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Abstract

Short range correlations of the distribution of high spin (HS) and low spin (LS) states
show up in thermal spin transition curves, decay curves of the light induced metastable HS
state (LIESST state), and in structural features during the spin transitions. Correlations are
due to short range interactions between the spin crossover molecules. Short range interac-
tions may compete with omnipresent long range interactions and give rise to interesting spin
transition phenomena. In this paper, the effect of correlations on the thermal spin transition
in the mixed crystal system [FexZn1−x(pic)3]Cl2·EtOH (pic=picolylamine) is discussed. In
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particular the step in the thermal transition curve is a direct consequence of such correla-
tions. In addition, the decay of the metastable HS state of the pure iron compound at ca. 20
K can be significantly changed by preparing metastable HS states with a random distribution
over the lattice sites. Both experiments could be well reproduced by Monte Carlo simula-
tions. In the orthorhombic modification of the compound Fe[5NO2-sal-N(1,4,7,10)]([2,2%-
(2,5,8,11-tetraazadodeca-1,11-diene-1,12-diyl)4-nitrophenolato] (2-)-N2, N2%,N2%%,N2%%%,O1,
O1%]Fe(II)) a commensurable superstructure has been found. This compound represents the
first example of a stable infinite range correlation of the spin states over the lattice sites.
© 1999 Elsevier Science S.A. All rights reserved.

Keywords: Phase transition; Spin crossover; Correlation

1. Introduction

In the research field of magnetic phase transitions correlations between interact-
ing magnetic moments have been subject to many experimental and theoretical
studies [1]. In systems with short range interactions, correlations between the
objects build up. In case of magnetic materials, these objects are the exchange
coupled spins. In spin crossover cormpounds, the molecules which can change their
spin state are the interacting centers. Here the interaction mechanism was not so
clear, so that depending on different assumptions about the range of the interac-
tions, different phenomenological theories have been developed. The variety of
approaches worked out in the research field of magnetic phase transitions stimu-
lated the adoption of theories to the spin crossover phenomenon implicitly assum-
ing short range interactions which then were treated in the simplest approximation
of mean field theory [2–7]. Also consequences of sublattice structures, as success-
fully introduced for the description of antiferromagnetic structures, have been
explored in mean field theory [8–12]. With Monte Carlo simulations short range
interaction schemes could be treated exactly [13–15]. The good agreement of mean
field approaches with experimental data, especially with series of transition curves
obtained from metal dilution over the whole concentration range of the spin
changing molecules [16], pushed the idea of long range interactions between the
spin changing molecules to be of importance. Long range interactions average over
many neighbours and therefore do not give rise to correlations. In the limit of
infinite range interactions mean field theory becomes exact and all correlation
functions vanish.

The change of the spin state of the spin crossover molecule from LS to HS state
is accompanied by an increase of volume and a change of shape. These changes are
observed on the molecular level by an increase of bond lengths and on the
macroscopic level by a change of the unit cell of the crystal.

Such lattice strains, as known from elasticity theory, give rise to long range and
even infinite range interactions. This fact was first pointed out by Onishi and
Sugano [17]. A volume change of a few molecules uniformly distributed over the
crystal, by replacing atoms of different size or by the spin state change of spin
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crossover molecules, leads to an image pressure on the surface of the crystal. This
pressure effectively interacts with all molecules in the crystal (independent of
distances) by the same strength. In fact, the contribution of the elastic interactions
has been studied in detail both theoretically [18,19] and experimentally by measur-
ing elastic constants by Brillouin spectroscopy [20] and temperature dependent
X-ray diffraction [21]. It turns out that the interaction constants obtained from
transition curves of the metal dilution series in [FexZn1−x(propyltetrazole)6](BF4)2

essentially are explained by the elasticity theory (about 80%), where the molecules
are treated as point defects and the lattice as a homogeneous medium [22,23]. This
approximation, however, does not describe well the interactions at short distances
comparable with the size of the molecules.

After the discovery of the so called two step transitions [24–26], it became
obvious that short range interactions and therefore correlations are not negligible.
The two step transitions exhibit a plateau in the curve of the HS fraction plotted
versus temperature around a HS fraction of 50%. For systems with equivalent sites
there is no way to reproduce steps in the spin crossover transition curves in mean
field theory. The studies of models which ad hoc introduced sublattices of HS and
LS molecules have shown that the competition between an antiferromagnetic type
of interaction between the sublattices and ferromagnetic type of interaction within
the sublattices lead to phase diagrams with two step behaviour. Consequently, short
range interactions had to be taken into account explicitly in addition to the long
range elastic interactions.

The anomalous transition of the compound [Fe(2-pic)3]Cl2EtOH (pic=picoly-
lamine) and its metal dilutions with the corresponding Zn compound have been
studied in great detail. The theoretical interpretation of the thermal spin transitions
and lifetime measurements of laser excited metastable HS states in the tunnelling
region at low temperatures on the basis of Monte Carlo calculations have provided
good insight into the role of correlation in spin crossover compounds.

