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We introduce and study a new model consisting of a single classical random walker undergoing
continuous monitoring at rate γ on a discrete lattice. Although such a continuous measurement cannot
affect physical observables, it has a nontrivial effect on the probability distribution of the random walker.
At small γ, we show analytically that the time evolution of the latter can be mapped to the stochastic heat
equation. In this limit, the width of the log-probability thus follows a Family-Vicsek scaling law,
Nαfðt=Nα=βÞ, with roughness and growth exponents corresponding to the Kardar-Parisi-Zhang (KPZ)
universality class, i.e., α1DKPZ ¼ 1=2 and β1DKPZ ¼ 1=3, respectively. When γ is increased outside this regime,
we find numerically in 1D a crossover from the KPZ class to a new universality class characterized by
exponents α1DM ≈ 1 and β1DM ≈ 1.4. In 3D, varying γ beyond a critical value γcM leads to a phase transi-
tion from a smooth phase that we identify as the Edwards-Wilkinson class to a new universality class
with α3DM ≈ 1.

DOI: 10.1103/PhysRevLett.129.260603

Universality is a pillar concept of statistical physics,
classical and quantum alike. The fact that, under renorma-
lization, different microscopic models can lead to the same
scale invariant theory has been the key idea for under-
standing second-order phase transitions. In particular, the
concept of universality classes has found an extremely
fertile ground within the study of dynamical interfaces for
which a scale invariance property has been reported and
documented [1,2]. In this context, one particular fixed point
has attracted tremendous interest in the previous decades:
the Kardar-Parisi-Zhang (KPZ) universality class and its
iconic 1=3 growth exponent [3,4] in 1D. Beyond the
eponym KPZ equation, it has been found in a variety of
models describing growing interfaces such as the ballistic
deposition model [5], the Eden model [6,7], or the restricted
solid-on-solid model [8]. Perhaps more surprisingly, in
recent years, it has also been discovered in a variety of
quantum phenomena such as the growth of entanglement
entropy in random unitary circuits [9], stochastic conformal
field theory [10], noisy fermions [11], and transport proper-
ties of dipolar spin ensembles [12] and integrable spin
chains [13–16].
Continuous or weak measurement has enjoyed consid-

erable interest in the previous decades within the quantum
community as it provides a nondestructive way to obtain
information about a given quantum system [17,18]. Its
advent led to many interesting applications such as quantum
Zeno effects [19], quantum trajectories [20], quantum
Maxwell demons [21], or direct observation of quantum
jumps [22]. Recently, a number of studies investigated the

consequences of repeated projections or continuous mon-
itoring on the evolution of quantum many-body systems.
For systems undergoing both a random unitary evolution
and measurements, a result that has aroused considerable
interest lately is the existence of a measurement-induced
phase transition (MIPT) in the entanglement entropy
[23–35]. Most of these contributions focus on entanglement
or Rényi entropies, i.e., information-related quantities
which are likely salients in classical systems as well. As
such, it is natural to wonder whether the same pheno-
menology of MIPT also features in classical physics.
In this Letter we unveil a connection between KPZ

physics and classical information theory by studying a
single classical random walker undergoing continuous
monitoring and, relying on this connection, we show that
this system presents a MIPT in 3D.
We first present the framework that we use to model

weak, continuous measurements on a generic Markov
process. We then focus on the specific case of a single
random walker diffusing on a lattice with the occupancy at
each site being continuously monitored.
When the measurement rate γ is small, we find in 1D that

the standard deviation of the log-probability follows a
Family-Vicsek scaling law with roughness and growth
exponents corresponding to the KPZ universality class,
i.e., α1DKPZ ¼ 1=2 and β1DKPZ ¼ 1=3, respectively [3]. By
performing a perturbative analysis around γ ¼ 0, we show
analytically that this KPZ-like behavior is due to a direct
mapping of the dynamics onto the stochastic heat equation
(SHE). As γ is increased further, we see numerically in 1D a
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size-dependent crossover between the KPZ regime and a
new universality class characterized by different exponents
α1DM ≈ 1 and β1DM ≈ 1.4. In 3D, instead of a crossover, we see
a phase transition between a smooth phase that we identify
as the EW class and a rough phase with α3DM ≈ 1. We also
show that, both in 1D and 3D, the small γ limit can
alternatively be thought of as a short time limit t ≪ γ−1

within which the dynamics is described by the KPZ
equation.
Continuous monitoring.—We begin by introducing the

