurrently as

x̂

N+1

= ↵x

N

+ (1� ↵)x̂
N

, (6.3)



where ↵ is a smoothing parameter in the range (0,1), x̂

N+1

is the forecast value at time

point t = N + 1 and x̂

N

is the previous forecast.

Exponential smoothing techniques have also been applied to forecast biosurveillance

data. Ngo et al. used exponential smoothing forecasts to detect outbreaks of gentamicin

resistant Pseudomonas aeruginosa. The 95% confidence interval upper envelop of the

forecasts was used to define the limit between an outbreak and an endemic prevalence.

If resistance rates were not higher than the upper limit, the hypothesis of an epidemic

was rejected. In [212], the authors introduced a robust prediction method based on

Holt-Winters [27, 26] exponential smoothing technique to forecast biosurveillance data

and used the predictive results in a control-chart alerting algorithm to detect outbreaks.

In their study, the Holt-Winters-based algorithm outperformed the traditional adaptive

regression models used for syndromic surveillance.

Theses models are overall e↵ective to fit and forecast several time series processes.

However, they assume a linear dependency between the model’s parameters, which is

not necessarily true for many systems. As we will see, the dynamics of short-term

resistance trends are not linear and these approaches are a priori not optimal to model

such processes. Conversely, most of the machine learning methods do not assume

any dependency of the systems parameters. Most important, the model is defined

intrinsically by the data, or more precisely, by the training set. Hence, machine learning

models are able to generalize to wider range of systems independently of their dynamics.

6.4.2 Least Squares Regression

The least squares estimator [213, 214] is a linear mathematical optimization procedure

used in statistics and machine learning. It searches for the best data set fitting by

minimizing the residual error obtained from the sum of the squares of the di↵erence

between the estimated values and actual observed data. It is the most used approach

to approximate solutions in overdetermined equation systems, that is, systems where

there are more equations than unknowns. The least squares estimator minimizes the

sum of the squares of the regression residuals in order to maximize the fitting to the

model.

The least squares algorithm used in time series learning can be defined as follows.

Consider a data stream x being updated at every time-tick. Supposing that x can be



estimated at instant t = N + 1 as a linear combination of past values of x within a

window of size w, that is

x

N+1

= '

0

+ x

N

'

1

+ x

N�1

'

2

+ . . . + x

N�w

'

w

+ "

N

, (6.4)

where "

N

⇠ N(0;�2) is an error term. This model can be conveniently represented in

the matrix form as

y = X� + ✏, (6.5)

where y = (x
N+1

, . . . , x

w+1

)T , X = (1,xN, . . . ,xN�w), � = ('
0

, '

1

, . . . ,'

w

)T and

✏ = ("
N

, . . . , "

w

)T . Then, the least squares method is based on finding an approximate

solution for the coe�cients � in Equation 6.5 that minimizes the sum of squared errors

between the real value of y and the estimate ŷ. Formally, it is represented as

min ||✏||2
2

= min
�2<n

||y �X�||2
2

. (6.6)

Solving Equation 6.6 with respect to �, that is, @✏/@� = 0 results in

� = (XTX)�1XTy. (6.7)

Then, the machine learning algorithm consists in finding the weights � that solves

Equation 6.7 but also the window size w that optimizes the forecasting.

6.4.3 k-Nearest Neighbors

k-NN is one the simplest, most intuitive but also most e↵ective machine learning algo-

rithms [215, 216]. The algorithm implements a instance-based learning, which delays

the induction process until the test phase. The term k refers to the number of neigh-

bors that are needed to describe a class in the training set. The algorithm is based on

the assumption that, when represented in a d-dimensional space, instances from the

same class tend to be naturally aggregated. For example, all fishes within a shoal are

likely to be from the same species or people from the same city district have higher

probability to be from the same social class than people coming from another district.

The distance between instances can be calculated using di↵erent metrics, including

Euclidian, Manhattan or any other algorithm that is able to quantify di↵erences be-

tween instances in the training and testing sets. The k value calculated in the learning

phase is used in the test phase to determine the class (or value) of a new unknown



instance. The algorithm performs a search for the k nearest neighbors in the training

data and infers the class of the test instance using the set of neighbors, as shown in Fig-

ure 6.5. The standard k-NN regression algorithm gives equal weights to all neighbors.

In this case, the outcome can be estimated as

ŷ =
1
k

X

y

i

2U(x)

y

i

(6.8)

where y

i

is the target output of training data point x

i

and U(x) is the neighborhood of

the test point x. Training the number of neighbors optimally is crucial in this model.

Too large values for k results in underrepresented classes to be considered as part of

larger neighborhoods whereas too small values leads to noise instances to be regarded

as actual classes [217].

N

N+1

x

ŷ

Figure 6.5: k-NN regression - The test point x is projected into the result (future)
axis using the nearest neighbors.

6.4.4 Decision Trees

Decision trees are widely used in applications that requires learning features. It is

especially applied in the medical context due to its ability of generating human readable

rules [186, 218]. Decision tree is an intuitive class of regression algorithm. As shown

in Figure 6.6, it consists in a tree form graph with a set of internal decision nodes

and terminal leaves. Each internal node represents a decision space whereas the leaves

correspond to the output of the system. The algorithm solves the regression problem

by recursively partitioning the input space using a set of decision questions or rules (if

then else), which splits the learning sample into smaller homogenous parts at each

node. In binary trees, a question with binary answer (0/1, yes/no, left/right, etc.) is



asked in each node of the tree. For example, a tree that models resistance rate would

ask “Is rate at time t greater than 50%?” and a respective rule would be created to

provide the answer, such as if x

t

> 50 then node left else node right.

In time series forecasting, the decision algorithm will walk through the tree created

during the training phase to produce the prediction. Given a new test point x, the

algorithm will perform a test along the decision nodes starting from the root node until

it reaches a leaf node, which will correspond to the prediction. Decision trees are easy

to create and interpret, and still produce e↵ective results. As with other algorithms,

they computational complexity increase with the number of classes in the training set.

However, even for large data sets they tend to perform relatively fast. One of the major

drawbacks of the method is its variability with the training space. A small modification

in the training set can have significant impact on the tree rules. This high variability

phenomenon a↵ects essentially the capability of finding the optimal data fitting. If not

tuned properly decision trees are likely to overfit [219].
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Figure 6.6: Decision tree regression - Example of a tree trained using the space formed
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N�5(N5)}. The algorithm
decides which leaf will match a given input x following the tree decision nodes.



6.4.5 Artificial Neural Networks

Artificial neural networks (ANN), or simply neural networks, are probably the most

popular machine learning algorithms in the literature [220, 221]. They have been ap-

plied to several regression and classification problems and are one of the responsible for

the popularization of machine learning techniques as problem-solvers. Neural networks

comprise a class of connectionist algorithms inspired by the behavior of the human

brain. As shown in Figure 6.7, a neural network consists of a set of interconnected

units, so called neurons, that executes small processing tasks based on pre-determined

transfer function. The connection between the units are weighted to reflect the influ-

ence of one unit upon the other. In a neural network, the units can be grouped into

three classes: i) input, where the information is fed into the system and the processing

starts; ii) hidden, which provides further optional processing power to the network;

and iii) output, where the final results are produced.

The multilayer perceptron is a classical neural network architecture, which contains

at least one hidden layer. The output of each unit in the architecture is defined by

y

j

= g

 
NX

i=1

(w
ij

x

i

+ b

j

)

!
(6.9)

where x

i

is the ith input vector, w

ij

denotes the weight of the ith input connection

of the jth node, b

j

is the bias and y

j

is the jth network output node. The function

g represents the node’s activation function. A classical approach is to use the logistic

sigmoid function g(u) = 1/(1 + exp(�u)) to activate the nodes.

While setting the number of hidden layers in a neural network architecture has

proved to be trivial, the optimal size of the hidden layer still remains challenging. It

is known that a three-layer network with sigmoidal units in the hidden layer su�ce

to approximate large class mappings. However, setting the number of neurons in the

hidden layer too low will lead to poor specification of the classes whereas too many

neurons will result in an very complex (computationally and logically) system, which

tends to overfit in an out-of-sample test but also to increase considerably the training

time [222].
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Figure 6.7: Multilayer perceptron example - Structure of a feed-forward neural
network with four input neurons, one hidden layer and one output.

6.4.6 Support Vector Machines

Support vector machine (SVM) algorithms have been originally designed to solve classi-

fication tasks applied to optical character recognition [223]. In support vector machine

classification [224], hyperplanes in a d-dimensional space are constructed to split op-

timally elements of di↵erent classes. The algorithm maximizes the distance of the

hyperplanes to the class data points in order to minimize the generalization error. The

algorithm works by mapping the original input space X into a higher dimensional space

F, using a function � : X! F, where � is called the kernel function.

Later on, based on the same principles, support vector machines have been applied

to regression problems [225], what is usually referred as support vector regression in

the literature. In this case, given a set of points {(x
1

, y

1

), . . . , (x
N

, y

N

)} ⇢ X⇥ <, the

goal is to find a function f(x) that has at most " deviation from the actual target F

for all the training data, and is as flat1 as possible. That is, the algorithm ignores data

points that deviates more than " from the hyperplane created by the kernel function.

Let us consider the linear case, as shown in Figure 6.8. In linear kernels, the goal

1Flatness is a concept associated to curvature and smoothness of the surface or curve defined by

f(x).



is to find a function

f(x) = w · x + b, (6.10)

where w 2 <d is the weight vector, b 2 < is the bias and x is the input vector. In

the case of Equation 6.10, flatness refers to small value for w. Let x

i

and y

i

denote

respectively the ith training input vector and target output, with i = 1, . . . , N . It can

be shown that the error function that ensures flatness and that the deviation of the

target y is of less than " is given by

min
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Figure 6.8: Support vector regression example - Setting the soft margin loss for a
linear support vector machine. Only the points outside the shaded region contribute to
the loss function [225].

The first term of Equation 6.11 penalizes model complexity whereas the second

term penalizes errors above ", allowing some room for the parameters to move to

reduce model complexity. The constant C > 0 determines the trade-o↵ between the

flatness of f(x) and the amount up to which deviations larger than " are accepted. This

corresponds to dealing with a so called "-insensitive loss function |⇠|
"

:= max{0, |⇠|�"}
[225, 30]. It can be shown that the solution that minimizes the error function in



Equation 6.11 is given by

f(x) =
NX

i=1

(↵ + ↵

⇤)xi · x + b, (6.12)

where ↵ and ↵

⇤ are the non-negative Lagrange multipliers associated with the con-

straints of the problem. Training vectors giving non-zero Lagrange multipliers are

called support vectors and are the only ones that contribute directly to the solution

of the support vector machine algorithm. Equation 6.12 can be easily extended to a

nonlinear problem simple by applying a nonlinear kernel K to the linear term xi · x,

that is,

f(x) =
NX

i=1

(↵ + ↵

⇤)K(xi · x) + b. (6.13)

6.5 Model Comparison

In the previous section, we have presented some of the main methods used for time

series forecasting. As we are interested to investigate the use of machine learning

approaches to forecast resistance rates, we have focused more on learning oriented

methods than on classical statistics. The literature provides still many other machine

learning approaches, such as the Gaussian Processes [226] method, and hundreds of

variations within the methods presented. However, we believe that the review presented

here is enough to investigate the problems involved in our task.

In Table 6.1, we summarize some features of the methods aforementioned. We con-

sider the basic version of these methodologies to rate their characteristics. The least

squares regression model is a priori not suitable to our problem due to its inability to

model nonlinear process. Moreover, ANN and SVM, despite of their higher prediction

accuracy in large data sets, they do not perform well in data sets with small number

of data points. As data of resistance rate time series are unlikely to be available in

long periods (several decades), these models are probably not going to be as accurate

as they would normally be in other large data sets. Finally, decision tree and k-NN

have similar characteristics, with the di↵erence that the latter tends to have a higher

predictive power in regression tasks. k-NN is also suitable to forecast resistance rates

due to the easiness of building models using this algorithm. One needs to determine



only the parameter k to fully specify a k-NN model. This is of particular importance

in antimicrobial resistance analysis since di↵erent pathogen/antimicrobial time series

will require di↵erent models. Despite the theoretical di↵erences amongst the machine

learning algorithms presented here, as we have mentioned previously, in machine learn-

ing modeling it is extremely di�cult to decide a priori which method will perform best

in a given task. Thus, in Chapter 7 we evaluate these algorithms to determine which

is more appropriate for our learning-based antimicrobial resistance forecasting task.

Characteristic Least k-NN Decision ANN SVM
squares Tree

Model construction +++ +++ +++ + ++
Parameter tuning +++ +++ +++ + ++
Predictive power + ++ + +++ +++
Interpretability +++ ++ +++ + +
Computation in prediction +++ + +++ + +
Handling of missing values + +++ + + +
Robustness to outliers + +++ +++ + +
Ability to extract linear combina-
tions

+++ ++ + +++ +++

Ability to extract nonlinear combi-
nations

+ ++ ++ +++ +++

Ability to work with small samples +++ +++ +++ + +

Table 6.1: Model comparison - Comparative features of the popular models provided
in the previous section. Symbols: + ! poor, ++ ! fair, +++ ! good.

