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where you get a wider view of life. 1
call it "the road less travelled". That
is where I want to be.
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Abstract

Understanding how a group can act on a given type of space can be a valuable
tool for proving properties of both the group and the space. This thesis focuses
on three distinct topics involving actions of infinite groups on graphs, cube
complexes and metric spaces.

In the first part, we answer a question by Grigorchuk asking whether it
is possible to give an explicit and elementary description of a CAT(0) cube
complex on which the groups he defined act and, if so, to describe these ac-
tions. Recall that the Grigorchuk groups are subgroups of finite types of the
group of automorphisms of the rooted binary tree. This family of groups has
been a prolific subject of study and has provided answers to many problems.
The main ingredient allowing us to build such a complex is the existence of a
Schreier graph with two ends which come from the action of these groups on
the boundary of the binary tree. Using this graph, it is possible to construct
a CAT(0) cube complex on which all Grigorchuk groups act without bounded
orbit, or, equivalently, without a fixed point. Moreover, for a non-countable
subfamily of Grigorchuk groups, we show that this action is faithful and proper.
In this case, the CAT(0) cube complex is a model for the classifying space of
the proper actions of the group.

In the following, we present the results of joint projects with P-H. Leemann
where we are interested in the stability of certain properties of groups for the
wreath product. We start by giving a proof of a result about the stability of
the proprety FW for the wreath product which is very close to a theorem of
Cherix-Martin-Valette and Neuhauser about the stability of the property (T).
For this purpose, we use an obstruction to property FW described in terms of
the number of ends in the Schreier graphs associated to the group.

Then, we study the stability of these properties for the wreath product in
a more general framework. Recall that, for a countable group, property (T)
is equivalent to the property FH defined as “every action on a Hilbert space
has a fixed point”. By generalizing this example, we notice that there exists a
whole family of algebraic properties associated to a group which are defined as
“every action of this group on a certain type of metric space has a fixed point”.
We can, for example, think about the property FA (any action on a tree has a
fixed point) or the property FW (any action on a wall space has a fixed point).
We show how the stability of a large family of such properties for the wreath
product can be proved in a unified way.
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Finally, we study the notion of expansion for objects of dimension greater
than 1. We start by defining the notion of boundary expansion for CW com-
plexes and then prove a link between this expansion and the spectrum of the
Laplacian, in the same spirit as the Cheeger-Buser inequalities for graphs.



Résumeé

Comprendre comment un groupe peut agir sur un type d’espace donné peut
s’avérer étre un outil précieux pour démontrer aussi bien des propriétés du
groupe que de 'espace. Cette thése s’intéresse & trois sujets distincts faisant
intervenir des actions de groupes infinis sur des graphes, des complexes cubiques
et des espaces métriques.

Dans la premiére partie, nous répondons a une question de Grigorchuk
demandant s’il est possible de donner une description explicite et élémentaire
d’un complexe cubique CAT(0) sur lequel les groupes qu’il a définis agissent et,
le cas échéant, de décrire ces actions. Rappelons que les groupes de Grigorchuk
sont des sous-groupes de types finis du groupe d’automorphismes de l’arbre
binaire enraciné. Cette famille de groupes a été un sujet d’étude prolifique
et & permis d’apporter des réponses a de nombreux problemes. L’ingrédient
principal nous permettant de construire un tel complexe est I'existence d’un
Schreier a 2 bouts provenant de ’action de ces groupes sur le bord de I'arbre
binaire. En utilisant ce graphe, il nous est possible de construire un complexe
cubique CAT(0) sur lequel tous les groupes de Grigorchuk agissent sans orbite
bornée, ou, de maniére équivalente, sans point fixe. De plus, pour une sous-
famille non dénombrable des groupes de Grigorchuk, nous montrons que cette
action est fideéle et propre. Dans ce cas, le complexe cubique CAT(0) est un
modele pour ’espace classifiant des actions propres du groupe.

Par la suite, nous présentons les résultats de projets menés conjointement
avec P-H. Leemann ot nous nous intéressons a la stabilité de certaines proprié-
tés des groupes pour le produit en couronne. Nous commencons par donner une
preuve élémentaire d’un résultat concernant de la stabilité de la propriété FW
pour ce produit. Ce résultat est tres proche d’un théoreme de Cherix-Martin-
Valette et Neuhauser concernant de la stabilité de la propriété (T). Pour cela,
nous utilisons une obstruction a la propriété FW décrite en termes de nombre
de bouts dans les graphes de Schreier associés au groupe.

Nous étudions ensuite la stabilité de ces propriétés pour le produit en cou-
ronne dans un cadre plus général. Rappelons que, pour un groupe dénombrable,
la propriété (T) est équivalente & la propriété FH définie comme « toute action
de ce groupe sur un espace de Hilbert possede un point fixe ». En généralisant
cet exemple, on remarque qu’il existe toute une famille de propriétés algébriques
associées a un groupe qui sont définies comme « toute action de ce groupe sur
un certain type d’espace métrique posseéde un point fixe ». Nous pouvons par

iii
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exemple penser a la propriété FA (toute action sur un arbre posséde un point
fixe) ou a la propriété FW (toute action sur un espace & mur posséde un point
fixe). Nous montrons comment la stabilité d’une grande famille de propriétés
de ce type pour le produit en couronne peut étre démontrée d’une maniére
unifiée.

Finalement, nous étudions la notion d’expansion pour des objets de dimen-
sion plus grande que 1. Nous commencons par définir la notion d’expansion de
bord pour des CW complexes puis nous montrons qu’il existe un lien entre cette
expansion et le spectre des Laplaciens, dans le méme esprit que les inégalités
de Cheeger-Buser pour les graphes.
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CHAPTER ].

Introduction

Groups are fundamental objects of mathematics, appearing naturally in almost
all its branches. The study of these abstract structures has been developed in
many different directions. Here, we will focus on the geometrical and combi-
natorial aspects of this theory.

The way a group can act on certain types of spaces can help us understand
this group. The simplest application of this idea is to consider actions of
groups on sets. The action of a group G on a set X is a group homomorphism
¢ : G — 6(X) between G and the group of permutations of X. Constructing
and understanding such actions can be used to solve various problems, whether
they are very concrete, such as counting the number of different necklaces that
can be constructed with a given set of pearls, or more abstract, such as proving
Fermat’s little Theorem, Cauchy’s Theorem or Sylow’s Theorems.

Generally, when a group acts on a space that has more structure than a
set, we will assume that this action preserves the structure of the space, in the
sense that ¢ : G — Aut(X) goes from G into the group of the automorphisms
of X. For example, we will suppose that the group acts by isometries if X is
a metric space, by invertible linear applications if X is a vector space, or by
unitary operators if X is a Hilbert space.

This thesis presents the content of [641/651/92,93] where we will mainly focus
on the actions of infinite groups on graphs, CAT(0) cubic complexes, and metric
spaces.

1.1 Cayley graphs and Schreier graphs

There is a natural way to associate a graph to a group G with a set of generators
S C G. We define Cay(G, S), the (left) Cayley graph of G with respect to S, as
follows. The set of vertices is the set of elements of the group and two vertices
g and h are connected by an edge if and only if there is a generator s € S such
that ¢ = sh. Sometimes, we label the edges with the generator used to get
from one vertex to the other. Even if the definition works in all generality, we
will normally consider groups with a finite generating set .S in order to obtain
locally finite graphs. Usually, a group has more than one generating set and the
choice of this one strongly affects the shape of the Cayley graph, see Figure[I.1]
However, some properties of the Cayley graphs (such as the number of ends,
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Cay (63,{(1,2),(1,2,3),(1,3,2)}) Cay(63,{(1,2),(2,3)})

Figure 1.1: Two examples of Cayley graphs of &3

the growth rate, etc) are independent of the choice of the generating set. This
can be proved formally using the notion of quasi-isometries, see [16,27].

Cayley graphs allow us to use graph theory tools to study groups. For
example, we can look at the number of ends of a Cayley graph. Recall that
intuitively an end of a graph is a direction in which the graph extends to infinity.
The number of ends of a Cayley graph does not depend on the generating
set [12] and so we can define the number of ends of a finitely generated group.
In the 1940s, Hopf and Freudenthal independently established the two following
results about the number of ends and the structure of a group that has a linear
Cayley graph.

Theorem. The number of ends of a finitely generated group is 0,1,2 or co.

Theorem. A finitely generated group has 2 ends if and only if it contains an
infinite cyclic subgroup of finite index.

Later, Stallings [95[96] proved a similar result for the Cayley graphs with
more than one end.

Theorem. A finitely generated group G has at least 2 ends if and only if one
of the following two points holds:

e The group G admits a decomposition G = H x¢c K as an amalgamated
free product where C' is a finite subgroup not equal to H or K.

e The group G is an HNN extension: G = (H,t|t 1Cit = Cs) where Cy
and Cy are 2 finite and isomorphic subgroups of H.

Let G be a finitely generated group, H < G an arbitrary subgroup and
S C G a generating set. We define Sch(G, H, S), the (left) Schreier graph of
G with respect to S and H, as follows. The set of vertices is equal to the set
of the left cosets {gH} and two vertices g1 H and goH are connected by an
edge if and only if there exists s € S such that sg1 H = goH. We can notice
that if the subgroup H is normal in G, then the Schreier graph Sch(G, H, S) is
isomorphic to the Cayley graph Cay(G/H,S). A legitimate question is to ask
how the results proved for Cayley graphs generalize to Schreier graphs. If we
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study the possible number of ends of a Schreier graph, we can see that Hopf
and Freudenthal’s result does not generalize. Indeed, every 2d-regular graph is
the Schreier graph of a group, see [46},63,/67]. It is therefore easy to construct
Schreier graphs with an arbitrary number of ends. However, we will see in
the following that the number of ends of the Schreier graph gives us essential
information about the possible actions of the group on certain spaces.

1.2 Actions on graphs

One of the simplest objects of dimension one are graphs. Intuitively, a graph
is a set of vertices with an adjacency relation describing which vertices are
connected by an edge. This definition admits many variations: The edges can
be oriented, labelled, multiple between 2 vertices or connect a vertex with itself.
In the following, we will give precise definitions when necessary.

A homomorphism of graphs is an application between the sets of vertices of
2 graphs that preserves adjacency, in the sense that the images of 2 adjacent
vertices are also adjacent. An action of a group on a graph will always be by
graph automorphisms.

An interesting family of graphs is the one composed of graphs that do not
contain a closed path. Such graphs are called trees. The trees have very good
combinatorial properties, such as they are bipartite, median, planar, etc. A
connected tree is simply connected and can be provided with a metric induced
by the fact that there is exactly one path between 2 vertices.

The study of group actions on trees was initiated by Serre in his seminal
book [94]. Let us consider an action ¢ : G — Aut(T) of a group G on a tree T
A vertex v of the tree is a fized point if it is fixed by all the automorphisms of
the action, or, in other words, if ¢(g)(v) = v for any element g of G. We say
that a group G acts without inversion if it does not send an edge on itself by
exchanging its two extremal vertices. One of the questions that can be asked
is: given a group G, is it possible to construct an action of this group on a tree
without inversion that does not fix any point? We say that a group for which
the answer is negative (all the actions have a fixed point) has the property FA.
Serre has shown that the structure of such groups can be described.

Theorem. A countable group G has the property FA if and only if the following
8 points are verified:

1. G is not a non trivial amalgamated product.
2. G has no quotient isomorphic to Z.
3. G is of finite type.

This theorem can be related to Stalling’s theorem above to obtain the fol-
lowing reformulation.

Theorem. Let G be a finitely generated group. Then, the following are equiv-
alent:

e The group has at least two ends.

e The group does not have the property FA, i.e. there exists an action on
a tree without fized point and inversion.
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e The group cannot be decomposed as a non trivial amalgamated product
and it has no quotient isomorphic to Z.

In the same work, Serre gives an example of the application of actions on
trees. He shows how to construct a tree associated to the group SL2(Q,)
admitting an action of this group and thanks to which he proves again, for
example, a theorem of Thara [59] showing that the group SL2(Q,) can be
decomposed into an amalgamated product of two factors SLa(Zy).

1.3 Actions on CAT(0) cube complexes

When we consider actions on objects of dimension greater than 1, we can ask
which ones generalize trees. The trees roughly can be seen as a gluing of
intervals [0, 1] that does not contain a closed path. A way to generalize them is
to glue cubes [0,1]™ of different dimensions using isometries. Such objects are
called cube complexes. The intrinsic euclidean metrics of the cubes [0, 1] induce
a global metric on the complex. Recall that a metric verifies the condition
CAT(0) if each triangle defined by geodesics is "thinner" than a comparable
Euclidean triangle, see |2}[13] for detailed expositions of these notions. We
may ask when the metric of a cubic complex verifies the CAT(0) condition.
Generally, answering this question is a difficult problem, but fortunately, in
the case of CAT(0) cube complexes, there exists a local characterization of this
property introduced due to Gromov [44]. It is sufficient to prove that for each
cube, the associated link does not contain the boundary of a triangle that is not
filled. If the complex is, moreover, simply connected, then the metric verifies
the CAT(0) condition. We notice that the trees are CAT (0) cube complexes
of dimension 1.

The CAT(0) cube complexes have a rich combinatorial structure which
facilitates their studies. The notion of hyperplane is, for example, very useful
to understand how a group acts on a complex. A hyperplane is an equivalence
class of edges. Two edges are equivalent if they are the opposite sides of a
square. It can be defined equivalently as a codimension 1 subspace generated by
the midpoints of equivalent edges. It has been shown that each hyperplane of a
CAT(0) cube complex, cuts the complex into exactly 2 connected components,
called half-spaces, see [90] for details. An action of a group on a CAT(0) cube
complex naturally extends into an action on the hyperplanes and into an action
on the half-spaces which can give us valuable information. Group actions on
CAT(0) cube complexes have been a prolific subject of study and have led
to significant advances in many fields such as low dimensional topology and
geometric group theory, see for example [1[53}[102].

Sageev |90] proved a theorem linking the actions on CAT(0) cube complexes
and the number of ends of Schreier graphs in the same spirit as the results
concerning the actions on the trees.

Theorem. A finitely generated group G has a Schreier graph with at least 2
ends if and only if it acts on a CAT(0) cube complex without fized point and
transitively on hyperplanes.

There is a famous family of groups for which the existence of Schreier graphs
with at least 2 ends is known: the branched groups G, introduced by Grig-
orchuk in [41]. These groups, which are known as the Grigorchuk groups, are
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indexed by sequences w € {0,1,2}* and are defined as subgroups of the au-
tomorphism group of the binary tree. By Sageev’s theorem, each of them acts
without bounded orbit on a CAT(0) cube complex.

Grigorchuk asked us the following question:

Question. Can we give an explicit and elementary description of a CAT (0)
cube complex on which the groups G, act without bounded orbit? Can we un-
derstand these actions more precisely?

A positive answer is presented in Chapter [2| where we give an explicit con-
struction of a CAT (0) cube complex on which all the groups G, act without
bounded orbit, see Theorem [2.4.3] Moreover, this action is proper and faithful
for all the G, which are indexed by a sequence without repetition, i.e. for the
sequences w such that w; # w; ;1 for all 4, see Theorem In this case, we
also prove that this CAT (0) cube complex is a model for the classifying spaces
of proper actions.

1.4 Fixed point free actions

The actions of a group on CAT(0) cube complexes are related to the property
(T). Indeed, if a countable group G acts without a fixed point on a CAT(0)
cube complex, then it does not have the property (T), see [81]. Recall that for
countable groups, the property (T) is equivalent to the property FH (any action
on a Hilbert space has a fixed point) by results of Delorme and Guichardet
[29,/47). If we replace the Hilbert spaces in the definition of the property FH,
we obtain other known properties, such as the property FA for actions on trees
or the property FW for actions on wall spaces (or equivalently on CAT(0) cube
complexes, see [82]).

When considering properties of groups, it is legitimate to ask whether they
are stable under natural group operations. One such operation, of great use
in geometric group theory, is the wreath product. Recall that the (restricted)
wreath product of two groups G and H and a set X on which H acts is defined

as
Gix H = (@G) x H.
X

We can ask the following question about the stability of the properties defined
in the same spirit as the examples above:

Question. Among the properties that can be characterized as "any action on
a space of some subclass of metric spaces has a fized point”, which ones are
stable for the wreath product?

Answers to this question have been provided for some of these properties.
For example, Neuhauser [77] and Cherix-Martin-Valette [21] handled the case
of the property (T):

Theorem. Let G, H be two finitely generated groups and X a set on which the
group H acts. The wreath product Glx H has property (T) if and only if G
and H have property (T) and if X is finite.



6 CHAPTER 1. INTRODUCTION

In Chapter [3] we will give an elementary proof of a theorem about the
stability of the property FW, see Theorem The main ingredient of the
proof is a result of Sageev [90] which proved that the number of ends in Schreier
graphs of a group is an obstruction to the property FW.

More generally, the stability of many such properties for the wreath product
can be proved in a unique way using the right framework. This will be the
subject of Chapter [

1.5 Expansion for CW complexes

The last topic is also about cell complexes but seen from another point of view.
Recall that the expansion constant (or Cheeger constant) of a finite graph X
with a vertex set V is defined as

h(X) = min{ [0A] :(DCAQV}

min {|A[,[A°[} 7

where 0A is the set of edges of X with one vertex in A and the other in A€.
This constant describes the difficulty of disconnecting the graph into two large
subsets.

We notice right away that a finite connected graph always has an expansion
constant strictly greater than 0. It is therefore interesting to consider families of
graphs whose number of vertices grows and for which the expansion constants
are uniformly bounded far from 0. However, there are also trivial examples,
for example, the family {K,}, of complete graphs on n vertices. We can
notice that the number of edges of the graphs K, increases extremely quickly
and that therefore such graphs are certainly well connected but not in a very
efficient way. This is why we will ask that the graphs have uniformly bounded
degrees. This condition makes the construction of examples substantially more
challenging. One can show that such families exist by a probabilistic argument,
but constructing them explicitly is more difficult. One way to proceed is to
consider Schreier graphs of groups with property (T), see [9,/68,69].