formalism of continuous monitoring. It is directly inspired
from weak measurement and trajectory frameworks of
quantum mechanics [17,36–39] and can be thought of as
a simple hidden Markov process [40].
In the absence of monitoring, the system undergoes a

stochastic dynamics generated by L on a classical con-
figuration spaceMðCÞ with total number of configurations
Ω. The time evolution of the probability distribution Pt is
given by the master equation

d
dt

PtðCÞ ¼ L½PtðCÞ�: ð1Þ

We assume that the stationary state is unique and is further
given by the maximally entropic state P∞ ¼ Ω−1. Weak
monitoring takes place via an ancilla that couples to the
system for a short amount of time δt such that the generated
correlation is of order δt as well. Measuring the ancilla’s
state provides indirect and noisy information about the
system which can be used to write a constrained stochastic
evolution for Pt.
Let Ω be the set fX1;…; XNg ≔ X⃗ where the Xj’s can

take values �1: þ1 corresponds to an occupied site while
−1 to an empty one. We suppose that all sites will be
independently monitored. The ancilla monitoring site j is
also described by a random variable Aj which can take

binary values aj ∈ f−1; 1g. We denote by PðX⃗; AjÞ the
joint probability of the union systemþ ancillae to be in a
given configuration. We fix this probability distribution to
positively correlate the state of the system and of the ancilla:

PðX⃗; AjÞ ¼ PðX⃗Þ 1þ
ffiffiffiffiffi
γδt

p
2

AjXj

2
; ð2Þ

where PðX⃗Þ is the reduced probability of the system only.
Once a measurement of the ancilla’s state has been made
with outcome aj, the probability distribution is updated with
probability 1þ ð ffiffiffiffiffiffi

γδt
p

=2ÞajhXji to

PðX⃗Þ → PðX⃗jAj ¼ ajÞ ¼ PðX⃗Þ 1þ
ffiffiffiffiffi
γδt

p
2

ajXj

1þ
ffiffiffiffiffi
γδt

p
2

ajhXji
; ð3Þ

where hXji ≔
P

fX⃗g XjPtðX⃗Þ. In the Supplemental
Material (SM) [41], we show that repeating this procedure

M times and taking the limitM → ∞, δt → 0while keeping
Mδt ¼ t fixed leads, in the Itō prescription, to the following
evolution for the probability distribution

dPtðX⃗Þ ¼
ffiffiffi
γ

p
2

PtðX⃗ÞðXj − hXjitÞdBj
t ; ð4Þ

where dBj
t are site-independent Brownian processes with

variance dt and Itō rules dBj
tdBk

t ¼ δj;kdt. Note that Pt is
both a probability distribution and a stochastic variable.
Consequently, there are two types of averages in the
problem: h� � �i denotes the average with respect to Pt,
while E½� � �� denotes the average with respect to the
Brownian processes fBj

tg.
As measurements occur independently on every site, we

obtain the stochastic evolution of the monitored system as
the sum of (1) and (4):

dPt ¼ LðPtÞdtþ
ffiffiffi
γ

p
2

X
j

PtðX⃗ÞðXj − hXjitÞdBj
t : ð5Þ

Note that, since L preserves the total probability andP
fX⃗g PtðX⃗ÞðXj − hXjitÞ ¼ 0, the probability distribution

Pt remains normalized at every time t for each realization
of the process.
Single-particle problem.—We now consider the specific

case of a single random walker. For lightness, the following
discussion will be for a 1D system of N sites with periodic
boundary conditions but generalization to higher dimen-
sions is straightforward. Let pjðtÞ be the probability for the
particle to be at site j at time t. We choose L to be the
discrete Laplacian weighted by a diffusion constant D, i.e.,
L ¼ DΔ with Δpj ≔ pj−1 − 2pj þ pjþ1. Starting from
(5), the evolution of pj in the presence of monitoring is
given by

dpj ¼ DΔpjdtþ
ffiffiffi
γ

p
pjdW

j
t ; ð6Þ

with dWj
t ≔ dBj

t −
P

m pmdBm
t (see Ref. [41] for details

of the calculation). Note that dWj
t are site-correlated

Gaussian noises such that E½dWj
t � ¼ 0 and E½dWj

tdWk
t � ¼

ðδj;k − ðpj þ pkÞ þ
P

m p2
mÞdt.

