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ABSTRACT: Two complementary regiodivergent [(P,N)Ni]-catalyzed hydroalkylations of branched dienes are reported.  
When amides are employed as unstabilized C(sp3) nucleophiles, a highly regioselective 1,4-addition process is favored. The 
addition products are obtained in high yield and with excellent stereocontrol of the internal olefin. Using a chiral ligand 
and imides as carbon nucleophiles, a 3,4-addition protocol was developed enabling construction of two contiguous tertiary 
stereocenters in a single step with moderate to high levels of diastereocontrol and excellent enantiocontrol. Both methods 
operate under mild reaction conditions, display broad scope and show excellent functional group tolerance. The synthetic 
potential of the 3,4-hydroalkylation reaction was established via a series of post-catalytic modifications. 

■ INTRODUCTION  

The development of novel methods for the diastereoselec-
tive and enantioselective construction of adjacent stereo-
centers based on C–C bond forming reactions is a resound-
ing challenge in chemical synthesis.1 The atom-economical 
intermolecular hydroalkylation of conjugated dienes has 
recently emerged as an enabling strategy because it pro-
vides access to synthetically useful compounds with an al-
lylic stereocenter, compounds that would be difficult to 
prepare using conventional protocols. The influence of the 
substitution pattern of dienes on reactivity and selectivity 
and the diversity of insertion modes conceivable for a tran-
sition metal catalyst across the conjugated double bonds 
pose major difficulties for their selective functionalization. 
Consequently, in its most demanding version, the success-
ful development of a metal-catalyzed hydroalkylation of 
dienes requires addressing altogether chemoselectivity, re-
gioselectivity, diastereoselectivity and –ultimately– enanti-
oselectivity challenges.2,3  

To date, there is only a handful of reports on the selective 
intermolecular hydroalkylation of 1,3-dienes (Figure 1). In 
2004, Hartwig described the first Pd-catalyzed enantiose-
lective addition of a stabilized C(sp3) nucleophile to a sym-
metric diene (which obviated potential regioselectivity is-
sues), furnishing the product in excellent yield but modest 
enantiomeric excess.4 Over a decade later, a series of break-
through studies were reported by the Malcolmson group, 
which disclosed highly enantioselective Pd-catalyzed addi-
tions of a variety of activated C-centered nucleophiles to 
terminal, internal and even branched dienes.5 The prod-
ucts were typically obtained with excellent level of enanti-
ocontrol and the combined scope of these methods is par-
ticularly broad. Zhou and coworkers demonstrated that, in 
presence of a Ni catalyst and a catalytic amount of a strong 

base, linear 1,3-dienes could be coupled with unstabilized 
C-nucleophiles using in situ generated enolates from sim-
ple ketones.6 The 3.4-addition products were obtained  

 

Figure 1. Transition metal-catalyzed intermolecular enan-
tioselective and diastereoselective hydroalkylations of acy-
clic 1,3-dienes. 
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preferentially with high enantioselectivity but in low dia-
stereomeric ratio when vicinal stereocenters were formed. 
The Zi group disclosed an elegant [Cu/Pd] dual catalytic 
system for the addition of weakly nucleophilic aldimine es-
ters to linear dienes, affording the products in high yield, 
excellent ee and high dr. Particularly worthy of note is the 
perfectly stereodivergent nature of the process, which pro-
vided access to all four possible stereoisomeric products 
when 2 adjacent stereocenters were generated.7 Inspired by 
seminal work from the Meek group,8 Dong and Wang re-
cently reported an enantioselective Pd-catalyzed hydroal-
kylation of linear dienes using azlactones as stabilized C-
nucleophiles.9 The products were isolated in good yield, 
high dr and high levels of enantiocontrol. In spite of the 
above achievements, the number of efficient diastereo- 
and enantioselective hydroalkylations of dienes remains 
limited. The development of selective methods based on 
the combination of unstabilized carbon-centered nucleo-
philes and underexplored –yet valuable– diene subclasses 
would undeniably represent an important addition to the 
protocols currently available.  