2. Interaction energy

The interaction energy between two lattice sites at positions i and j in the crystal
lattice expressed by an expansion series is a sum of terms PiAijP

†
j , where P and A

are generally tensors of increasing rank. Aij depends on the distance between sites
i, j. In the lowest order, for instance the exchange interaction between two magnetic
ions with spin Si and Sj the interaction matrix Aij is a (2S+1)× (2S+1) matrix. In
elasticity theory the interaction energy of point defects is considered. The quantities
P and A are second and fourth rank tensors, respectively. PiAijP

†
j describes the

interaction between two elastic dipoles. As in Ising systems of spin S=1/2, the
quantities P in a spin crossover system have two values PH and PL for the HS and
LS states, respectively. Both kinds of molecules (HS and LS), are described by point
defects implying a misfit of the molecules to the lattice. The interaction energy
between all molecules is the double sum:
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EI=
1
2

%
i" j

PiAijPj
† (1)

The point defects PH and PL are not accessible experimentally, their difference
PHL=PH−PL is obtained from the deformation of the crystal on going from the
LS to the HS state and the elastic constants of the crystal [18]. But the general
double sum of Eq. (1) can be rearranged by introducing the tensor difference PHL

in such a way, that we formally can speak of the interaction between molecules in
the HS state only, where the tensor difference PHL is attributed to each HS site. In
order to obtain this equation the sum over all lattice sites N (i, j=1, …, N) is split
by summing separately over the sites NH, NL in the HS and LS state, respectively,
with indices iH, iL. In Eq. (2) the three sums corresponding to interactions between
(HS, HS), (HS, LS), and (LS, LS) molecules is expressed by three new sums, where
only the first one has the shape of an interaction term.

EI=
1
2

%
i H" j H

Pi H

H Ai H j H
Pj H

H†+ %
i H j L

Pi H

H Ai H j L
Pj L

L†+
1
2

%
i L" j L

Pi L

L Ai L j L
Pj L

L†

=
1
2

%
i H" j H

Pi H

HLAi H j H
Pj H

HL†+ %
i H" j

P i H

HLAi H jP j
L†+

1
2

%
i" j

P i
LAijPj

L† (2)

The third one, which runs over all lattice sites (i, j=1, …, N) with PL attached
to each site, is a constant contribution only shifting the energy reference level. The
second sum does not depend on the individual HS site (iH)—the case of equivalent
sites of the unit cell is considered—, since the sum over j runs over all lattice sites
with the same value PL Consequently this term is proportional to the number of
sites in the HS state, so that it introduces a constant energy separation DHL between
the HS and LS state:

DHL=Pi H

HL %
j" i H

Ai H jP j
L† (3)

In the case of mixed crystal systems with molecules containing the metal ion M,
there are six interaction terms which have to be rearranged. The energy shift is the
same, but the interaction between sites in the HS state and metal sites M with the
quantities PHL and PML=PM−PL, respectively, have to be considered. PML is
also experimentally accessible by comparison of the unit cells of the pure HS and
LS compound with the one containing only M. The total interaction energy
becomes

EI=
1
2

%
i H" j H

Pi H

HLAi H j H
Pj H

HL†+ %
i H j M

Pi H

HLAi H j M
Pj M

ML†+ %
i H" j

P i H

HLAi H jP j
L†

=
1
2

%
i M" j M

Pi M

MLAi M j M
Pj M

ML†+ %
i M" j

P i M

MLAi M jP j
L†+

1
2

%
i" j

P i
LAijPj

L† (4)

The second line in Eq. (4) does not run over sites which change the spin state and
therefore is the constant energy shift. The mean field or Bragg Williams approxima-
tion is obtained by attributing the average of P to all sites, according to P( =
x(gHPH+ (1−gH)PL)+ (1−x)PM, x is the fraction of spin changing
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Fe2+molecules and gH their fraction in the HS state. A random distribution of
metal ions is, of course, assumed. Inserting P( into Eq. (1) represents the mean field
interaction term as usually used in the free energy of spin crossover systems. The
sum of tensors �i" j Aij does not depend upon the fraction of sites (i.e. iH, iL, iM)
over which the sum is carried out. Taking i, j over all sites, the interaction energy
is expressed by the average tensor A( =1/N2�i" j Aij.

