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gests a role for abnormal rhythmicities in central move-
ment mechanisms. This role has been proposed by
Brown and colleagues, who also have suggested that
these rhythmicities in myoclonus are exaggerations of
normal rhythms.2 Our combined results from time and
frequency domain analysis suggest that myoclonus in PD
occurs when neuronal populations in the sensorimotor
area are driven to an extreme amount of synchronous
activity with increased coupling between the sensorimo-
tor cortex and motorneuron pools that manifests as in-
creased corticomuscular coherence. In addition, our re-
sults from studying the time-locked coherence changes
before myoclonus suggest that, in individuals with PD
and small amplitude myoclonus, the corticomuscular co-
herence values are abnormally elevated even when the
myoclonus is not occurring. Thus, the pathophysiologi-
cal mechanism that causes the high baseline coherence
does not appear by itself to be sufficient to generate the
myoclonus. This finding suggests that another influence
such as improper input into the sensorimotor cortex or an
intrinsic neuronal circuitry defect is necessary to trigger
the generation of the excessive activation from the sen-
sorimotor cortex. Indeed, the neuronal circuitry defect
that produces the abnormally high baseline coherence
may or may not be the same as that which creates the
sudden and irregular increase in corticomuscular coher-
ence that correlates with the myoclonus cortical
discharge.

The abnormally high corticomuscular coherence val-
ues without the presence of myoclonus and the tendency
toward higher coherence values in the PD group com-
pared to the control group suggest that corticomuscular
coherence is more sensitive than either the detection of
visually perceptible myoclonus movements or surface
EMG abnormalities. In terms of sensorimotor neuron
populations, this abnormality represents an abnormal de-
gree of time-locked correlation between axodendritic
pyramidal neuron activity arising from the sensorimotor
cortex and EMG activation. This “decrease in chaos” or
increase in synchronization may result from defective
surround inhibition due to decreased inhibitory inputs or
excessive excitatory input into the sensorimotor cortex.
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Abstract: Deep brain stimulation of the subthalamic nucleus
(STN-DBS) reduces akinesia in Parkinson’s disease but its
impact on fine motor functions was unknown. We assessed
the effects of DBS and a levodopa (L-dopa) test on the
timing of the precision grip in 18 patients. Improvement on
UPDRS-items reflecting hand functions and the shortening
of the first phases of the precision grip were more distinct in
the L-dopa test than in the pure STN-DBS condition. Other
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akinesia items and the time for build-up of lifting force
were equally improved in both conditions. This suggests
that routine STN-DBS might not be equally effective on all
aspects of fine motor functions. © 2003 Movement Disorder
Society

Key words: akinesia; subthalamic nucleus; deep brain stim-
ulation; Parkinson’s disease; grip force

Patients with Parkinson’s disease (PD) suffer from
progressive akinesia in the course of their disease. Aki-
nesia improves with dopaminergic medication but motor
fluctuations and levodopa (L-dopa)–induced dyskinesias
(LID) often limit its use in advanced stage. Deep brain
stimulation of the subthalamic nucleus (STN-DBS) is
a highly effective treatment for motor symptoms in
L-dopa–responsive PD.1,2 Its overall benefits on akinesia
resemble that of L-dopa.3,4 The undoubted and substan-
tial anti-akinetic benefits of DBS, however, have been
evaluated mainly in movements where axial and proxi-
mal muscles are the prime movers (proximal appendic-
ular movements), i.e., walking, arm swing, or tapping
movements.3–7 A predominant effect of stimulation on
axial akinesia compared to akinesia of the upper limb has
been described with clinical scores,7 but this differential
effect has not been challenged by objective measures.