The diffusive term favors the flat, maximally entropic
distribution pj ¼ 1=N while the measurement term favors
the N pointer states pj ¼ δj;k for fixed k ∈ ⟦1; N⟧. For
finite D and γ, the stationary distribution of this model is
nontrivial and, to the best of our knowledge, not known
with a notable exception for N ¼ 2. In the latter case, it
turns out that the dynamics is equivalent to the one of a
single qubit undergoing both thermal relaxation and quan-
tum measurements and was treated in [44,45].
Equation (6) is reminiscent of the stochastic heat

equation (SHE) with multiplicative noise [46] except that
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the noise dWj
t is the sum of a Brownian process and a

nonlocal contribution
P

m pmdBm
t . Nonetheless, it turns

out that there is a formal correspondence between (6) and
the SHE in the regime of small γ.
Small γ regime.—To highlight this correspondence, we

now perform a perturbative analysis around γ ¼ 0 of (6) in
the infinite system size limit N → ∞. Suppose p admits the
small γ expansion

p ¼ pð0Þ þ ffiffiffi
γ

p
pð1Þ þ γpð2Þ þ � � � ; ð7Þ

where pð0Þ is the stationary flat profile of the maximally

entropic state, i.e., pð0Þ
j ðtÞ ¼ 1=N, ∀ ðj; tÞ. Inserting (7)

into (6), we obtain the evolution of pð1Þ as

dpð1Þ
j ¼ DΔpð1Þ

j dtþ 1

N

�
dBj

t −
X
m

1

N
dBm

t

�
: ð8Þ

The term
P

mðdBm
t =NÞ has mean 0 and variance 1=N so it

is subleading in the limit N → ∞. In this regime, we get

dpð1Þ
j ≈DΔpð1Þ

j dtþ pð0Þ
j dBj

t : ð9Þ

The evolution of pð2Þ is obtained in a similar way:

dpð2Þ
j ¼ DΔpð2Þ

j dtþ pð1Þ
j

�
dBj

t −
X
m

1

N
dBm

t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≔I

�

−
1

N

X
m

pð1Þ
m dBm

t|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≔II

: ð10Þ

As explained above, the variance of I scales as 1=N. The

variance of II is given by E½ð1=N2ÞPjðpð1Þ
j Þ2�. Using

translational invariance, we have on the other hand that

E½ðpð1Þ
j Þ2� ¼ E½ð1=NÞPjðpð1Þ

j Þ2� so there is a factor of N
between the variance of the multiplicative noise term

pð1Þ
j dBj

t and II. Thus, in the limit of large N, we can
neglect I and II to obtain

dpð2Þ
j ≈DΔpð2Þ

j dtþ pð1Þ
j dBj

t : ð11Þ

This equation is structurally equivalent to Eq. (9). Thus, to
order γ, the discrete SHE with multiplicative noise

dpj ¼ DΔpjdtþ ffiffiffi
γ

p
pjdB

j
t ð12Þ

is a good approximation of (6). Furthermore, the proba-
bility pj of the SHE is connected to the height hj of the
KPZ equation via the Cole-Hopf transformation [3]
hj ≔ ð1= ffiffiffi

γ
p Þ logpj. Indeed, using standard Itō calculus

on (12), we readily obtain the stochastic dynamics of hj as a
discretized version of the celebrated KPZ equation (up to a
linear shift in time hj → hj þ ffiffiffi

γ
p

t):

dhj ¼ ½DΔhj þD
ffiffiffi
γ

p ð∇hjÞ2 − ffiffiffi
γ

p �dtþ dBj
t ; ð13Þ

where ∇ is the discrete derivative ∇hj ≔ hjþ1 − hj. Note
that since pj ∈ ½0; 1�, hj ∈� −∞; 0�. Through its connec-
tion to the SHE, and therefore to the KPZ equation, we
expect the dynamics of the monitored random walker to
share common features with the physics of interface
growth. One of the interesting quantities arising in the
study of such interfaces is the so-called width w defined as

w ≔
�
1

N

X
j

ðhj − h̄Þ2
�
1=2

; ð14Þ

where h̄ ≔ ð1=NÞPj hj. Starting from a flat initial
profile, the Family-Vicsek (FV) scaling relation [1,47]
conjectures that, for scale-invariant interfaces, the width
should behave as