E I
BW=N2�1

2
x2gH

2 PHLA( PHL†+x(1−x)gHPHLA( PML†+xgHPHLA( PL†

+
1
2
((1−x)PML−PL)A( ((1−x)PML†−PL†)

n
(5)

The a priori unknown energy shift PHLA( PL† is part of the energy difference
between the LS vibronic ground state and the lowest vibronic HS state. This shift
is determined from the transition curve of isolated noninteracting spin crossover
molecules in highly diluted mixed crystals and is therefore considered as the true
value DHL of Eq. (3). In the spin crossover literature the mean field interaction is
usually written as EI=x2NDgH−x2NGgH

2 such that

D= −NPHLA( PML†

G= −
1
2
NPHLA( PHL† (6)

In order to go beyond mean field theory by a minimal correction, we start from
the mean field solution and take into account specifically the interaction to nearest
and next nearest neighbours in such a way, that their mean field contributions
vanish. This procedure results in a minimal number of additional parameters. The
indices jQ, Q=H, M of Eq. (4) are split into two parts. A small number j 6Q
counting next 6=n and next nearest 6=nn neighbours only and a macroscopically
large number j m

Q for the rest of the crystal sites. The constant energies are dropped
in the following expression for the interaction energy:

EI=
1
2

%
i H j m

H

Pi H

HLAi H j m
H

Pj m
H

HL†+ %
i H j

m
M

Pi H

HLAi H j m
M
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M

ML†+ %
i H" j
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2
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6 Pj H

6
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6
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6 Pj M
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ML† (7)

The first two sums starting at the third coordination sphere (next to nn neigh-
bours) will be already close to the average over all crystal sites, so that they are well
approximated by their mean field values. Since the mean field values of the two
sums over the neighbours j 6Q should vanish, the mean field E I

BW of Eq. (7) is the
same as of Eq. (5). The condition for the vanishing mean field contribution is
obtained by replacing all P by the mean value P( .

1
2

%
iH jH
6

AiH jH
6+ %

iH jH
6

AiH jM
6 =0 (8)
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As a consequence of the fact that all sites are equivalent, the sum over the
neighbours j 6M at fixed iH already vanishes. We take the interaction with all next
6=n and next nearest 6=nn neighbours to be the same. Then the Ai H j 6 are the
same for different indices j n= j %n and j nn= j %nn, respectively, and the tensors Ai H j 6

can be abbreviated by A 6. If zn and znn are the number of next and next nearest
neighbours the condition for vanishing mean field contribution gives

zn · An+znn · Ann=0 (9)

Denoting the interaction term PHLA 6PHL† by −2J 6, only one parameter Jn is
introduced because Jnn is given by Eq. (3). The second interaction constant between
a HS and a M-site PHLA 6PML† will be close to J in the case of M=Zn, since the
unit cells of the crystal in the HS state and the pure Zn crystal are very similar. For
the compound under discussion the ratio q=0.8 [19] of the mean field values
PHLA( PML†/PHLA( PHL† fitted to the metal dilution series has been adopted for the
short range interaction. The full interaction energy is thus given by

EI=xgH(D+DHL)+x2NDgH−x2NGgH
2 − %

ri=n,nn,
i= i H

Jri6H
ri +qJri6M

ri (10)

The first term proportional to xgH is an energy shift by D+DHL of each HS
molecule. This shift will later on be included in DfHL, the free energy difference
between molecules in the HS and LS state in the absence of interaction. The energy
shift proportional to x2 and the mean field interaction term depend linearly on the
concentration x of spin crossover molecules in the metal diluted system. The sum
collecting the contributions of short range interaction runs over all sites i= iH in the
HS state. 6H

ri and 6 M
ri are the number of next (ri=n) and next nearest (ri=nn)

molecules in the HS state and metal sites M, respectively. This expression for the
interaction has been treated in the thermodynamical equilibrium by analytical
methods by Romstedt et al. [27] and by Monte Carlo calculations. We present here
the Monte Carlo calculations of the thermal transition curves and the relaxation
curves at low temperatures from the metastable HS state to the LS ground state
using identical parameters defined by Eq. (10).

3. Thermodynamic equilibrium

The first two-step transition with a plateau near the temperature T1/2 (where
gH=1/2) was discovered in [Fe(2-pic)3]Cl2·EtOH [24]. A more detailed study of the
effects of metal dilution in the M=Zn series [FexZn(1−x)(2-pic)3]Cl2·EtOH and on
the behaviour of the transition under pressure was published later [28]. The step
vanishes already for small Zn concentrations (x:0.9) and under small external
pressure of only 1 kbar, such that the transition can then be parameterised as a
gradual one by a mean field free energy with parameters reasonably related to each
other. This observation strongly indicates that the interactions between the spin
changing ions is responsible for the step rather than some hidden inner degrees of
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freedom of the crystal lattice such as for example structural changes and soft
modes.

Several early approaches in the literature went beyond mean field theory and
allowed for correlations of the distribution of spin states. Approximate solutions
for Ising systems were developed by Bethe [29] and Kramers–Wannier [30] which
were systematically extended by a combinatoric method called cluster variation
method by Kikuchi in the 1950s [31]. We have translated these methods using the
concise nomenclature of Hijmans and De Boer [32] to spin crossover systems [33]
and studied the effect of short range interactions on transition curves. Nowadays
the Monte Carlo technique [34] is the easy way to treat an interaction Hamiltonian
exactly.