6.6 Evaluation of Time Series Forecasting

The classification and regression results of a machine learning method need to be eval-

uated before we can have any confidence in their predictions. As shown in Figure 6.3,

performance on the training set is a biased indication of the performance on an inde-

pendent data set. To determine more accurately the error of a learning algorithm on an

unseen data set, we need to assess its error rate on a sample that was not used in the

training phase. This independent data set is called the test set [215]. In practice, the



machine learning algorithms are usually trained with two-thirds of the data available

and tested with the one-third remaining.

In both the training and the test phases, the samples shall be representative of

the system modeled otherwise they will not be able to describe the system when the

algorithm is actually deployed in a unknown set. Particularly, in time series forecasting

the training and test sets have a chronological dependence. They cannot be picked

randomly as in a typical classification problems. To represent the system during its

real application, the training set must contain data with some time dependence and it

is paramount to be prior to the test set.

6.6.1 Cross Validation

If the amount of data available is large enough to be partitioned into training and test

sets and still produce statistic significant results, a unique partition between training

and test sets is the most appropriated to evaluate the forecaster. However, it is common

that the quality data points available are not su�cient. For example, monthly data in

a ten years data set will produce only 120 data points for training and testing. In this

case, the cross validation is a preferred methodology to assess the system [227]. In cross

validation, the data are divided into a certain number n of partitions or “folds”. To

assess the system, each fold is held out as the test data and the remaining n� 1 folds

are used as the training set. The performance of the algorithm achieved in each test

fold is averaged to estimated the overall system accuracy. In time series analysis, the

leave-one-out cross validation is a standard method to evaluated the forecaster. The

training set is created with a minimum of observations required to train the system

and the independent test set is defined with the size of the forecasting horizon. At each

evaluation iteration, the training and test sets are shifted to the future. This process

continues until the test set reaches the last data point. We deploy the leave-one-out to

train and test our forecaster.

6.6.2 Loss Function

A loss function need to be defined for the assessment of a learning algorithm. It

determines the measure that will evaluate the algorithm. In time series forecasting, the

error can be computed as a function of the observed values and the forecast, that is,

e = f(observed, predicted). Then, the loss function can be specified as a function of



the error L(e). A common approach is to define the error as e = observed� predicted.

Thus, to calculate the absolute error the loss function would be L(e) = |e|. Sometimes,

the forecast is also evaluated in terms of the squared error, that is, L(e) = e

2. The final

error is commonly taken as the average of the predictions. Several other loss functions

to assess forecast are presented in the literature [25]. In our evaluations, we will use

the two methods aforementioned.

6.7 Summary

In this review, we discussed the machine learning methods applied to the problem of

time series forecasting. Many machine learning algorithms have been presented in the

literature to forecast time series data. They are very well exploited in finance, economy,

etc., and with less frequency in biomedical sciences. The biomedical community is still

using classical models for time series forecasting of resistance data. To the best of our

knowledge, there is no published approach that deploys data intensive machine learning

methods to the problem of antimicrobial resistance forecasting. In the next chapters,

we will investigate the use of such approach for modeling and forecasting short-term

resistance rates.



7

Data Driven Antibiotic

Resistance Trend Extraction and

Forecasting

7.1 Introduction

At the point of care, up-to-date antimicrobial resistance information is important for

empirical therapies because it reproduces faithfully the current resistance dynamics

within the clinical setting. However, high frequency resistance time series, that is,

those containing daily and weekly aggregated information from antimicrobial suscep-

tibility tests, are challenging to analyze. In this thesis, we investigate a method that

aims to improve analysis algorithms for antibiotic resistance data by building a novel,

fully data-driven trend extraction and machine learning forecasting model for resis-

tance trends. Trend extraction and forecasting tools model real-value functions using

multi-dimensional vectorial space of events. Our method consists in breaking down

the resistance time series into di↵erent oscillation modes using the EMD technique and

use the vectorial space generated to represent the system’s function. The resulting

waveforms, which describe intrinsic resistance trends, are then used as the input for

a machine learning algorithm based on the k-NN framework for projecting mappings

from past events into the future dimension, that is, the forecast.

This chapter introduces our approach and provides a basic evaluation of our method-

ology for both trend extraction and forecasting. It starts by describing the main features
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of resistance time series and the challenges of modeling short-term (days, weeks) resis-

tance trends. Section 7.3 presents some existing methods to decompose time varying

signals and provides some examples of their application to extract trends. Section 7.4

introduces our antimicrobial resistance trend model and describes in detail the forecast-

ing algorithm. Finally, in Section 7.5 we compare di↵erent machine learning algorithms

against the k-NN algorithm by showing the empirical results of resistance forecasting.

7.2 Analysis of Resistance Data on the Time Domain

Antimicrobial susceptibility tests are performed routinely in microbiology laboratories.

Clinicians use the results primarily to determine the optimal agent for the antibiother-

apy. Secondarily, microbiologists, infectiologists and public health specialists exploit the

reports to analyze how resistance rates vary over time and plan interventions. The most

common methodology applies time series of long-term (yearly aggregated) resistance

rates in order to detect trends [228, 229], where large historic data sets are compared

with recent rates to spot any significant variation in the mean resistance rates. Some

works model the evolution of resistance using di↵erential equations that incorporate

variables associated with resistance, such as consumption of antibiotics [230]. This ap-

proach can be used to forecast resistance, but also to infer the e↵ects of di↵erent factors

upon resistance. In all of these analyzes, the time dimension is a keystone to understand

the process of antimicrobial resistance and evaluate its impact on healthcare.

Data acquisition and sampling rates are two important variables to consider when

analyzing data in the time domain. The prevalence of infections in the community and

of nosocomial infections within a clinical setting are factors that influence the amount

of antimicrobial susceptibility tests performed and consequently the acquisition rate of

the microbiology database. Antimicrobial tests are performed and reported obeying

many factors, varying from societal, such as weekends and holidays, to clinical, such

as resistance outbreaks. Hence, one should expect an irregular data acquisition rate.

However, for time series analysis, the sampling rate needs to be as constant as possible.

In other to achieve such a fixed rate, higher frequency data need to be aggregated to

reduce all data to the same sampling period. For resistance analysis, five sampling

periods are prominent: annual, quarterly, monthly, weekly and daily resistance rates.

Since we are interest in providing methods for antimicrobial resistance analysis using



up-to-date data, our model focuses on short-term resistance trends. Then, we naturally

exclude the first three sampling rates. On the other hand, often daily resistance rates

do not have clinical meaning, especially because tests are not performed daily for most

of the pathogens. Technically, it is means that the sampling rate is higher than the

acquisition rate. Therefore, we center our attention to weekly aggregated antimicrobial

resistance rates.
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Figure 7.1: Resistance time plots - Example of weekly resistance time series for four
pathogens: Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and Staphy-
lococcus aureus. FEP = cefepime; AMC = amoxicillin-clavulanic acid; CIP = ciprofloxacin;
MAC = macrolide.

The first step in time series modeling is to plot the observations against time, to

produce the so called time plot of the data [24]. Time plots may reveal at a glance

important features of a time series, such as trends, seasonality and outliers. In Figure

7.1, we show some time plots of antimicrobial resistance rate using a decade of weekly

aggregated antibiogram tests for four pathogen/antibiogram pairs. A priori, we can

say that there exist trends for the time series at the top left (upward) and bottom

right (downward). The presence of outliers is verified in all the series but no apparent



seasonal events. The time series of di↵erent pathogen/antimicrobial pairs are very

distinct and, at the first sight, are contaminated by random signals. Indeed, modeling

antimicrobial resistance time series poses many challenges. First, the dynamics of

the time series depends on the resistance stage. The function can present bursts,

as usually seen at initial resistance states or in resistance outbreaks, but also a slow

varying underlying trend, which is more common once the pathogen has acquired some

level of resistance. In any stage though, the signal-to-noise ratio of the time series is

relatively low, making the system’s modeling task more di�cult whatever methodology

is adopted. Second, the sampled data within a clinical setting are only a local fraction

of the data. Antimicrobial resistance is a much larger problem a↵ecting human but also

animal pathogens, the latter not being obviously captured in clinical databases. Hence,

data from clinical microbiology databases are not representative of all the information

related to the resistance dynamics. Therefore, the antimicrobial resistance algorithm

or model has to account for unseen information to avoid the overfitting phenomena.

Finally, the dynamics of antimicrobial resistance are very distinct from antimicrobial

to antimicrobial and from pathogen to pathogen. Thus, the model has to be general

enough to adapt to di↵erent time series dynamics, but also has to account for the

specificity of each case of interest in order to provide good fit and forecasting accuracy.

Another important tool in time series analysis is the autocorrelation function. In

particular, autocorrelation plays an important role in forecasting. Probabilistically,

autocorrelated time series are to some extent predictable because future values have

dependency on the present and past data and then forecasting models can learn about

the behavior of the system using observed values. Figure 7.2 shows the autocorrelation

plots for the time series displayed in Figure 7.1. The plot at the top left shows a strong

correlation from one observation to the next, maintaining the autocorrelation after lag

0 almost constant as we walk to the past. In the two plots in the right, autocorrelation

decreases roughly linearly as the lag increases. Finally, in the plot at the bottom left,

the time series presents almost no autocorrelation. Antimicrobial resistance time series

are often autocorrelated because of the slow dynamics and carryover of the evolutionary

processes. As can be seen from Figure 7.2, the time series usually show at least some

degree of positive autocorrelation, characterizing certain tendency for the resistance to

remain in the same state or trend from a past observation to the future. To illustrate

that, imagine that for a given pathogen/antibiotic time series, resistance has been



increasing for the past months. Thus, the likelihood of resistance next month being

higher than today is greater than if the time series had a negative slope. However,

due to the variations in several factors associated to resistance, such as antimicrobial

consumption and infection control measures, and how these factors are reported in the

database (technical and societal factors), resistance time series may sometimes present

no autocorrelation, as in the example shown at the bottom left of Figure 7.2. Hence,

we can expect that some antimicrobial resistance time series with higher (negative or

positive) autocorrelation will result in smaller forecasting errors, while others it will be

more challenging to forecast.
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Figure 7.2: Resistance autocorrelation - Autocorrelation plots for time series of Figure
7.1

7.3 Antimicrobial Resistance Trend Extraction

As shown in Figure 7.1, weekly resistance signals are complex, having a large part of the

signal contaminated by noise. This increases the challenge for computer algorithms to



learn existing patterns from the real signal. We propose a methodology to analyze and

learn the resistance trends by decomposing the signal in di↵erent modes of oscillation.

Instead of looking at the time series as a single signal, first we decompose it in a set

of simpler and easier to learn data sequences. Depending on the characteristics of the

new decomposed signal, di↵erent machine learning techniques can be applied taking into

account the features of the processed signal and of the learning algorithm. Furthermore,

through transforming the signal, new information or features can be obtained from the

signal that is not readily available in the raw signal. In the next sections, we give an

overview of some existing algorithms that can be employed in signal decomposition.

7.3.1 Hodrick–Prescott Filter

The Hodrick–Prescott filter [231] is a model-free mathematical algorithm that is ap-

plied particularly in macroeconomics to obtain long-term trends from time series. The

algorithm assumes that a given time series x

t

can be decomposed into a slowly evolving

trend component ⌧

t

and a cyclical component c

t

, such that

x

t

= ⌧

t

+ c

t

, (7.1)

where the cyclical components c

t

average tends to zero over long periods. Figure 7.3

shows an example of applying the Hodrick–Prescott filter to decompose a time series

into the cyclical c

t

(C1) and trend ⌧

t

(C2) components.

The Hodrick–Prescott filter estimates the trend ⌧

t

using cubic smoothing spline

method, where the following equation is minimized for ⌧

t

:

min
{⌧

t

}

(
TX

t=1

(x
t

� ⌧

t

)2 + �

T�1X

t=2

[(⌧
t+1

� ⌧

t

)� (⌧
t

� ⌧

t�1

)]2
)

, (7.2)

with � � 0. The first term of Equation 7.2 is the sum of the squared deviations of x

t

from the trend and penalizes the cyclical component. The second term, which performs

a sum over the squared second di↵erences of the trend, is a penalty for variability in

the trend. To obtain the cyclical component, we can just substitute the resulting trend

⌧

t

of Equation 7.2 into Equation 7.1.