Our clinical experience suggested that anti-akinetic
effect of STN-DBS on proximal ballistic movements of
the limbs is more distinct than on fine motor functions. It
was our aim to challenge this hypothesis by objective
measures, and to assess akinesia of the precision grip in
a functionally relevant context that requires co-ordina-
tion of both axial appendicular and distal muscles of the
upper limb. Grasping to lift a small object seemed a
suitable task, because it involves the parallel control of
both grip force, exerted by distal muscles, and load
(lifting) force, exerted mainly by axial muscles. This
synergy of the precision grip has been studied exten-
sively in healthy subjects8,9 and in parkinsonian pa-
tients.10–13 It seemed suitable to challenge a possible
imbalance of the effect of STN-DBS on proximal com-
pared to distal appendicular akinesia.

The effects of L-dopa and STN-DBS on the motor
score of the UPDRS are very similar.1,4 More complex
finger movements, however, might be underrated in the
overall motor score and thus subtle differences in effi-
cacy of either treatment on different motor programs
might escape to the clinical evaluation. If a deficiency of
the anti-akinetic effect of STN stimulation exists, it may
be rather subtle compared to its great overall motor
benefit. Nevertheless knowledge of such effects could
give further insights into the mechanisms of stimulation.

SUBJECTS AND METHODS

Subjects and Experimental Conditions

We studied a consecutive series of 35 patients with
idiopathic PD treated by chronic bilateral high frequency
stimulation of the STN. The STN was visualized with
stereotaxic MRI, allowing for direct anatomic targeting.
Microrecording and microstimulation were used for elec-
trophysiological control of the target. A quadripolar mac-
roelectrode (DBS type 3389, Medtronic, Minneapolis,
MI) was implanted bilaterally, and connected to a stim-
ulator (Itrel II or Kinetra; Medtronic). The study was
approved by the local ethics committee. Written in-
formed consent was given by all patients. DBS ampli-
tudes (mean 3.1 � 0.8 V) were titrated for optimal
control of akinesia and rigidity without evoking dyski-
nesias. We did not explore the thresholds for different
aspects of akinesia. The L-dopa equivalent daily dose
(LEDD) was calculated as described elsewhere.12,13

LEDD was reduced after surgery by 47% to a mean
equivalent dose of 710 mg.

Patients were assessed 3 months after surgery in 3
conditions. The assessments began with the baseline
condition in the morning (off-drug/off-stim) after a 12-
hour overnight withdrawal of dopaminergic treatment,
30 minutes after switching off the stimulation. Thereafter
the patients were assessed in on-drug condition without
DBS after a challenge with a suprathreshold dose of
L-dopa.4 The on-drug state (drug) was assessed at its
peak motor effect. Tapping and the precision grip task
were carried out immediately after the assessment of the
UPDRS to avoid waning of the anti-akinetic effect. The
overall time for those examinations was �20 minutes. A
repetition of the same assessment was carried out the
next day in the morning after a 12-hour overnight with-
drawal of medication with both stimulators on (stim �
off-drug/on-stim). Patients were videotaped during the
entire L-dopa test.

The motor score (UPDRS III)14 was rated in the base-
line, drug, and stim conditions by the same rater (FK).
Subscores of the akinesia of arms and legs (Items 25 �
26), and of the hands (Items 23 � 24) were derived from
the UPDRS. They loaded on the same akinesia factors
according to a factor analysis published recently.15 The
bilateral sum of each subscore ranged from 0 to 16. To
rule out interference of hand tremor with the grip–lift
task,16 postural/action tremor of the upper limb (Item 21)
was analyzed separately, with a bilateral sum of 0 to 8.
The first 18 patients were selected for a more detailed
analysis including rating of L-dopa–induced dyskinesias,
hand tapping, and grip force coordination. Peak-dose
dyskinesias were rated from the videotape by indepen-
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dent, experienced raters.17,18 Tapping was assessed using
two counters set 20 cm apart, the patient alternatively
hitting the button of either counter with the index by
moving the arm from one button to the other and mean
values of both sides were analyzed.4 This kind of tapping
movement required mainly a flexion and extension of the
elbow joint, and a minor contribution of movements of
hand and fingers.