The Hamiltonian of a system with HS and LS molecules—diluted in an
isostructural matrix of M molecules—can be mapped on the well known problems
of bond dilute Ising systems with quenched disorder [35]. There are two features
which are special for spin crossover systems. These are the inner degrees of freedom
of each Ising spin given by the vibronic energy levels of the molecules and the
infinite range type of interactions between the molecules. The inner degrees of
freedom are taken into account by replacing the energy separation between the two
spin states of an isolated noninteracting molecule by the free energy difference
DfHL(T) of the HS and LS state. This result is obtained by appropriately factorising
the partition function of the Hamiltonian [36]. At T=0 the free energy difference
DfHL(T=0) is just the energy difference DEHL, between the lowest vibronic HS and
LS states.

The Monte Carlo data were obtained using the standard importance sampling
method with single spin flip kinetics [34] over a simple cubic L*L*L lattice (L=20)
with periodic boundaries [37]. The number of nearest and next nearest neighbours
are zn=6 and znn=12. The sites of the Zn molecules were allocated at random and
were fixed during simulation.

For the transition probability of a single spin flip the commonly used Metropolis
function WM was chosen:

WMÍ
Ã

Ã

Á

Ä

1
t s

1
t s

· exp
�

−
dE
kT

� : dEB0

: dE]0
(11)

where ts is a time scale factor and dE the energy change by one spin flip. ts is
arbitrary if thermal equilibrium only is considered. For an isolated noninteracting
molecule dE(LS�HS)=DfHL. The energy difference including interactions is
derived by considering the change of EI if at one site a molecule changes from the
LS to the HS state. The number of HS states NH=xgHN increases by 1. The
difference EI(NH+1)−EI(NH) of Eq. (5) gives −2xgHG− (1−x)D=DHL, for the
long range contribution and −Sr=n,nnJr6 r

H+qJr6 r
Zn for the short range nearest and

next nearest neighbour interactions of Eqs. (7) and (10), with the definitions given
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at the end of Section 2. 6Q
r , Q=H, Zn are the number of HS and Zn molecules in

the r=n nearest and r=nn next nearest neighbour shell. Including all terms
(independent of x and gH) in the free energy difference DfHL the Metropolis decision
becomes:

dE(LS�HS)=DfHL−2xgHG+xD− %
r=n,nn

Jr6H
r +qJr6Zn

r (12)

Note that the LS state as the reference state does not appear in Eq. (12). The
fraction of molecules in the HS state gH determines the long range interactions and
has to be updated all the time.

For the simulations the mean field free energy fitting the diluted series (x50.8)
was used [37]: DfHL(T), D=275cm−1, and G=175cm−1. In Fig. 1 the experimental
and the simulated data of the metal (M=Zn) dilution series are plotted. The step
of the transition curve is very sensitive to the concentration of Zn and already
vanishes at x=0.9. The simulated curves in Fig. 1 were calculated with the
parameter Jn= −17.4 cm−1 fitted to the x=1 transition curve. Jn, the sign of
which is opposite to the long range interactions and Jnn, refers to an antiferromag-
netic type of interaction.

The absolute value of the interactions with the nearest neighbour molecules is of
comparable size with that of the long range interactions. For zn=6 neighbours the
total interaction of about �−105 cm−1� is 60% of G. Nevertheless, the appearance
of a step in the transition curve sensitively depends on other parameters involved.
Small pressure of the order of p=1 kbar already suppresses the step in the
transition curve as shown in Fig. 2. The energy shift of the HS state is equal to
pd6HL, where d6HL=14 A, 3 is the volume increase of the unit cell for each molecule

Fig. 1. The effect of metal dilution on the spin transition curve of [FexZn1−x(2-pic)3]Cl2·EtOH
(x=1.00, 0.98, 0.94, 0.89, 0.86, 0.70, 0.60, 0.50). The transition temperatures increase with increasing
iron concentration x. The Monte Carlo simulations on the right hand side show the main features of the
experimental data [28] on the left hand side.
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Fig. 2. The effect of pressure on the spin transition curve of [FexZn1−x(2-pic)3]Cl2·EtOH (p=1.0, 600,
1350 bar). The transition temperatures increase with increasing pressure. The Monte Carlo simulations
on the right hand side show the main features of the experimental data [28] on the left hand side.

changing spin from LS to HS [38]. These shifts of pd6HL=42 and 95 cm−1 for
p=600 and 1350 bar, respectively, are small energies as compared to the range of
energy separations in spin crossover molecules. The simulated transition curves in
Fig. 2 again reproduce the observed behaviour of the transition curves.

The correlations between spin states can be analysed from the Monte Carlo
samples in thermal equilibrium. The correlation length of an antiferromagnetic
order has been estimated to be very short (for details see Ref. [39]), not larger than
the next nearest neighbour distance. Therefore, an antiferromagnetic type of order
over the whole crystal cannot be expected in agreement with X-ray measurements
carried out in the temperature region of the step of the transition [40].