The adjustment of the sensitivity of the trend to high frequency components is

achieved by modifying the smoothing factor �. As � decreases towards 0, the trend

approximates the raw signal x

t

, whereas the greater the penalty imposed by �, the



smoother the resulting trend will be, with ⌧

t

becoming linear for �!1. In practice, �

is assigned empirically. For example, for quarterly data Hodrick and Prescott suggest

a smoothness parameter of 1600. The Hodrick–Prescott filter was not designed to be

optimal for specific time series and, apart from the choice of �, the same filter can be

used in processes with di↵erence dynamics [232]. However, under certain conditions,

namely the normal and independent distribution of the c

t

component and of the second

di↵erence of ⌧

t

, �2

⌧ = (⌧
t+1

�⌧

t

)�(⌧
t

�⌧

t�1

), the Hodrick–Prescott filter is an “optimal

filter”, that is, it optimizes the mean squared error, and � can be computed as the ratio

of the cyclical and trend variances, �

2

c

/�

2

�

2
⌧

, where �2 is the second di↵erence operator

[233].
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Figure 7.3: Hodrick-Prescott trend extraction - Component C1 provides the cyclical
component c

t

whereas component C2 provides the trend ⌧

t

for the raw signal displayed on
the right.

7.3.2 Wavelets

Wavelet theory provides a formal mathematical framework for decomposing a signal as

a weighted sum of basis functions with di↵erent scales [234]. The method consists in

adopting a wavelet prototype function, called an analyzing wavelet or mother wavelet,

and decomposing the signal using such function as basis (for some examples of wavelet

basis function, please refer to [234]). Temporal analysis is performed with a contracted,

high-frequency version of the prototype wavelet, while frequency analysis is performed

with a dilated, low-frequency version of the same wavelet. In this sense, a wavelet trans-

form is similar to the Fourier transformation, where a given signal is decomposed into a



series of sinusoids with di↵erent frequencies. However, when compared to Fourier trans-

forms, it presents a key advantage, its temporal resolution, which allows the wavelets

to capture both frequency and location in time information. Hence, they perform bet-

ter in analyzing physical situations where the signal contains discontinuities and sharp

spikes.

Wavelet methods decompose the signal into a set of orthogonal signals, containing

a coarser signal approximation A at large scale (low frequency) and additional signal

details D at di↵erent resolutions, of decreasing scales. The approximation A

j

at level

j roughly represents the local mean signal on intervals of length 2j while the detail

D

j

at level j contains fluctuations around this local mean on the same corresponding

intervals. Let us consider a time series x with N observations. Then, for a given

orthogonal wavelet basis function y, the time series can be decomposed as [235]:

x =
nX

j=1

D

j

+ A

n

, (7.3)

where n is an integer in the range 1  n  log
2

(N) and denotes the decomposition

level, A

n

is the approximation level and D

j

is the detail at level j of the signal.

Figure 7.4 shows an example of time series decomposition using the wavelet method

with the least asymmetric filter of length 8 as the wavelet basis function at the decom-

position level n = 4. The first four components (C1-4) show the details from the finer

(D1) to the coarser (D4), whereas the component C5 displays the candidate trend (A4)

for the respective raw signal at the bottom right.

7.3.3 Empirical Mode Decomposition

EMD is an empirical, adaptive and fully data-driven method for signal decomposition

suitable for nonlinear and non-stationary processes [35, 236, 237]. It works by breaking

down the signal as superpositions of intrinsic local functions with di↵erent modes of

oscillation called IMFs. According to Huang [35], each IMF satisfies two particular

conditions: (i) in the whole dataset, the number of extrema, that is, the local minima

or maxima, and the number of zero crossings must either equal or di↵er at most by

one; and (ii) at any point, the mean value of the envelopes defined by the local maxima

(upper) and the local minima (lower) is zero. The result of the EMD process is a set of
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Figure 7.4: Wavelet signal decomposition - C5: signal approximation A

n

; C1-4:
details D

j

. The raw signal is equivalent to the sum of the five components C1-5.

IMF components, with zero mean and unrestricted amplitude and frequency along the

time axis, and a residual component, which accounts for the mean underlying trend.

IMFs are extracted from the signal through a sifting process, which can be imple-

mented according to the following algorithm (see Figure 7.5):

1. Identify the local maxima and minima extrema of a signal x(t).

2. Connect the local maxima with a cubic spline as the upper envelope e

max

(t).

Repeat the process for the local minima to create the lower envelope e

min

(t).

3. At every time point t, calculate the local mean m(t) of the two envelopes given

by the average of the upper and lower envelopes:

m(t) =
e

max

(t) + e

min

(t)
2

. (7.4)

4. Obtain the first oscillation component h(t) by taking the di↵erence between the

data signal x(t) and the local mean m(t), that is, h(t) = x(t)�m(t).

5. If the first component h(t) is not an IMF, it is taken as the new signal x(t)

and steps 1-4 are repeated until the first component is an IMF. The final h(t) is

designated as c

j

(t), the jth IMF component.



6. Once the first IMF component c

j

(t) has been identified, it is subtracted from the

original signal, leaving a residual r(t) = x(t)� c

j

(t). Steps 1-5 are repeated with

r(t) taking the place of x(t) until r(t) becomes a monotonic function from which

no more IMFs may be extracted.

After the data signal x(t) has passed through the IMF sifting process, it can be repre-

sented in terms of the IMFs c

j

(t) and the monotone residual component r(t) as

x(t) =
nX

j=1

c

j

(t) + r(t), (7.5)

where n is the number of IMFs obtained in the sifting process.
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The residual r(t) in Equation 7.5 provides the mean trend of the signal. The os-

cillating components c

j

(t) are usually physically meaningful [236] and represent short,

medium- and long-term trends (see Figure 7.6). They might be associated for example

with seasonal trends, or cyclical components in the econometrics parlance. The first

component c

1

(t) has the smallest time scale and thus corresponds to the highest fre-

quency component. As such, it is associated to noise. Notice that the components are

extracted using a fully data-driven process, where it is not required to predetermine



any basis functions. Therefore, this methodology is adaptive to any time varying sig-

nal, which makes it suitable to extract trends from the di↵erent pathogen-antimicrobial

resistance time series.
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Figure 7.6: EMD decomposition - C8: residual trend r(t); C1-7: IMFs c

j

(t). The raw
signal is equivalent to the sum of the eight components C1-8.

7.3.4 Comparison

Figure 7.7 shows a comparison of the di↵erent methods to extract trends applied to the

resistance time series of Figure 7.1. The three signal decomposition methods described

previously are able to generalize and adapt to time series with di↵erent dynamics.

However, compared to the Hodrick–Prescott and wavelet methods, EMD provides some

advantages. First, it provides a good estimation of the slow varying mean trend as the

Hodrick–Prescott method. Notice that the wavelet method cannot describe the mean

trend but rather an oscillatory curve. Second, it is also able to decompose the signal

into several intrinsic oscillatory components of di↵erent frequencies as in wavelets, not

being restricted to a single oscillatory component as in Hodrick–Prescott. Furthermore,

the algorithm is simple to implement and there is no parameter to determine, as the

smoothing parameter � in the Hodrick–Prescott filter or the decomposition level n in



wavelets. Finally, there is no assumption of any basis function. EMD is strictly data-

driven, di↵erently from wavelets, for example, where a mother wavelet basis function is

used to fit the model. Therefore, we employ the EMD algorithm as our tool to extract

intrinsic trends of the resistance rate time series.

7.4 Machine Learning Forecasting for Antimicrobial Re-

sistance Time Series

There are two main approaches to model and forecast antimicrobial resistance rates.

The first is based on pure time series analysis, where only observed resistance rates

are used to model and predict future resistance values [209, 238]. The other ap-

proach uses di↵erential models that incorporate several biological and clinical vari-

ables that are associated to resistance, such as the basic reproduction number of the

pathogen, number of patients in the clinical setting, admission and discharge rates,

hand-washing compliance and resistance prevalence on admission, to describe resis-

tance evolution [230, 239, 240].

Whereas di↵erential models are useful for some special cases, particularly for assess-

ing the impact of interventions on resistance, they have some weaknesses as a forecasting

model. First, they are theoretically valid only under certain a priori conditions, such

as constant antibiotic pressure, which are often violated. Second, usually these models

contain many parameters that are hard to estimate. For example, the definition of the

transmission rate variable, used in some equations to extrapolate future resistance rates

is in itself a complex task since, in general, there is no evidence in the data that can be

used to confirm the optimal value. At best, the forecast is as accurate as the estima-

tion of the several model parameters. Finally, some models, like those based on logistic

regression, may fail for the trivial cases in which resistance starts to decrease over time

after some initial increasing – a phenomenon verified often from actual microbiology

data [230, 241].

On the other hand, data-driven analysis as in machine learning is more general and

can be applied mostly out-of-the-box to di↵erent antimicrobial resistance time series.
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While modeling antimicrobial resistance using only chronologic ordered resistance rates

might provide less insight into the resistance process itself when compared to multi-

variate models, the algorithm has no dependence on the underlying resistance model.

As long as there are enough example data, the system shall be able to model and

forecast resistance time series independent of the actual resistance dynamics. This is

particularly important in resistance forecasting since, as we have seen, the dynamics

of the di↵erent pathogen/antimicrobial time series are very diverse. Furthermore, the

same algorithm can be potentially deployed into di↵erent environments, as in hospitals,

where with some data mining e↵orts, drug consumption could be eventually associated

to resistance, but also in laboratories, where access to antimicrobial prescription infor-

mation is not available, or even in nontherapeutic areas, as in animal husbandry, which

is believed to account for a large part of antibiotic consumption and so resistance [242].

7.4.1 Modeling Resistance Rate Time Series

As we can see from Figure 7.1, short-term resistance trends are generated by a non-

linear process. To be able to model such processes, our forecasting algorithm applies

the delay coordinate embedding theorem to derive the training set [36, 37]. This theo-

rem describes a phase space reconstruction technique that provides the conditions for

nonlinear dynamical systems to be reconstructed from a finite sequence of observations

of the system’s state. Let us consider a time series x, that is, a set of chronologically

ordered events x

1

, x

2

, . . . , x

N

generated from a nonlinear system f(·). In delay coor-

dinate embedding, vectors in the new phase space, the embedding space, are defined

by

x

0
n

= {x
n�(m�1)⌧

, x

n�(m�2)⌧

, . . . , x

n

}, (7.6)

where n is the current state in the embedding space, m is the embedding dimension

and ⌧ is the delay time or lag relative to the sampling rate. Equation 7.6 provides

a multidimensional representation of a unidimensional nonlinear time series, which

according to Takens [36] and Sauer et al. [37] can be used to reconstruct the observations

made with a generic unknown function f(·) of a nonlinear dynamical system. The

dimension m can be considered as the minimum number of state variables required to

describe the system. For the sake of exposition, in the remainder of this thesis we take

by convention ⌧ = 1.



Now, considering the same one-dimensional time series x generated by a system

f(·). Our goal is to forecast x

N+h

at the time point N , where h is called the forecast

horizon and represents how far in the future, h = 1, 2, . . ., with respect to x

N

is the

predicted point. Then, the forecasting algorithm is a method for projecting future

values, x̂

N+h

, relying only on observed values of the given time series x [24]. Formally,

we can write it as

x̂

N+h

= f̂(x), (7.7)

where f̂(·) is the estimated function of the actual system f(·) and x̂

N+h

is the estimate

of the N + h system state. Similarly, we can project the future system state using the

delay vectors of Equation 7.6 such that

x̂

N+h

= f̂(x0). (7.8)

Under suitable hypotheses on the dynamics, the correspondence presented in Equation

7.8 is one-to-one, which means that the behavior of the nonlinear system is accounted

for in the behavior of the delay coordinate embedding defined by the mapping f̂(·) [36].

7.4.2 Estimating the Function f

To estimate the function f(·) that generates the resistance rates we employ a machine

learning approach using the k-nearest embedding vectors. Machine learning forecasting

algorithms use the observed data points x as examples to learn the unknown model. To

have enough learning examples, the time series are divided into smaller data sequences,

D = {s
1

, s

2

, . . . , s

v

}, where s

i

represents a training example {s
input

! s

output

} and v

is the number of examples in the training set D. These sequences are then fed to the

learning algorithm, which creates a decision function f̂(·) that models the behavior of

the system. To predict a point in the future, the algorithm compares a given test input

t

h

using the decision function f̂(·) and estimates the output value x̂

N+h

.

There are several ways to estimate the function f(·) to obtain the point forecast

x̂

N+h

[243]. Our model employs the k-NN framework as a piecewise estimator of f(·).
The k-NN algorithm implements a function approximator that stores a set of mappings

x

0
i

! x

i+h

. The delay coordinate vector x

0
i

acts then as a surrogate for x

i

. When the

query point x

0
i+�

of a future state i + � is performed, the k delay vectors most similar

(in a Euclidian space) to the query state are extracted. In the ideal case, we find an



exact match x

0
i

and use x

i+h

as our prediction for x

i+�

. If the neighborhood contains

more than one delay vector, the value of the query state is computed as the average of

the k extracted samples, that is,

x̂

N+h

=
1

|U
k

|
X

x

0
i

2U
k

x

0
i

, (7.9)

where U
k

is a neighborhood of size ✏ in the space defined by the embedding vectors x

0
i

and |U
k

| .= k is the number of neighbors.