The expansion of a graph is usually difficult to calculate precisely, especially
if the graphs become large, but it is possible to estimate it by using the spec-
trum of the graph Laplacian, see [22] for a precise definition of this operator.
This relation is given by the Cheeger-Buser inequality [15}/19].

Theorem. Let X be a connected graph and X\ the first non-trivial eigenvalue
of the Laplacian, then

D[ >

< h(X) <V2Xd
where d is the maximal degree of a vertez.

One may wonder how this notion of expansion can be generalized for ob-
jects of dimension greater than one. Several approaches have been developed
depending on the definition of the graph expansion considered. One can use
the combinatorics, [48][87,/88], the homology and the cohomology [74,/97] or
the spectrum of Laplacian [61,84,85]. Contrary to the case of graphs, these
notions are not equivalent in higher dimensions. The reader interested in all
these different generalizations can refer to [70] and the references therein.
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As in the one-dimensional case, it is possible to construct examples of fam-
ilies of expanding complexes, but the degrees are not bounded. The following
question remains, to our knowledge, still open.

Question. Can we explicitly construct a family of expanders of dimension
greater than 1 that is of bounded degree?

Inspired by the construction using property (T), we can ask whether alge-
braic properties of a group can be used to prove the expansion of higher dimen-
sional complexes associated to the group, such as the presentation complexe or
the Cayley complex. However, the theory of high dimensional expanders has
been mostly developed for simplicial complexes and these associated complexes
are, at best, polygonal complexes, at worst, CW complexes. This reflection
leads us to define boundary expansion for CW complexes and to prove that
there is a link between this expansion and the spectrum of Laplacians, in the
same spirit as the Cheeger-Buser inequality, see Theorem [5.1.2] We present
these results in Chapter






CHAPTER 2

Proper actions of the Grigorchuk
groups on CAT(0) cube complexes

2.1 Introduction

CAT(0) cube complexes are nice examples of CAT(0) spaces that share many
similarities with trees. Their combinatoric and geometric properties provide
useful tools to study the large class of groups which admit non-trivial actions
on CAT(0) cube complexes. Group acting on CAT(0) cube complexes were
shown to play an important role in low dimensional topology |11/52,/53}/102] and
in geometric group theory [17,[18}21}80,82.(89}91].

In [40|, Grigorchuk constructed an infinite finitely generated 2-group, now
known as the first Grigorchuk group, and showed that this group has a lot
of exotic properties. Most notably, it is of intermediate growth and hence
amenable, but not elementary amenable. This example was generalized in [41]
to an uncountable family of groups {G, }.ef0,1,2y, the Grigorchuk groups,
that have since generated a lot of research. Grigorchuk groups are defined
by their action by automorphisms on the infinite binary rooted tree. This
action extends naturally to an action by homeomorphisms on the boundary
of the tree. Schreier graphs of stabilizers of points in this action have linear
structure and have proved an important tool in the study of these groups, see
e.g. [5,39,142,/101)

In [90], Sageev showed that if a finitely generated group has a Schreier graph
with more than one end, then one can construct a CAT(0) cube complex on
which the group acts without bounded orbit. The way in which the complex
and the action are constructed is explicitly described.

It is well known that Grigorchuk groups have Schreier graphs with 2 ends
and hence it is tempting to apply Sageev’s construction and to investigate the
complex that it gives and the action of G, on it for different sequences w. Recall
that the groups G, are not quasi-isometric and may have different algebraic
and geometric properties, for example, being torsion’s groups or not. Following
Sageev’s method, we are able to construct a complex X, on which the group
G., acts for each sequence w. It turns out that these complexes are isometric for
all w. In this paper we present a different approach by constructing a unique
CAT(0) cube complex X (isometric to the X,,) on which all G, act without
bounded orbit, see Theorem |2.4.3
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Moreover, we can strengthen this result for an uncountable subfamily of
groups G, including the self-similar examples G2y~ (the first Grigorchuk
group which is an infinite 2-group) and Gg1y~ (which has an element of infinite
order), by proving that the actions of these groups on X are faithful and proper,
see Theorem Here, an action is called proper if the cubes’ stabilizers
are all finite.

All Grigorchuk groups G, are amenable and therefore have the Haagerup
property [8]. It is known that groups with the Haagerup property satisfy the
Baum-Connes conjecture [56]. Recall that this conjecture links the K-homology
of the classifying space of proper actions of a group G and the K-theory of its
reduced C*-algebra by conjecturing that the assembly map p; : RKE (EG) —
K;(Cx(G)) is an isomorphism for ¢ = 0,1, see [99]. Even if the conjecture
is proved for a particular group, it is interesting to be able to explicit the
isomorphisms p;. For this, we need a model for the classifying space of proper
actions EG. The Theorem shows that the complex X gives such a model
for all the groups G, whose action on X is proper.

2.2 Definitions

CAT(0) cube complexes

A cube complex is a space obtained by gluing, via isometries, euclidean cubes
with edges of length one. This space can be equipped with a metric induced
by that of the cubes. A result of Gromov (see [13| Theorem II.5.20] for the
finite dimension and [62, Theorem 40] for the general case), ensures that if the
complex is simply connected and if the link of each cube does not contain the
boundary of a triangle which is not ﬁlle(ﬂ, then the metric verifies the CAT(0)
condition. Recall that the link associated to an n cube C' in a cube complex
is the simplicial complex defined as follows. The vertices are the n + 1 cubes
whose boundary contains C'. A pair of vertices in the link are joined by an edge
if the two corresponding n 4 1 cubes are in the boundary of a common n + 2
cube. If the resulting 1-complex contains a triangle appears, we fill it if the 3
vertices that form the triangle are in the boundary of a common n + 3 cube. If
the boundary of a k-simplex appears, we fill it if the k 4+ 1 vertices that form
the simplex are in the boundary of a n + k 4+ 1 cube.

A key feature of CAT(0) cube complexes is the existence of hyperplanes.
Two edges are said equivalent if they are the opposite sides of a square. An
equivalent class of edges is a hyperplane. It is also possible to define hyperplanes
in a more geometrical way, as the codimension-1 subspace spanned by the
midpoints of the edges. In the case of a CAT(0) cube complex, hyperplanes
are also CAT(0) cube complexes which split the complex into exactly two
connected components called half-spaces, see |90] for details.

Grigorchuk groups

Let 75 denote the infinite binary rooted tree. The vertices of this tree can be
described as (finite) binary sequences, see Figure

ISometimes, this condition is formulated as: the link of each vertex does not contain the
boundary of a simplex which is not filled. These two conditions are equivalent.
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Figure 2.1: The first levels of 7o

Definition 2.2.1. Let w = wjwsy... be an infinite sequence in {0, 1,2}*.
Denote by o the shift on the space {0, 1,2}°°. The group G, is the subgroup of
the automorphisms group of 75 generated by the automorphisms a, by, ¢, d,,
where,

a(0z) =1z and a(lx) =0z

for all binary sequences x and

_ ) 0a(x) ifw #2 B
b, (0x) = {Ox o — 2 by (1x) = 1bgy, ()

¢ (0x) = {Oa,(x) ifw #1 cw(lx) = legy, ()

Ox fw =1

4, (0) = {gz(a:) i zi ig d,(12) = 1dy(z).

The actions of these generators can be represented graphically, see Fig-
ure [2.2)

Let v be a vertex of the n'® level of the tree, we can look at the action of an
element g € G, on the subtree rooted at v. This subtree is isometric to 73 and
then, we can define a new automorphism, which is an element of G,n,,. This
automorphism is called the restriction of g on v and is denoted by g, .

An element g stabilizes the n'" level if g(v) = v for every v on the n'h level.
The subgroup of all such elements in G,, is Stab,,(n), the stabilizer of the n
level. For an element g in Stab,, (1), we denote by (go, g1) the two restrictions
of g on the two subtrees rooted at the first level. If g does not stabilize the
first level, we can still write it as a(go, g1). We refer the reader to the section
VII of [27] and [43] for a detailed general exposition of these concepts.
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1 wlii

Figure 2.2: The actions of the generators, where I’ = { .
a wiFi

2.3 Construction of the cube complex X

The graph I’

The action of G, can be extended to 972, the boundary of the tree. The points
of the boundary 97 of the tree can be seen as one-sided binary sequences.
Consider the orbit of 0°° and define I',, as the graph with G,0° as vertices and
{(g0°°,590%) : g € G,,, s € {a,by,cy,dy}} as edges. This is the orbital graph
of the action of G, on 0°°. These graphs are not isomorphic if we look at them
as labelle(ﬂ graphs, but the underlying unlabelled graphs are the same.

Proposition 2.3.1. The vertices of the graphs I',, are exactly the infinite se-
quences with a finite number of 1. Moreover all the T, are equal as unlabelled
graphs.

Proof. These facts are proved in 73| for the orbital graph of 1°°, but the proofs
can be translated for our case directly. O

We will denote by I' the underlying unlabelled graph and by V(T') its set
of vertices.

The cube complex X

We begin by defining a huge cube complex X with an action of G, on it. This

space is not CAT(0) and the actions do not preserve the connected components

in general. However, each connected component is a CAT(0) cube complex.
The set V of vertices of X, is the set of the 2-coloring of vertices of T, i.e.

V={v: V() = Z/2Z} = (2/22)" ") .

2By labelled graph we mean a graph with edges labelled by generators {a,bs, cw,dw}
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Figure 2.3: Some examples of graphs I', and the graph I'. The red edges are
labelled by a, the blue by b,,, the green by ¢, and the orange by d,,.

A vertex v € V can be seen as a subset of vertices of I' whose image is equal
to 1. This set is called the support of v.

We provide V with a graph structure by adding an edge between two vertices
v and w if and only if the symmetric difference of their support contains exactly
one element, or in other words, if they are equal on all the vertices except one.
Such an edge is labelled by the vertex of I' on which the two functions differ.
The neighborhood of a vertex v is all the vertices of the form v+ d,, for x € T,

where
1 z=y
Ou =
(y) {0 vty

We can further add the higher dimensional cubes inductively. Whenever the
boundary of a square appears, we fill it. After filling all the squares, we do the
same for the cubes, then for the cubes of dimension 4, etc. In short, we add a
n-cube at each appearance of its boundary. The resulting space is called X.

The combinatorial structure of the cubes of X can be explicitly described.
A subset {z1,...,2,} of V(T') and a coloring v of V(T") define a unique n cube
in X whose vertices are the colorings which differ from the coloring v only
on vertices in {z1,...,z,}. We will denote this cube by € (v, z1,za,...,z,).
Every cube of X can be described in this way. The Figure illustrates this
characterization with an example.

As V/(T) is infinite, the set V, which is equal to (Z/2Z)V ()| is uncountable.
Moreover, X is of infinite dimension, is not locally finite and is not connected.
Indeed, there is no finite path between two vertices (= colorings) which differ on
an infinite number of vertices of I'. However, it turns out that each connected
component of X is a CAT(0) cube complex.

Proposition 2.3.2. Each connected component of X is a CAT(0) cube com-
plex.
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VA4 0g, + 0py + 0ay

U+ Oy

. 5,

b U+ O,

Figure 2.4: The 3-cube € (v, z1,x2,x3).

Proof. Let Y be a connected component of X. To prove that this component
is a CAT(0) complex, we will verify that it is simply connected and that the
link of each cell does not contain the boundary of a triangle which is not filled.

Let v be a closed path passing through the vertices vy, vs,...,v, of Y.
By the description of a neighborhood, there exist z1,...,z,, some vertices of
I, such that v; = v;—1 + 8, for ¢ = 2,...,n and v; = v, + d,,. Using the
description of cubes above, all these vertices are vertices of a cube of dimension
at most n and thus +y is contractible.

Let C be an n-cube of Y and let Cy,Cy and C3 be (n + 1)-cubes which
form a triangle in the link of C. By definition of the link, C' is in the boundary
of the cubes C7, Cy and C3. Using the characterization of the cubes above, if
C =%(v,21,...,T,), there exist o}, z}, 25, some different vertices of T', such
that C; = €(v,21,...,2n,2;). If we consider € (v,x1,...,xn, 2}, xh,25), we
can see that it is a (n + 3)-cube of Y which contains Cy,Cy and C3 on its
boundary. Then, the triangle in the link is filled. O

Using the action of a group g, on the orbit of 0>, we define an action of
G, onV:
(9v)(z) = v(g~'x)

for a vertex v of V, an element g of G, and a vertex x of I'. This action can
be extended to an action on X which preserves the structure of cube complex.
Generally, it is not true that the connected components of X are preserved by
the action. For example, consider the vertex v of X which colors in black the
set L composed of the vertices of I' which are left ends of edges labelled by a
and only these ones. Then, av will color in black the complement of L in V(T")
and the distance between v and av will be infinite.

The CAT(0) cube complex X.

We will now show that a particular connected component of X is preserved
under the action of G,. Let I' be the set of vertices of I' including 0°° and all
the vertices on the right side of it, see Figure The vertices of I'} can be
described in an explicit way as follows,
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11010 110°° 010 0°° 10 1010°°

Figure 2.5: The black vertices are elements of I'

Proposition 2.3.3. The set 'y consists of 0°° and all the vertices of the form
T =212y ..., 0% with x, =1 and n odd.

Proof. Let us begin by an observation. Given any element x of {0,1}*°, a
generator s of G,, can only acts non-trivially in two ways:

« flip the first digit of = (if s = a)
« flip the digit after the first apparition of 0 (if s € {b,, cw,dw})

It is straightforward to see that these two moves do not change the parity of
the position of the last 1, except for 0>° and 10°°. We constructed I" in a way
to have 10°° on the right of 0°°, and then, the parity of the position of the last
1 is the same as for 10°° for all the other vertices on the right of 0°°. O

Definition 2.3.4. The cube complex X is the connected component of X
which contains the vertex vg:

1 z€ ].—‘+
wo(e) = xr, (z) = {0 g
We denote by V the set of vertices of X. Let us show that the CAT(0) cube
complex X is preserved by the action of every G,,.

Proposition 2.3.5. Let v be a vertex of X and g an element of G,,. Then gv
is a vertex of X.

Proof. By the construction of V, it is sufficient to prove that 'y AgQQ is finite,
where (2 is the support of v.

The first thing to show is that 'y Agl', is finite for every g. Let Y =
Fi\gl'y ={zeT:x el and gz ¢ T }. If n is the length of g with respect
to the standard generating set, a vertex z in Y must be at distance at most
n of I' in the graph I'. As this graph is locally finite, Y is necessarily finite.
Similarly gT'y \ 'y is finite and so I'y Agl', is also finite.

We need the following property of symmetric differences. Let A, B,C be
three sets. If | AAB| and |BAC)| are finite, then |[AAC) is finite.

The set ' Agl' is finite by the first part of the proof. The action of G,
preserves the size of the subsets of T, then |gT'y AgQY| = |g(T+AQ)| = |[TLAQ]
which is finite because vy and v are connected. Combining these equalities and
using the property above, we prove that |['AgQ| is finite. O
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v+ 8, V40 + 0, —— v+ 05 + 0z, + 0, w + Oy
e f
V———— V40 ———————— U+ 0y, + 0, w

Figure 2.6: In bold, the sequence of equivalent edges between e and f

Corollary 2.3.6. The action G, ™~ X can be restricted to an action G, X,
for every w € {0,1,2}°.

Remark 2.3.7. To find this invariant connected component, it is crucial to have
a Schreier graph that has at least 2 ends. Indeed, this allows us to construct
this function whose support cannot be moved too much by the action of the
group. Such a set is sometimes called a commensurated subset, [24].

We next describe the hyperplanes of X and understand the induced action
of the groups G, on the set $H(X) of hyperplanes of X.

Proposition 2.3.8. There exists a bijection ¢ : T' — H(X). More precisely,
a hyperplane is composed of all the edges with the same label x, where x is a
verter of T'.

Proof. We will show that for each hyperplane h there exists a vertex = in '
such that the edges forming h are exactly those labelled by z. It follows directly
from the description of the squares, see Figure[2.4] that two opposite sides have
the same label. Now let e and f be two edges with the same label . We denote
by v (resp. by w) the vertex of X which is the endpoint of e (resp. of f) such
that v(x) = 0 (resp. w(z) =0 ). The complex is connected, hence there exists
a path from v to w and we can construct a sequence of adjacent squares, see
Figure 2.6} and then v and w are on the same hyperplane. O

Proposition 2.3.9. The action G, ~ X induces an action G, ~ $H(X) which
is transitive, for every w.

Proof. Using the previous proposition, each hyperplane can be labelled by a
vertex x of I' and this is why we will denote them by h,. A hyperplane b,
splits X' into 2 half-spaces h2 and bl:
B ={veV:v(x) =0}
bl ={veVv:v@) =1}
Let g be an element of G, and v a vertex in h0. As (gv)(gz) = v(x) = 0, then
gv is in b . Similarly, gv is in by, for each v in h;. These images of half
spaces lead us to define the induced action G, ~ H(X) as

gbw = bg:v~

The proof of transitivity follows directly from the definition of the action and
the transitivity of G, ~ T'. O
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Remark 2.3.10. Recall that hyperplanes split CAT(0) cube complexes into two
connected components. The action of G, cannot swap these components de-
limited by a hyperplane. Indeed, for every g in G, there exist vertices v and w
in h2 such that v(gz) = 0 and w(gz) = 1 and then gh? ¢ hl.

2.4 Properties of the action of G, on X

In this section we will prove our main results. Namely, we will first show that
every action G,, ~ X has no bounded orbit. Then, we will prove that this
action is also proper and faithful for an uncountable subfamily of groups G,.