Timing of the Grip–Lift Movement

The experimental procedure for the analysis of
grip–lift coordination was similar to that described
previously.10 –13 The patients carried out the task in each
condition with the arm moving freely, i.e., elbow flexion
and shoulder abduction were required to lift the object.
Its weight was 220 g and the sandpaper covered grip
surfaces (granulation #320, diameter 17 mm) were 5.5
cm apart. Subjects were instructed to perform the task at
a normal pace, i.e., no instructions were given regarding
speed, accuracy, or force. The hand was held open at the
level of the object and the subject grasped and lifted the
object at a beep. After 5 seconds of holding it they were
told to replace it at the table. Fifteen repetitions were
recorded with a 5- to 10-second pause in between. The
first five trials were regarded as practice trials and were
not considered for data analysis, to minimize the influ-
ence of learning effects. Horizontal grip forces and ver-
tical load forces were measured from thumb and index
finger using 3-D sensors (Assurance F/T, USA), and
were digitized at 400 Hz using SC/ZOOM software
(Umea, Sweden). Temporal parameters were derived
from the two early latencies, related with grasping (du-
ration of grip preparation � DURGPREP and duration of
preload phase � DURPLOAD; see Fig. 1)12 and from the
late phase, where the vertical lifting force increases (du-
ration of load phase � DURLOAD). The sum of all three
phases was depicted as total duration of the isometric
phase (DURISO). Mean values of both sides were entered
into statistics to account for the bilateral effects of
stimulation.

Statistics

Analysis of variance for repeated measurements
(GLM procedure of SPSS v. 10, SPSS, Chicago, IL) was
used to compare the temporal parameters between con-
ditions, with TREAT as three-step factor (baseline, drug,
stim); P � 0.05 after Bonferroni correction was assumed
as significant. Friedman ANOVA and Wilcoxon test
were computed to test the influence of treatment on the
scores, and the level of significance was set to P � 0.05.

RESULTS

Clinical Scores

The UPDRS motor score was equally improved by
both drug and stim, compared to baseline (P � 0.01 in
both, see Table 1). The effects of drug and stim on the
akinesia score of arm & leg compared to baseline were
likewise equal (P � 0.01 in both). A reduction of the
hand akinesia score also occurred by stim (P � 0.05) and
by drug (P � 0.01).

We calculated the change of scores in relation to
baseline (off-drug/off-stim) to compare between the ther-
apeutic effects of drug and stim (Fig. 2). These thera-
peutic effects on hand akinesia, however, were stronger
in drug, compared to stim condition (relative reduction of
the score by �52% vs. 27%, P � 0.05). Such differential
effects were not seen for the akinesia of arm & leg
(relative reduction of the score by �51% vs. �47%, NS)
and for the motor score (�50% vs. �46%, NS). The
same was true for the tapping rate, which was enhanced
by both drug and stim (P � 0.01), without differences
between the therapeutic effects (�25% and �27%, NS;
see Table 1). Both drug and stim induced mild on-state
dyskinesias (scores 2.3 vs. 2.9, NS) although a clear
reduction was seen compared to the pre-surgical test
(7.1, P � 0.01 compared to examination after surgery,
pre-surgical variables not shown in the table).

Effect of Treatment on Duration of Grip Phases
The duration of the total isometric phase (DURISO)

was shortened by both drug and stim (P � 0.01 com-
pared to baseline, see Table 2). If DURISO was examined
in detail, however, stim did not shorten its early phases
(DURGPEP and DURPLOAD, NS), but only its late phase
(DURLOAD, P � 0.01 compared to baseline). Drug,
on the other hand, shortened all phases consistently
(DURGPEP and DURPLOAD, P � 0.05; DURLOAD, P �
0.01 compared to baseline). Therefore, the shortening of
DURISO by stim was based mainly on an enhanced
performance in the late phase, whereas drug acted sim-
ilarly on all parts of DURISO (Table 2).