We disclose here the identification of two regiodivergent 
and complementary Ni-catalyzed stereoselective hydroal-
kylations of branched dienes using unstabilized C(sp3) nu-
cleophiles derived from simple amides and imides.10 

■ RESULTS AND DISCUSSION  

We recently reported a Ni-catalyzed enantioselective 3,4-
hydroamination of 1,3-dienes using primary aliphatic 
amines, which occur with excellent Markovnikov selectiv-
ity.11 Therefore, we initially set out to develop a related sys-
tem for the 3,4-hydroalkylation of branched dienes with 
amides as carbon nucleophiles. Unfortunately, subjecting 
the model coupling partners 1a and 2a to our original pro-
tocol did not deliver any addition product (Table 1, entry 
1). No reaction took place under the conditions developed 
by the Zhou group for the hydroalkylation of linear dienes 
using simple ketones despite the relatively similar pKa val-
ues of the C-nucleophiles (entry 2; pKa (2a/DMSO) = 26.6, pKa 

(acetone/DMSO) = 26.5).12 With L1, when tBuOK was employed 
as base in THF, quantitative conversion to alkylation prod-
ucts resulting from 3,4-addition (4aa) and 1,4-addition 
(5aa) was observed, with a marked preference for the latter 
(entry 3). Although 5aa was not our initial target, the pres-
ence of two stereogenic elements and two functional han-
dles in its structure prompted us to further explore condi-
tions favoring its formation. Pleasingly, with a catalytic 
amount of MeOK, an extended reaction time and only 1.2 
equivalents of 2a, 5aa was generated as the sole regioiso-
meric hydroalkylation product with excellent control of 
the internal olefin geometry (rr >25:1, E/Z 15:1) (entries 4-
5). We found that the product of 3,4-hydroalkylation (6aa), 
could be obtained majoritarily by substituting amide 2a for 
imide 3a (entry 6).13 The use of Barton’s base (BTMG) for 
the in situ generation of the carbon-centered nucleophile 
gave a homogeneous solution and led to slightly improved 
regioselectivity and diastereoselectivity (entry 7).14 Of note, 
no addition reaction occurred when attempting to gener-
ate the enolate of 2a with BTMG (entry 8).  

Table 1. Reaction optimizationa 

 

a Reaction conditions: 1a (0.1 mmol), 2a or 3a (0.2 mmol). b 
Determined by 1H NMR using an internal standard. c 1.0 
equiv. trifluoroethanol. d 100 °C. e 0.2 M. f 50 °C. g 48 h. h 1.2 
equiv. 

Having identified two complementary protocols for the 
hydroalkylation of branched dienes, we first decided to ex-
plore the scope of the Ni-catalyzed 1,4-regioselective pro-
cess using amides as carbon nucleophiles (Figure 2). For 2-
aryl substituted 1,3-dienes, independently of any electronic 
perturbation, the regioselectivity was uniformly high and 
the addition products were isolated in good to excellent 
yield with stereoselectivity varying from 1.7:1 to 15:1. Nota-
bly, 2-heteroaryl dienes (1j-1l) and a cyano-containing sub-
strate (1i) were compatible with the mild reaction condi-
tions. By contrast, 2-alkyl 1,3-dienes such as 1m did not par-
ticipate productively in the reaction. Variation of the struc-
ture of the C-nucleophile proved to be particularly in-
formative. A variety of secondary amides, containing for 
instance a pyrrolidine, a piperidine or a morpholine unit, 
were suitable candidates for the addition reaction (5ab-
5ae). Remarkably, N-isopropyl-2-phenylacetamide, a pri-
mary amide derivative, was engaged successfully in the hy-
droalkylation reaction with perfect chemoselectivity (5af). 
Introduction of electron-donating or electron-withdraw-
ing substituents at the para-, ortho- or even meta- position 
of the aryl ring was also well-tolerated (5ag-5ak), as was 
the case with a 3-pyridine moiety (5al). In all these reac-
tions, regioselectivity and stereoselectivity were excellent. 
Of particular note, using N,N-dimethyl-2-phenylpropana-
mide and LiHMDS/tBuOK as a combination of bases, 5am 

a product with a congested -quaternary center was gen-
erated, albeit in a slightly diminished yield and stereose-
lectivity (51% yield, E/Z 5:1). Finally, even though the regi-
oselectivity and stereoselectivity decreased markedly, we 
found that esters could be employed as C(sp3) nucleophiles 
using 2 equiv of base and by running the reaction at 50 °C 

en-
try 

Nu L base  

(n equiv) 

solvent conv.  