Bounded orbits and fixed points
The proofs of this section are inspired by [81].

Proposition 2.4.1. Let w be a sequence in {0,1,2}°°. Then, the action G,
X does not fix any vertez.

Proof. Suppose by contradiction that there exists a vertex v of X which is fixed
by the action of G,,. We will show that then I'y or I'Y. has to be finite which
is obviously not the case.

Suppose that v(0°°) = 0. Then for every g in G,,, we have

gv =v = v(g~10%) = v(0>°) = 0.

As the action of G,, on the vertices of I is transitive, v(z) = 0 for every vertex
x of I'. The distance between v and vg is equal to the size of the symmetric
difference between supp v and supp vg. As v is a vertex of V, this distance must
be finite and then supp vy, which is equal to I';, must be finite.

In the same way, if v(0°°) = 1, then v(z) = 1 for every vertex of I" and,
therefore, I'Y is finite. O

Proposition 2.4.2. Let w be a sequence in {0,1,2}°°. If the action G, ~ X
has a bounded orbit, then G, fizes a vertex of X.

Proof. We want to show that every bounded orbit has a center which will be
a fixed point. The cube complex X is not locally finite and is therefore not a
complete metric space. Then, the existence of such a center can not be proved
using the usual general results and finding this point requires some work. To
do this, we will embed & in a Hilbert space, where every bounded orbit has a
center, and prove that this point comes from a vertex of X.

We consider the Hilbert space of square summable functions on the vertices
of I':

AVI)={¢:T - R: Z o(r)? < 0o}

zeV(T)
The set V of vertices of X is also a set of functions on the vertices of I' and
can be embedded isometrically in ¢2(V(T)) via
p:V— V(D))
V> Py
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where vy is the vertex defined in Definition 2:3.4] and

2 = 1 if vo(z) # v(x)
po(®) {0 if vo(z) = v(x)

We define the action G, ~ £2(V(T)) as

(ggo)(x) _ (p(g_lx) if ’Uo(g_l.’ll) :’Uo(.’II)
1— (g 'a) if vo(g~'w) # vo(x)
for every g € G, ¢ € £2(V(I')) and = € T. It can be checked that this action
is compatible with the action G, ~ V, in the sense that gp, = pge.

A bounded set of a Hilbert space has a unique center, see [9, Lemma 2.2.7].
Suppose that there exists a bounded orbit in X'. The embedding p sends this
orbit to a bounded orbit in ¢2(V (")) of which the center c is a fixed point. We
claim that, as the action of G, on the vertices I is transitive, this function ¢
can only take values in {0,1}. Indeed, for every pair = and y of vertices of
I, there exists an element g of G, such that g~ 'z = y. If vo(x) = vo(y), the
equality ¢(x) = ge(x) implies that c(x) = c(y). If vo(x) # vo(y), then

c(z) = ge(w) =1 —c(g™'w) = 1 - c(y).

In the same way, we can show that ¢(y) = 1 —¢(x) and then ¢(z) and c(y) take
values only in {0, 1}.

By the definition of £2(V/(T')), all but finitely many values of ¢ must be equal
to 0. Then, using the definition of p, the point ¢ is the image of the vertex of
X which is equal to vy everywhere except on the vertices of I' where c is equal
to 1. O

The two previous propositions imply the following theorem.

Theorem 2.4.3. Let w be a sequence in {0,1,2}°°. Then, the action G, ~ X
does not have a bounded orbit for every w.

Remark 2.4.4. We can ask if it is possible to construct an action of G, without
bounded orbit on a CAT(0) cube complex of finite dimension, or at least of
locally finite dimension. A negative answer can be given for the groups G,
whose sequences w contain an infinity of 0,1 and 2. Such groups are 2-groups,
see [41], and Genevois proved that they can not act on smaller CAT(0) cube
complexes without bounded orbit.

Theorem 2.4.5 ( [34]). Let G be a group acting on a CAT(0) cube complex X .
Assume that there is a finite number of orbits of hyperplanes and that X does
not contain an Hilbert cubeﬂ. If the action is purely periodic, i.e. every element
g defines a periodic isometry of X, then G stabilises a finite dimensional cube.

3A Hilbert cube is the product of countably infinitely many copies of intervals [0, 1]™
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Properness and Faithfulness

In this section, we will consider the subfamily of Grigorchuk groups G, which
are indexed by sequences w in {0, 1,2} without repetition, i.e. w; # w;11 for
every ¢, and prove that their action on X is proper and faithful. This subfamily
contains uncountably many groups.

The idea of the proof is to show that stabilizing a subset of vertices of I is
a strong condition and only few elements of G, succeed. We will decompose
this proof into different steps. Firstly, we will compute the stabilizers of two
particular subsets of V(I'). Secondly, we will show that the stabilizer of a
subset of vertices of I' which has a finite symmetric difference with the two
particular subsets, is also finite. Finally, we will explain how these stabilizers
of subsets can be related with the stabilizers of the cubes of X.

Let us begin by defining precisely the notion of stabilizer of a subset of
V(T') and the 2 particular subsets that we will study.

Definition 2.4.6. Let 2 C V(I') be a subset of vertices of I and G,, a Grig-
orchuk group. The stabilizer of € for the action of G, ~ X is

Stab,, () = {g € G, : gQ = Q}.

Definition 2.4.7. Two particular subsets of V(T') that we will study are 'y,
which we have already described above, and I'y =T'; \ {0%°}.

The following lemma explains the behavior of the vertices of I' between
these two subsets when we add a digit at the beginning of their binary writing.

Lemma 2.4.8. Let x be a vertex of I'. Then
. mel"+(:)0:1c€fﬁr.
e zel o 0rel,.
. xeFiélmeﬁ,
e zel, &0z ele.
e zel, olzels.
. xefﬁr@OxeFJr.
e zelt & lrel,.

Proof. We proved in Proposition[2.3:3]that I';. can be fully described by looking
at the parity of the position of the last digit 1. This allows us to give the
following descriptions:

'y ={0*}U{z122... 22,410}
'Y ={z122... 22,0}

f+ ={x129... 22,410}

TS = {07} Uf{aias ... 22,07}

where every last x; is equal to 1. Every point of the lemma can be proved by
direct computations using these descriptions. O
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We will study the restrictions of elements of Stab,,(I'y) and Stab,,(I';.) on
the first level of the tree.

Lemma 2.4.9. Let w be a sequence in {0,1,2}°° and g an element of G,,.

1. If g stabilizes the first level of the tree and g € Stab,(I'y), then go, g1 €
Stabgw(F_,_).

2. If g stabilizes the first level of the tree and g € Stabw(f+), then gy €
Stabg, (I'+) and g1 € Stab,, (1) N Stabgy, (T'y).

3. If g does not stabilize the first level of the tree and g € Stabw(f+), then
go, 91 € Stabgw (F+) N Stabgw (F+)

Proof. Let’s start by noting that an element g is in Stab,, (I'y ) (resp. Stab,,(I'y))

if and only if it is in Stab,,(I'¢.) (resp. Stab,,(I'%.)). The proof is an application
of Lemma 2.4.8

1. Let g be an element of Stab,,(I's) which stabilizes the first level of the
tree. Then,

T € f+ = 0z eI
= g(0z) e 'Y
= 0go(x) € I'S
= go(x) € f‘+
= go € Stabgw(f+),

T € fi =lrely
= g(lz) e 'y
= 191(117) el
= gi1(x) € fﬁ_
=g € Stabgw(f+),
2. Let g be an element of Stab,, (er) which stabilizes the first level of the
tree. Then,
rel =0rely
= g(0z) e T
= Ogo(z) € T4
= go(x) € T
= qo € Stabgw(l—‘+),

T € er = lz € fﬁr
= g(lz) € fi
= 1g1(x) € TS
= gi(x) €Ty
= g1 € Stabyw(I'y),
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= lx € f+

= g(lz) el

= lgi(x) € Ty

= q1(z) € T

= g1 € Staby,(T'4).

3. Let g be an element of Stab,, (f+) which does not stabilize the first level

of the tree. Then,

.’L'EF+

= 0z eT¢

= g(0x) € fﬁr

= 1go(z) € T<

= go(z) €Ty C Ty
= go € Stabg,, (T'y),

relycly=0rels

C
zelq

Tc
zelq

= g(0z) € fi

= 1lgo(z) € fi_

= go(z) €T

= qgo € Stabgw(ﬁ),

= lx e f+

= g(lz) e Ty

= Og1(z) €T

= gi(x) € TG

= g1 € Stabg,, (T'4),

=lzel,

= g(lz) e Ty

= 0gy(x) € Ty
= q(z) € fi

=g € Stabgw(er).

O

We recall the following classical lemma which gives an estimate of the size
of restrictions of an element which fixes the first level of the tree.
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Lemma 2.4.10. Let w be a sequence in {0,1,2}*° and g an element of G,
which stabilizes the first level of the tree. Then,

I(g)+1

l(gi) < 5

1=1,2
where 1(g) is the length of g with respect to the corresponding generating set.
Proof. Tt is a straightforward generalization of [27, Lemma VIII.46]. O

We can now compute explicitly the stabilizers of ', and f+.
Proposition 2.4.11. Let w be a sequence without repetition. Then,

Stabw (F+) = <CL, Uw71> = D8
Staby, (T'4) = (by, ¢u, dy) = Z/27 x Z./27Z

where uy, 1 is the generator in {by, ¢y, dy,} such that u,, 10°° = 0°°, or explicitly,

bw (JJ1:2
Uy1 =4 C w1 =1.
dw OJ1:0

Proof. We will proceed by induction on the length of the elements of the group
in parallel for the 2 parts of the proposition and all the sequences w without
repetition.

Let us begin by some notations. We denote by wu,, the generator in
{bw, Cw, dy} such that u, ,170%° = 170, or explicitly,

by wWnp =2
Uy = Cw Wp=1.

d, wp=0

For the initial step, we verify the statements by hand for the elements of length
smaller or equal to 2. It is clear that (a,u, 1) C Stab, (') and (b, cw, dw) C
Stab,, (er) For all the other elements, an example of a vertex that comes out
of the sets is given in Figure

We now suppose that, for a fixed integer n > 3 and all the admissible
sequences w, all the elements of length at most n are in the desired subgroups.
Recall that the stabilizer of the first level of the tree has an explicit generating
set:

Stab,, (1) = (by, Cw, dw, abya, acya, ady,a).

The restrictions of these generators are

b = (I3, b0.)
Cw = (Iolmcow)
dw (It?)’do'w)
abya = (bgw, I2)
ac,a = (Couw, I1)
adya = (dgg,, I9)
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(a) The neighborhood of 0 on the graph T..

010

Uw,10T Uy, 2 is denoted by wu.
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1010

The third generator which is not

a 10*°
Ug,2 0°° a1 | 1010°%°
w 0> AUy 2 10
Qg 2 (I aw 1010°°
aw 0> Uy, 10 | 10%°
Ugyoa | 10%° Uy 20 10%°
wa 10%° wa 10°°

(c) For every element of G, of
length smaller to 2 of G, which is
not in (uw,1, Uw,2, u), we exhibit a

(b) For every element of G, of
length smaller to 2 which is not
n {(a, uw,1), we exhibit a vertex of

I'y whose image is in 'S . vertex of I'y whose image is in I'§ .

Figure 2.7: Initial step for the elements of small length.

Let g be an element of G, of length n + 1. We note that if o is a sequence
without repetition, ow is also. There are 3 cases to prove.

1. If g is in Stab,(I'y). We notice that g is in Stab,(T';) if and only if ag
also is. By supposing that g can be of length n + 2, we can assume that
g stabilizes the first level of the tree. By Lemmas 2.4.9] and 2.4.10} go
and g; are of length at most n and are in Stab,,,(I'y). Using induction’s
hypothesis, go and ¢1 are in (b, Cow, dow ). As the restriction go does not
contain the generator a in its writing, the element g can only contain the
generator u, 1 of the set {b,, c,,d,}. In the same way, the restriction g
does not contain the generator a and then the element g can only contain
the generator au, ja of the set {ab,a,ac,a,ad,a}. Therefore, g is in
(Ug 1, QU 1a), but we may have multiply g by a, then ¢ is in (a, uy 1)-

2. If g is in Stab,,(I';) and stabilizes the first level. Combining Lem-
mas and the restriction go is in (a, Ugy,1) and the restriction
g1 1s in (Upw,1). The form of gy allows the element g to contain only
the generator auy, 2a of the set {abyw,a, acoy,a, ady,a} because this is the
only one which projects on u4,1. The restriction g; does not contain the
generator a, then the element g can only contain the element au,, ia of
{abowa, acsua, adywa}. As w1 # wo, the element au,, 16 is not equal to
the element au,, 20 and then g is in (b, ¢y, dw).

3. If g is in Stab,(I';) and does not stabilize the first level. Once
again by combining Lemmas [2.4.9 and [2.4.10] the restrictions go and g;
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are in (Ugye,1). The form of gy allows only the generators {u 1,au, 2}
and ¢ only the generators {u, 2,au, 1}. As w1 # wa, these generators
are different and then g is equal to 1.

For the explicit isomorphisms, it is left to the reader to generalize the case
of G012y~ proved in [27, VIIL.B.10] and [27, VIIL.B.16]. O

The second step of the proof is to show that it is also difficult to stabilize
subsets which differ only on a finite number of vertices with I';.

Proposition 2.4.12. Let w be a sequence without repetition and 2 a subset of
vertices of T such that QAT is finite. Then Stab,, () is finite.

Proof. We denote by A the symmetric difference QAI'y. This is a finite set,
therefore there exists an even integer n such that, for every x in A, there exists
a2’ € {0,1}™ such that x = 2'0°.

Let x be an arbitrary prefix of length n such that z0° is an element of 2
and let y be an element of {0,1}°°. We claim that

zy € Qifand only if y € I'y.

The claim is trivial if y = 0°°. Now, let us assume that y is not equal to
0°°. As the length of z is even, the parities of the positions of the last 1 of y
and of zy are equal. Then y is in 'y if and only if 2y is also in I';.. Moreover,
the element zy is in € if and only if zy is in I';.. Indeed, all the elements of the
symmetric difference A have a prefix of length shorter or equal than n which
is not the case of xy as y is not equal to 0°°. The claim is therefore true.

In the same way, let = be a prefix of length n such that z0° is not an
element of Q and let y be an element of {0,1}°°, we claim that

zy € Qif and only if y € f+.

Let K = Stab,, (£2) N Stab,,(n) be the subgroup of elements which stabilizes
Q) as well as the n'® level of the tree. For every vertex z of the n'" level of the
tree and every element g of K, the restriction g, is an element of Stabgsn, (T4 )U

Stabgne (I'4).
Indeed, if 20 is in €2, the following equivalences are true for all y € I'y:

yely ©aye
< g(zy) €
& 29, (y) € Q
<:>g:c(y) ely

and then g, is in Stabyn,(I'1). In the same way, if 0% is not in Q:
Yy e ﬂ_ Sy e

< g(ry) € Q
< xg.(y) € Q

< g.(y) € er
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and then g, is in Stabanw(f+). Therefore, we can define the following embed-
ding:
K< ] (Stabgnw(I‘Jr) U Stabanw(f+)) .
ve{0,1}n

We proved in Proposition [2.4.11|that Stabyn,, (I'4) and Stabgny,(I'y) are finite
and then K is also finite. As K is a subgroup of Stab,,(€2) of index at most 2",
the stabilizer is finite. O

Corollary 2.4.13. Let w be a sequence without repetition, v a vertexr of X
with a support A and n an even integer such that the prefizes of the elements
of AAT' 1 are at most of length n. Then,

| Staby, (v)| < 8-4-4"

Proof. 1t is a direct computation using the embedding above, the cardinals of
Dg and Z/2Z x Z./2Z and [G,,, Stab,(n)] = 2™. O

We can now relate these stabilizers of subsets and the stabilizers of the
cubes of X.

Proposition 2.4.14. Let w be a sequence without repetition, then Stab, (C) =
{g € G, : gC = C} is finite for every cube C of X.

Proof. We begin by the case of the vertices.
Let v be a vertex of X. Let us denote by 2 C I' the support of v. It is
straightforward that
Stab,, (v) = Stab,, (Q).

The vertex v is in the connected cube X, then the symmetric QAL is finite
and then Stab,, () is finite by Proposition Now, we will show that
every n-cube has also finite stabilizer.

Let us suppose by contradiction that there exists an n-cube C' with an
infinite stabilizer. The elements of this stabilizer send vertices of C' to vertices
of C. We pick a vertex v on the boundary of the cube and we consider its orbit
by the action of Stab,(C). As this subgroup is infinite, there is at least one
vertex w of C, which is reached infinitely many times. We define the set K as

K = {g € Stab,,(C) : g.v = w}.
It is infinite by the choose of w. For an element g of K, the subset K¢~ ! is

in Stab,(w) and is therefore infinite, which is a contradiction with Proposi-
tion [2.4.12 O

‘We can now prove the main theorem of this section.

Theorem 2.4.15. Let w be an element of {0, 1,2}>° without repetition. Then
the action of G, on X is proper and faithful.

Proof. The properness is a consequence of Proposition
To prove that the action is faithful, we need to show that

mStabw(Q) = m Stab,, (v) = {1}.
Qcv (D) vey
|QAV(T)| <00
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By Proposition [2.4.11] the intersection Stab,,(I') NStab,, (I'1.) = {1, d,}. More-
over, d,, does not stabilize I'; \ {0°°,1010°°} because d,,101°° = 10°°. Then,
the intersection above is trivial. O

We can further refine the description of the stabilizers.

Proposition 2.4.16. Let w be a sequence without repetition and H be a finite
subgroup of G.,. Then, there exists a vertex v of X such that H < Stab,,(v).