7.4.3 k-Nearest Embedding Vectors Forecasting Algorithm

Our forecasting system is depicted in Figure 7.8. To simplify discussion, we refer

from now on to all the IMF components c

j

(t) and the residue r(t) obtained from the

decomposition process simply as components, and denote them by the vector C =

{c
1

, . . . , c

n

, r} of length n + 1, where C

1

corresponds to the first IMF and C

n+1

to

the residue r(t). The system breaks down the input resistance rate time series x into

several oscillating components using the EMD algorithm. Then, components that do

not contribute to the signal are removed and those remaining are embedded into delay

vectors of dimension m. Further, the algorithm is trained to compute the size of the

delay vector neighborhood k, which will provide the best estimate of the forecast ŷ.

Thus, from a machine learning viewpoint, the task of the learning algorithm resumes

to find the EMD components C

i

that represent best the system being modeled, the

dimension m of the embedding sequences and the number k of nearest neighbors that

encompass the dynamics of the system.

In the following steps, we summarize the computationally e�cient leave-one-out

cross-validation algorithm that we used to train and test our machine learning fore-

casting system:

1. Divide the input time series of size N into two independent parts: a training set

x

i

= {x
1

, . . . , x

N

0} and a testing set y

i

= {x
N

0
+1

, . . . , x

N

0
+h

}, where N

0
< N

is the minimum number of observations necessary to fit the model and h is the

forecasting horizon.

2. Decompose the training time series x

i

into components C

i

using the EMD algo-

rithm.
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Figure 7.8: High-level block diagram of the k-nearest embedding vectors fore-
caster. - The EMD block decomposes the input x. Then, the filter block selects the time
series functions that are relevant to the signal. Further, the delay coordinate embedding
(DCE ) block determines the embedding dimension m and embeds the signal C

0 into a
multidimensional space. Finally, the k-NN block calculates the distance between the in-
put query and the training points in the embedded space and projects them in the future
dimension to obtain the forecasting ŷ

3. Select the subset of components C

0
i

✓ C

i

that are relevant to the learning model.

4. Compute the optimal embedding dimension m for the space created by C

0
i

.

5. Embed the components C

0
i

into a space of dimension m and together with the

respective one-step-ahead output create the training set

D

ij

= {s
ij�(m�1)

, s

ij�(m�2)

, . . . , s

ij

! x

ij+1

}, (7.10)

where m  j  N

0 � 1 and s

ij

is a vector containing the jth elements of the

components C

0
i

. Then, compute the optimal number of nearest neighbors k for

the training set D

ij

using cross validation.

6. For h

0 = 1, . . . , h:

(a) Create the test input using the latest embedded vector

t

ih

0 = {s
iN

0�(m�1)

, . . . , s

iN

0} (7.11)

from the components C

0
i

. Then, using the training model {D
ij

, k} created

in step 5, find the k nearest neighbors of the test input t

ih

0 . Finally, project

the k embedding vectors into the dimension N

0 + h

0 using Equation 7.9 to

estimate the h

0-step-ahead forecast x̂

N

0
+h

0 .



(b) While h

0
< h, concatenate the forecast outcome x̂

N

0
+h

0 into the time series

x and repeat steps 2 and 3 to update the components C

0
i

.

7. Compute the residual error using the forecasted values ŷ

i

= {x̂
N

0
+1

, . . . , x̂

N

0
+h

}:
E

iN

0 = y

i

� ŷ

i

.

8. Increase N

0 and go to step 1 while N

0
< N .

9. Compute the overall cross-validation error using the mean absolute error

MAE =
1
h

hX

j=1

0

@ 1
N �N

0
o

NX

i=N

0
o

+1

|E
ij

|

1

A
, (7.12)

and root mean squared error

RMSE =
1
h

hX

j=1

vuut 1
N �N

0
o

NX

i=N

0
o

+1

E

2

ij

, (7.13)

cost functions, where N

0
o

is the initial minimum number of observations.

In our algorithm, the prediction is made using the latest sequence chunk. Further

steps-ahead are computed using the one-step-ahead forecasting as the latest arrival

chunk. An optional algorithm would create a training set for each h-step-ahead forecast

of interest and, at step 5, the one-step-ahead mapping would be replaced by a h-step-

ahead. Then, the loop in step 6 would be avoided. However, it would require one

training model for each step-ahead forecasting 1, . . . , h, which is computationally more

expensive.

7.4.4 Selecting the Components C 0

We envisage three models to select the relevant EMD components C

0. The first model,

DECA, does not actually filter any component and thus the system is trained with the

full signal spectrum. For the other two models, we make a fair assumption that the

machine learning algorithm cannot learn the noisy components and hence they shall

be excluded from the signal to avoid a negative impact on the learning model. The

remaining components, which correspond to the physically meaningful signals, are then

used to train the system. Based on this assumption, the second model (Figure 7.9 -

left), DECF, filters out noisy components using a frequency threshold. High frequency



components are näıvely associated with noise. We consider a period of 10 weeks as the

minimum necessary to learn the signal. Components with lower periods are filtered

out. The last model (Figure 7.9 - right) uses a statistical significance test derived by

Wu and Huang [35] to distinguish between noise and signal in the IMF components.

The test assumes that the first IMF is a random noise. Then, other components

are compared with this IMF using a distance metric based on the logarithm of the

component’s variance and period [236]. The components, whose variance and period

exceed the noise bounds, are considered to contain statistically significant information

for the signal. In our experiments, we use a 2� distance for the noise boundaries. This

model is further referred as DECS.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

log10(period)

lo
g

1
0

(v
a

ri
a

n
ce

)

C1: Noise

C2: Noise

C3: Signal
C4: Signal

C5: Signal

C6: Signal

C7: Signal

C8: Signal

C9: Signal

0.5 1.0 1.5 2.0 2.5 3.0

0
.2

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

log10(period)

lo
g

1
0

(v
a

ri
a

n
ce

)

C1: Noise

C2: Noise

C3: Noise
C4: Noise

C5: Signal

C6: Signal

C7: Signal

C8: Signal

C9: Signal

Figure 7.9: Component selection models - A component labeled as noise implies that
it is not distinguishable from a pure white noise series. Therefore, it cannot be learned
by the learning algorithm. Left - example of the näıve selection model using a threshold
filter (DECF), where components with period smaller than 10 weeks (or log10 period = 1)
are excluded from the learning algorithm. Right - example of the component selection
model using the Wu and Huang [236] expectation of variance approach to define statistical
significant components (DECS).

7.4.5 Determining the Embedding Dimension m

We propose two methods to determine the dimension m of the delay vectors. In the

first approach, we näıvely set the embedding dimension to a fixed size. In the second

approach, we use a modified version of a methodology derived in [244] that applies



fractal dimensions to specify dynamically the optimal length of the delay vectors. Ac-

cording to the authors, the fractal dimension f

L

of the time series, which gives the

intrinsic dimensionality of the embedding vectors in the embedding space, can be used

to determine the optimal value of the embedding dimension m. In their algorithm, m

is incremented between a range 1  m  m

max

and f

L

is calculated for each space d

created. After some value of m � 1, increasing the embedding dimension does not add

any relevant information regarding the state space, which is verified by a flattening in

the slope of f

L

. The turning point, which lies within 95% of the maximum f

L

, is taken

as the optimal m. Further details of the algorithm can be found in [244]. Since we have

several components, we calculate m

i

for each space defined by the components C

0
i

and

the final m is defined as the mean of m

i

.

7.5 Empirical Comparison of Machine Learning Regres-

sion Algorithms

In this section, we present some experimental results of applying the least squares,

k-NN, decision tree, neural network and support vector machine learning algorithms

introduced in Section 6.4 to estimate the function that generates the antimicrobial

resistance trends f(·). As mentioned in the previous chapter, we consider only the

basic versions of these algorithms. Hundreds of variations are found in the literature

but it is not our goal here to validate all of them.

7.5.1 Methods

Apart from the least squares method, whose optimal parameters can be computed de-

terministically, the parameters for all the other methods are tuned using 5-fold cross-

validation. The k-NN method is trained for the neighborhood size varying in the

range {1, 5, 10, 25, 50}. Then, the decision tree is pruned with a complexity parame-

ter varying in the range {0.0001, 0.001, 0.01, 0.1}. Nodes with complexity inferior to

the complexity parameter are trimmed. Further, a single-hidden-layer neural network

architecture applying the classic logistic sigmoid function g(u) = 1/(1 + exp(�u)) as

the node’s activation function is trained for the size of the hidden layer {1, 3, 10} and

for the weight decay parameter {0, 0.0001, 0.001, 0.01}. Finally, a support vector ma-

chine using a linear kernel is tuned for the C parameter of Equation 6.11 for the range



{0.001, 0.01, 0.1, 1}. We use the DECF model with embedding dimension m = 6 ap-

plied to the time series presented in Figure 7.1 as our prediction model. Results are

reported using the MAE measure for 1 week ahead horizon.

7.5.2 Results

Table 7.1 shows the forecasting results of the di↵erent machine learning algorithms.

Overall, the k-NN method has the smallest prediction error, followed by the support

vector machine, least squares, neural network and decision tree methods. Figure 7.10

shows the frequencies that a method outperforms (wins) or is outperformed by other

methods (losses). Distinctly, the k-NN algorithm has be best performance with 12

wins and only 4 losses. Therefore, we use the k-NN algorithm to estimate the decision

function and provide the forecasting of the antimicrobial resistance rates.

Time series LM KNN RT ANN SVM
E. coli/FEP 3.49 3.42 3.28 3.47 3.48
K. pneumonia/AMC 9.50 8.17 8.84 8.80 8.63
P. aeruginosa/CIP 4.31 4.44 4.82 4.50 4.40
S. aureus/MAC 5.89 6.04 6.71 6.62 6.20
Mean 5.80 5.52 5.91 5.85 5.68

Table 7.1: Forecasting results for the di↵erent machine learning methods - MAE
of the 1 week ahead forecasting for the di↵erent machine learning algorithms. Results in
bold show the best performance. LM: least squares; RT: decision tree.

The power of the k-NN algorithm may be explained mainly by two factors. First,

the size of the training data set, despite being large from the epidemiological view

point (a decade), it is rather small as machine learning is concerned (between 350 and

519 data points in the leave-one-out cross-validation). Thus, normally best performing

algorithms like neural networks and support vector machines fail to e�ciently learn the

system due to the lack of training examples. On the other hand, simpler algorithms like

the least squares and decision trees, that do not require a large training set, have their

performance degraded by the lack of linearity and high complexity of the time series

models. Therefore, the k-NN algorithm, by providing a compromise between accuracy

with complex systems and learning set size, outperforms the other algorithms for the

weekly antimicrobial resistance forecasting.
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7.6 Summary

In this chapter, we present a novel two-stage methodology for the analysis of antimi-

crobial resistance trends that features trend extraction and forecasting. Both the trend

extraction and forecasting methods are fully data-driven, which makes them suitable

to work with any data set type. This is important to adapt to the di↵erent antimicro-

bial resistance time series dynamics. We provide some empirical studies to justify our

choice for the EMD algorithm for trend extraction and for the k-NN based forecast-

ing algorithm. The EMD algorithm is able to provide good estimation of the intrinsic

antimicrobial resistance trends independent of the underlying model and does not re-

quire any parameter tuning. Further, the experiments show that the k-NN algorithm

provides the best forecasting accuracy compared with the other four machine learning

algorithms – least squares, decision tree, neural network and support vector machine –

for short-term antimicrobial resistance rates. In the next chapter, we present the results

of a larger scale assessment of the methodology introduced here using microbiology data

sets.



8

Experimental Results

8.1 Introduction

In this chapter, we present the evaluation of the methodology for extraction and fore-

casting of antimicrobial resistance trends described Chapter 7. We use real weekly

antibiotic resistance rates to assess our methods. Qualitative results are presented for

the trend extraction method whereas our forecasting methods are compared to baseline

machine learning models.

8.2 Methods

In this study, we use retrospective antibiotic resistance time series of anonymized and

weekly aggregated antibiograms provided by HUG’s microbiology laboratory to test

our model for extraction and prediction of antibiotic resistance trends applied to short-

term variations. Permission to use anonymized population aggregated information was

granted through the DebugIT project [118], within which HUG collaborated as a data

provider. The data were extracted using our antimicrobial resistance monitoring engine

described in Chapter 3 to Chapter 5. Particularly, we have deployed a dedicated version

within the HUG intranet (http://vmmedsup.hcuge.ch:8080/artemis).

The statistics of the dataset used to train and assess the system are presented

in Table 8.1. The training set contains twenty six resistance rate time series of four

key pathogens – Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and

Staphylococcus aureus – tested against a set of antibiotics, selected based on their

relevance in susceptibility tests and antibiotherapies. Each time series comprised a

147
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decade of resistance information, containing weekly data from January 1, 2002 through

December 31, 2011 in 520 data points. The forecasting algorithm was trained using

leave-one-out cross validation with minimum observation set to 350 weeks, resulting in

a test set of 170 data points.