We then calculated the therapeutic effect of drug and
stim on phase durations with reference to the baseline
condition (off-drug/off-stim). This analysis showed that
the differences of therapeutic effects of stim and drug on
the early phases were significant (Fig. 3). Although the
impact of drug and stim on DURLOAD were equivalent
(�24% vs. �27%, NS), the shortening effect of drug on
DURGPREP prevailed that of stim (�26% vs. �7%, P �
0.05) and the same was true for DURPLOAD (�29% vs.
�12%, P � 0.05).
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Spearman correlation between the durations of all grip
phases and the on-state dyskinesia score was weak (R �
0.4, NS). The same applied for correlations of the phase
durations with both the L-dopa equivalent dose and the
tremor score (R � 0.51, NS).

DISCUSSION

This study demonstrates a differential effect of
STN-DBS compared to a L-dopa challenge in a rela-
tively large group of patients. Benefits for distal ap-
pendicular akinesia were more pronounced after L-

dopa than after pure DBS. This was reflected by a
slightly smaller reduction of akinesia of hand and
fingers by DBS, compared to a more pronounced ef-
fect of L-dopa. An equal effect of DBS and drug was
observed on the akinesia of proximal appendicular
movements as scored in the UPDRS. Similarly, the
benefits of stimulation almost spared both early
(grasping) phases of the precision-grip task, whereas a
clear shortening of the late (loading) phase by STN-
DBS was observed. The faster build-up of lifting force
in the late phase by DBS was sufficient to speed up the

FIG. 1. Illustration of the grip–lift paradigm (A)
and its temporal parameters (B). The object was
contacted typically first by the thumb (T0) and
then by the index finger (T1). The grip force and
load force increased in parallel during the load-
ing phase until lift-off (T2, Vel � positive ve-
locity in vertical direction). Temporal parame-
ters were calculated as follows: duration of grip
preparation (DURGPREP � T1 � T0), preload
phase duration (DURPLOAD � T2 � T1), and
load phase duration (DURLOAD � T3 � T2).

TABLE 1. Effect of STN-DBS and of L-dopa on UPDRS subscores, timed tapping,
and on-state dyskinesias

Hand
akinesia

Arm and leg
akinesia Motor Tremor Taps/min Dyskinesia

Baseline 6 � 3.9 7.2 � 3.2 39.3 � 16.7 1.6 � 1.8 208 � 57 —
L-Dopa challenge 2.9 � 3a 3.5 � 1.8a 19.6 � 11a 0.8 � 1.5 253 � 60a 2.3 � 2.8
STN-DBS 3.8 � 3.4b 3.8 � 1.8a 21.2 � 12.4a 0.7 � 1.5 255 � 59a 2.9 � 1.9

Values are expressed as mean � SD of the score.
L-Dopa challenge and stimulation (STN-DBS) both improved akinesia, but the improvement of hand akinesia by

STN-DBS was less than by L-dopa challenge (see Figure 2). Akinesia of arm and leg was equally improved by L-dopa
challenge and STN-DBS.

Score ranges were 0–16 for akinesia of the hands and of arms and legs (n � 35), 0–108 for the motor score of the UPDRS
(n � 35), 0–8 for tremor of the hands (postural/action tremor, n � 35), and 0–28 for dyskinesias (peak dose dyskinesias,
n � 18).

aP � 0.01; bP � 0.05, compared to baseline (off-drug/off-stim).
STN-DBS, subthalamic nucleus-deep brain stimulation.
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grip-lift synergy. Early and late phases of the grip-lift
task, however, were equally shortened by drug.