Proof. We consider the subset A C I" defined as

A= ATy

heH

In the proof of Proposition we showed that the symmetric difference
'y Ag.T'y is always finite and so is AAT'y. Therefore, the vertex v = y, is a
vertex of X' and , as hA = A, it is stabilized by H. O

Corollary 2.4.17. Let w be a sequence without repetition. The stabilizers of
the vertices of X are arbitrarily large.

Proof. The order of the elements of G, is not bounded, then there exist finite
arbitrarily large finite subgroups in G,. By the previous proposition, we can
also find arbitrarily large stabilizers of vertices. O

2.5 Classifying space of proper actions

Definition 2.5.1. A classifying space of proper actions of a group G, denoted
by EG, is a topological space which admits a proper G-action and with the
following property: if X is any space with a proper G-action, then there exists
a G-equivariant map f : X — EG and any two G-equivariant maps X — EG
admit a G-equivariant homotopie between them.

As proved in Theorem the cube complex X is a topological space
which admits a proper G,-action if w does not contain repetition. We will show
that it satisfies the property above.

Theorem 2.5.2. Let w € {0,1,2}* be a sequence without repetition. Then
the CAT(0) cube complex X is a model for EG, the classifying space of proper
actions of G,.

Proof. We use the reformulation of the universality definition proved in |7, Prop
1.8]. Applied to our situation, it means that in order to prove that CAT(0)
cube complex is a model for EG,,, it is enough to verify the following two points.

1. If H is a finite subgroup of G, then there exists a point = in A which is
fixed by H.

2. View X' x X as a space endowed with the usual diagonal action g(xg, 1) =
(gzo, gz1). Denote by pg,p1 : X x X — X the two projections on each
component, then there exists a G-equivariant homotopie between py and

P1-
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The first point is a consequence of Proposition [2.:4.16] For the second one, we
define the following homotopy

h((xg,x1),t) = teg + (1 — t)z1.

This is well-defined as X is convex. O

2.6 Further directions of research

A group action G ~ X of a group G on a metric space X is called metrically
proper if d(z,gnx) — oo for every infinite family {g,} of elements of G and
every point x in X. This property is strictly stronger than the definition of
proper action used above if the space X is not locally compact. For example,
consider the Cayley graph of a free group generated by a countable infinite
family of generators and the canonical associated action of the group on it. All
the stabilizers are trivial hence the action is proper, but all the generators send
the identity at distance 1 and so it is not metrically proper. We don’t know if
the actions G, ~ X are metrically proper.

Question 2.6.1. Are there any sequences w for which the action of G, on X
is metrically proper?

Our intuition tells us that this is the case for the groups G, where the
action is proper. A positive answer will give an elegant proof of the Haagerup
property for these groups by [21]. This property is known for all Grigorchuk
groups using the fact that they have subexponential growth, whereas here we
would have a more elementary proof.

It is not clear to us if the condition on the sequence w appearing in Theo-
rem [2.4.15]is purely technical or if it reflects a real difference in the behavior
of actions. Indeed, we had never seen a condition of this type appear before
in the study of Grigorchuk groups. It would be interesting to study the ac-
tions of the groups whose sequences have repetitions and to see if these are
proper. However, it seems to us that the proof presented above is unlikely to
be generalized to these cases.

Question 2.6.2. Are the actions of the groups G,, proper if the sequence w has
a repetition?

On Remark 2:4.4] we explain why the groups G,, which are 2-groups can
not act without bounded orbit on a CAT(0) cube complex of locally finite
dimension. However, we do not know any obstruction of the existence of such
an action for groups with elements of infinite order.

Question 2.6.3. Let G, a group which contains an element of infinite order.
Is it possible to construct an action of G, on a CAT(0) cube complex of (locally)
finite dimension without bounded orbit?

There are several notions of boundaries of a CAT(0) cube complex, like
the simplicial boundary [50,/51], the Roller boundary [89] and the Poisson-
Furstenberg boundary [32,33]/78]. An interesting question would be to study
of the actions we have built on these boundaries and to understand what can
be deduced from it.
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Question 2.6.4. Is it possible to understand the action of G, on the boundaries
of X?

Grigorchuk groups are examples of branch groups [6]. There are other
classes of branch groups which share properties used in the construction of X’
and tools used in the proof (Schreier graph with more than one end, restriction
of the action on the subtrees, reduction lemma, etc).

Question 2.6.5. Is it possible to do the same construction for other finitely
generated branch groups with a Schreier graph with at least 2 ends to obtain an
action without bounded orbit, faithful, proper on a CAT(0) cube complex?



CHAPTER 3

Property FW and wreath products
of groups: a simple approach using
Schreier graphs

3.1 Introduction

Property FW is a group property that is (for discrete groups) a weakening of the
celebrated Kazdhan'’s property (T). It was introduced by Barnhill and Chatterji
in [4]. It is a fixed point property for actions on wall spaces or, equivalently,
on CAT(0) cube complexes. Therefore it stands between property FH (fixed
points on Hilbert spaces, equivalent to property (T) for discrete groups) and
property FA (fixed points on arbresED. It is known that all these properties are
different, see |24] for examples of groups that distinguish them.

When working with group properties, it is natural to ask if they are stable
under “natural” group operations. One such operation, of great use in geomet-
ric group theory, is the wreath product, that generalizes the direct product of
two groups, see Definition

In the context of properties defined by fixed points of actions, the first
result concerning wreath products is due to Cherix, Martin and Valette and
later refined by Neuhauser and concerns property (T).

Theorem 3.1.1 ( [21}|77]). Let G, H be two discrete groups with G non-trivial
and X a set on which H acts. The wreath product Glx H has property (T) if
and only if G and H have property (T) and X is finite.

In [24] Cornulier studied property FW using cardinal definite functions and
while not explicitly stated in [24], the following result can be extracted from
his work.

Theorem 3.1.2. Let G, H be two finitely generated groups with G non-trivial
and X a set on which H acts with finitely many orbits. The wreath product
G ix H has property FW if and only if G and H have property FW and X is
finite.

1 Arbres is the french word for trees.

29
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The aim of this note is to give an explicit and elementary proof of this fact
using a characterization of property FW via the number of ends of Schreier
graphs, see Subsection for the relevant definitions.

At this point, the curious reader might have two questions. First, is it
possible to extend Theorem [3.1.2]beyond the realms of finitely generated groups
and of actions with finitely many orbits? And secondly, is there a link between
Theorems and In both cases, the answer is yes.

This is the subject of the more technical paper [65], which gives a unified
proof of Theorems and [3.1.2)as well as of similar results for the Bergman’s
property and more.

Organization of the paper The next section contains all the definitions
as well as some examples, while Section is devoted to the proof of Theo-
rem and some related results.

3.2 Definitions and examples

This section contains all the definitions, some standard but useful preliminary
results as well as some examples.

Ends of Schreier graphs and property FW

In what follows, we will always assume that generating sets of groups are sym-
metric, that is we will look at S C G such that s € S if and only if s~ € S.
Our graphs will be undirected and we will sometimes identify a graph with its
vertex set.

Let G be a group with symmetric generating set S, and let X be a non-
empty set endowed with a left action G ~ X. The corresponding (left) orbital
graph Scho (G, X; S) is the graph with vertex set X and with an edge between
z and y for every s in S such that s.x = y.

Definition 3.2.1. Let G be a group, H a subgroup of G and S a symmetric
generating set. The (left) Schreier graph Sch(G, H; S) is the graph with vertices
the left cosets gH = {gh | h € H} and for every {s,s™'} C S an edge between
gH and sgH.

As the notation suggests, these two definitions are two faces of the same
coin. More precisely, Schreier graphs of G = (S) are exactly the orbital
graphs for transitive actions (equivalently: the connected components of or-
bital graphs) of G = (S). The correspondence is given by H — G/H and
g € X — Stabg(xg), where xq is an arbitrary element of X.

Schreier graphs are generalizations of the well-known Cayley graphs, with
Cay(G; S) = Sch(G, {1};5), see Figures and for some examples.

If S and T are two generating sets of G, the graphs Sch(G, H;S) and
Sch(G, H;T) does not need to be isomorphic. However, if both S and T
are finite, then Sch(G, H;S) and Sch(G, H;T) are quasi-isometric, see [27,
IV.B.21.ii] for a proof and Figure for an example. The only fact we
will use about quasi-isometries is that they preserve “large-scale properties”
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of the graph, as for example the number of ends. Observe that the require-
ment that both S and T are finite is crucial for the existence of a quasi-
isometry between the corresponding Schreier graphs. Indeed, for every group
Cay(G;G \ {1}) = Sch(G,{1};G \ {1}) is always a complete graph on |G]|
vertices, in particular Cay(Z; {1}) and Cay(Z;Z\ {0}) are not quasi-isometric.

Figure 3.1: Fragments of two Cayley graphs of Z (2 ends), for the standard
generating set {1} and for the generating set {42, +3}.

Figure 3.2: Fragments of the Cayley graphs of Z? (1 end) on the left and of F}
(infinitely many ends) on the right; with standard generating sets.

Figure 3.3: A fragment of a Schreier graph (with 4 ends) of the free group
Fy = (1 y*1) for the subgroup H = {22, y"zy ", zy"wvy "z~' |n € Z\{0}}.

Let T be a graph and K a finite subset of vertices. The graph I'\ K is the
subgraph of I" obtained by deleting all vertices in K and all edges containing
them. This graph is not necessarily connected.

Definition 3.2.2. Let I' be a graph. The number of ends of I is the supremum,
taken over all finite K, of the number of infinite connected components of I'\ K.

There exist other characterizations of the number of ends in graphs, see [30]
and the references therein, but Definition [3.2:2) is the one that best suits our
purpose. A locally finite graph (i.e. such that every vertex has finite degree)
is finite if and only if it has 0 end.
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An important fact about the number of ends of a graph, is that it is an
invariant of quasi-isometry, see [12]. In particular, if G is a finitely generated
group it is possible to speak about the number of ends of the Schreier graph
Sch(G, H; S) without specifying a particular finite generating set S. By a
celebrated result of Hopf [58], the number of ends of a Cayley graph of a finitely
generated group can only be 0, 1, 2 or infinite (in which case it is uncountable),
see Figures 3] and [3:2] for some examples. On the other hand, Schreier graphs
may have any number of ends in N U {co}, see Figure for an example of a
graph with 4 ends. In fact, every regular graph of even degree is isomorphic to
a Schreier graph, [46,/67).

We are now finally able to introduce property FW. Instead of giving the
original definition in terms of actions on wall spaces, we will use an equivalent
one for finitely generated groups, which essentially follows from [90], see [24]
for a direct proof.

Definition 3.2.3. A finitely generated group G has property FW if all its
Schreier graphs have at most one end.

It directly follows from the definition that all finite groups have prop-
erty FW, but that Z does not have it. In fact, if G is a finitely generated
group with a homomorphism onto Z, then it does not have FW. Indeed, in this
case G = H x Z for some H and the Schreier graph Sch(G, H; S) is isomorphic
to a Cayley graph of Z = G/H and hence has 2 ends.

Property FW admits many distinct characterizations that allow to define it
for groups that are non-necessarily finitely generated and even for topological
groups. We refer the reader to [24] for a survey of these characterizations.

Wreath products

Let X be a set and G a group. We view @ y G as the set of functions from X
to G with finite support:

@G ={p: X = G| ¢(x) =1 for all but finitely many x}.
X

This is naturally a group, where multiplication is taken pointwise.
If H is a group acting on X, then it naturally acts on @ y G by (h.p)(z)
©(h~t.z). This leads to the following standard definition.

Definition 3.2.4. Let G and H be groups and X be a set on which H acts.
The (retricted) wreath product G1x H is the group (P G) x H.

A prominent source of examples of wreath products is the ones of the form
G g H, where H acts on itself by left multiplication. In particular, the group
(Z/27)1z Z is well-known under the name of the lamplighter group. The direct
product G x H corresponds to wreath product over a singleton G i,y H.

Let S be a generating set of G and T a generating set of H. Let {z;};cs be
a choice of a representative in each H-orbit. Finally, let 67 be the element of
P« G defined by 63 (x) = s and 3 (y) = 1¢ if y # « and let 1 be the constant
function with value 1¢. It is a direct computation that

{53, 1) | s€Siely U{L1) [teT)
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is a generating set for Gl1x H.

On the other hand, if {(y;, h;) | @ € I} is a generating set of G 1x H, then
{h; | i € I} is a generating set of H while {p;(z) | ¢ € I,x € X} is a generating
set of G. Observe that since the ¢; take only finitely many values, if I is finite,
sois {p;(z) | i € I,x € X}. We hence recover the following characterization
of the finite generation of G ix H.

Lemma 3.2.5. The group G lx H is finitely generated if and only if both G
and H are finitely generated and H acts on X with finitely many orbits.

Proof. If G1x H is finitely generated, so is its abelianization (G 1x H)* =
(Dx/u G*) x H*", which implies that the orbit set X/H is finite. The other
implications directly follow from the above discussion on generating sets. [

Using the above lemma, we could reformulate Theorem [3.1.2]in the following
way: Let G, H be two groups with G non-trivial and X a set on which H
acts. Suppose that all three of G, H and Glx H are finitely generated. Then
the wreath product G 1x H has property FW if and only if G and H have
property FW and X is finite. While this formulation is formally equivalent to
Theorem [3.1.2] it hints the fact that the finite generation hypothesis on G, H
and Glx H are not necessary, but artefacts of using Schreier graphs in the proof.
Indeed, the result remains true without these hypothesis, see [24, Propositions
5.B.3 & 5.B.4] and [65, Theorem A].

3.3 Proof of the main result

This section is devoted to the proof of Theorem [3.1.2] This proof is split into

two parts: Lemma [3:3.2] and its Corollary [3.3.4] and Lemma [3.3.5]
We begin by an easy result on quotients.

Lemma 3.3.1. Let G be a finitely generated group and H a quotient of G. If
G has FW, then so does H.

Proof. First, remark that if G is generated by a finite symmetric set S, the
group H is generated by the projection of S that we will also denote by S.
Moreover, any generating set of H can be obtained in such a way.

Let K be any subgroup of H and L its preimage in G. As G/L =2 H/K,
forgetting about loops and multiedges, the Schreier graphs Sch(G, L; S) and
Sch(H, K;S) are isomorphic. By assumption on G, the graph Sch(G, L;S)
has at most one end. As adding loops or doubling edges do not change the
number of ends, Sch(H, K;S) has also at most one end, and therefore H has
property FW. O

We also have the following lemma on semi-direct products:

Lemma 3.3.2. Let N and H be two finitely generated groups and N x H a
semi-direct product. Then

1. If N x H has property FW, then so does H,

2. If both N and H have property FW, then N x H also has property F'W.
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Proof. The first part follows from Lemma [3.3.1]

For the second part, let S, respectively T, denote a finite generating set
of N, respectively H. Then the group G = N x H is finitely generated by
U= x{1Hu({1} xT).

Suppose that both N and H have property FW. We want to show that
every Schreier graph of G has at most one end. If they are all finite, then there
is nothing to prove (and G is finite). So let I" be an infinite Schreier graph of G
with respect to the generating set U. The groups N and H act on the vertices
of ' by restriction of the action of G. That is, n.z = (n,1).z and h.x = (1,h).z
for every vertex = of I'. For each vertex x we define T (and respectively T'Y)
as the Schreier graph obtained from the action of H (respectively N) on the
H-orbit (respectively N-orbit) of z. These are subgraphs of I'. As N and H
have property FW, the graphs 'Yl and T')Y are either finite or one-ended; and
we will prove that this implies that I" has exactly one end.

Let K be a finite set of vertices of I'. If x is in K and T'Z is finite, add
all vertices of ' to K. By doing so for every x in K, we obtain a new finite
set K’ D K of vertices of I'. We will show that ' \ K/ has only one infinite
connected component. By definition of K’, if  is not in K’, then either T/
has one end or I'2 does not contain vertices of K'.

Let = and y be two vertices, each of them lying in some infinite connected
component of T'\ K’. We will construct a path from z to y in '\ K’ as
a concatenation of three smaller paths, see Figure [3.:4] as follows. First, a
path in T2 \ K’ from z to some z, then a path in 'Y \ K’ from z to some
2 e (Y NT{)\ K, and finally a path in T'[/ \ K’ from 2’ to y. In order to
finish the proof, it remains to exhibit elements z and 2z’ and the three desired
paths.

T T e TH
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!
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\
20 ) e
/ Ry
®
X

Figure 3.4: The path between x and y.

The action of G on I' being transitive, there exists an element (ng,ho)
of N x H such that (ng,ho).z = y. Since K’ is finite, the set I'H \ K’ is
infinite. Moreover, there is infinitely many z in T'Z \ K’ such that either
I'YV is one-ended or T'YY does not intersect K’. For such a z there exists h
such that (1,h).z = z. Now, the vertex 2’ := (hhy'.ng, h).z is both equal to
(hhgtng, 1)(1, ho).x = (hhy'.ng,1).z and to (1, hhy ') (no, ho).x = (1,hhgt).y.
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That is, 2" is in T N Ff. A direct computation shows us that the map z — 2’
is injective: z] = 2z} if and only if 2; = z5. Since K’ is finite, there are only
finitely many 2’ in K’ and hence there are infinitely many z € ' such that
both z and 2’ are not in K’ and either I'Y is one-ended or I'YY does not intersect
K.

In order to finish the proof, observe that the three graphs I'Z, Ff and T'Y
are all either one-ended or do not intersect K’. Therefore, there is a path in
'\ K’ from z to z as desired, and similarly for the paths from z to 2z’ and 2’
to y. We have just proved that for any finite K the graph I' \ K has only one
infinite connected component and therefore that I' is one-ended. O

We have the following result on direct products that can be obtained as a
corollary of Lemma It is also possible to give a short proof of it using
Lemma [3.3.3] and a direct argument; details are left to the reader.