4. HS�LS relaxation

Relaxation measurements following laser excitation of the metastable HS state
(LIESST [41]) under different irradiation conditions provided a direct proof of the
formation of correlations in the spin crossover compound [Fe(2-pic)3]Cl2·EtOH.
For infinite (long) range interactions, the decay rate does only depend on the
fraction of molecules in the HS state:

dgH

dt
= −kHL(gH)gH (13)

For the above mentioned system [Fe(ptz)6](BF4)2, kHL was found to depend
exponentially on gH according to kHL=kHL

0 exp(−agH) leading to self-accelerated
sigmoidal relaxation curves. In systems with strong short range interactions the
decay probability of each individual complex will also depend on the spin state of
the neighbouring molecules. As a result correlations may build up during the decay,
and these, in turn, may change the decay probability of the whole system.
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In spin crossover systems there is the unique possibility to prepare metastable HS
states with a random distribution of spin states of any average HS fraction gH. The
preparation of such a random distribution of spin states makes use of the fact that
the excitation of a LS molecule by a photon is a random process. As long as the
optical density at the irradiation wavelength is low enough so that there are no
large intensity gradients of the exciting light inside the crystal, concentration
gradients during the light induced HS�LS conversion are negligible. Fig. 3 shows
the single crystal spectra of [Fe(2-pic)3]Cl2·EtOH before and after irradiation at 647
nm (15 456cm−1), i.e. into the tail of the MLCT transition, using a Kr+ laser. For
this irradiation wavelength, the light induced LS�HS conversion takes only a
short time (B1 min), as was confirmed by comparison of the HS bands after
irradiation and at temperatures above the transition at 200 K (for details see Ref.
[27]). From the spectra recorded at constant time intervals of 5 min at 23 K
included in Fig. 3, the full HS�LS relaxation curve shown in Fig. 4a was
extracted. The decay deviates strongly from single exponential with the rate
increasing with increasing fraction of LS molecules at the beginning. The self
acceleration region extends to gH\0.5, at lower HS fraction the decay slows down
considerably but still the rate is not constant. The dashed line represents the
theoretical decay curve calculated in mean field theory as described below. The
deviation from mean field theory becomes obvious at HS fractions gHB0.4.

In order to prepare starting values lower than gH(t=0)=1, irradiation at 676nm
(14 793cm−1) close to the minimum optical density of the isosbestic point at 14 400
cm−1 was carried out. By varying the irradiation time (typically 5–15min at 5 mW
laser power) gH(t=0) could be adjusted from 0.1B1.0. In Fig. 4b, the relaxation

Fig. 3. Single crystal absorption spectra of [Fe(2-pic)3]Cl2·EtOH at T=23 K before and after irradiation
with light at 15 500 cm−1 and HS�LS relaxation spectra in time intervals of 5 min (� increasing time
of intervals) following irradiation [27].
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Fig. 4. HS�LS relaxation curves gH(t) at T=23 K for various starting values of the HS content
gH(t=0). (a) The relaxation curve starting at gH(t=0)=1.0 (	). The dashed curve is calculated using
mean field approximation. (b) Time shifted relaxation curves for gH(t=0)=0.5 (�) together with the
decay curve gH(t=0)=1.0 from (a) as a reference represented by a sp line function. The corresponding
simulated relaxation curves are plotted in (c), (d) [27]. The dashed line in (c) is the same as in (a).

curves for gH(t=0)B0.5 are plotted together with the gH(t=0)=1 curve as
reference curve. The decay curves are shifted in time such that the t=0 point
matches the reference curve. Obviously, all these curves start off at a faster rate
than the rate of the reference curve at the same HS fraction. We consider this
observation as a direct proof of correlations building up during the decay. The
findings are quantified in Fig. 5 using Eq. (13). The solid line is the sp line through
the logarithm of the rate constants of the reference curve. A straight line (dashed)
fits to the initial rates with starting values gH(t=0)B0.5.

These initial rates at different HS fractions are interpreted as rates belonging to
a system with a random distribution of HS and LS molecules. Their dependence on
the HS fraction is the same as was observed in the system [Fe(ptz)c ](BF4)2

mentioned above which could be well explained within the frame of mean field
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theory. The open triangles in Fig. 5 are initial rates calculated with the Monte
Carlo method starting from a random distribution of HS and LS molecules.

For a treatment of dynamical processes the Metropolis function is an oversim-
plification for the complex processes in solid state determining the transition
probabilities, so that the path through the large number of thermodynamical
configurations selected by using the Metropolis function may be far from reality. In
our case, however, the transition probability is well defined within the frame of the
approximation used. In the tunnelling region the probability W(HS�LS) depends
on the energy separation DEHL, between the lowest vibronic HS state and the LS
ground state of the molecule in the crystal.