8.2.1 Performance Measures

The results of the trend extraction method are provided using two use-cases of resis-

tance trend analysis. Due to the lack of a standard and formal definition for trend,

there is no benchmark for trend extraction and therefore it is di�cult to quantitatively

measure trend extraction methods. Then, to demonstrate qualitatively the power of

the EMD algorithm, we first correlate components from the resistance time series with

components of time series that may be associated with resistance. We take a tempera-

ture time series for the Geneva region as an example. Second, we present the statistics

on the period of the di↵erent components for the time series of the study.

For the machine learning forecaster, we first use time series EC 4, KP 2, PA 5 and

SA 5 and the DECF model to select the best estimation method of the embedding

dimension m and consequently of the dimension m. The näıve approach is trained

for m = {3, 6, 10} and m

max

is set to 10 in the fractal dimension method. Then, we

provide the results for 1, 3 and 12 week-ahead forecasting horizons using the MAE and

RMSE cost functions. Since MAE and RMSE measure the deviation between actual

and predicted values, the smaller the values of MAE and RMSE the closer the predicted

time series is to the true time series. Results of the models DECA, DECF and DECS

are compared to a baseline approach based on the random walk method, which is the

standard benchmark in machine learning forecasting [245], and to a k-NN regression

applied to the raw signal with m = 6.

8.2.2 Statistical Analysis

We use R version 2.15.0 to decompose the resistance trends, implement the machine

learning models and perform the statistical analyses. We apply a two-sided Student’s

t-test to compare the error of the forecasting models. P -values lower than 0.05 are

considered significant. Correlation statistics are reported using the Pearson’s coe�cient

of correlation.



Table 8.1: Weekly resistance rate time series – means and standard deviations
(SD) - Time series of weekly resistance rates defined as the percentage (%) of resistant tests
from the total of antibiograms (including intermediate results) for four groups of pathogens
– Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus
aureus.

Id Organism Antibiotic Mean (%) SD
EC 1 E. coli aminoglycoside 6.42 2.91
EC 2 E. coli aminopenicillin 47.22 7.39
EC 3 E. coli amoxicillin-clavulanic acid 12.96 6.24
EC 4 E. coli cefepime 6.59 5.73
EC 5 E. coli 3rd generation cephalosporin 6.92 5.75
EC 6 E. coli fluoroquinolone 16.76 6.25
EC 7 E. coli trimethoprim-sulfamethoxazole 27.47 6.07
KP 1 K. pneumonia aminoglycoside 7.32 7.42
KP 2 K. pneumonia amoxicillin-clavulanic acid 14.03 11.82
KP 3 K. pneumonia cefepime 10.80 10.59
KP 4 K. pneumonia 3rd generation cephalosporin 10.91 10.63
KP 5 K. pneumonia fluoroquinolone 9.07 9.07
KP 6 K. pneumonia piperacillin-tazobactam 3.95 5.90
KP 7 K. pneumonia trimethoprim-sulfamethoxazole 17.26 12.18
PA 1 P. aeruginosa aminoglycoside 7.11 4.99
PA 2 P. aeruginosa carbapanem 11.34 6.54
PA 3 P. aeruginosa cefepime 3.94 4.05
PA 4 P. aeruginosa ceftazidime 6.52 4.97
PA 5 P. aeruginosa ciprofloxacin 8.14 5.96
PA 6 P. aeruginosa piperacillin-tazobactam 6.79 9.36
SA 1 S. aureus aminoglycoside 33.40 13.06
SA 2 S. aureus benzylpenicillin 92.20 5.32
SA 3 S. aureus clindamycin 38.28 10.08
SA 4 S. aureus fluoroquinolone 39.10 12.30
SA 5 S. aureus macrolide 41.66 10.29
SA 6 S. aureus trimethoprim-sulfamethoxazole 1.56 1.83



8.3 Results

In the following sections, we present the results of the trend extraction and forecasting

methods for the analysis of timely antibiotic resistance trends. Because this study

yielded several hundred results, we provide aggregated statistics and some prominent

examples for each of the evaluation dimensions. We start by showing some qualitative

analyses using the trend extraction methods, where we apply the EMD technique to

extract periodicity of the time series and to correlate resistance trends with external

factors likely to be associated with changes in resistance. Then, we present the results

of the machine learning forecasting, where we show the performance in terms of MAE

and RMSE for the models described previously.

8.3.1 Trend Extraction

Figure 8.1 shows the result of the EMD algorithm applied to time series EC 6 for

extracting antibiotic resistance trends. The components C1-7 correspond to the IMFs

and describe short-, medium- and long-term periodic trends. The component C8 is the

residue of the sifting process and represents the slowly varying mean resistance trend.

The raw weekly resistance signal displayed at the bottom right is equivalent to the sum

of the 8 components. The first component presents the highest frequency and as the

component index increases the frequency also increases. The same pattern is verified for

all the other time series and it is inherent to the EMD algorithm. The mean resistance

trend is determined empirically and, for EC 6, it approximates a sigmoid shape, which

has also been verified in other studies of resistance evolution [230]. If the dynamics

of the resistance model of the time series EC 6 is indeed sigmoidal, the resistance

has reached its equilibrium point. Then, using component C8 it becomes trivial to

detect the point of stabilization, which happens to be around week 380 in the example.

Considering that resistance has started to increase around week 80, it took 5.8 years

to reach the stabilization maximum, which is similar to the raise of penicillin-resistant

pneumococcal verified in other studies [230]. The same cannot be directly inferred from

the raw signal.
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Figure 8.1: Result of the EMD technique applied to trend extraction - In the
example, EMD is used to decompose the E. coli vs. aminoglycoside resistance time series.
C1 and C2 components describe short-term resistance trends; C3 and C4 components
describe medium-term trends; and C5 to C8 components describe long-term trends. The
last component (C8) provides the underlying mean trend of the resistance signal. The raw
signal displayed at the bottom right is equivalent to the sum of the eight components.



8.3.1.1 Association with Factors that Influence the Development of Resis-
tance

Figure 8.1 presents very distinct patterns for some of the periodic components, espe-

cially C4-7. To illustrate their correlation with external factors that may be associated

with resistance evolution, we employ a monthly temperature time series of the Geneva

region for the same study period. Then, we associate its components with monthly

components of the time series EC 2 and SA 5. Applying the EMD algorithm to the

monthly temperature and to the resistance time series yields 4 and 5 IMFs respectively,

from which components C3 of the temperature and C4 of resistance are displayed in

Figure 8.2. The components C4 of the resistance time series show high negative cor-

relation with C3 component of the temperature time series (⇢ = �0.73 and ⇢ = �0.71

for EC 2 and SA 5 respectively). In this case, temperature might not to be the cause

of changes in resistance, that is, there is no causality implied in the correlation. Never-

theless, both might be influenced by a common denominator, the weather. In the case

of resistance, the di↵erent seasons a↵ect the incidence of infections, which changes the

dynamics of antibiotic consumption [246]. It is also fair to assume from Figure 8.2 that

a variation in the component C3 of the temperature time series is likely to be followed

by a proportional change in the resistance of EC 2 and SA 5 time series some time in

the future. These data could be used, for instance, to enhance multivariate resistance

analysis models.

8.3.1.2 Period

Figure 8.3 shows for the 4 groups of time series in Table 8.1 the central period of

oscillation in weeks of the first 6 components found by counting the zero-crosses. Com-

ponents C1 and C2 have the smallest periods and provide information on short-term

trends (period of 3.0, SD 0.2 weeks and 6.6, SD 0.7 weeks respectively) whereas C3 and

C4 represent medium-term variations in the resistance trend. The period of component

C3 is around 3 months (13.7, SD 1.3 weeks), which could be related, for instance, to

antibiotic cycling, as in the 3 months cycle experiment done in [247] to decrease bac-

terial antibiotic resistance. C4 has a period slightly longer than 6 months (29.2, SD

4.9 weeks), which could be related to seasonal changes due to weather factors, such as

temperature, precipitation, etc. Component C5 has period around 1 year, which could
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Figure 8.2: Correlation between temperature and resistance IMF components
- Component C3 of temperature (period of 34.7 months) compared with component C4 of
E. coli vs. aminopenicillin and S. aureus vs. macrolide resistance time series (period of
34.7 and 35.0 months respectively). Resistance component is back-shifted half a period to
account for the negative correlation. Temperature source: Federal O�ce of Meteorology
and Climatology MeteoSwiss (http://www.meteosuisse.admin.ch/web/en.html).

be for example related to warm and cold seasons, or more precisely, to high winter

peaks of antibiotic use as verified in the study presented in [246]. Finally, component

C6 (period between 2 and 4 years) represent long-term trends, which might be asso-

ciated to interventions within the healthcare institutions and in the community, or to

the actual evolutionary process of bacteria, such as the natural competition between

resistant and susceptible strains [248].

8.3.2 Forecasting

8.3.2.1 Embedding Dimension

There were no statistical di↵erences between the forecasts using any of the näıve meth-

ods and the method based on the fractal dimension f

L

in the experiments with time

series EC 4, KP 2, PA 5 and SA 5 for 1, 3 and 12 forecasting horizons. Nevertheless,

similarly to the results obtained in [244], the dynamic method was able to adapt to the

di↵erent time series and compute a well performing m, while keeping it small enough

so as not to degrade the training and testing time. It resulted in an overall MAE of

5.57%, being the lowest MAE in 4 out of 12 tests – a result equivalent to the best näıve

http://www.meteosuisse.admin.ch/web/en.html
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method (m = 6). Thus, we employed the fractal dimension method in the DECA,

DECF and DECS models to determine the size of the optimal embedding dimension

m.

8.3.2.2 Forecasting Models

Table 8.2 provides the MAE and RMSE measures of the one week-ahead forecasts gener-

ated by the various models for the datasets not used to train the embedding dimension

m. Overall, the models that employ decomposition of the time series and filter out

noisy components, that is, DECF and DECS, improve significantly the forecast over

the simpler models for both error measures (P  .001). They have the smallest pre-

diction errors, outperforming the other methods for all but time series EC 7 and KP

1. The DECF model performs slightly better than the DECS model when we consider

the MAE values. Conversely, the DECS model outperforms the DECF model if we

consider the RMSE values. However, their di↵erence in forecasting accuracy is not

statistically significant (P = .78).



Table 8.2: Performance of the forecasting methods - Error for one week-ahead forecasting – mean absolute (MAE) and root
mean squared (RMSE) errors. Results for the best forecasting performance are displayed in bold.

Time series
Error Method EC 1 EC 2 EC 3 EC 5 EC 6 EC 7 PA 1 PA 2 PA 3 PA 4 PA 6

RW 3.15 5.78 4.42 4.56 5.19 5.64 4.62 6.13 3.46 4.10 5.46
KNN 2.52 4.74 4.00 3.72 4.06 4.66 3.95 4.86 3.01 3.70 4.59

MAE DECA 2.55 4.74 3.65 3.56 4.09 4.46 3.98 4.87 3.05 3.81 4.67
DECF 2.51 4.50 3.64 3.40 3.93 4.36 3.86 4.79 2.95 3.38 4.27
DECS 2.47 4.50 3.60 3.35 3.93 4.37 3.83 4.69 3.03 3.40 4.30
RW 3.79 7.35 5.64 5.76 6.62 7.07 6.02 7.71 4.67 5.49 7.07
KNN 3.07 5.85 4.93 4.79 5.36 5.70 4.85 6.24 3.60 4.47 5.76

RMSE DECA 3.03 5.81 4.71 4.68 5.40 5.41 5.01 6.30 3.80 4.69 6.00
DECF 2.95 5.47 4.59 4.38 5.19 5.29 4.83 6.16 3.52 4.24 5.48
DECS 2.92 5.48 4.55 4.34 5.19 5.29 4.80 6.08 3.57 4.24 5.48

Time series
Error Method KP 1 KP 3 KP 4 KP 5 KP 6 KP 7 SA 1 SA 2 SA 3 SA 4 SA 6

RW 6.08 8.83 8.85 8.18 5.69 10.97 6.51 4.38 7.28 7.44 1.40
KNN 5.14 7.41 7.46 6.69 5.35 8.89 5.82 3.88 6.50 6.86 1.27

MAE DECA 5.13 8.01 7.94 6.93 5.92 9.11 5.66 3.97 6.49 6.70 1.20
DECF 5.52 7.26 7.31 6.33 5.58 8.26 5.19 3.87 6.09 6.11 1.22
DECS 5.50 7.37 7.40 6.36 5.49 8.31 5.10 3.89 6.05 6.24 1.23
RW 7.89 11.66 11.70 9.98 7.82 13.85 8.28 5.73 9.22 9.53 2.08
KNN 6.26 9.74 9.78 8.30 7.11 11.05 7.31 4.94 8.24 8.55 1.53

RMSE DECA 6.54 10.50 10.43 8.48 7.76 11.24 7.25 5.15 8.24 8.51 1.49
DECF 6.70 9.50 9.60 7.99 7.26 10.30 6.57 4.86 7.73 7.71 1.49
DECS 6.71 9.70 9.64 7.96 7.22 10.26 6.53 4.89 7.69 7.80 1.48



Figure 8.4 displays the result of a statistical significance comparison amongst the

five forecasting models for the three forecasting horizons using the MAE values. The

frequency that a given model significantly outperforms other models (wins) is shown

in green whereas the frequency that the same model is outperformed by other models

(losses) is shown in red. As we can see, the DECS and DECF models have the best

performance overall, that is, they have the highest number of wins (DECS : 77 wins,

DECF : 76 wins) and smallest number of losses (4 for both). As the horizon increases it

becomes more evident the superiority of the models that use decomposition. Particu-

larly, at the 12 week-ahead horizon all of them outperform the RW and KNN models.