Corollary 3.3.3. Let G and H be two finitely generated groups. Then G x H
has property FW if and only if both G and H have property FW.

By iterating Lemma we obtain

Corollary 3.3.4. Let G and H be two finitely generated groups and X a set
on which H acts with finitely many orbits. Then,

1. If Gix H has property FW, then so does H,

2. If both G and H have property FW and X is finite, then Gl1x H has
property FW.

The following Lemma finishes the proof of Theorem [3.1.2

Lemma 3.3.5. Let G and H be two finitely generated groups with G non-
trivial and such that H acts on some set X with finitely many orbits. If Gix H
has property FW, then

1. G has property FW,
2. X 1is finite.
Proof. Let us fix some finite generating sets S and T" of G and H and let
U={(;,1g) | s€ S} u{(1,t) |teT}

be the standard generating set of Gix H.

If Gix H has property FW, then X is finite. Since H acts on X with
finitely many orbits, it is enough to show that each orbit is finite. So let X’
be an orbit and zy be an arbitrary vertex of X’. The group G acting on
itself by left multiplications, we have the so-called imprimitive action of the
wreath-product Gix H on Y =G x X':

(¢, h).(g,2) = (p(h.7)g, h.z).

Since both G ~ G and H ~ X' are transitive, the action Gix H ~ Y is also
transitive. Therefore, the orbital Schreier graph of Gix H ~ Y is isomorphic
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to the Schreier graph I' := Sch (G 1x H, Stab((1g,x0)),U). We decompose this
graph into leaves of the form Yy = {g} x X’. There are two types of edges in
I', which are coming from the two sets of generators, see Figure The first
ones, of the form (1,t), give us on each leaf a copy of the orbital Schreier graph
of H ~ X'. Indeed,

(1,£).(g,2) = (g, t.@).
The second ones, of the form (d3 , 1), give us loops everywhere except on ver-

tices of the form (g, o). By direct computation, we see that the vertices (g, xo)
and (sg,zo) connect the leaves Y, and Y,

(32 1>.<g,z>{(9’””) et

o (sg,z) if x = xo.

O Y.
(59, tazo) X +
25 25
pd _ N
(sg,ty'wo) .7 (s9,20) (sg,t10)
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II
S / Y,
(g, t2zo) X ,’,
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-1 /
(s7tg,tawo) \ /

/
o~ , P
§ b 7 § b
o N

(Silgﬂfl_lxo) (8_197 .’Ifo) (S_lgatlxo)

Figure 3.5: The leaf structure of the orbital Schreier graph of Gix H ~ Y.
Plain edges correspond to generators of the form (1,¢) while dotted edges
correspond to generators of the form (53 ,1).

If we remove a vertex (g,xo) we disconnect the leaf Y, from the rest of I'.
Since T" has at most one end and there is |G| > 2 leaves, we deduce that all
leaves Y are finite, and hence that X’ itself is finite.

The group G has property FW. Let K be any subgroup of G. We will
show that Sch(G, K, S) has at most one end. Let 2 be any point of X and X’
be its orbit under the action of H. We have the imprimitive action of Gix H
on G/K x X, which restricts to an action on G/K x X"

(o, h).(¢K,z) = (p(h.x)gK, h.x).

As above, the action is transitive and the orbital Schreier graph of this action is
isomorphic to a Schreier graph I" of Gix H. We decompose this graph into leaves
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in the same way. Now observe that Sch(G, K, S) is isomorphic to the subgraph
A of ' consisting of vertices {(g, o) | g € G} and edges {(d5 ,1) | s € S}. Due
to the leaves structure of I', the number of ends of A is bounded above by the
number of ends of T, and hence is at most one. We conclude that Sch(G, K, S)
too has at most one end. O






CHAPTER 4

Wreath products of groups acting
with bounded orbits

4.1 Introduction

When working with group properties, it is natural to ask if they are stable
under “natural” group operations. One such operation, of great use in geo-
metric group theory, is the wreath product, see Section for all the relevant
definitions.

An S-space is a metric space with an “additional structure” and we will say
that a group G has property BS if every action by isometries which preserves
the structure on an S-space has bounded orbits. Formally, this means that S
is a subcategory of the category of metric spaces, and that the actions are by
S-automorphisms. We note that having one bounded orbit implies that all the
orbits are bounded.

In the context of properties defined by actions with bounded orbits, the
first result concerning wreath products, due to Cherix, Martin and Valette and
later refined by Neuhauser, concerns Kazhdan’s property (T).

Theorem 4.1.1 ( [21,/77]). Let G and H be two discrete groups with G non-
trivial and let X be a set on which H acts. The wreath product Glx H has
property (T) if and only if G and H have property (T) and X is finite.

For countable groups (and more generally for o-compact locally-compact
topological groups), property (T) is equivalent, by the Delorme-Guichardet’s
Theorem, to property FH (every action on an affine real Hilbert space has
bounded orbits), see |9, Thm. 2.12.4]. Hence, Theorem can also be
viewed, for countable groups, as a result on property FH.

The corresponding result for property FA (every action on a tree has bounded
orbits) and property FR (every action on a real tree has bounded orbits), is
a little more convoluted and was obtained a few years later by Cornulier and
Kar.

Theorem 4.1.2 ( [26]). Let G and H be two groups with G non-trivial and let
X be a set on which H acts with finitely many orbits and without fized points.
Then Glx H has property FA (respectively property FR) if and only if H has
property FA (respectively property FR), G has no quotient isomorphic to Z and
can not be written as a countable increasing union of proper subgroups.

39
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Observe that our statement of Theorem [£.1.2] differs of the original state-
ment of [26]. Indeed, where we ask G to have uncountable cofinality and no
quotient isomorphic to Z, the authors of [26] ask G to have uncountable co-
finality and finite abelianization. However, these two sets of conditions are
equivalent. One implication is trivial, as finite Abelian groups do not project
onto Z. For the other implication, suppose that G has uncountable cofinal-
ity but infinite abelianization G/[G,G]. The group G/[G, G] being an infinite
Abelian group, it has a countably infinite quotient A — a classical fact that Y.
de Cornulier kindly reminded us, see [55][§16.11.c] for a proof. The quotient A
has uncountable cofinality, see Lemma[4£.3.2] and is therefore an infinite finitely
generated Abelian group, which hence projects onto Z.

Finally, we have an analogous of Theorem for property FW (every
action on a CAT(0) cube complexe has bounded orbits):

Theorem 4.1.3 ( [24,[64]). Let G and H be two groups with G non-trivial and
let X be a set on which H acts. Suppose that all three of G, H and Gix H
are finitely generated. Then the wreath product Glx H has property FW if and
only if G and H have property FW and X is finite.

It is straightforward to prove that the wreath product G (x H is finitely
generated if and only if both G and H are finitely generated and the number
of orbits of the action of H on X is finite.

Theorem [I.1.3] was first proved, using cardinal definite functions, for ar-
bitrary groups by Cornulier |24, Propositions 5.B.3 and 5.B.4], but without
the implication “if G 1x H has property FW, then G has property FW?”. The
authors then gave an elementary proof of it via Schreier graphs for the spe-
cific case of finitely generated groups [64]. Y. Stalder has let us know (private
communication) that, using space with walls instead of Schreier graphs, the
arguments of [64] can be adapted to replace the finite generation hypothesis
of Theorem by the condition that all three of G, H and X are at most
countable. Finally, A. Genevois published in [35] a proof of Theorem for
wreath products of the form Gy H, based on his diadem product of spaces.

The above results on properties FH, FW and FA were obtained with distinct
methods even if the final results have a common flavor. In the same time, all
three properties FH, FW and FA can be characterized by the fact that any iso-
metric action on a suitable metric space (respectively affine real Hilbert space,
connected median graph and tree) has bounded orbits, see Definition m But
more group properties can be characterized in terms of actions with bounded
orbits. This is, for example, the case of the Bergman’s property (actions on
metric spaces), the property FB, (actions on reflexive real Banach spaces) or
of uncountable cofinality (actions on ultrametric spaces).

By adopting the point of view of actions with bounded orbits, we obtain
a unified proof of the following result; see also Theorem for the general
(and more technical) statement.

Theorem. Let BS be any one of the following properties: Bergman’s property,
property FB,, property FH or property FW. Let G and H be two groups with
G non-trivial and let X be a set on which H acts. Then the wreath product
G x H has property BS if and only if G and H have property BS and X is
finite.
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With a little twist, we also obtain a similar result for groups with uncount-
able cofinality:

Proposition. Let G and H be two groups with G non-trivial and let X be a set
on which H acts. Then the wreath product Glx H has uncountable cofinality if
and only if G and H have uncountable cofinality and H acts on X with finitely
many orbits.

A crucial ingredient of our proofs is that the spaces under consideration
admit a natural notion of Cartesian product. In particular, some of our results
do not work for trees and property FA, nor do they for real trees and the
corresponding property FR.. Nevertheless, we are still able to show that if Gix H
has property FA, then H acts on X with finitely many orbits. Combining this
with Theorem [£.1.2] we obtain

Theorem. Let G and H be two groups with G non-trivial and X a set on
which H acts. Suppose that H acts on X without fized points. Then G lx H
has property FA (respectively has property FR) if and only if H has property FA
(respectively has property FR), H acts on X with finitely many orbits, G has
no quotient isomorphic to Z and can not be written as a countable increasing
union of proper subgroups.

4.2 Definitions and examples

This section contains all the definitions, as well as some useful preliminary facts
and some examples.

Wreath products

Let X be a set and G a group. We view € y G as the set of functions from X
to G with finite support:

@ G={p: X - G| ¢(x)=1 for all but finitely many x}.
X

This is naturally a group, where multiplication is taken componentwise.
If H is a group acting on X, then it naturally acts on @ y G by (h.¢)(x) =
@(h~1.x). This leads to the following standard definition

Definition 4.2.1. Let G and H be groups and X be a set on which H acts.
The (restrictedlﬂ) wreath product Gx H is the group (P G) x H.

A prominent particular case of wreath products is of the form Gy H, where
H acts on itself by left multiplication. They are sometimes called standard
wreath products or simply wreath products, while general Gy H are sometimes
called permutational wreath products. Best known example of wreath product is
the so called lamplighter group (Z/2Z)1z Z. Other (trivial) examples of wreath
products are direct products G x H which correspond to wreath products over
a singleton G iy, H.

IThere exists an unrestricted version of this product where the direct sum is replaced by
a direct product.
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Classical actions with bounded orbits

In this subsection we discuss some classical group properties, which are defined
by actions with bounded orbits on various metric spaces.

Median graphs For u and v two vertices of a connectedﬂ graph G, we define
the total interval [u,v] as the set of vertices that lie on some shortest path
between u and v. A connected graph G is median if for any three vertices
u, v, w, the intersection [u,v] N [v,w] N [u,w] consists of a unique vertex,
denoted m(u,v,w). A graph is median if each of its connected components
is median. For more on median graphs and spaces see [3,|17,/60]. If X and
Y are both (connected) median graphs, then their Cartesian product is also
a (connected) median graph. The class of median graphs was introduced by
Nebesky in 1971 [76] and Gerasimov [36l37], Roller [89] and Chepoi [20] realized
independently that this class coincides with the class of 1-skeleta of CAT(0)
cube complexes. Trees are the simplest examples of connected median graphs,
while the ensuing classical example show that any power set can be endowed
with a median graph structure.

Example 4.2.2. Let X be a set and let P(X) = 2% be the set of all subsets
of X. Define a graph structure on P(X) by putting an edge between E and F'
if and only if #(EAF) = 1, where A is the symmetric difference. Therefore,
the distance between two subsets E and F is #(FAF) and the connected
component of E is the set of all subsets F' with EAF finite. For E and F in
the same connected component, [E, F| consists of all subsets of X that both
contain E N F' and are contained in F U F. In particular, P(X) is a median
graph, with m(D, E, F') being the set of all elements belonging to at least two
of D, E and F. In other words, m(D,E,F)=(DNE)U(DNF)U(ENF).

These graphs are useful due to the following fact. Any action of a group G
on a set X naturally extends to an action of G on P(X) by graph homomor-
phisms: ¢.Y :={g.y | y € Y} for Y C X. Note that the action of G on P(X)
may exchange the connected components. In fact, the connected component
of E € P(X) is stabilized by G if and only if E is commensurated by G, that
is if for every g € G the set EAg.F is finite.

Uncountable cofinality Recall that a metric space (X, d) is ultrametric if
d satisfies the strong triangular inequality: d(z,y) < max{d(z,z),d(z,y)} for
any z, y and z in X. A group G has uncountable cofinality if every action on
ultrametric spaces has bounded orbits. The following characterization of groups
of countable cofinality can be extracted from [23| and we include a proof only
for the sake of completeness. It implies in particular that a countable group
has uncountable cofinality if and only if it is finitely generated.

Lemma 4.2.3. Let G be a group. Then the following are equivalent:
1. G can be written as a countable increasing union of proper subgroups,

2. G does not have uncountable cofinality, i.e. there exists an ultrametric
space X on which G acts with an unbounded orbit,

2We will always assume that our connected graphs are non-empty. This is coherent with
the definition that a connected graph is a graph with exactly one connected component.
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3. There exists a G-invariant (for the action by left multiplication) ultra-
metric d on G such that G ~ G has an unbounded orbit.

Proof. 1t is clear that the third item implies the second.
Let (X,d) be an ultrametric space on which G acts with an unbounded
orbit G.xzg. For any n € N let H,, be the subset of G defined by

Hy = {g € G | d(xo,g.x0) < n}.

Then G is the union of the (countably many) H,,, which are subgroups of G.
Indeed, H,, is trivially closed under taking the inverse, and is also closed under
taking products as we have d(z, gh.zo) < max{d(zo,g.x0),d(g.20, gh.xo)} =
max{d(zg, g.x0),d(zg, h.zg)}. As G.xo is unbounded, they are proper sub-
groups. Since they are proper subgroups and H,, < H,11, we can extract an
increasing subsequence (H,, ), that still satisfies G = | J,, Hy,, -

Finally, suppose that G = |J,,cn Hn, where the H, form an increasing
sequence of proper subgroups. It is always possible to suppose that Hy = {1}.
Define d on G by d(g,h) == min{n | g7'h € H,}. One easily verifies that d
is a G-invariant ultrametric. Moreover, the orbit of 1 contains all of G and is
hence unbounded. O

Some classical group properties We now discuss the bounded orbits prop-
erties for actions on various classes of metric spaces.

Definition 4.2.4. Let G be a group. It is said to have

e Bergman’s property if any action by isometries on a metric space has
bounded orbits,

e Property FB, if any action by affine isometries on a reflexive real Banach
space has bounded orbits,

e Property FH if any action by affine isometries on a real Hilbert space has
bounded orbits,

e Property FW if any action by graph isomorphisms on a connected median
graph has bounded orbits,

e Property FR if any action by isometries on a real tree has bounded orbits,

e Property FA if any action by graph isomorphisms on a tree has bounded
orbits,

o Uncountable cofinality if any action by isometries on an ultrametric space
has bounded orbits.

In the above, we insisted on the fact that actions are supposed to preserve
the structure of the metric space under consideration, or in other words to be
by automorphisms of the considered category. This is sometimes automatic,
as for example any isometry of a real Banach or Hilbert space is affine by
the Mazur-Ulam theorem. However, for cube complexes, for example, this is
not the case; a 2-regular tree has automorphism group Z x (Z/2Z), while its
isometry group is R % (Z/2Z). In other words, an isometry of a cube complex
is not necessarily a cube complex isomorphism. See also Example



CHAPTER 4. WREATH PRODUCTS OF GROUPS ACTING WITH
44 BOUNDED ORBITS

In the following, we will often do a slight abuse of notation and simply speak
of a group action on a space X, without always specifying by which kinds of
maps the group acts, which should always be clear from the context.

The names FB,, FH, FW, FR and FA come from the fact that these prop-
erties admit a description in terms of (and were fist studied in the context
of) the existence of a fixed point for actions on reflexive Banach spaces, on
Hilbert spaces, on spaces with walls (or equivalently on CAT(0) cube com-
plexes, see [18,82]), on real trees and on trees (Arbres in french). However this
is equivalent with the bounded orbit property, see Proposition and the
discussion below it. Observe that space with walls admit a natural pseudo-
metric on them, which is not necessarily a metric.

The Bergman’s property can also be characterized via length function, see
for example the beginning of [98].

For a survey on property FB,, see [83] and the references therein.

For countable groups (and more generally for o-compact locally compact
groups), property FH is equivalent, by the Delorme-Guichardet theorem, to
the celebrated Kazhdan’s property (T), but this is not true in general. Indeed
by [10] symmetric groups over infinite sets are uncountable discrete group with
Bergman’s property which, as we will see just below, implies property FH.
Such groups cannot have property (T) as, for discrete groups, it implies finite
generation.

A classical result of the Bass-Serre theory of groups acting on trees [94], is
that a group G has property FA if and only if it satisfies the following three con-
ditions: G has uncountable cofinality, G has no quotient isomorphic to Z and
G is not a non-trivial amalgam. In view of this characterization, Theorem [{.1.2]
says that property FA almost behaves well under wreath products.

Proposition 4.2.5. There are the following implications between the proper-

ties of Definition [[.27):

Bergman’s FB, FH FW
property H H
uncountable
FR FA cofinality

Moreover, except maybe for the implication [Bergman’s property —> FB,],
all implications are strict.