(%)b 

3,4-/1,4-addition b 

1 2a L1 nonec mesitylene <5 - 

2d 2a L2 tBuOK (0.2) EtOHe <5 -   

3f 2a L1 tBuOK (2.0) THF >95 1:19 (E/Z 2.5:1)  

4 f 2a L1 MeOK (0.2) THF >95 1:>25 (E/Z 9:1) 

5g 2a h L1 MeOK (0.2) THF >95 1:>25 (E/Z 15:1) 

6 3a L1 MeOK (0.2) THF >95 6.2:1 (dr 2.7:1) 

7 3a L1 BTMG (1.0) THF >95 6.5:1 (dr 2.8:1) 

8 2a L1 BTMG (1.0) THF <5 - 
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Figure 2. Scope of the stereoselective Ni-catalyzed 1,4-hydroalkylation of branched dienes using 2-phenylacetamide deriv-
atives. 1a-m (0.2 mmol) and 2a-o (1.2 equiv.). Yield of isolated product after purification by column chromatography. Regi-
oisomeric ratio and stereoselectivity determined by 1H NMR. a 48 h. b 2.0 equiv. of nucleophile (amide or ester). c 50 °C. d 120 
h. e LiHMDS (1.0 equiv.) and tBuOK (0.1 equiv.) instead of MeOK. f 2.0 equiv. of base. g Combined yield (4+5). 

(5an, 5ao).  The stereochemistry of the internal double 
bond initially assigned on the basis of 2D NMR experi-
ments was confirmed with the resolution of the X-ray 
structure of 5da. Much to our dismay, all efforts to develop 
an enantioselective variant of this addition process were 
unsuccessful, despite an extensive screening of chiral (P,N) 
and (P,P) ligands (See SI for details). The absence of stere-
oinduction can be ascribed either to poor facial selectivity 
upon nucleophilic addition and/or poor control of the eno-
late stereochemistry. Nonetheless, because no enantioin-
duction was observed both with 2a and 2m, post-catalytic 
enantiomerization can be reasonably excluded.15  

Reasoning that the use of imides in place of amides in 
the Ni-catalyzed 3,4-hydroalkylation of diene may posi-
tively influence the stereoselective outcome of the reac-
tion, we directly set out to develop an enantioselective var-
iant of this process. Several chiral ligands were surveyed 
using the optimized conditions developed with L1 (Table 
2). Whereas DTBM-Segphos (L2), the chiral ligand em-
ployed by Zhou and coworkers for the hydroalkylation of 
linear dienes using simple ketones proved ineffective, 
BenzP* (L3) which we used in the enantioselective hy-
droamination of branched dienes led to a mixture of 3 re-
gioisomers (entries 1-2). These isomeric products, which 
result from formal 3,4-addition (6aa), 1,4-addition (7aa) 
and 4,1-addition (8aa), were obtained quasi-quantitatively  
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Table 2. Chiral ligand surveya 

 

a Reaction conditions: 1a (0.1 mmol), 3a (0.2 mmol). b De-
termined by 1H NMR using an internal standard. c Deter-
mined by HPLC using a chiral stationary phase. d Using 
MeOK (0.2 equiv.) as base. e 3a (1.2 equiv.), BTMG (0.2 
equiv.), 48 h. 

in a 3.8:4.2:1 ratio. Furthermore, 6aa was generated with 
promising diastereo- and enantioselectivity levels (dr 2.8:1; 
77% ee).  A series of chiral phosphinooxazoline ligands de-
rived from L1 were tested next and the most representative 
results are disclosed in entries 3-8 of Table 2 (See SI for de-
tails). Overall, the highest regioselectivity, diastereoselec-
tivity and enantioselectivity were obtained for derivatives 
possessing an aromatic substituent at the stereogenic cen-

ter  to the N-donor atom, and L9 –a novel member of this 
ligand class– was the optimal candidate. Extending the re-
action time and adjusting the relative stoichiometry be-
tween all reagents enabled us to further improve the cata-
lytic performances (rr 4.1, dr 7.0:1, 92% ee; entry 9).16  