All the k-NN based models improve upon the RW baseline model.
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Figure 8.4: Statistical comparison of the di↵erent forecasting methods using
the mean absolute error (MAE) for the 1, 3 and 12 step-ahead horizons. - Wins:
frequency that a method significantly outperforms other methods. Losses: frequency that
a method is significantly outperformed by other methods.

Figure 8.5 shows a representative result of the machine learning forecaster and its

respective residual errors for the EC 7 time series in the test phase of the leave-one-

out cross-validation. In the top panel, the actual resistance rate is displayed in black

whereas the one week-ahead forecasts for the RW, KNN, DECA, DECF and DECS

models are shown in red, green, dark blue, light blue and purple, respectively. The

forecasts of the baseline model follow the signal but are always lagged by one week.

Thus, this model presents the largest absolute residuals, caused especially by the zigzag

variations in the resistance time series. The KNN and DECA models, despite using

the full signal spectrum, are not able to capture high frequency changes either. They



forecast medium-term trends but without accuracy. Finally, the DECF and DECS

models learn essentially the underlying mean trend.
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Figure 8.5: Forecasting and residuals. - Top: one week-ahead forecasting results of
the times series EC 7 – E. coli vs. trimethoprim-sulfamethoxazole. Bottom: Respective
forecasting residuals.

Finally, Figure 8.6 presents the residual errors of the EC 3, KP 7, PA 6 and SA 1

time series for 1, 3 and 12 forecasting horizons using the same color schema of Figure

8.5. The row panels correspond to forecasting horizons and the column panels corre-

spond to the time series. Similarly to Figure 8.5, given that each of the models uses

di↵erent forecasting algorithms, none of them is able to forecast the high-frequency

trend components. The short-term spikes are present in all the results as we walk

along the columns. The residual errors do not increase significantly with the forecast-

ing horizon, being of the same order of magnitude for the three forecasting horizons.

Further, the column residuals are highly correlated amongst the di↵erent forecasting

horizons (⇢ � 0.90 for the models that use decomposition).



8.4 Discussion

In this chapter, we present the results of our two-stage model for analyzes of antibiotic

resistance data applied to up-to-date and short-term trends. Our model was validated

in a large scale dataset spanning a decade of weekly aggregated resistance time series.

The use of the EMD algorithm for trend extraction provided e↵ective results not only

to obtain the resistance trends, but also to provide insight into the periodicity of the

resistance trends and into the level of correlation with external variables. The machine

learning forecasting model based on the k-nearest embedding vectors produced results

with good accuracy, statistically outperforming the random walk baseline approach.

The decomposition of the raw signal and exclusion of the noisy components were ef-

fective in reducing the forecasting error. Finally, both trend extraction and forecasting

methods proved to be robust, adapting to time series with di↵erent resistance dynamics.
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Figure 8.6: Forecasting residuals for 1, 3 and 12 week-ahead horizons. - Residuals
of four representative time series of each pathogen group – EC 3 : E. coli vs. amoxicillin-
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We focused on short-term trends because they are able to capture more e�ciently

the resistance dynamics within a given clinical setting. Especially in cases of resistance

outbreaks, monthly and yearly resistance trends cannot spot readily changes in the

mean rates. For example, in the vancomycin-resistance Enterococcus outbreak experi-

enced at Princess Alexandra Hospital, Brisbane, Australia in 1999, in approximately

10 weeks the number of prevalence cases increased 14 fold, from 1 case per week to

14 cases, even if an abnormal prevalence rate had already been detected in the first

week of the outbreak [193]. Thus, e↵ective biosurveillance systems should be based on

up-to-date trend analysis methods to avoid further spreading of resistance strains.

8.4.1 Trend Extraction

We have explored the EMD algorithm to extract antibiotic resistance trends from

weekly aggregated time series. Traditionally, epidemiologists and infectiologists use

monthly and yearly resistance data and statistical tests to assess resistance trends [229].

Compared to that approach, the methodology introduced here provides more insight

into the dynamics of resistance than the simple detection of upward/downward trends.

It is able to extract medium- and long-term but also short-term variations in the re-

sistance rate through the IMF components, which are neglected in the trend detection

analysis. The lower frequency components could be used, for instance, in biosurveil-

lance systems as an early warning of emerging resistance. Moreover, infectious disease

specialists may be able to determine periodicity and cycles within resistance trends us-

ing the decomposed components, adopting infection control interventions accordingly.

Thus, the EMD methodology may serve as a complementary tool for the analysis of

short-term antibiotic resistance trends.

The components extracted using EMD technique could be also used to correlate

resistance evolution to variations in other clinical, societal and environmental factors

associated with antibiotic resistance, such as duration of treatment, infection control

measures, antibiotic consumption and weather [241]. The EMD technique does not

assume any a priori model for the data and thus is suitable for extracting trends from

any time varying system, independent of the system’s underlying model. Moreover,

since the method is fully data-driven, the components are likely to represent physically

meaningful events in the resistance process [249, 236]. Sometimes, these events might

not be obvious when considering only the raw signal, especially in the case of factors



influencing resistance rates in opposite directions, as verified for example around week

300 of Figure 8.1, where for C4 and C7 components the wave form is negative and for

C5 and C6 it is positive. To further illustrate that, imagine that in a given clinical

setting resistance has increased by 1% due to antibiotic misuse and decreased by 1%

due to better hand hygiene practices, resulting in no change in the raw signal. Hence,

the EMD technique could be applied to spot such events, which may appear in details

in the signal components, following similar patterns as observed in the external factors.

8.4.2 Resistance Forecasting

We have developed a novel machine learning method to forecast antibiotic resistance

trends based on the k-nearest embedding vectors. Our method showed good forecasting

accuracy for short-term trends, outperforming baseline machine learning benchmarks

but also other enhanced methods, such as the k-NN applied to the raw signal. Our

method is supported by the delay coordinate embedding theorem, a technique derived

from the studies of chaos to model deterministic nonlinear time series, and by the k-

NN framework to project observed resistance events in an embedding space into the

future dimension. From our experiments, we notice that decomposing the raw signal to

enhance the features of the training data and excluding high frequency components from

the learning set improves the performance of the forecaster. It reinforces our hypothesis

that some components of the resistance signal are derived from a pure random process.

Hence, they cannot be learned by and degrade the quality of the learning algorithm.

Therefore, they should be filtered out from the antibiotic resistance model.

The machine learning model based on the k-nearest embedding vectors could be

used to improve clinical decision support systems for antibiotic prescription, giving

more accurate information on the current resistance dynamics than the latest resistance

statistics when there are delays of a week or more in the resistance numbers. As

shown in Figure 8.5, the forecasts provided by the näıve method, which was used as

the baseline benchmark, are delayed by one week (notice the one-step forward shift

between the red and black lines). As such, they are equivalent to the latest resistance

data points, or x̂

n+1

= x

n

, which are obtained in phenotype-based antibiograms, in

the best case, from samples extracted two or three days in the past. Since the models

that use decomposition significantly improves upon the näıve method, by consequence,



they also provide better evidence to empirical therapy than methods based at the latest

resistance rate information when actual results are delayed of at least one data point.

8.4.3 Limitations

This study was limited to time series of pathogens that present some level of resistance

to the respective antibiotics. Sequences showing bursting patterns, as verified at the

beginning of the resistance development process, were not tested and from the forecast-

ing results it is unlikely that our model will be able to forecast bursts. Moreover, we

have not investigated the e↵ect of irregular time series, that is, those that contain null

values, in our model. The time series of the study are of bacteria with high prevalence

rate, having least one positive culture followed by an antibiogram per week. Finally, the

use of statistical tests to compare the classifiers has a limited value because the results

were derived from the same (overlapping) training data and therefore they were not

independent. Nevertheless, the two classifiers based on signal decomposition systemat-

ically outperformed the näıve and pure k-NN methods, providing enough evidence on

their superiority.

8.5 Conclusion

In this chapter, we present the results of our methodology for analysis of antimicro-

bial resistance trends using a large time series data set. The results show that the

decomposition of the raw signal not only helped to improve the baseline forecasting

method, but also added valuable insight into the dynamics of the resistance time se-

ries. Especially if ward specific data are employed, our fully automated method could

be potentially applied in outbreak detection and biosurveillance models. Furthermore,

it could be integrated into clinical decision support systems dedicated to improve the

accuracy of empirical antibiotic therapies. Moreover, since the methodology does not

assume any underlying model for the data set, it could be generalized to other time

varying clinical events. Future research may aim at investigating the correlation of

other clinical factors, such as antibiotic consumption and hand hygiene compliance,

with the decomposed resistance trends to confirm the physical meaning of the signal

components. Further, the methodology presented here could be combined with burst

detection models to improve the forecasting accuracy.
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Conclusions and Future Work

In recent decades, surveillance of antimicrobial resistance has been performed using

reporting and manual or semi-automatic procedures with yearly compiled data sets.

However, with the rapid increase of resistance amongst many pathogens, this paradigm

needs to be revised if we do not want to go back to the pre-antibiotic era. Recent

outbreaks of resistant bacteria, such as Escherichia coli, Enterococcus spp. and Staphy-

lococcus aureus [38, 193, 8], provide examples of why resistance rates must be monitored

closely and in a larger scale to avoid further spread of resistant strains. In this scenario,

there is an urgent need for better tools to access, interoperate, aggregate and analyze

resistance trends to be used in biosurveillance systems.

In this thesis, we propose novel data- and knowledge-driven methods to moni-

tor and analyze antimicrobial resistance evolution using up-to-date microbiology data

from inter-institutional databases. The main contributions of the thesis include (i)

a knowledge-aware framework for online large-scale data sharing and monitoring of

antimicrobial resistance, and (ii) a data-driven method to extract and forecast resis-

tance trends. In particular, we studied the use of Semantic Web technologies to enable

real-time integration and interoperability of heterogeneous and transnational micro-

biology data sources. Our experiments resulted in a novel architecture that can be

used in the development of eHealth networks to share real-time resistance data in a

cross-institutional environment. Moreover, we researched new models to analyze up-to-

date antimicrobial resistance trends using empirical mode decomposition and machine

learning. To the best of our knowledge, our work is the first to apply trend decompo-

sition and learning algorithms to forecast antimicrobial resistance rates. The proposed
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model provides further insight into resistance trend analyses and enhances the predic-

tion accuracy when compared to baseline machine learning approaches. Particularly,

our forecasting models outperformed the random walk and pure k-NN models.

The overall work developed in this thesis can be seen through two di↵erent per-

spectives. First, from the healthcare viewpoint, it can be regarded as a transnational

platform for biosurveillance, providing new knowledge-aware tools for gathering real-

time data from distributed clinical systems and to foster intelligent analyses of the

material. Then, from the informatics viewpoint, our work can be thought of as a data

mining framework, where we developed advanced data-intensive methods for accessing,

collecting and processing information to finally produce new knowledge from large-scale

distributed and semantically-rich data sets.

9.1 Management of Distributed Microbiology Data and

Sources

In the first part of this thesis, we explored and developed the use of Semantic Web

technologies to integrate and interoperate heterogeneous microbiology databases ap-

plied to the development of a transnational antimicrobial resistance monitoring sys-

tem. In contrast to existing methods, our approach focuses on providing automatic

real-time cross-institutional access to microbiology data to improve tracking variations

and evolution of pathogen resistance rates.

Our method for data management deals with heterogeneous and distributed data

and sources using semantic technologies at the technical, syntactic and semantic levels.

In Chapter 3, we developed a model to formalize microbiology databases and provide a

common communication protocol (SPARQL) and message exchanging format (RDF),

creating thus a single formal technical layer to access local microbiology data sources.

Then, in Chapter 4 we presented our methodology to integrate the distributed seman-

tic endpoints, built on the work developed in Chapter 3. At the knowledge level, our

solution to the problem of heterogeneous semantics was a hybrid-ontology approach,

where local ontologies that define and formalize the microbiology data sources, sub-

scribed to a global common ontology via ontology mappings. Standard terminologies,

such as SNOMED CT and UniProt/NEWT, were used to define the basic syntax of

the domain. They served as proxy between the local syntax and the global concepts



defined in the domain ontology. At the query engine level, we developed a template-

based mediator that represented the clinical queries of the user-interface for each local

endpoint.