Proof. The implications [Bergman’s property — FB, — FH]and [fFW —
FA < FR] trivially follow from the fact that Hilbert spaces are reflexive Ba-
nach spaces, which are themselves metric spaces and that trees are both real
trees and connected median graphs. The implication [FH = FW] fol-
lows from the fact that a group G has property FW if and only if any affine
action on a real Hilbert space which preserves integral points has bounded
orbits |24 Proposition 7.1.3]. The implication [FH — FR] follows from
the fact that real trees are median metric spaces, and that such spaces can
be embedded into L'-spaces (see for instance [100, Theorem V.2.4]). Finally,
the implication [FA = uncountable cofinality] is due to Serre [94]: if G is
an increasing union of subgroups G;, then | | G/G; admits a tree structure by
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joining any ¢G; € G/G; to gG;+1 € G/G;4+1. The action of G by multiplication
on | |G/G; is by graph isomorphisms and with unbounded orbits.

We now present some examples demonstrating the strictness of the impli-
cations. Countable groups with property FB; are finite by [14], while infinite
finitely generated groups with property (T), e.g. SL3(Z), have property FH.
The group SLy(Z[v/2]) has property FW but not FH, see [25]. If G is a non-
trivial finite group and H is an infinite group with property FA (respectively
property FR), then G 1y H has property FA (respectively property FR) by
Theorem but does not have property FW by Theorem The group Z
has uncountable cofinality, while it acts by translations and with unbounded
orbits on the infinite 2-regular tree. Finally, Minasyan constructed examples
of groups with FA but without FR in [75]. O

The reader familiar with triangles groups A(l,m,n) = {(a,b,c|a® = b*> =
e = (ab)! = (be)™ = (ca)™ = 1) with I,m,n € {1,2,...} U {oo} will be happy
to observe that they provide explicit examples of groups with property FA but
not property FW. Indeed, if I, m and n are all three integers, then A(l,m,n)
has property FA by Serre [94, Section 6.5, Corollaire 2]. And if (I, m,n) =
%+ % +% < 1, then A(l, m,n) is the infinite symmetric group of a tilling of the
Euclidean plane (if (I, m,n) = 1) or of the hyperbolic plane (if (I, m,n) < 1)
and hence acts on a space with walls without fixed point, which implies that
it does not have property FW.

In view of Proposition two questions remain open: is the implica-
tion [Bergman’s property =—> FB,]| strict, and does property FW implies
property FR?

It is possible to consider relative versions of the properties appearing in
Definition Let S be any classes of metric spaces considered in Defini-
tion and let BS be the corresponding group property. If G is a group
and H a subgroup of G, we say that the pair (G, H) has relative property BS
if for every G-action on an S-space, the H orbits are bounded. A group G
has property BS if and only if for every subgroup H the pair (G, H) has rela-
tive property BS, and if and only if for every overgroup L the pair (L, G) has
relative property BS.

Groups acting with bounded orbits on S-spaces

It is possible to define other properties in the spirit of Definition for any
“subclass of metric spaces”, or more precisely for any subcategory of pseudo-
metric spaces. A reader not familiar with category theory and interested only in
one specific subclass of metric spaces may forget all these general considerations
and only verify that the arguments of Section [£.3] apply for their favourite
subclass of metric spaces.

Definition 4.2.6. A pseudo-metric space is a set X with a map d: X x X —
R, called a pseudo-distance, such that

1. d(z,z) =0forall z € X,
2. d(z,y) =d(y,x) for all z,y € X,

3. d(z,2) < d(z,y) +d(y, 2).
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If moreover d(x,y) # 0 for x # y, the map d is a distance and (X, d) is a met-
ric space. On the other hand, an wltra-pseudo-metric space is a pseudo-metric
space (X,d) such that d satisfies the strong triangular inequality: d(z,z) <
max{d(x,y),d(y, z)}. A morphism (or short map) between two pseudo-metric
spaces (X1,d1) and (Xa,ds) is a distance non-increasing map f: X; — Xo,
that is do(f(2), f(y)) < di(z,y) for any x and y in X;. If f is bijective and
distance preserving, then it is an isomorphism (or isometry). Pseudo-metric
spaces with short maps form a category PMet, of which the category of metric
spaces (with short maps) Met is a full subcategory.

If (X,d) is a pseudo-metric space, we have a natural notion of the di-
ameter of a subset Y C X with values in [0,00], defined by diam(Y) :=
sup{d(z,y) | =,y € Y}, and we say that Y is bounded if it has finite diam-
eter.

Remind that a subcategory of PMet, is a category S whose objects are
pseudo-metric spaces, and whose morphisms are short maps. The subcategory
S is full if given two S-objects X and Y, any short map from X to Y is a
S-morphism. A G-action on an S-space X is simply a group homomorphism
a: G — Autg(X).

In practice, a lot of examples of (full) subcategories of PMet are already
subcategories of Met. Obvious examples of full subcategories of Met include
metric spaces and ultrametric spaces (with short maps). Affine real Hilbert and
Banach spaces and more generally normed vector spaces (with affine maps) are
also full subcategories of Met if we restrict ourselves to morphisms that do
not increase the norm (that is such that || f(z)|| < ||z||). In particular, for us
isomorphisms of Hilbert and Banach spaces will always be affine isometries.

For connected graphs (and hence for its full subcategories of connected
median graphs and of trees), one looks at the category Graph where objects
are connected simple graphs G = (V, E) and where a morphism f: (V,E) —
(V', E') is a function between the vertex sets such that if (z,y) is an edge then
either f(z) = f(y) or (f(x), f(y)) is an edge. There are two natural ways to see
Graph as a subcategory of Met. The first one consists to look at the vertex
set V endowed with the shortest-path metric: d(v,w) is the minimal number of
edges on a path between v and w. The second one, consists at looking at the so
called geometric realization of (V, E'), where each edge is seen as an isometric
copy of the segment [0, 1]. Similarly to what happens for cube complexes (see
the discussion after Definition , the geometric realization of a graph gives
an embedding Graph — Met which is not full. Nevertheless, for our purpose,
the particular choice of one of the above two embeddings Graph — Met will
make no difference.

We can now formally define the group property BS as:

Definition 4.2.7. Let S be a subcategory of PMet. A group G has property
BS if every G-action by S-automorphisms on an S-space has all its orbits
bounded. A pair (G, H) of a group and a subgroup has relative property BS
if for every G-action by S-automorphisms on an S-space, the H-orbits are
bounded.

Observe that a group G has property BS if and only if any G-action on an
S-space has at least one bounded orbit.

All the properties of Definition are of the form BS. Another example
of property of the form BS can be found in (28| Definition 6.22]: a group
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has property (FHypc) if any action on a real or complex hyperbolic space of
finite dimension has bounded orbits. This property is implied by property FH,
but does not imply property FA [28, Corollary 6.23 and Example 6.24]. One
can also want to look at the category of all Banach spaces (the corresponding
property BB hence stands between the Bergman’s property and property FB,),
or the category of LP-spaces for p fixed [11] (if p ¢ {1, 00}, then BLP is implied
by FB,).

Another interesting example of a property of the form BS is the fact to
have no quotient isomorphic to Z, see Example [£.2.8] The main interest for us
of this example is that property FA is the conjonction of three properties, two
of them (uncountable cofinality and having no quotient isomorphic to Z) still
being of the form BS.

Example 4.2.8. Let Z be the 2-regular tree, or in other words the Cayley
graph of Z for the standard generating set. Then Autgraph(Z) = Z % (Z/2Z)
is the infinite dihedral group and its subgroup of orientation preserving isome-
tries is isomorphic to Z. Let S be the category with one object Z and with
morphisms the orientation preserving isometries. Hence, we obtain that a group
G has no quotient isomorphic to Z if and only if every G-action on S-space has
bounded orbits. Let us denote by BZ this property.

Since Z is a tree, property FA implies property BZ. This implication is
strict as demonstrated by Q. In fact, the counterexample Q shows that BZ
does not imply uncountable cofinality, while Z demonstrate that uncountable
cofinality does not implies BZ.

An example of an uninteresting property BS is given by taking S to be
the category of metric spaces of finite diameter (together with short maps), in
which case any group has BS. On the opposite, if S is the category of extended
pseudo-metric spaces (d takes values in Ry U {oco}), only the trivial group has
BS. Indeed, one can put the extended metric d(z,y) = oo if © # y on G and
then the action by left multiplication of G on (G, d) is transitive and with an
unbounded orbit as soon as G is non trivial.

The category PMet has the advantage (over Met) of behaving more nicely
with respect to categorical constructions and quotients. However, we have

Lemma 4.2.9. A group G has Bergman’s property (respectively uncountable
cofinality) if and only if any isometric G-action on a pseudo-metric (respec-
tively ultra-pseudo-metric) space has bounded orbits.

Proof. One direction is trivial. For the other direction, let (X, d) be a pseudo-
metric space on which G acts by isometries. Let X’ := X/ ~ be the quotient
of X for the relation « ~ y if d(x,y) = 0 and let d’ be the quotient of d. Then
(X’,d') is a metric space, the action of G passes to the quotient and G.x is
d-bounded if and only if G.[z] is d’-bounded. Finally, if d satisfies the strong
triangular inequality, then so does d’. O

On the other hand, the following result is perhaps more surprising.

Lemma 4.2.10. A group G has Bergman’s property if and only if any G-action
by graph automorphisms on a connected graph has bounded orbits.



CHAPTER 4. WREATH PRODUCTS OF GROUPS ACTING WITH
48 BOUNDED ORBITS

Proof. The left-to-right implication is clear.

For the other direction, let X be a metric space. Let G(X) denotes the
graph obtained from a vertex-set X by applying the following process: for any
two z,y € X add a path of length |d(z,y)] + 1 between x and y. G(X) is con-
nected and the obvious inclusion ¢: X — G(X) is a quasi-isometric embedding.
Moreover, the construction is canonical, so every group action on X extends
to a group action on G(X), making ¢ equivariant. So if a group satisfying the
bounded orbit property on connected graphs acts on a metric space X, then
its induced action on G(X) has bounded orbits, which implies that its orbits
in X are bounded. O

Observe that an alternative proof of the above Lemma can be easily deduced
from the following characterization of Bergman’s property due to Cornulier [23]:
a group G has Bergman’s property if and only if it has uncountable cofinality
and for every generating set T of G, the Calyey graph Cay(G;T) is bounded.
Details are left to the reader.

While we will be able to obtain some results for a general subcategory of
PMet, we will sometimes need to restrict ourselves to subcategories satisfying
good properties. In particular, we will use three axioms: one on the existence
of non-trivial G-action, one on the existence of finite Cartesian powers and one
on infinite Cartesian powers. Our Cartesian powers will need to be in some
sense compatible with the bornology, but the conditions for finite and infinite
powers will not be the same. A summary of which axioms are satisfied by the
above mentioned subcategories of PMet can be found in page

Definition 4.2.11 (Axiom (Al)). A subcategory S of PMet has non-trivial
group actions if for every non-trivial group G there exists an S-space X and
an action G ~ X by S-automorphisms moving at least one point.

Examples of categories S with non-trivial group actions include (ultra-)
metric spaces and metric spaces of finite diameter (with the action by multi-
plication of G on itself, endowed with the discrete metric), (reflexive) Banach
spaces and Hilbert spaces (with X = [?(G) and the permutation action of G),
L? spaces (G acting by permutation on ¢P(G)) and finally connected median
graphs and (real) trees (X has one central vertex to which we attach an edge for
every g € G and the action of G is by left multiplication). On the opposite side,
both Z from Example and real and complex finite dimensional hyperbolic
spaces do not have non-trivial group actions. Indeed, a group acts non-trivially
on Z if and only if it projects onto Z. For hyperbolic spaces, a group G acts on
a hyperbolic space of dimension n if and only if it projects onto a subgroup of
SO(n, 1) or SU(n, 1). In particular, if the action is non-trivial, then G projects
onto a non-trivial subgroup of GL,,(C), whose all finitely generated subgroups
are residually finite. We conclude that a finitely generated infinite simple group
G does not admit a non-trivial action on a real or complexe hyperbolic space
of finite dimension.

Before introducing the axioms about Cartesian powers, let us recall the
definition and some properties of the product distances dp.
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Definition 4.2.12. For a real p > 1 and a collection of non-empty metric
spaces (X;,d;);er, we have the maps

d: [[Xix[[Xi =R
i€l i€l

(f.9) = (3 dil£(0). 9())

iel

=

and

il iel
(f.9) = supd;(f(i), 9(3)),
i€l
with the convention that a sum with uncountably non-zero summands is infi-
nite.

If I is finite, then d, is a distance on [[,.; X;. Moreover, it is compatible
with the bornology in the sense that if E C X is unbounded, then the diagonal
diag(E) C X™ is also unbounded. The following definition generalizes this
comportement to other distances.

Definition 4.2.13 (Axiom (A2)). A subcategory S of PMet satisfies aziom
(A2) if for any S-space X and any integer n, there exists an S-object, called a
n'" Cartesian power of X and written X", such that:

1. As a set, X™ is the n*® Cartesian power of X,
2. The canonical image of Autg(X )™ x Sym(n) in Bij(X™) lies in Autg(X™),
3. If E C X is unbounded, then the diagonal diag(E) C X™ is unbounded.

A good heuristic is that your favourite subcategory of PMet would sat-
isfies axiom (A2) in the above sense if and only if it already has a classical
operation which is called Cartesian product. An S-object satisfying the first
two properties of Definition will be called a finite Cartesian power.

For metric spaces (of finite diameter), the categorical product (correspond-
ing to the metric do, = max{dx,dy}) works fine, but any product metric of
the form d, = (d% +d§’/)% for p € [1, 00| works as well. For ultra-metric spaces,
the categorical product d, works fine. For LP spaces (and hence for Hilbert
spaces) we take the usual Cartesian product (which is also the categorial prod-
uct), which corresponds to the metric d,. For (reflexive) Banach spaces, any
product metric of the form d, works. For connected graphs, the usual Carte-
sian product, which corresponds to d; = dx + dy works well, but one can also
take the strong product (which is the categorial product in Graph), that is the
distance d~,. For connected median graphs, only the usual Cartesian product
with d; works[| On the other hand, (real) trees, Z from Example and
hyperbolic spaces do not have finite Cartesian powers and hence cannot satisfy
axiom (A2).

3The category of median graphs does not have categorial products.
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As the above examples illustrate, there can be multiple non-isomorphic
spaces playing the role of X™. As our results will not depend on a particular
choice of a Cartesian power, we will sometimes make a slight abuse of language
and speak of the Cartesian power X™.

The situation for infinite products is more complicated. Indeed, if I is
infinite then the map d,, is not necessary a distance on [, ; X; as it can take
infinite values. The solution consists of looking at the subset of [[,.; X; on
which d), takes finite values. Formally we first need to chose a base-point z; in
X; for each i € I, which gives us an element fy € [],.; X; defined by fo(i) = z;.
We can then define

@Xi ={fe HXi | f(7) = fo(i) for all but finitely many ¢}

i€l i€l

@sz‘ = {f € HXi

i€l i€l

el

and

D2 di(F(0), fo(@))” < oo.

A priori, the above definitions depend on the choice of the x;. However, since
our results will not depend on a particular choice of base-points, we will omit
to specify it. Moreover, if Autg(X) acts transitively on X, then @Y., X will
not depend on the choice of z € X. If all the X; are equal to R with x; = 0,
then @7, ; X; is the classical Banach space ¢°(I) while @,.; X; is the (non-
complete) sequence space coo(1).

It is straightforward to verify that @, ; X; C fel Xi C [lier Xi and
that the first inclusion is an equality if the X; are uniformly discrete with an
uniform lower bound on their packing radius. Moreover the restriction of the
map d,, to P, ; X; is a distance. While (,.; X, d)) is a metric space, it is in
general not complete even when the X; are complete, which is why we needed
to define @fe ; Xi; this will be important for Banach and Hilbert spaces.

One common feature of the product distances d, for p # oo is that, in some
rough way, they are able to detect the number of coordinates on which f differs
from fy. Our last axiom will generalize this comportment.

icl

Definition 4.2.14 (Axiom (A3)). A subcategory S of PMet satisfies aziom
(A3) if for any S-space X, any element xy of X and any infinite set I, there

exists an S-object, called the I"™" Cartesian power of X and written @? X,
such that:

1. As sets we have the inclusions @, X C @? X CII, X,
2. The canonical image of Autg (X )i;Sym(7) in Bij([]; X) lies in Autg (@? X),

3. For any y in X with d(y,z¢) > 0, the following set has infinite diameter

{f € @X ‘ f (@) = y for finitely many ¢ and otherwise f(i) = xo}.
T

An object satisfying the first two items of Definition [£.2.14] will be called
an infinite Cartesian power.

In practice, the above definition is often easy to verify. Indeed, in most cases
when S has finite Cartesian powers it is for some product metric of the form d,,.
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Then the metric space (B} X, d,,) will usually be an infinite Cartesian power in
S and, if p # oo, it will satisfies (A3). In particular, (A3) holds in the following
categories: metric spaces, (reflexive) Banach spaces (with d, for 1 < p < 00),
Hilbert spaces and L? spaces if p # oo, connected (median) graphs. On the
other hand, (real) trees, hyperbolic spaces and Z from Example do not
have a sensible notion of infinite Cartesian powers. Finally, while ultra-metric
spaces, L™ spaces and spaces of finite diameter have infinite Cartesian powers
(for ds), axiom (A3) does not hold as the diameter of the set appearing in

Definition [4.2.14] is d(y, x¢).

Finally, we introduce one last definition

Definition 4.2.15. A subcategory S of PMet has bornological Cartesian pow-
ers if it satisfies both axiom (A2) and (A3).

Variations and generalizations

This subsection is devoted to variations and generalizations of property BS. It
is intended as a note for the interested reader, and can be skipped without any
harm.

Groups acting with fixed point on S-spaces Some of the properties that
are of interest for us have been historically defined via the existence of a fixed
point for some action. More generally, we say that a group G has property F'S
if any G-action on an S-space has a fixed point.