W(HS�LS)8 exp(hDEHL) (14)

The probability for an excitation from LS to HS is negligible. In the approxima-
tion of a non adiabatic multi-phonon process in the limit of strong vibronic
coupling the parameter h# ln(S)/"v depends on the Huang–Rhys parameter S,
which is the reorganisation energy in units of the quanta "v of the active
vibrational mode [42]. DEHL is the energy separation of Eq. (12) at T=0 K.

Correlation as well as random distribution of molecules in the HS state cause a
distribution of energy separations by the short range interaction term in Eq. (12)
and in turn a distribution of decay times. So the initial kHL value for random
distribution of HS states is an average rate constant and principally different from
its mean field value. But it turns out that these average values within the frame of
the theoretical approximations are very close to the mean field values.

Interpreting the slope a= −4.5 of the dashed line fitting the initial decay rates
as the slope calculated in mean field theory, the parameter h is fixed. The derivative

Fig. 5. Relaxation rate constants kHL plotted as ln(kHL) versus the HS fraction gH. The full circles are
the rates at the starting values gH(t=0). The solid line is a sp line function to the gH(t=0)=1.0 curve.
The slope of the straight dashed line to the full circles is a= −4.5. The open triangles are theoretical
initial rates from Fig. 4d. [27].
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d/dgH of the logarithm of kHL, which is proportional to W(HS�LS), is directly
obtained from Eq. (12), neglecting the short range interactions to be a= −2hG.

Note that the resulting value of h is quite reasonable. Inserting G= −175 cm−1,
the definition of the Huang–Rhys factor S=1/2f(DQHL)2/"v and values for Fe2+

(DQHL=
6×0.18 A, , f=1.0105 dyn cm−1) [42], a frequency of "v=290 cm−1

for the active mode is derived, which is the value expected for the totally symmetric
mode of the spin crossover molecule.

Now we are in the position to simulate decay curves by the Monte Carlo method.
The rate of HS�LS transitions is defined by an adjustable scaling factor tHL:

kHL=
1

tHL

exp(hDEHL) (15)

The unknown time scaling factor was chosen large enough that the result did not
depend on a further increase of tHL. Then the simulation is parameter free, this
means that the parameters used for the simulation of thermodynamic equilibrium
transitions were also used here without any adjustments. The result is shown in Fig.
4. In Fig. 4c the simulation with and without (dashed line) short range interactions
are plotted. The short range interactions stabilise the HS state for HS fractions
below gH=0.4. The decay curves starting from random distribution at different HS
fractions in Fig. 4d also show the characteristic features of the experimental one of
Fig. 4b and the initial decay rates of these theoretical curves plotted as open
triangles in Fig. 5 justify the whole procedure because they are close to the mean
field values we started out with. Correlation lengths have been estimated in Ref. [27]
to be less than two to three neighbouring spheres, which is of the same order as
estimated in the step of the thermal transition.

5. Superstructure

The two step transition of [Fe(5NO2-sal-N(1,4,7,10))] with a large step width of
about 40 K, seemed to be a candidate for the observation of correlations of infinite
range leading to a sublattice structure of HS and LS species [26] by X-ray
diffraction. Boinard et al. [12] performed an X-ray diffraction study of this
compound at different temperatures, above, below and inside the step, and claimed
to have identified HS and LS sites of the unit cell inside the step. Some results of
the X-ray measurements, however, are far out of the limits usually met for Fe(II)
spincrossover molecules. The Fe–N bondlength to the nitrogen ligands typically
vary by 0.1 A, for the LS state whereas Boinard et al. found a variation of 0.39 A, .
Therefore we decided to repeat these measurements.

A modified preparation [43] of the compound revealed two modifications. One of
them, A, had the spin transition properties as found by Petrouleas et al. [26], the
spin transition curve of the other modification (B), Fig. 6, is mainly a gradual
transition with a residual HS fraction of gH(T=0) close to 2/3. From both
modifications, single crystals of sufficient size for X-ray measurements were ob-
tained. The measurement on A did not confirm definite HS and LS sites in the unit
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Fig. 6. Unit cell of the orthorhombic modification of [Fe(5NO2-sal-N(1,4,7,10))]. The hydrogen bonds
between the complex molecules are plotted as dashed lines.

cell of A. The correlation length is too small to be observed by X-ray measure-
ments. In contrast to the result of Boinard et al. [12], we obtained no structural
change accompanying the transition to the LS state of the compound.

The single crystal structure of A is the monoclinic one in the HS state as
described by Boinard et al. [12]. The central iron atom is coordinated by six donor
atoms of the dianion of the N4O2 ligand and is located on a two-fold symmetry
axis. Due to the symmetry, space group P2/c (Z=2, a=10.153 A, , b=8.490 A, ,
c=13.173 A, , b=109.93°), the unit cell can be described with half a molecule (see
Fig. 7). The two molecules in the unit cell are enantiomorphic and linked by
hydrogen bonds, so that infinite chains of alternate enantiomorphic molecules are
built. The two different Fe–N bondlength are 2.127 and 2.235 A, [12] in HS state
at room temperature. In the LS state at 117 K we found 1.927 and 2.033 A, [43],
respectively, which are in agreement with the typical decrease of 10%.