w ∝ Nαf
�

t

Nα=β

�
ð15Þ

with fðuÞ ∝ uβ for u ≪ 1 and fðuÞ ∝ const for u ≫ 1. The
parameters α and β are, respectively, called the roughening
and growth exponents. For models within the KPZ
universality class, it has been shown in 1D [3] that α1DKPZ ¼
1=2 and β1DKPZ ¼ 1=3. We thus expect that the width of the
log-probability of the monitored random walker will
follow (15) with KPZ exponents when γ is small [see
Figs. 2(a) and 2(b)].
Importantly, one can alternatively think of the small γ

expansion as a short time limit. Indeed, at short times,
t ≪ γ−1, the probability profile will be close to the initial
flat distribution. If we assume that the leading term in pj

scales like 1=N, it is easy to check that E½ðPm pmdBm
t Þ2� ≈

OðN−1Þdt so that the contribution of the nonlocal part of
dWj

t is subleading.
However, in the long-time regime t ≫ γ−1, we expect

to be pushed out of the KPZ regime as the roughening of
the probability profile makes the nonlocal term of the
noise grow.
In addition, the mapping to KPZ physics at short times

and/or small γ tells us that a roughening phase transition
from a smooth to a rough interface should occur in 3D and
above [48–51]. Indeed, at small γ, we can neglect the
contribution of the nonlocal part of the noise and thus the
perturbative dynamic renormalization flow leads to similar
flow equations than those of the KPZ equations [3]. In the
smooth phase, the roughening term becomes irrelevant so
we can safely neglect the nonlocal part of the noise. There,
we expect that our model will flow to the same universality
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class as the KPZ equation, i.e., the Edwards-Wilkinson
(EW) class. However, this similarity should break down in
the roughening phase where we expect (6) to flow to a
different universality class than KPZ.
Although the analytical investigation of the strong γ

regime is beyond the scope of this Letter, we performed a
series of numerical simulations of (6) in 1D and 3D to
confirm the previous qualitative reasoning regarding the
renormalization flow.
Numerical results.—We started all our simulations with a

flat initial profile pjðt ¼ 0Þ ¼ 1=Nd, i.e., hjðt ¼ 0Þ ¼
−ðd= ffiffiffi

γ
p Þ logN with d being the dimension. We simulated

(6) using a standard Euler-Maruyama scheme and took the
logarithm for every single realization to obtain the evolu-
tion of the process hj. Details about the numerical methods,
convergence check, and finite-size scaling are provided in
the SM [41].
We plot in Fig. 1(a) the rescaled width ŵ ¼ w=Nα1DM as a

function of the rescaled time t̂ ¼ t=Nα1DM =β1DKPZ in 1D for
different system sizes when γ ¼ 4.0. In agreement with
the connection to KPZ at short times, all curves collapse on
the power law tβ

1D
KPZ at small t̂. However, beyond this regime,

the FV scaling of the width flows to a new universality class
characterized by β1DM ≈ 1.4 and α1DM ≈ 1.

(a) (b) (c)

FIG. 1. (a) Log-Log plot of the rescaled width w=Nα1DM as a function of the rescaled time t=Nα1DM =β1DKPZ for a measurement rate γ ¼ 4 in
1D. Exponents: α1DM ¼ 1 and β1DKPZ ¼ 0.34. Parameters: D ¼ 1, dt ¼ 0.001. (c) Log-Log plot of the rescaled width w=Nα3DM as a function
of the rescaled time t=Nα3DM =β3DKPZ for a measurement rate γ ¼ 36 in 3D. Exponents: α3DM ¼ 1 and β3DKPZ ¼ 0.15. Parameters: D ¼ 1,
dt ¼ 0.0002. (a),(c) In accordance with the perturbative analysis, which is valid at short times, the initial growth exponent is always
KPZ-like. At intermediate and large t̂, however, the FV scaling of the width flows to a new universality class characterized by β1DM ≃ 1.4
and α1DM ≈ 1 in 1D or β3DM ≃ 1.2 and α3DM ≈ 1 in 3D. (b) Linear-log plot of the width w as a function of time t for a measurement rate γ ¼ 4

in 3D. As γ < γcM, the system is in the smooth EW phase and the width does not show any dependency on the system size. Parameters:
D ¼ 1, dt ¼ 0.002.