Since our actions are by isometries, property FS implies property BS. The
other implication holds as soon as we have a suitable notion of the center of
a (non-empty) bounded subset X. For a large class of metric spaces, this is
provided by the following result of Bruhat and Tits:

Proposition 4.2.16 ( |28, Chapter 3.b]). Let (X, d) be a complete metric space
such that the following two conditions are satisfied:

1. For all z and y in X, there exists a unique m € X (the middle of [z,y])
such that d(z,m) = d(y,m) = 3d(z,y);

2. Forallx, y and z in X, if m is the middle of [y, z] we have the median’s
inequality 2d(z,m)* + 1d(y, z)* < d(z,y)? + d(z, 2)%.

Then if G is a group acting by isometries on X with a bounded orbit, it has a
fixed point.

Examples of complete metric spaces satisfying Proposition include
among others: Hilbert spaces, Bruhat-Tits Buildings, Hadamard spaces (i.e.
complete CAT(0) spaces and in particular CAT(0) cube complexes which are
either finite dimensional or locally finite), trees and R-trees; with the caveat
that for trees and R-trees, the fixed point is either a vertex or the middle of an
edge. See |28 Chapter 3.b] and the references therein for more on this subject.
On the other hand, |9, Lemma 2.2.7] gives a simple proof of the existence of
a center for bounded subsets of Hilbert spaces, and more generally of reflexive
Banach spaces, but this also directly follows from the Ryll-Nardzewski fixed-
point theorem. Finally, properties F'S and BS are equivalent for the category
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of separable uniformly convex Banach spaces by the existence of the Chebyshev
center of a (nonempty) bounded set.

For action on metric spaces or on connected median graphs, FS is strictly
stronger than BS. Indeed, this trivially follows from the action by rotation
of Z/4Z on the square graph. However, by [37,[89] if a group G acts on a
connected median graph with a bounded orbit, then it has a finite orbit. For
actions on an ultra-metric spaces FS is strictly stronger than BS since the
finite group Z/2Z acts without fixed point on the Cantor space X C [0, 1] by
x +— 1 — x. Property FS is also strictly stronger than BS for S the category
of all Banach spaces. Indeed, by [79] any infinite discrete group admits an
action without fixed point on some Banach space and hence does not have
property F'S, while there exists infinite groups with the Bergmann’s property
which implies property BS.

Actions with uniformly bounded orbits One might wonder what hap-
pens if in Definition [£.2.4] we replace the requirement of having bounded orbits
by having uniformly bounded orbits. It turns out that this is rather uninter-
esting, as a group G is trivial if and only if any G-action on a metric space
(respectively on an Hilbert space, on a connected median graph, on a tree or
on an ultrametric space) has uniformly bounded orbits. Indeed, if G is non-
trivial, then, for the action of G on the Hilbert space £2(G) the orbit of n -,
has diameter ny/2. For a tree (and hence also for a connected median graph),
one may look at the tree T obtained by taking a root r on which we glue an
infinite ray for each element of G. Then G naturally acts on T' by permuting
the rays. The orbits for this action are the £, = {v | d(v,r) = n} which have
diameter 2n. Finally, it is possible to put an ultradistance on the vertices of T
by doo(z,y) = max{d(x,r),d(y,r)} if © # y. Then the orbits are still the L,
but this time with diameter n.

Topological groups One can wonder what happens for topological groups.
While, the wreath product of topological groups is not in general a topological
group, this is the case if G is discrete and X is a discrete set endowed with a
continuous H-action. In this particular context, Theorem [£:3.1] as well as its
proof, remains true. The details are left to the interested reader.

Categorical generalizations In the above, we defined property BS for S
a subcategory of PMet. It is possible to generalize this definition to more
general categories. We are not aware of any example of the existence of a group
property arising in this general context that is not equivalent to a property BS
in the sense of Definition [£.2.7] but still mention it fur the curious reader.

On one hand, we can replace PMet with a more general category. For
example, one can look at the category M of sets X endowed with a map
d: X x X = Ry satisfying the triangle inequality. That is, d is a pseudo-
distance, except that is is not necessary symmetric and d(z, z) may be greater
than 0. All the statements and the proofs remain true for S a subcategory of
M.

On the other hand, we can define property BS for any category S over
PMet, that is for any category S endowed with a faithful functor F': S —
PMet. Such a couple (S, F': S — PMet) is sometimes called a structure over
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PMet, and F is said to be forgetful. In this context, we need to be careful to
define Cartesian powers (Definitions [4.2.13| and [4.2.14)) using F', but apart for
that all the statements and all the proofs remain unchanged. An example of
such an S that cannot be expressed as a subcategory of PMet is the category
of edge-labeled graphs, where the morphisms are graph morphisms that induce
a permutation on the set of labels. However, in this case the property BS is
equivalent to the Bergman’s property.

One can also combine the above two examples and look at couples (S, F': S —
M), with F faithful.

Finally, in view of Definitions [£.2.7] [£.2.19] and [£.2.14] the reader might
ask why we are working in PMet or M instead of Born, the category of
bornological spaces together with bounded maps. The reason behind this is the
forthcoming Lemma and its corollaries, which fail for general bornological
spaces. In fact, all the statements and the proofs remain true for a general
(S,F: S — Born) as soon as S satisfies Lemma [4.3.3] Here is an example
of such an S which does not appear as a category over M. Take k to be an
infinite cardinal and let S, be the subcategory of Born where a subset E of
a S,-space is bounded if and only if |E| < k. A group G has property BS, if
and only if |G| < k.

4.3 Proofs of the main results

Throughout this section, S will denote a subcategory of PMet and BS the
group property every action by S-automorphisms on an S-space has bounded
orbits. In Subsection we defined 3 axioms that S might satisfy. Axiom
(A1) simply states that a non-trivial group acts non-trivially on some S-space.
Axioms (A2) and (A3) guarantee the existence of finite and infinite Cartesian
powers, which should be compatible in some sense with the bornology. Finally,
S has bornological Cartesian powers if it satisfy both axioms (A2) and (A3). In
Table [4.I] we present a short reminder on whenever these axioms are satisfied
for some subcategories of PMet that were mentioned in Sections and
The main result of this section is the following theorem that implies Theo-

rem [£.11

Theorem 4.3.1. Suppose that S has non-trivial group actions and bornological
Cartesian powers. Let G and H be two groups with G non-trivial and let X
be a set on which H acts. Then the wreath product Glx H has property BS if
and only if G and H have property BS and X is finite.

Theorem [£:3.3] is a direct consequence of the forthcoming Corollary [4.3.6]
and Lemmas [4£.3.10] and £.3.72] The conclusion of Theorem [£.3.1] remains true
if the hypothesis on S are replaced by “S satisfies (A2) and property BS implies
property FW”, see the discussion after Lemma for more details.

We now state two elementary but useful results.

Lemma 4.3.2. Let G be a group and H be a quotient. If G has property BS,
then so has H.

Proof. If H acts on some S-space X with an unbounded orbit, then the surjec-
tion G — H gives us a G-action on X, with the same orbits as the H-action. [
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Corresponding satisfies axiom

Category S group property (A1) \ (A2) \ (A3)
Metric spaces Bergmann’s property v v v
Banach spaces BB v v v
Reflexive Banach spaces FB, v v ve
LP spaces (p fixed) BLP v v *
Hilbert spaces FH v v v
R and C hyperbolic spaces FHypc X X X
Median graphs Fw v v v
Real trees FR v X X
Trees FA v X X
Ultrametric spaces uncountable cofinality v v X
Z= 2-regular tree with Isom™ BZ X X X
Spaces of finite diameter hold for all groups v v X

*: if and only if p # co.
Table 4.1: Axioms for category S. (Al) = non-trivial group actions (Defini-

tion [4.2.11)), (A2) = Definition [4.2.13] (A3) = Definition [4.2.14] bornological
Cartesian powers = (A2)+(A3).

Lemma 4.3.3. Let G be a group and A an B be two subgroups such that
G = AB. If both (G,A) and (G, B) have relative property BS, then G has
property BS.

Proof. Let X be an S-space on which G acts and let x be an element of X.
Let Dy be the diameter of A.xz and Dy the diameter of B.x. By assumption,
they both are finite. Since A acts by isometries, all the a.Bz have diameter
Ds. Let y be an element of G.xz. There exists a € A such that y belongs to
a.Bz. Since 1 belongs to B, y is at distance at most Dy of a.x and hence at
distance at most Dy + D5 of x. Therefore, the diameter of G.x is finite. O

By combining Lemmas and we obtain the following three corol-
laries on direct, semi-direct and wreath products.

Corollary 4.3.4. Let G and H be two groups. Then G X H has property BS
if and only if both G and H have property BS.

Corollary 4.3.5. Let N x H be a semidirect product. Then
1. If N x H has property BS, then so has H,
2. If both N and H have property BS, then N x H also has property BS.

Corollary 4.3.6. Let G and H be two groups and X a set on which H
acts. Then,

1. If Gix H has property BS, then so has H,

2. If both G and H have property BS and X is finite, then G ix H has
property BS.
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When S has a suitable notion of quotients (by a group of isometries), it
is possible to obtain a strong version of Lemmas and Here is the
corresponding result for Bergman’s property and uncountable cofinality.

Proposition 4.3.7. Let BS be either Bergman’s property or the property of
having uncountable cofinality. Let1 — N — G — H — 1 be a group extension.
Then G has property BS if and only if H has property BS and the pair (G, N)
has relative BS property.

Proof. One direction is simply Lemma[£.3.2)and the definition of relative prop-
erty BS.

On the other hand, let (X, d) be a pseudo-metric space on which G acts by
isometries and let = be an element of X. Let {g; | ¢ € I} be a transversal for
N, that is H = {g;N | i € I} with the quotient multiplication. By assumption,
N.z is bounded of diameter D; and for any ¢ € I the subset g;N.x of X
has also diameter D;. Since N is a subgroup of isometries of X, the map
d': X/NxX/N — R defined by d'([z], [y]) == inf{d(2’,y') | ' € N.z,y € N.y}
is the quotient pseudo-distance on X/N. Indeed, while the map d’ might not
satisfies the triangle inequality for a generic quotient X/ ~, this is the case if the
quotient is by a subgroup of isometries; details are left to the reader. Moreover,
if d satisfies the strong triangle inequality, then so does d’. The quotient action
of H= G/N on X/N is by isometries and the diameter of H.xN is bounded,
say by Ds. In particular, for any ¢ and j in I, the distance between the subsets
g:N.z and g;N.z of X is bounded by D,. Since this distance is an infimum,
there exist actual elements of g;N.x and g;N.z at distance less than Dy + 1.
Altogether, we obtain that any y in G.z is at distance at most Dy + Dy + 1
of . Hence, the orbit G.z is bounded. O

Since the triangle graph, which is not median, is a quotient of the 2-regular
infinite tree by a subgroup of isometries, the proof of Proposition {.3.7] does
not carry over for properties FW and FA. Similarly, the quotient of R by the
action of Z/2Z given by x — —z is not a Banach space and hence the proof
of Proposition does not apply to properties FH and FB,. However, the
statement of Proposition m (stability under extensions) remains true for
properties FH, FB,, FW and FA. For properties FH and FB,, this follows
from the fixed-point definition and the fact that a non-empty closed subset
of an Hilbert space (respectively of a reflexive Banach space) is an Hilbert
space (respectively a reflexive Banach space) itself. For property FW and FA,
see [24] Proposition 5.B.3] and [94].

We now state a result on infinite direct sums.

Lemma 4.3.8. Let G and (G)zex be non-trivial groups and let H be a group
acting on X. Then

1. @,cx Gz has uncountable cofinality if and only if all the G, have un-
countable cofinality and X is finite,

2. If Gix H has uncountable cofinality, then H acts on X with finitely many
orbits.

It is of course possible to prove Lemma [£.3.§ using the characterization of
uncountable cofinality in terms of subgroups, in which case the proof is a short
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exercise left to the reader. However, we find enlightening to prove it using the
characterization in terms of actions on ultrametric spaces.

Proof of Lemma[.3.8 One direction of the first assertion is simply Corol-
lary £:3:4] and holds for any property of the form BS. For the other direction,
for any S, if @, x G has property BS then all its quotients, and hence all the
G, have property BS. Hence, we have to prove that an infinite direct sum of
non-trivial groups does not have uncountable cofinality. If X is infinite, there
exists a countable subset Y C X. Let Z := X\Y, thus we have X =Y UZ. We
can decompose the direct sum as @,y Gz = (P,cy Gz) X (B, Gz) and
then, by Corollary if @,y G+ does not have uncountable cofinality, then
neither does €, y G- So let us fix an enumeration of Y and let K = P, G;
and for each i, choose g; # 1 in G;. Let dmax(f, g) = max{i | f(i) # g(i)}. This
is a K-invariant ultra-metric for the action by left multiplication of G on it-
self. Then for every integer n, the orbit K.{1,1,...} contains {g1,...,9n,1,...}
which is at distance n of {1,1,...} for dyax if the g; are not equal to 1.
The second assertion is a simple variation on the first. Indeed, we have

Gix H = ( @ Ly)x H  with Lyg@ey,
YeX/H yeyY

where X/H is the set of H-orbits. The important fact for us is that H fixes
the decomposition into Ly factors: for all Y we have H.Ly = Ly. Up to
regrouping some of the Ly together we hence have Gix H = (€B¢>1 Li) x H with
H.L; = L; for all i. Now, we have an ultradistance dpax on L = ®i>1 L; as
above and we can put the discrete distance d on H. Then d .. = max{dyax,d}
is an ultradistance on (@, L;) x H, which is (@, Li) x H-invariant (for
the action by left multiplication). From a practical point of view, we have
e (9, 1), (¢, 1)) = max{i | (i) # &' (D)} if @ # ' and di (2, ), (9, 1) =
1if h # h'. Since the action of L on itself has an unbounded orbit for dyax,
the action of (,~, L;) x H on itself has an unbounded orbit for d],.. O

We directly obtain

Corollary 4.3.9. Suppose that BS implies having uncountable cofinality. Let
G and (Gz)zex be non-trivial groups and let H be a group acting on X.

1. @,cx Gz has property BS if and only if all the G have property BS and
X is finite,

2. If Gix H has property BS, then H acts on X with finitely many orbits.

While the statement (and the proof) of Corollary 1 is expressed in
terms of uncountable cofinality, it is also possible to state it and prove it for
a subcategory S of PMet without a priori knowing if BS is stronger than
having uncountable cofinality. The main idea is to find a “natural” S-space
on which G = @,-, G; acts. For example, for (reflexive) Banach, Hilbert and
L? spaces, one can take @, /P(G;). For connected median graphs, one takes
the connected component of {1¢,,1q,,...} in P(|],~; G;). For (real) trees, it
is possible to put a forest structure on P(| |,~, G;) in the following way. For
E € P(;», Gi), and for each i such that ENG; is empty for all j < i, add an
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edge from E to E'U{g} for each g € G;. The graph obtained this way is a G-
invariant subforest of the median graph on P(| |,~; G;). For Corollary
we also need that the corresponding structure is invariant by the action of H,
which is the case of the above examples, except for the tree structure.

It is also possible to give a proof of Corollary £.3.9]1 using axioms similar to
(A1)-(A3). More precisely, we need a variation of (A3) for countable Cartesian
products (for morphisms we only ask that @, Auts(X;) C Auts(P,cn Xi))
and a strong version of (A1) saying that there exists an universal bound M such
that any non-trivial group G acts on some S-space moving a point at distance
at least M. The axiomatization of Corollary [£:3.9]2 is a little more complex.
However, since in the following we will use Corollary [£.3.9 only for (real) trees,
which do not have Cartesian powers, we will not elaborate on the details and
let the proof to the interested reader. Instead, we will give an axiomatic proof
of the following variation of Corollary [£.3.9]2.

Lemma 4.3.10. Suppose that S has non-trivial group actions and satisfies
aziom (A3). Let G and H be two groups with G non-trivial and let X be a set
on which H acts. If Glx H has BS, then X 1is finite.

Proof. We will prove that if X is infinite, then G {x H does not have prop-
erty BS. Suppose that X is infinite. By non-trivial groups actions, there exists
an S-space Y on which G acts non-trivially by moving some element yq to
another element zy # yo. Let @Y be the corresponding Cartesian power
and fp be the constant function fo(z) = yo. By assumption, the natural action
of Gix H on @y Y is by S-automorphisms. Since X is infinite, it contains a
countable subset I = {iy,s,...}. For every integer n, the function

zo ifzx=i,,,m<n
fulw) =47 s
Yo otherwise

is in the Gix H-orbit of fy. By axiome (A3) this orbit is unbounded and Gix H
does not have property BS. O

As a direct corollary, we obtain that if property BS implies property BS’ for
some S’ with non-trivial group actions and (A3) (example: BS’=FW), then the
conclusion of Lemma[4.3.10] holds even if S might not satisfy its premises. Con-
versely, it follows from Theorem [4.1.2] and Proposition that Lemma
do not holds for property FR, property FA or having uncountable cofinality.

We now turn our attention to properties that behave well under finite Carte-
sian products in the sense of axiom (A2). We first describe the comportment
of property BS under finite index subgroups.

Lemma 4.3.11. Let G be a group and let H be a finite index subgroup.
1. If H has property BS, then so has G,
2. If S satisfies (A2) and G has property BS, then H has property BS.

Proof. Suppose that G does not have BS and let X be an S-space on which G
acts with an unbounded orbit O. Then H acts on X and O is a union of at
most [G : H| orbits. This directly implies that H has an unbounded orbit and
therefore does not have BS.
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On the other hand, suppose that H < G is a finite index subgroup of G
without property BS. Let a: H ~ X be an action of H on an S-space (X, dx)
such that there is an unbounded orbit O. Similarly to the classical theory of
representations of finite groups, we have the induced action Indg(a): G
XG/H on the set XE/H . Since H has finite index, X¢/H is an S-space and
the action is by S-automorphisms. On the other hand, the subgroup H < G
acts diagonally on X&/H  which implies that diag(O) is contained in a G-orbit.
Since diag(O) is unbounded, G does not have property BS.