The grip–lift synergy studied here allows a separation
of two early phases, until a stable grasp is achieved, and
a late phase in which the vertical load force increases
until the object is lifted off.8 Although several muscles of
hand, arm and shoulder act concerted, the focus of motor
control undergoes substantial changes throughout grasp-
ing to lift an inertial object according to studies using
transcranial magnetic stimulation of the corticospinal
tract.19–21 The intrinsic hand muscles receive their stron-
gest cortical drive as the digits close around the object,
matching the early phases of the task used in the present
study.20 The powerful boosting of the drive to hand

muscles is mediated by cutaneous afferent input from the
gripping digits.19 As soon as a stable grasp is achieved
the facilitation of the distal hand muscles decreases rap-
idly20 and control moves over to proximal muscles ex-
erting the lifting force. In the late (loading) phase the
corticospinal drive to muscles of arm and shoulder in-
creases rapidly while lifting and holding the object.19–21

In summary, the early phases of the grip-lift task could
reflect mainly the efficiency and speed of force develop-
ment by distal appendicular hand muscles, whereas the
late phase may represents more of the speed by proximal
appendicular arm muscles. Therefore, the differential
speed of force development in the late compared to the
early phases may be due to a predominant effect of
STN-DBS on proximal appendicular akinesia. Alterna-
tively, the threshold for an optimal effect of DBS on
distal akinesia could have been different from that used
in the present study.

The results from the analysis of grip forces are in line
with our clinical findings in a larger group of post-
surgical patients. Although STN-DBS reduced global
akinesia, this effect was stronger on the UPDRS-items
estimating akinesia of proximal compared to distal ap-
pendicular muscles.

An analysis of proximal and distal appendicular aki-
nesia in STN-DBS has not been reported to our knowl-
edge. A moderate effect of pallidotomy on parkinsonian
akinesia has been observed for proximal ballistic move-
ments whereas only minor improvements were seen for
distal or complex fine movements.22–24 Siebner and col-
leagues25 found that handwriting improved by STN-
DBS, but they reported no comparison with the effect of
L-dopa. In the current study, tapping speed and the UP-
DRS motor score improved to a similar extent as re-
ported previously.1,4,5,26–29 The lack of a differential ef-
fect of drug and stim on tapping speed in those studies
may be due to an involvement of both proximal and

FIG. 2. Differential effect of STN-DBS (stim) and L-dopa (drug) on
clinical akinesia and the motor score. The impact of stim on the hand
akinesia score was less than that of drug. All other measures were
improved similarly by drug and DBS. Bars represent mean therapeutic
effect in relation to baseline condition (off-drug/off-stim), error bars
show SD, n � 35. †P � 0.05 effect of stim compared to drug.

TABLE 2. Effect of L-dopa and STN-DBS on the temporal variables of the
grip–lift synergy

Early
Late

DURLOAD

Total
DURISODURGPREP DURPLOAD

Baseline 75 � 57 140 � 84 177 � 80 344 � 125
L-Dopa challenge 55 � 52b 99 � 78b 127 � 57a 243 � 106a

STN-DBS 65 � 39 121 � 79 119 � 41a 265 � 83a

Mean durations of the phases are shown in msec � SD.
The total duration of the isometric phase (DURISO) was subdivided into two early phases

(DURGPREP and DURPLOAD) and a late phase (DURLOAD). The shortening of DURISO was
mainly caused by a faster execution of DURLOAD, while L-dopa shortened all phases
consistently.

bP � 0.05, aP � 0.01, compared to baseline (off-drug/off-stim condition).
STN-DBS, subthalamic nucleus-deep brain stimulation.
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distal appendicular muscles or to the repetitive nature of
this task. Repetitive movements are presumably gov-
erned by the supplementary motor area (SMA),30,31

which is depressed in PD,32 but can be strongly activated
both by STN-DBS33,34 and by dopamine agonists.35 Al-
though in the present study the total movement time was
shortened equally by stim and drug, a detailed analysis of
the movement phases exhibited differential effects. Such
attempts were not made in previous studies on the
effect of DBS on fine motor functions. A moderate
effect of pallidotomy on parkinsonian akinesia has been
observed for proximal (ballistic) movements only
whereas distal or complex (fine) movements were not
improved.22–24

No differential effects were seen in the preparation
and execution of aiming movements, with an equal im-
pact of levodopa and DBS.3,36 This might relate to the
minor involvement of distal appendicular muscles in
aiming.