(a)
(b) (c) (d)

FIG. 2. (a) Roughening exponent α1DM as a function of γ for different system sizes. (b) Second growth exponent β1DM as a function of γ
for different system sizes. (c) Roughening exponent α3DM as a function of γ for different system sizes. (d) Roughening exponent α3DKPZ as a
function of γ for different system sizes. Details about the methods used to extract the α’s and β’s are in the SM [41]. Note that, due to
numerical limitations, only the roughening exponent was computed for the 3D case. The 1D case (a),(b) shows a size-dependent
crossover from the KPZ exponents α1DKPZ ¼ 1=2, β1DKPZ ¼ 1=3 to a new phase with exponents α1DM ≈ 1, β1DM ≈ 1.4. For the 3D case (c), we
observe that α3DM remains constant close to 0 on a finite interval before jumping to α3DM ≈ 1when γ is greater than a critical value γcM ≈ 10.
This steplike behavior indicates a phase transition from the EW class to a new universality class in 3D. For comparison, (d) shows the
behavior of α3DKPZ as a function of γ for the standard SHE (12) in 3D where we also find γcKPZ ≈ 10.
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Figure 1(c) is a similar plot but performed in 3D when
γ ¼ 36 and for which the rescaled width and time are,
respectively, given by ŵ ¼ w=Nα3DM and t̂ ¼ t=Nα3DM =β3DKPZ . At
small t̂, all curves collapse on the expected power law tβ

3D
KPZ

while beyond this regime the FV scaling flows to a new
universality class characterized by β3DM ≈ 1.2 and α3DM ≈ 1.
Finally, on Fig. 1(b), we plot w as a function of t in 3D

for different system sizes when γ ¼ 4. For this value of γ,
the KPZ equation flows toward the smooth EW class where
we expect the nonlocal part of the noise to be irrelevant. In
agreement with this intuition, Fig. 1(b) shows indeed that
the width does not scale with N.
We report in Fig. 2 the critical exponents as a function of

γ for simulations performed on 1D and 3D lattices. For the
former case [Figs. 2(a) and 2(b)], we observe a size-
dependent crossover between the KPZ phase and a new
phase characterized by exponents α1DM ≈ 1 and β1DM ≈ 1.4.
For the 3D case, we report in Fig. 2(c) the existence of a
finite range over which α3DM is close to 0, thereby indicating
the presence of two distinct phases separated by a critical
value γcM ≈ 10. For comparison, Fig. 2(d) shows the
behavior of α3DKPZ with respect to γ when simulating the
SHE Eq. (12) in 3D where we find γcKPZ ≈ 10. The fact that
the two critical values for the SHE and our model are close
corroborates our previous qualitative reasoning concerning
the smooth phase in 3D. As we are only interested in the
existence of a MIPT, we only reported the behavior of α3DM
as the systematic determination of β3DM is more involved and
left for future works.
Conclusion and perspectives.—In this Letter we intro-

duced and studied a model for a single random walker
undergoing continuous measurement. In the regime of
weak monitoring, we mapped the time evolution of its
probability distribution onto the SHE. We deduced that, in
this regime, the width of the log-probability follows the FV
scaling relation of the KPZ universality class. In 1D, this
corresponds to roughening and growth exponents α1DKPZ ¼
1=2 and β1DKPZ ¼ 1=3. Beyond weak monitoring, we
numerically find in 1D that increasing γ leads to a crossover
from the KPZ class to a new universality class with
exponents α1DM ≈ 1 and β1DM ≈ 1.4. In 3D, we showed, again
numerically, that this crossover becomes a phase transition
between a smooth phase that we identify as the EW class
and a new phase with α3DM ≈ 1.
Our study is one of the first characterizations of a MIPT

in classically monitored systems and opens the door to
several interesting questions. It would be most desirable to
have a better analytical characterization of the strong γ
regime. Since perturbative methods ought to fail there,
nonperturbative RG methods such as the one presented in
[51] may be employed there.
While we only considered a flat profile, it is known that

different initial distributions lead to different universality
classes in KPZ physics [4]. Thus, it would be interesting to

investigate various initial states such as wedge or Brownian
conditions to assess the effect of continuous monitoring on
their corresponding exponents.
Finally, while we only studied a single particle, the

continuous measurement process (5) is easily generalized
to more intricate, many-body interacting problems. A
natural extension would be to consider the symmetric
simple exclusion process (SSEP), which describes multiple
diffusive particles with hard-core repulsion. Interestingly
the SSEP can be promoted to a quantum version called the
QSSEP [52,53]. The study of both the SSEP and QSSEP
would thus provide a unified framework to disentangle the
properties specific to quantum and classical systems under
continuous monitoring.
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Note added.—Recently, two works had a similar objective
of studying measurement effects on chaotic, classical
systems but with a focus on phase transition [54,55].
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