The modification B, however, exhibits a superstructure below 195 K. At room
temperature the unit cell is orthorhombic. The orthorhombic unit cell is shown in
Fig. 6. The compound crystallizes in the space group Pccn with Z=4 and
a=7.083(1) A, , b=19.373(1) A, , c=15.270(1) A, . The orthorhombic structure is
built up of the same chains as the monoclinic structure. In the upper part of Fig.
6, a chain is indicated by three molecules. The molecules are doubly hydrogen
bonded, linking the secondary amine function of each complex to the terminal
5-nitro group of the neighbouring molecule (H1N– – – O3). In both structures the
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chains are arranged parallel in planes but the stacking of the planes are quite
different. In the monoclinic structure the planes are related to each other by
translational symmetry. In the orthorhombic structure adjacent planes are related
by a mirror plane and a rotation normal to the plane by an angle of 40.2° about
the c-axis.

Below 195 K the unit cell dimensions in the a- and b-directions become three
times larger, 3a and 3b, and remain the same in the c-direction. The growth of the
superstructure could be scanned by measuring several satellites of weak intensity.
The superstructure could not yet be solved, so that there is no strict proof for the
presence of a sublattice of LS sites. But a temperature dependent scan of the width
of some reflections yields a good indication that such a lattice is formed. In Fig. 8
the width of the (−902) reflection is plotted versus temperature. At the steep part
of the spin transition at 195 K, the width steeply increases as a result of smaller LS
molecules present in the lattice, which may already form sufficiently large domains
in the crystal. The typical fluctuation time of microseconds fix the state of a
molecule to a site in thermodynamical equilibrium only for short times of this order
of magnitude. The intensity of the satellite reflection at the bottom of Fig. 8 is still
close to zero. With decreasing temperature the LS fraction increases but the width
of the (−902) reflection decreases indicating growing domains of the new structure
in the crystal. The increasing intensity of the satellite tells us that the domains
forming a superstructure become dominant.

The striking effect is that at 160 K, when about 1/4 of the HS molecules have
been converted to the LS state, the width decreases to the value of the crystal being
completely in the HS state which is free of formation of domains of different lattice
constants caused by molecules of different size. At the same temperature the
satellites reach their full intensity. The simplest explanation for both observations is
an ordered arrangement of the LS molecules at that temperature. On further
lowering the temperature, the width increases again due to the increase of the
fraction of LS molecules away from the fraction 1/4.

Fig. 7. Unit cell of the monoclinic modification of [Fe(5NO2-sal-N(1,4,7,10))].
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Fig. 8. HS fraction gH, the width of the (hkl= −902) reflection, and the intensity of the satellite
reflection (hkl=2113) of [Fe(5NO2-sal-N(1,4,7,10))] versus temperature. The HS fraction has been
measured with decreasing (�) and increasing (�) temperature.

The corresponding isomorphous Zn compound has no superstructure, a fact
which also supports the idea that the spin crossover phenomenon is responsible for
the formation of a superstructure and at the LS fraction of 1/4 LS molecules
occupy well defined sites in the enlarged unit cell.
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6. Discussion

Although there was no evidence for correlations in spin crossover systems for a
long time many theoretical approaches started from a microscopic picture where in
a similar fashion to exchange coupled spins, only a short range interaction was
introduced. Eventually, the mean field approximation was applied, and the equa-
tions derived for simulating and fitting experimental data were the same as those
starting with long or even infinite range interactions, which are known as image
pressures on free surfaces in elasticity theory [18,44]. The small step in the thermal
transition curve of [Fe(2-pic)3]Cl2·EtOH was the first example which could not be
understood in mean field theory. At that time, however, the beginning of the 1970s,
there was no experience with this type of organometallic material, especially the
dependence of their elastic properties on pressure and volume change during the
spin transition, was unknown. The coupling of inner degrees of freedom of the
crystal to the spin crossover system represented by the intramolecular vibronic
states and the elastic interaction between them could have required a complete
lattice theory such that an understanding of the step would have become out of
range. From detailed metal dilution studies [28], it became clear that the spin
crossover system itself produces the step and the lattice with its intermolecular
properties remains stable. The first step was simulated for dimeric complexes of
[Fe(bt)(NCS)2]2(bpym) [25] where an asymmetric energy level scheme for the three
states (HS–HS, HS–LS, and LS–LS) was introduced such that the HS–LS
configuration is stabilised in energy. By this observation it became clear that an
antiferromagnetic type of short range interaction is responsible for the anomalous
thermal spin transitions. On the basis of this idea the broad step of about 40 K in
[Fe(5NO2-sal-N(1,4,7,10))] has been simulated [45], assuming HS and LS sublattices
with a ferromagnetic type of interaction within and an antiferromagnetic type
between the sublattices as is the successful picture modelling antiferromagnetic
compounds and their behaviour in applied magnetic fields.