For readers that are not familiar with representations of finite groups, here
is the above argument in more details. Let (f;)"_; be a transversal for G/H.
The natural action of G on G/H gives rise to an action of G on {1,...,n}.
Hence, for any g in G and 7 in {1,...,n} there exists a unique h,; in H such
that gf; = fg.ihgs. That is, hy; = f;llgfi. We then define g.(x1,...,2,) =
(hgg-11-Tg-1.1,--- hg g1 .0g-1,). This is indeed an action by S-automor-
phisms on X&/H by Condition [2| of Definition Moreover, every element
h € H acts diagonally by h.(x1,...,2,) = (h.z1,...,h.z,). In particular, this
G-action has an unbounded orbit. O

We now prove one last lemma that will be necessary fo the proof of Theo-

rem @11

Lemma 4.3.12. Suppose that S satisfies (A2). If X is finite and G1x H has
property BS, then G has property BS.

Proof. Suppose that G does not have BS and let (Y,dy) be an S-space on
which G acts with an unbounded orbit G.y. Then (Y, d) is an S-space and
we have the primitive action of the wreath product Gix H on YX:

(0, )4) () = (b~ ). (h ™" ).

By Condition [2| of Definition |4.2.13] this action is by S-automorphisms. The
orbit G.y embeds diagonally and hence diag(G.y) is an unbounded subset of
some G lx H-orbit, which implies that G ix H does not have property BS. [

It is also possible to derive Lemma directly from Lemma [£.3.11]2,
with a more algebraic proof. Indeed, using the notation and hypothesis of
Lemma let H' be the kernel of the action of H on X and 7: Gix H — H
be the canonical projection. Then 77 '(H') 2 @, G & H' is a finite index
subgroup of G {x H and hence has property BS. Since G is a quotient of
D G ® H' we conclude that it also has property BS.

We now proceed to prove Proposition As for Lemma it is also
possible to prove it using the characterization of uncountable cofinality in terms
of subgroups, in which case it is an easy exercise, but we will only give a proof
using the characterization in terms of actions on ultrametric spaces.

Proof of Proposition[{.1 By Corollary[f.3.6land Lemma[.3.§ we already know
that if G {x H has uncountable cofinality, then H has uncountable cofinality
and it acts on X with finitely many orbits. We will now prove that if Gi1x H
has uncountable cofinality so does G. Let us suppose that G has countable
cofinality. By Lemma [£.2.3] there exists an ultrametric d on G such that the
action of G on itself by left multiplication has an unbounded orbit. But then we
have the primitive action of the wreath product Gix H on GX =[] G, which
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preserves @y G. It is easy to check that the map doo: G x PG — R
defined by doo (11, %2) == max{d(¢1(z),v2(z)) | z € X} is a G 1x H-invariant
ultrametric. Finally, let g9 € G be an element of unbounded G-orbit for d and
let o be any element of X. For g in G and z in X, we define the following
analog of Kronecker’s delta functions

) =40 LT
e W)= 1 ify #a.

Then we have (67,,1).690 = 629° and hence du(0%°,699°) = d(go,ggo) is un-
bounded.

Suppose now that both G and H have uncountable cofinality and that
H acts on X with finitely many orbits. We want to prove that G {x H has
uncountable cofinality.

Let (Y, d) be an ultrametric space on which G lx H acts. Then H and all
the G, act on Y with bounded orbits. Let H.zq,...,H.x, be the H-orbits
on X and let y be any element of Y. Then H.y has finite diameter Dy while
G, .y has finite diameter D;. For any = € X, there exists 1 <¢ <nand h € H
such that z = h.xz;. We have

d((87,,h™").y.y) < max{d((67,,h™").y, (62,, 1)), d((62,. 1)y, ) }

= max{d((l, 1.y, y) , d((dgi, 1).y, y)}
< max{Dg, D;},

which implies that the diameter of G,,h~t.y is bounded by max{Dy, D;}. But
G.,h™1.y has the same diameter as hG,,h ™ .y = G .,.y = Go.y.

On the other hand, the diameter of @ y G.y is bounded by the supremum
of the diameters of the G..y, and hence bounded by max{Dy, D1,...,D,}.
Finally, for (¢, h) in Gix H we have

d(y, (¢, h).y) <max{d(y, (,1).y),d((¢,1).y, (¢, h).y)}

= max{d(y, (¢,1).y),d(y, (1,h).y)}
< max{max{Dy, D1,...,D,}, Do}

That is, the diameter of G 1x H.y is itself bounded by max{Dy, D1, ..., D,},
which finishes the proof. O

While the fact that trees do not have Cartesian powers is an obstacle to
our methods, we still have a weak version of Theorem for properties FA
and FR. Before stating it, remind that we already know, by Proposition
the behavior of uncountable cofinality under wreath products. On the other
hand, we have the following result:

Lemma 4.3.13. The group Glx H has no quotient isomorphic to Z if and
only if both G and H have no quotient isomorphic to Z.

Proof. The desired result follows from (Gix H)*P = @X/H(Gab) x HP and the
claim that a direct sum @yey K, has a quotient isomorphic to Z if and only if
at least one of the factor has a quotient isomorphic to Z. Indeed, one direction
of the claim is trivial. For the other direction, remind that K does not project
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onto Z if and only if any action of K by orientation preserving isomorphisms
on Z, the 2-regular tree, has bounded orbits. But the only possibility for such
an action to have bounded orbits is to be trivial. If none of the K, projects
onto Z, all their actions on Z are trivial and so is any action of B,y Ky,
which can therefore not project onto Z.

By Corollary [£:3:6] Proposition [£.I] and Lemma [£.3.13] we directly obtain
the following partial version of Theorem

Proposition 4.3.14. Let G and H be two groups with G non-trivial and X a
set on which H acts. Then

1. If Gix H has property FA (respectively property FR), then H has prop-
erty FA (respectively property FR), H acts on X with finitely many or-
bits, G has no quotient isomorphic to Z and G has uncountable cofinality,

2. If both G and H have no quotient isomorphic to Z, have uncountable
cofinality and H acts on X with finitely many orbits, then Glx H has no
quotient isomorphic to Z and has uncountable cofinality,

3. If both G and H have property FA (respectively property FR) and X is
finite, then G1x H has property FA (respectively property FR).

Moreover, by using Corollary we can get ride of the finitely many
orbits hypothesis in Theorem in order to obtain Theorem
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A Cheeger-Buser-type inequality on
CW complexes

5.1 Introduction

The expander graphs have been a prolific field of research in the last four
decades (see for example [69] for an excellent survey). For a graph X with a
vertex set V' the classical expansion constant (or Cheeger constant) is defined
by

hX):= min{ 04 '@QAQV}

min {| A, [A°[}
where 0A is the set of edges with one vertex in A and the other in A¢. A
central result of this field is the Cheeger-Buser inequality, which describes the
relation between the expansion and the spectrum of the Laplacian.

Theorem 5.1.1 (Cheeger-Buser inequality). Let X be a connected graph and
A the first non-trivial eigenvalue of the Laplacian, then

A

§§h(X)§\/m

where d is the maximal degree of a vertex.

For more details see [57, Theorem 2.4].

In recent years, theories for expansion of higher dimensional simplicial com-
plexes have emerged. The combinatorial definitions allow generalizations of the
Cheeger-Buser inequality, see [38}48}88]. Other results, like Expander Mixing
Lemma or generalization of Alon-Boppana theorem, can be proved using this
formalism, see [86]. We can also use homology and cohomology with coeffi-
cients in Z/2Z to define boundary expansion, see [97], and coboundary ex-
pansion, see [31,45}/491/66,[74,/97]. A Cheeger-Buser-type inequality is proved
for boundary expansion in [97]. The coboundary expansion has the advantage
that it coincides with the standard Cheeger constant in the one dimensional
case, but the Cheeger-Buser inequality does not stay true in higher dimensions,
see [491/97] for counterexamples. Nevertheless there exist some indications that
suggest a connection between these two notions, particularly for the Cheeger’s
part (the upper bound) which holds for Riemannian manifolds [19].

61
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Recall that one of the first explicit constructions of expander graphs used
Cayley graphs of finite quotients of a group with Kazhdan’s Property (T),
see [69, Chapter 3] and [9, Chapter 6]. There exist higher dimensional objects
which can be associated to groups in the same spirit, as, for example, Cay-
ley complexes |71, Chapter 3] or presentation complexes [54]. For example, the
group SL3(Z) has Property (T) and any family of its finite quotients will give an
expanding family of Cayley graphs. One can wonder whether the corresponding
Cayley complexes are also expanding. More generally, it would be interesting to
establish which properties of the group may imply high-dimensional expansion
in its finite quotients. One technical issue that has to be addressed while pro-
ceeding with this program is that high dimensional expansion has been mainly
defined and studied for simplicial complexes, while the higher-dimensional ob-
jects naturally associated to groups are typically CW-complexes. Working out
the formalism of high dimensional expansion for CW complexes is the aim of
the present note.

We will begin by recalling some classical definitions about CW complexes,
groups of cochains with coefficients in an abelian group G, Laplacians and their
spectra. Then, considering cochains with coefficients in Z/2Z, we will introduce
h,(X), the n* boundary expansion constant for every integer n and we will
prove a Cheeger-Buser-type inequality in the same spirit as the original result
when n equal to the dimension of the complex. This Theorem generalizes [97].

Theorem 5.1.2. Let X be a regular CW complex of dimension d and Aq the
smallest non trivial eigenvalue of the d* lower Laplacian, then

1. If X is orientable
Aa(X) < ha(X).

2. If the maximal degree of a (d — 1)-cell is 2, then

ha(X) < v/2mMAg

where m = max{zu |eg : eﬁ_l]‘ red e Xd}.

5.2 Definitions

CW Complexes

We will begin by fixing some definitions and notations about CW complexes
that we will use in the following. All the details can be found in [72].

A CW complex X is a topological space obtained inductively by gluing
euclidean balls, called cells, via continuous maps called attaching maps. In
what follows, all complexes will be regular, which means that the attaching
maps are homeomorphisms on their images. The n-skeleton, denoted by X",
is the set of all the cells of dimension n which are called the n-cells. The
dimension of X is the maximal dimension of a cell.

Cohomology with coefficients

We will now define the cohomology groups with coefficients associated to a CW
complex. All the details of this classic construction can be found in [72].
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The group of n-chains C,(X) is the free abelian group generated by the

n-cells:
Cr(X) = EB Z.
erexn

By using classical homology tools, that we will not detail here, these groups
can be provided with a structure of chain complex using boundary operators
On 1 Cp(X) = Cp—1(X). In each infinite cyclic summand in the direct sum
above, one can choose between the cyclic generator and its inverse: b} or 57;.
This choice defines the orientation of the n-cell ). The set {b}}5 forms a basis
of Cp,(X). The boundary operator is completely determined by the values on

basis elements:
On(b) =" [bh - bp !
N

where the coefficients [b} : b.~'] are integers called the incidence numbers of
the cells e} and e!~! with respect to the chosen orientations. This incidence
number can be thought intuitively as the number of times an n — 1 cell appears
in the boundary of an n cell, the sign depending of the consistency of the chosen
orientations. The degree of an oriented cell b} is the sum 3° [t by]).

As the gluing functions are homeomorphisms, the incidence numbers take
values in {—1,0,1}. Two oriented cells b} and b} that have a common (n—1)-
cell b2~ in their boundary are either dissimilarly oriented if [bY : bp~'] =
[b%, : bn=] or similarly oriented if [bY : bi '] # bR, : bp~']. If there exists
an orientation on a d-dimensional CW complex such that all the d-cells are
similarly oriented, X is said to be orientable.

The coboundary operator is defined using these incidence numbers :

On i Cn(X) = Cpyr(X)
N AR A
173

We will often omit the indices of the operators.

Definition 5.2.1. Let G be an abelian group and X be a CW complex. The
n-cochains group with coefficients in G is the group of homomorphisms between
the n-chains and G,

C™(X : G) = Hom(Cp(X), G).

It follows from the definition that f(b}) = —f(b}) for all f € C*(X : G)
and n > 1. We define operators, also denoted by 0, and §,, between the
cochains groups:

Onflep™) = FOnlen ™) =[x s en 1 (eh)
Suf(ep™) = fOn(ef™) = [en™ : eh] f(e)

It is sometimes more convenient to add (—1)-chains consisting only of the
empty set and operators

30> _gxe3) = g and 5_1(g) =Y _ geX.
A A B
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The following subgroups will be used in the following:

B, =Imd,11 Z,, = Ker 0,

Laplacians and eigenvalues

Consider the case G = R. The cochains C™(X : R) can be turned into real
Hilbert spaces using

(f,9) = F(eX)gle).
A

In this case, 0 and § are adjoint operators. Combining them, we define the n'*
lower Laplacian,

A =6, 10,.

It can be noted that the elements of B,, are in the kernel of A, . Indeed,
if fis in B, there exists g in C"**(X : R) such that f = 9,19 and then
Arf=06,-10nf = 0n—10,0n4+19 = 0. This part will be called the trivial part
of the spectrum and we will be interested in the smallest eigenvalue on the
other parts.

Definition 5.2.2. The smallest non trivial eigenvalue of A; | denoted by A,
is defined as

An = min Spec A [p1.

It can be computed using Rayleigh’s quotients:

4 1 PO WY O L
wimmin{ U 7 e B g 2o} —min {20 s 5}

where [|f + Bp[| = min{[| f + g : g € Bn}.

Boundary expansion

Let us consider G = Z/2Z to define the notion of boundary expansion for CW
complexes. The cochains groups can be endowed with the Hamming’s norm:

]| = | supp «f

for « € C™(X : Z/2Z). We can define the following notion of expansion for
CW complexes.

Definition 5.2.3. Let X be a CW complex. The n*" boundary expansion
constant of X is:

o [0 —
hn(X) .—mm{mBn”.aEC (X.Z/2Z)\Bn}.

where ||+ B,|| = min{|ja + 8| : 8 € B,}
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5.3 Proof of the Theorem

Proof of 1). Let a be an element of C?%(X : Z/2Z) which realizes the minimum
in hg. We can find a cochain f in C4(X : R), which assigns 1 to every d-cells
in supp« and 0 to all the others. Since X is orientable, J;« is equivalent to
Oaf. Then,

o
[lev]
_ loar 3
1113
K) 2
> min{ H”Zﬁz :g€CHYX:R),g¢ By = 0}
= A\

O

Proof of 2). Let f be a real cochain which is an eigenvector of A of eigenvalue
Aq. We chose an orientation on the d-cells such that all the values of f are
positive. We do not assume that they are similarly oriented. We put an order
on X4 = {ef,ed,...,e%} such that

0 < f(ef) < fle) < ... < fleR).
The boundary of X is the (d — 1)-cells with degree 1,
0X :={ef ™t € X! i deged™t =1}

For each e‘f\_l in 90X, we add another (d — 1)-cell ,ei,‘l, via the attaching map
wa = px. We can add a d-cell on X, whose attaching map goes homeomor-
phically into ef\*l U ef\lfl. We denote by X g the set of these new d-cells and
put an order X¢ = {ed,ed,...,e{_,,;} on it. The function f is defined as
f =0 on the cells of X4. When two d-cells have a common (d — 1)-cell in their
boundary, we say they are low adjacent and write e‘i ~ ei. It is possible that
there are more than one (d — 1)-cells in the intersection of the boundary of two
d-cells. We say that we count the cells that realize e ~ e¢ with multiplicity in
this case, i.e. the pair {ef,ef } appears a number of time equal of the number
of common (d — 1)-cells in their boundary. We define

o8 :z{{e?,ez}:1—M§j§i<k§Nand e?wei}
counted with multiplicity. Consider the quantity

[f] == min 1G4 .
0<i<N—-1 N — ¢

We can show that H[f] > hg. Indeed, let i be the ¢ which realizes the minimum
of H[f] and a € C(X : Z/2Z) defined as follows,

1 i<k
a(eg):{o P>k
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So the (d — 1)-cells that are in the support of dza are in the boundary of one
eg with k£ > i and another with k£ <. Then, we have

Gl lloaal
N=i ol =

H[f] =

We can now prove our inequality. All the sums on d-cells are on X U X g and
are taken with multiplicity.

10afll3
113
Z dafl(e

Ad =

e,‘i’fvej (f( )if( ))

>
(S0 Fe)?) - (Zemen (Fle) F £le)?)
(St (02— F(e2])”

J

= S ) 2 (Sops P + 1)

(et £~ F(eD2)
>
T (Ta feD?) - 2m X, f(e)?)

(SX0M (et — D))

2m (Y, f(ed)?)’
| (ELUet - et anw - i)
- 2m (35 f(ed)?)”
HIP? (Z)f(eh)?)’
2m (Z/\ f(ei)Q)Q
_ R
2m

The equality is a consequence of f|Xg =0and dyf = 0 for a (d—1)-cell of

degree 0 and (5.2)) follows from Cauchy-Schwartz. For (5.3)), we want to show
that

2

N-1
Z |f(ef el = (fled)? = fleD)D)ICil.
(> ~ed =0

J

This can be seen by counting the number of times each f (eg)2 appears on each
side. On the left, f(e?)? appears

=|{{el, e J} j <iand el ~ e with multiplicity} }|
— H{ei edl ri < kand el ~ ef with multiplicity} }|.
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On the other side, each f(ef)? appears |C;_1| — |C;i| times. Remark that for
j < k such that {ef,ef} is in C;_y, {e}, e} is also in Cj if k # . Similarly,
{e?, eg} in C; is also in C;_1 if j # ¢. Then,

|Ci1] = |Ci| = 5
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