Which other factors might hamper the performance in
the precision grip task? Hypothetically, L-dopa-induced
dyskinesias may induce a compensatory slowness of
grasping. In this case, however, slowness should be more
pronounced in on-drug/on-stim condition where dyski-
nesias are at their worst, which was not the case. No

correlation was observed between the phase durations
and the severity of on-state dyskinesias. Furthermore, a
selective interference of involuntary movements with
grasping, but not with lifting, rendered a major contri-
bution of LID to the slowness very unlikely. The con-
sistent findings from clinical scores and the precision
grip measures render this possibility unlikely.

Tremor has also been considered a source of slowness
in PD37–39 but tremor scores were the same on DBS or
drug alone in the present study. Therefore tremor reduc-
tion does not explain differential effects of both
conditions.

Mechanisms of the Differential Effects

What could be the pathophysiology underlying differ-
ential effects of STN-DBS and levodopa? Discrete finger
movements by distal appendicular muscles and the pre-
cision grip depend on the primary motor cortex,21,40–43

which is activated by dopaminergic treatment,44 but not
by STN-DBS.33,34 In proximal appendicular movements,
in contrast, muscles of the limb girdle and the upper arm
are the prime movers. These proximal and axial muscles
are controlled by a widely distributed network involving
the premotor cortex and basal ganglia,45,46 and the upper
brainstem.47–49 Particularly the pedunculopontine nu-
cleus (PPN) has a role in preparation and execution of
axial and proximal appendicular movements.50,51 STN-
DBS is expected to release the activity of the PPN,50–53

and activates the premotor cortex.33,34 This may explain
the outstanding effects of STN-DBS on proximal appen-
dicular and axial akinesia.

CONCLUSION

This study confirms overall similarities between the
anti-akinetic effect of L-dopa and STN-DBS. There is
one noticeable discrepancy, however, as STN stimula-
tion does not improve distal appendicular akinesia and
the precision grip to the same extent than proximal
appendicular movements whereas L-dopa does. The close
connectivity between STN and motor areas of the brain-
stem or the premotor cortex could underlie a more direct
effect of DBS on proximal akinesia. We could not ex-
clude the possibility that akinesia of proximal and distal
muscles resolves at different thresholds because the pa-
rameters of DBS were not varied in this study. Further
research in DBS should address the role of thresholds for
proximal and distal aspects of akinesia.
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Is the Target for Thalamic Deep
Brain Stimulation the Same as for

Thalamotomy?
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Abstract: Deep brain stimulation (DBS) has virtually re-
placed thalamotomy for the treatment of essential tremor.
It is thought that the site for DBS is the same as the optimal
lesion site; however, this match has not been investigated
previously. We sought to determine whether the location of
thalamic DBS matched the site at which thalamotomy
would be performed. Eleven patients who had detailed
microelectrode recording and stimulation for placement of
DBS electrodes and subsequent successful tremor control
were analysed. An experienced surgeon, blinded to outcome
and final electrode position, selected the ideal thalamotomy
site based on the reconstructed maps obtained intraopera-
tively. When the site of long-term clinically used DBS and
theoretical thalamotomy location was calculated in three-
dimensional space and compared for each of the x, y, and z
axes in stereotactic space, there was no significant differ-
ence in the mediolateral location of DBS and theoretical
lesion site. There was also no difference between the theo-
retical lesion site and the placement of the tip of the elec-
trode; however, the active electrodes used for chronic stim-
ulation were significantly more anterior (P � 0.005) and
dorsal (P � 0.034) to the ideal thalamotomy target. This
mismatch may reflect the compromise required between
adverse and beneficial effects with chronic stimulation, but
it also suggests different mechanisms of effect of DBS and
thalamotomy. © 2003 Movement Disorder Society
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