Our transnational monitoring architecture was clinically evaluated in Chapter 5.

Results showed that the use of a push-down approach in the distributed query engine

considerably reduced the querying time when compared to central reasoning, mak-

ing our integration model suitable for time-constraint operational environments, such

as those experienced by physicians. Furthermore, our real-time monitoring approach

produced equivalent resistance results to existing yearly batch-based biosurveillance

systems, such as EARS-Net and SEARCH, proving that our model could be used for

online transnational resistance monitoring, a step-ahead of existing antimicrobial re-

sistance monitoring systems. Finally, the user evaluation showed that the monitoring

system developed in Chapter 4 has practical applications, being useful, for example,

to infection control specialists for tracking resistance trends and the emergence of new

resistant pathogens. Therefore, the novel methodology proposed in the thesis based on

knowledge-intensive technologies advances the state-of-the-art by enabling the integra-

tion and interoperability of existing heterogeneous microbiology databases, fostering

the development of more e↵ective transnational antimicrobial resistance monitoring

systems with enhanced time-constraint capabilities.

9.2 Analysis of Antimicrobial Resistance Data

In the second part of the thesis, we researched new data-driven methods for analyses

of antimicrobial resistance time series. Our work resulted in a novel model based on

decomposition of the resistance signals and a learning algorithm to extract and forecast

resistance trends. Compared to existing methodology of antimicrobial resistance anal-

ysis, such as trend detection, our model works more e↵ectively with short-term resis-

tance trends, identifying di↵erent oscillation modes of resistance evolution. Moreover,

our forecasting algorithm outperforms baseline machine learning approaches, providing

improved prediction accuracy and thus better evidence of future resistance rates.

The methods for antimicrobial resistance trend analysis were developed in Chapter

7. Then, they were evaluated in Chapter 8 on a large time series data set extracted using

the monitoring system developed in the first part of the thesis (Chapter 3 to Chapter



5). Our analysis model uses the empirical mode decomposition algorithm to decompose

resistance signals and extract periodic trends. It improves upon existing methods for

analysis of resistance trends, such as long-term trend extraction and detection, by

exposing peculiarities not easily verified from the raw signal, such as short-term trends

and periodicity. These processed signals are then used to feed our machine learning

algorithm based on the k-NN to forecast resistance rates. The model applies the delay

coordinate embedding theorem to reconstruct the state-space and, together with k-

NN, it projects past similar events in the future dimension, creating thus the resistance

forecasts. We evaluated several machine learning methods and, from our experiments,

the k-NN algorithm showed the best forecasting performance. The models that use

decomposition of the resistance signal and filtering out of noisy components showed

better forecasting accuracy when compared to models that use the full signal spectrum,

improving the baseline forecasting method but also the k-NN algorithm applied to the

raw signal. Finally, our model is suitable for di↵erent pathogen/antimicrobial time

series but also to other time-varying clinical processes because both the trend extraction

and the forecasting methodologies are model free. Therefore, they can adapt to time

series data sets representing systems of di↵erent dynamics.

The models for trend extraction and forecasting of resistance trends developed in

this thesis have several potential practical applications. First, they can be used in the

analysis of resistance trends to identify association with factors that influence resistance,

such as antimicrobial consumption. Further, they can be applied in clinical decision

support systems to guide empirical treatment. As shown in Chapter 8, our model is

able to depict more faithfully the actual resistance status in a given clinical setting

than resistance rate statistics delayed by one week or more, serving thus as a better

source of evidence for antibiotherapy advising. Finally, due to their ability to work

with short-term trends and the enhanced forecasting accuracy, these models can be

used in resistance outbreak detection systems to provide reference levels to distinguish

between endemic and pandemic resistance.

9.3 Future Work

We see several opportunities for further research built on the work developed here.

First, the distributed query engine could be improved to reduce global maintenance.



The query engine works with query templates, where local source queries are repre-

sented centrally in the query mediator. This reduces the overhead on local sources at

the expense of a more complex central engine. An optimal engine would push all local

representations to the local sources, improving the maintenance of the global system.

Recent work of Hoehndorf et al. [250] provides some research directions to solve this

issue, pointing to biomedical ontologies to represent local data sources and combining

classes from multiple ontologies with upper-level ontologies and expressive relations.

Second, the monitoring interface could be more flexible to improve query power. Cur-

rently, the users are presented with pre-defined classes, which restrict the query expres-

sivity. The system could allow users to group information according to their need by

enabling, for example, classes to be defined interactively at the query time. A similar

approach could be studied for logical operations within the query templates as recently

investigated in the works of Shaw et al. [251]. Finally, the association of factors that

influence resistance could be further exploited using, for example, operational data of

antibiotic consumption. The perspective of looking at the resistance signal through the

decomposed waves opens more subjects to research. Several works have attempted to

associate factors that are believed to have influence on the mutation and selection of

resistant pathogens. However, sometimes these works are inconclusive. For instance, in

[252] the authors found that prescription rate of some antibiotics presented correlation

with bacterial resistance while for other antibiotics, such as cephalosporin use, there

were no correlations. A fair assumption is that many other factors a↵ect resistance but

they are not all captured within the resistance rate time series, the so called unseen

variables. However, it might be also that, due to the concurrent e↵ects over the time

series, the variations are hidden. By breaking down the signal and making explicit

the periodicity of the di↵erent signal components, the model investigated in Chapter 8

might help to investigate such cases.





References

[1] D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C.,

Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N.,

and Wright, G. D.: Antibiotic resistance is ancient. Nature 477, 457–61 (2011) 1

[2] Anonymous: The bacterial challenge: time to react. Tech. rep., European Center

for Disease Prevention and Control (2009) 1, 2
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Eriksson, O., Grimvall, A., Valter, L., and Nyce, J. M.: Requirements and de-

sign of the PROSPER protocol for implementation of information infrastructures

supporting pandemic response: a Nominal Group study. PLoS One 6, e17941

(2011) 69

[149] Ruch, P., Gobeill, J., Lovis, C., and Geissbühler, A.: Automatic medical encoding

with SNOMED categories. BMC Med Inform Decis Mak 8 Suppl 1, S6 (2008)

71, 75

[150] Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C.: SP2Bench: A SPARQL

Performance Benchmark. In Data Engineering, 2009. ICDE’09. IEEE 25th In-

ternational Conference on, 222–233. Ieee (2009) 71

[151] Ruch, P.: Automatic assignment of biomedical categories: toward a generic ap-

proach. Bioinformatics 22, 658–664 (2006) 75

[152] Momtchev, V., Peychev, D., Primov, T., and Georgiev, G.: Expanding the path-

way and interaction knowledge in linked life data. Proc of International Semantic

Web Challenge (2009) 77



[153] Calvanese, D., Giacomo, G. D., and Lenzerini, M.: Ontology of Integration and

Integration of Ontologies. In Description Logics (2001) 78

[154] Nielsen, J.: Usability engineering. Academic Press, Boston (1993). ISBN

0125184050 (acid-free paper) 80

[155] Lung, K. R., Gorko, M. A., Llewelyn, J., and Wiggins, N.: Statistical method for

the determination of equivalence of automated test procedures. J Autom Methods

Manag Chem 25, 123–7 (2003) 84

[156] Johnston, R. and Duke, J.: Benefit transfer equivalence tests with non-normal

distributions. Environmental and Resource Economics 41, 1–23 (2008) 84

[157] Pigeot, I., Hauschke, D., and Shao, J.: The bootstrap in bioequivalence studies.

J Biopharm Stat 21, 1126–39 (2011) 86

[158] Cribbie, R. A., Gruman, J. A., and Arpin-Cribbie, C. A.: Recommendations for

applying tests of equivalence. J Clin Psychol 60, 1–10 (2004) 86

[159] Hothorn, L. A. and Hasler, M.: Proof of hazard and proof of safety in toxicolog-

ical studies using simultaneous confidence intervals for di↵erences and ratios to

control. J Biopharm Stat 18, 915–33 (2008) 86

[160] Silverman, D.: Qualitative research: theory, method and practice. Sage Publica-

tions, London, 2nd ed edn. (2004). ISBN 0761949348 (pbk.) 87

[161] Morsey, M., Lehmann, J., Auer, S., and Ngomo, A.-C. N.: DBpedia SPARQL

benchmark: performance assessment with real queries on real data. In Proceed-

ings of the 10th international conference on The semantic web - Volume Part I,

ISWC’11, 454–469. Springer-Verlag, Berlin, Heidelberg (2011). ISBN 978-3-642-

25072-9 98

[162] Lee, F., Teich, J. M., Spurr, C. D., and Bates, D. W.: Implementation of physician

order entry: user satisfaction and self-reported usage patterns. J Am Med Inform

Assoc 3, 42–55 (1996) 98

[163] Reynolds, R., Hope, R., and Williams, L.: Survey, laboratory and statistical

methods for the BSAC Resistance Surveillance Programmes. Journal of antimi-

crobial chemotherapy 62, ii15–ii28 (2008) 99



[164] Li, N., Raskin, R., Goodchild, M., and Janowicz, K.: An Ontology-Driven Frame-

work and Web Portal for Spatial Decision Support. Transactions in GIS 16,

313–329 (2012) 100

[165] Russell, S. and Norvig, P.: Artificial intelligence: a modern approach. Prentice

hall (2010) 105

[166] Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of statistical learn-

ing: data mining, inference, and prediction. Springer series in statistics. Springer,

New York, NY, 2nd ed edn. (2009). ISBN 9780387848570 (hardcover : alk. paper)

105

[167] Muggleton, S.: Logic and learning: Turings legacy. Muggleton, SH and Michie,

D Furukaw, K, editors, Machine Intelligence 13 (1993) 106

[168] Anctil, F. and Rat, A.: Evaluation of neural network streamflow forecasting on

47 watersheds. Journal of Hydrologic Engineering 10, 85–88 (2005) 106

[169] Krasnopolsky, V. M. and Fox-Rabinovitz, M. S.: Complex hybrid models combin-

ing deterministic and machine learning components for numerical climate mod-

eling and weather prediction. Neural Networks 19, 122–134 (2006) 106

[170] Burbidge, R., Trotter, M., Buxton, B., and Holden, S.: Drug design by machine

learning: support vector machines for pharmaceutical data analysis. Comput

Chem 26, 5–14 (2001) 106

[171] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.: Gene selection for can-

cer classification using support vector machines. Machine Learning 46, 389–422

(2002) 106

[172] Blankertz, B., Curio, G., and Müller, K.-R.: Classifying Single Trial EEG: To-

wards Brain Computer Interfacing. In NIPS, 157–164 (2001) 106

[173] Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., and

Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: from

brain-computer interfacing to mental state monitoring. J Neurosci Methods 167,

82–90 (2008) 106



[174] Aguilar-Arevalo, A. A., Bazarko, A. O., Brice, S. J., Brown, B. C., Bugel, L.,

Cao, J., Coney, L., Conrad, J. M., Cox, D. C., Curioni, A., Djurcic, Z., Finley,

D. A., Fleming, B. T., Ford, R., Garcia, F. G., Garvey, G. T., Green, C., Green,

J. A., Hart, T. L., Hawker, E., Imlay, R., Johnson, R. A., Kasper, P., Katori, T.,

Kobilarcik, T., Kourbanis, I., Koutsoliotas, S., Laird, E. M., Link, J. M., Liu,

Y., Liu, Y., Louis, W. C., Mahn, K. B. M., Marsh, W., Martin, P. S., McGregor,

G., Metcalf, W., Meyers, P. D., Mills, F., Mills, G. B., Monroe, J., Moore, C. D.,

Nelson, R. H., Nienaber, P., Ouedraogo, S., Patterson, R. B., Perevalov, D., Polly,

C. C., Prebys, E., Raaf, J. L., Ray, H., Roe, B. P., Russell, A. D., Sandberg, V.,

Schirato, R., Schmitz, D., Shaevitz, M. H., Shoemaker, F. C., Smith, D., Sorel,

M., Spentzouris, P., Stancu, I., Stefanski, R. J., Sung, M., Tanaka, H. A., Tayloe,

R., Tzanov, M., Van de Water, R., Wascko, M. O., White, D. H., Wilking, M. J.,

Yang, H. J., Zeller, G. P., and Zimmerman, E. D.: Search for electron neutrino

appearance at the Delta m(2)similar to 1 eV(2) scale. Physical Review Letters

98, 231801 (2007) 106

[175] Huang, W., Nakamori, Y., and Wang, S.: Forecasting stock market movement

direction with support vector machine. Computers & Operations Research 32,

2513–2522 (2005) 106

[176] Chan, P. and Stolfo, S.: Toward scalable learning with non-uniform class and

cost distributions: A case study in credit card fraud detection. In Proceedings of

the fourth international conference on knowledge discovery and data mining, vol.