The competition between ferromagnetic and antiferromagnetic type of interaction
obviously leads to anomalous transitions. The long range elastic interaction is of
ferromagnetic type, short range interactions may have either sign. The strength of
long range interaction depends on the elastic properties and the change of volume
and shape of the crystal during the spin transition. These quantities are always of
similar size so that an upper limit of few hundred wavenumbers can be estimated
for the long range interaction, which were found to be less than 200 cm−1 in all
cases. Short range interactions are difficult to estimate. If for short distances (10 A, ),
elasticity theory is applied (which assumes a homogenous medium) values of
930–40 cm−1 dependent on the orientation of the elastic dipoles, have been
obtained with the crystal properties of [Fe(ptz)c ](BF4)2 [22]. These values are even
larger than Jn= −17.5cm−1 used to simulate the step. The question arises whether
simulations of similar quality can also be obtained with larger short range at the
expense of long range interactions. A decision may be possible if the metal dilution
series over the whole range of concentration x is considered provided that the
interaction scheme in the Monte Carlo algorithm is closer to the actual situation
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concerning the number and orientation of the nearest and next nearest neighbours.
However, the fact that three situations are well reproduced, thermal equilibrium,
the full decay curve with build up correlations, and initial decay rates at different
HS fractions with random distribution of spin states, gives some confidence to the
order of magnitudes obtained.

Large short range interaction constant may be expected if the metal ions are
connected by bridging ligands as is observed in the dimeric complex mentioned or
by strong hydrogen bridges between ligands. This is the case for the compound
[Fe(5NO2-sal-N(1,4,7,10))] where a superstructure has been observed. The structure
is build up of chains with hydrogen bonds as connections so that the LS sublattice
are likely along these chains.

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft
(DFG), the Materialwissenschaftliches Forschungszentrum der Universität Mainz,
the Fonds der Chemischen Industrie, the Schweizerische Nationalfonds, and the
research fund TMR of the European Community under contract Nr. ERBFMRX-
CT980199.

References

[1] C. Domb, M.S. Green (Eds.), Phase Transitions and Critical Phenomena, Academic, London, 1972.
[2] J. Wajnflasz, Phys. State Solids 40 (1970) 537.
[3] C.P. Slichter, H.G. Drickamer, J. Chem. Phys. 56 (1972) 2142.
[4] T. Kambara, J. Chem. Phys. 70 (1979) 4199.
[5] T. Kambara, J. Phys. Soc. Jpn. 49 (1806) 1980.
[6] G. Lemercier, A. Bousseksou, S. Seigneuric, F. Varret, J.-P. Tuchagues, Chem. Phys. Lett. 226

(1994) 289.
[7] H. Bolvin, O. Kahn, Chem. Phys. 192 (1995) 295.
[8] R.A. Bari, J. Sivardière, Phys. Rev. B 5 (1972) 4466.
[9] N. Sasaki, T. Kambara, Phys. Rev. B 40 (1989) 2442.

[10] A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden, F. Varret, J. Phys. I Fr. 2 (1992) 1381.
[11] B.G. Vekhter, J. Appl. Phys. 75 (1994) 5863.
[12] D. Boinard, A. Bousseksou, A. Dworkin, J.M. Savariault, F. Varret, J.P. Tuchagues, Inorg. Chem.

33 (1994) 271.
[13] K. Takahashi, Z. Phys. B Condens. Matter 71 (1988) 205.
[14] J. Linares, J. Nasser, A. Bousseksou, K. Boukheddaden, F. Varret, JMMM 140 (1995) 1503/1507.
[15] J. Linares, Oral Communication, El Saler, Valencia, 1995.
[16] M. Sorai, J. Ensling, P. Gutlich, Chem. Phys. 18 (1976) 199.
[17] S. Ohnishi, S. Sugano, J. Phys. C Solid State Phys. 14 (1981) 39.
[18] N. Willenbacher, H. Spiering, J. Phys. C 21 (1988) 1423.
[19] H. Spiering, N. Willenbacher, J. Phys. Condens. Matter 1 (1989) 10089.
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[24] H. Köppen, E.W. Müller, C.P. Köhler, H. Spiering, E. Meissner, P. Gütlich, Chem. Phys. Lett. 91
(1982) 348.

[25] J.A. Real, B. Gallois, T. Granier, F. Suez-Panama, J. Zarembowitch, Inorg. Chem. 31 (1992) 4972.
[26] V. Petrouleas, J.-P. Tuchagues, Chem. Phys. Lett. 137 (1987) 21.
[27] H. Romstedt, A. Hauser, H. Spiering, J. Phys. Chem. Solids 59 (1998) 265.
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[40] L. Wiehl, G. Kiel, C.P. Köhler, H. Spiering, P. Gütlich, Inorg. Chem. 25 (1986) 1565.
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