164, 168 (1998) 106

[177] Sebastiani, F.: Machine learning in automated text categorization. Acm Com-

puting Surveys 34, 1–47 (2002) 106

[178] Graves, A. and Schmidhuber, J.: O✏ine Handwriting Recognition with Multidi-

mensional Recurrent Neural Networks. In NIPS, 545–552 (2008) 106

[179] Tong, S. and Chang, E.: Support vector machine active learning for image re-

trieval. In Proceedings of the ninth ACM international conference on Multimedia,

MULTIMEDIA ’01, 107–118. ACM, New York, NY, USA (2001). ISBN 1-58113-

394-4 106



[180] Ledley, R. S. and Lusted, L. B.: Probability, Logic and Medical Diagnosis. Science

130, 892–930 (1959) 106

[181] Magoulas, G. and Prentza, A.: Machine learning in medical applications. Machine

Learning and Its Applications 300–307 (2001) 106

[182] Weston, A. D. and Hood, L.: Systems biology, proteomics, and the future of

health care: toward predictive, preventative, and personalized medicine. J Pro-

teome Res 3, 179–96 (2004) 106

[183] Stach, W., Kurgan, L., Pedrycz, W., and Reformat, M.: Genetic learning of fuzzy

cognitive maps. Fuzzy Sets and Systems 153, 371–401 (2005) 106

[184] Cruz, J. A. and Wishart, D. S.: Applications of machine learning in cancer

prediction and prognosis. Cancer Inform 2, 59–77 (2006) 106, 107

[185] Peng, Y., Li, W., and Liu, Y.: A hybrid approach for biomarker discovery from

microarray gene expression data for cancer classification. Cancer Inform 2, 301–

11 (2006) 106

[186] Kononenko, I.: Machine learning for medical diagnosis: history, state of the art

and perspective. Artif Intell Med 23, 89–109 (2001) 107, 116

[187] Savage, N.: Better medicine through machine learning. Communications of the

ACM 55, 17–19 (2012) 107

[188] Syeda-Mahmood, T., Beymer, D., and Wang, F.: Shape-based matching of ECG

recordings. Conf Proc IEEE Eng Med Biol Soc 2007, 2012–8 (2007) 107

[189] Visweswaran, S., Angus, D. C., Hsieh, M., Weissfeld, L., Yealy, D., and Cooper,

G. F.: Learning patient-specific predictive models from clinical data. J Biomed

Inform 43, 669–85 (2010) 107

[190] Ramoni, M., Sebastiani, P., and Dybowski, R.: Robust outcome prediction for

intensive-care patients. Methods of Information in Medicine-Methodik der Infor-

mation in der Medizin 40, 39–45 (2001) 107



[191] Schurink, C. A. M., Lucas, P. J. F., Hoepelman, I. M., and Bonten, M. J. M.:

Computer-assisted decision support for the diagnosis and treatment of infectious

diseases in intensive care units. Lancet Infect Dis 5, 305–12 (2005) 107

[192] Sintchenko, V., Coiera, E., and Gilbert, G. L.: Decision support systems for

antibiotic prescribing. Curr Opin Infect Dis 21, 573–9 (2008) 107

[193] McBryde, E. S., Pettitt, A. N., Cooper, B. S., and McElwain, D. L. S.: Char-

acterizing an outbreak of vancomycin-resistant enterococci using hidden Markov

models. J R Soc Interface 4, 745–54 (2007) 107, 159, 165

[194] Gierl, L., Ste↵en, D., Ihracky, D., and Schmidt, R.: Methods, architecture, evalu-

ation and usability of a case-based antibiotics advisor. Comput Methods Programs

Biomed 72, 139–54 (2003) 107

[195] Leibovici, L., Paul, M., Nielsen, A. D., Tacconelli, E., and Andreassen, S.: The

TREAT project: decision support and prediction using causal probabilistic net-

works. Int J Antimicrob Agents 30 Suppl 1, S93–102 (2007) 107

[196] Zhang, S., Zhang, C., and Yang, Q.: Data preparation for data mining. Applied

Artificial Intelligence 17, 375–381 (2003) 108

[197] Wolpert, D.: The lack of A priori distinctions between learning algorithms. Neural

Computation 8, 1341–1390 (1996) 108

[198] Dougherty, J., Kohavi, R., and Sahami, M.: Supervised and unsuper-

vised discretization of continuous features. In MACHINE LEARNING-

INTERNATIONAL WORKSHOP THEN CONFERENCE-, 194–202. Morgan

Kaufmann Publishers, Inc. (1995) 109

[199] Teodoro, D., Pasche, E., Vishnyakova, D., Lovis, C., Gobeill, J., and Ruch, P.:

Automatic IPC encoding and novelty tracking for e↵ective patent mining. In

Proceedings of NTCIR-8 Workshop Meeting (2010) 110

[200] Teodoro, D., Gobeill, J., Pasche, E., Vishnyakova, D., Ruch, P., and Lovis, C.:

Automatic Prior Art Searching and Patent Encoding at CLEF-IP 2010. In Work-

shop of the Cross-Language Evaluation Forum, LABs andWorkshops, Notebook

Papers (2010) 110



[201] Duda, R., Hart, P., and Stork, D.: Pattern classification. New York: John Wiley,

Section 10, l (2001) 110

[202] MacKay, D. J. C.: Information theory, inference, and learning algorithms. Cam-

bridge University Press, Cambridge, UK (2003). ISBN 0521642981 110

[203] Alpaydin, E.: Introduction to machine learning. Adaptive computation and

machine learning. MIT Press, Cambridge, Mass., 2nd ed edn. (2010). ISBN

9780262012430 (hardcover : alk. paper) 110

[204] Lane, T. and Brodley, C. E.: Temporal sequence learning and data reduction for

anomaly detection. ACM Trans Inf Syst Secur 2, 295–331 (1999) 112

[205] Keogh, E. and Pazzani, M.: An enhanced representation of time series which

allows fast and accurate classification, clustering and relevance feedback. In Pro-

ceedings of the 4th International Conference of Knowledge Discovery and Data

Mining, 239–241 (1998) 112

[206] Sakurai, Y., Yoshikawa, M., and Faloutsos, C.: FTW: fast similarity search under

the time warping distance. In Proceedings of the twenty-fourth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, PODS ’05, 326–

337. ACM, New York, NY, USA (2005). ISBN 1-59593-062-0 112

[207] Ramirez-Amaro, K. and Chimal-Eguia, J.: Machine Learning Tools to Time

Series Forecasting. In Artificial Intelligence-Special Session, 2007. MICAI 2007.

Sixth Mexican International Conference on, 91–101. IEEE (2007) 112

[208] Yule, G.: On a method of investigating periodicities in disturbed series, with

special reference to Wolfer’s sunspot numbers. Philosophical Transactions of

the Royal Society of London Series A, Containing Papers of a Mathematical or

Physical Character 226, 267–298 (1927) 113

[209] López-Lozano, J. M., Monnet, D. L., Yagüe, A., Burgos, A., Gonzalo, N., Campil-

los, P., and Saez, M.: Modelling and forecasting antimicrobial resistance and its

dynamic relationship to antimicrobial use: a time series analysis. Int J Antimicrob

Agents 14, 21–31 (2000) 113, 136



[210] Kritsotakis, E. I., Christidou, A., Roumbelaki, M., Tselentis, Y., and Gikas, A.:

The dynamic relationship between antibiotic use and the incidence of vancomycin-

resistant Enterococcus: time-series modelling of 7-year surveillance data in a

tertiary-care hospital. Clin Microbiol Infect 14, 747–54 (2008) 113

[211] Abeku, T. A., de Vlas, S. J., Borsboom, G., Teklehaimanot, A., Kebede, A.,

Olana, D., van Oortmarssen, G. J., and Habbema, J. D. F.: Forecasting malaria

incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia:

a simple seasonal adjustment method performs best. Trop Med Int Health 7,

851–7 (2002) 113

[212] Elbert, Y. and Burkom, H. S.: Development and evaluation of a data-adaptive

alerting algorithm for univariate temporal biosurveillance data. Stat Med 28,

3226–48 (2009) 114

[213] Najmi, A.-H. and Magruder, S. F.: An adaptive prediction and detection algo-

rithm for multistream syndromic surveillance. BMC Med Inform Decis Mak 5,

33 (2005) 114

[214] Najmi, A.-H. and Burkom, H.: Recursive least squares background prediction of

univariate syndromic surveillance data. BMC Med Inform Decis Mak 9, 4 (2009)

114

[215] Witten, I., Frank, E., and Hall, M.: Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann (2011) 115, 122

[216] McNally, R. J. Q., James, P. W., Picton, S. V., McKinney, P. A., van Laar, M.,

and Feltbower, R. G.: Space-time clustering of childhood central nervous system

tumours in Yorkshire, UK. BMC Cancer 12, 13 (2012) 115

[217] Kotsiantis, S., Zaharakis, I., and Pintelas, P.: Supervised machine learning: A

review of classification techniques. FRONTIERS IN ARTIFICIAL INTELLI-

GENCE AND APPLICATIONS 160, 3 (2007) 116

[218] Bellazzi, R. and Zupan, B.: Predictive data mining in clinical medicine: current

issues and guidelines. Int J Med Inform 77, 81–97 (2008) 116



[219] Dasgupta, A., Sun, Y. V., König, I. R., Bailey-Wilson, J. E., and Malley, J. D.:

Brief review of regression-based and machine learning methods in genetic epi-

demiology: the Genetic Analysis Workshop 17 experience. Genet Epidemiol 35

Suppl 1, S5–11 (2011) 117

[220] Bishop, C. M.: Neural networks for pattern recognition. Clarendon Press, Oxford

(1995). ISBN 0198538499 (hbk) 118

[221] Dor↵ner, G.: Neural networks for time series processing. In Neural Network

World. Citeseer (1996) 118

[222] Camargo, L. and Yoneyama, T.: Specification of training sets and the number of

hidden neurons for multilayer perceptrons. Neural Computation 13, 2673–2680

(2001) 118

[223] Cortes, C.: Prediction of generalization ability in learning machines. Ph.D. thesis,

Department of Computer Science, University of Rochester (1995) 119

[224] Burges, C.: A tutorial on support vector machines for pattern recognition. Data

mining and knowledge discovery 2, 121–167 (1998) 119

[225] Smola, A. and Schölkopf, B.: A tutorial on support vector regression. Statistics

and computing 14, 199–222 (2004) 119, 120

[226] Rasmussen, C.: Gaussian processes in machine learning. Advanced Lectures On

Machine Learning 3176, 63–71 (2004) 121

[227] Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model se-

lection. Statistics Surveys 4, 40–79 (2010) 123

[228] Fridkin, S. K., Edwards, J. R., Tenover, F. C., Gaynes, R. P., McGowan, J. E.,

Jr, Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Project, and

National Nosocomial Infections Surveillance (NNIS) System Hospitals: Antimi-

crobial resistance prevalence rates in hospital antibiograms reflect prevalence rates

among pathogens associated with hospital-acquired infections. Clin Infect Dis 33,

324–30 (2001) 126



[229] Jaecklin, T., Rohner, P., Jacomo, V., Schmidheiny, K., and Gervaix, A.: Trends in

antibiotic resistance of respiratory tract pathogens in children in Geneva, Switzer-

land. Eur J Pediatr 165, 3–8 (2006) 126, 159

[230] Austin, D. J., Kristinsson, K. G., and Anderson, R. M.: The relationship be-

tween the volume of antimicrobial consumption in human communities and the

frequency of resistance. Proc Natl Acad Sci U S A 96, 1152–6 (1999) 126, 136,

150

[231] F. Araujo, M. B. M. A. and Neto, J. A. R.: r-filters: a Hodrick-Prescott Filter

Generalization. In Working Paper Series, 69. Banco Central do Brasil (2003) 130

[232] Alexandrov, T., Bianconcini, S., Dagum, E., Maass, P., and McElroy, T.: A

review of some modern approaches to the problem of trend extraction. Tech.

Rep. RRS2008/03, US Census Bureau (2008) 131

[233] French, M.: Estimating changes in trend growth of total factor produc-

tivity: Kalman and HP filters versus a Markov-switching framework. In

FEDS Working Paper No. 2001-44. Board of Governors of the Federal Re-

serve System (US), Available at SSRN: http://ssrn.com/abstract=293105 or

http://dx.doi.org/10.2139/ssrn.293105 (2001) 131

[234] Graps, A.: An introduction to wavelets. Computational Science & Engineering,

IEEE 2, 50–61 (1995) 131

[235] Mhamdi, F., Jaıdane-Saıdane, M., and Poggi, J.: Empirical mode decomposition

for trend extraction: application to electrical data. In Proceedings of COMP-

STAT, 22–27 (2010) 132

[236] Wu, Z., Huang, N. E., Long, S. R., and Peng, C.-K.: On the trend, detrending,

and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci U

S A 104, 14889–94 (2007) 132, 134, 143, 159
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