These mild conditions were subsequently used to delin-
eate the scope of the 3,4-hydroalkylation of branched 
dienes by first varying the nature of the electrophilic com-
ponent (Figure 3, A). Isolation of the major diastereoiso-
meric product in pure form was strongly influenced by the 
extent of regio- and diastereocontrol. Thus, regioselectivity 
ranging from 1.8:1 to 6.8:1 were paralleled by yields varying 
between 41% and 71%. Most diastereoselectivity levels were 
greater than 5:1. The lowest value was obtained for 1h, a 
diene with an ortho-fluoro substituent (dr 2.5:1), while the 

highest was obtained for 1d, a diene with an extended  
system (dr 11:1). Modulations of the electronic density of 
the 2-(hetero)aryl substituent were well tolerated. Enanti-
oselectivity was very high in all cases (87-94% ee). No re-
action took place when a 2-alkyl substituted diene was 

tested (6ma). Several imides, readily prepared from 2-oxa-
zolidinone and the appropriate acyl chloride, were ex-
plored next (Figure 3, B). The product of 3,4-hydroalkyla-
tion was always generated preferentially (rr 1.3:1–10:1) in ex-
cellent enantioselectivity (88–91% ee), with the exception 
of 6ae (67% ee). Products with a para methoxy- (6ab), a 
para fluoro- (6ad), a meta chloro-substituent (6af), a 
naphthyl group (6ag) as well as a dioxolane moiety (6ac) 
were formed with appreciable catalytic efficiency, in high 
diastereo- and enantioselectivity and with acceptable regi-
oselectivity (dr> 5:1, ca. 90% ee). Although the net catalytic 
performances were affected, we found that a para-methyl 
ester could be accommodated by using MeOK instead of 
BTMG as base (6ae). A sterically demanding ortho-methyl 
arene affected reactivity, regio- and diastereoselectivity, 
but not enantioselectivity (6ah: 91% ee). Similar data were 
obtained for a substrate with a cinnamyl substituent (6ai). 
When the imide moiety was substituted by a 1,3-ketoesters 
preferential 3,4-hydroalkylation occurred with reduced re-
gioselectivity and enantioselectivity but with excellent di-
astereoselectivity (6aj). Finally, an X-ray analysis was ob-
tained for 6ab, and the absolute and relative configura-
tions of all other hydroalkylation products were assigned 
by analogy. 

To demonstrate the synthetic potential of the 3,4-hy-
droalkylation protocol, several post-catalytic derivatiza-
tions were conducted using diastereomerically pure 6aa 
(Figure 4). Complete reduction of the imide moiety into 
the corresponding primary alcohol 9 was achieved without 
epimerization using lithium borohydride. Subsequent 
acidic treatment led to the selective formation of tetrahy-
drofuran derivative 10, the structure of which is character-
ized by three contiguous stereocenters (dr 19:1). Ester 11 
was obtained in excellent yield and enantiospecificity us-
ing the ytterbium-catalyzed esterification of imides inde-
pendently developed by the Evano and Stevens/Frantz 
groups.17 Hydrogenation of the 1,1-disubstituted alkene 
unit in 6aa was accomplished under mild reaction condi-
tions using Pd(C). The reduced product (12) was generated 
quantitatively in a 5.3 dr. The relative stereochemistry of 
the major isomer was established by X-ray crystallographic 
analysis. Hydrolysis of 6aa was conducted under basic con-
ditions using H2O2 as nucleophile under strongly basic 
conditions (LiOH).18 Finally, we demonstrated that the 
corresponding carboxylic acid (13) could be engaged in 
late-stage modifications using highly functionalized syn-
thetic intermediates. Sitagliptin, an anti-diabetic drug con-
taining a primary amine and Ciproflaxin ester, a broad-
spectrum antibiotic containing a secondary amine, were 
both efficiently converted to the corresponding amides 14 
and 15 respectively using EDC•HCl as peptide coupling re-
agent.  

■ CONCLUSION  

In addition to stereoselectivity, regioselectivity is often a 
major challenge in diene hydrofunctionalization reactions. 
In this article, we have reported two complementary re-
giodivergent Ni-catalyzed hydroalkylations of branched  

entry L Conv. (%)b 6aa : 7aa : 8aab dr6aa
b ee6aa (%)c 

1 L2 <5 - - - 

2 L3 >95 3.8 : 4.2 : 1 2.8:1 77   

3 L4 95 7.3 : 1 : 1.1 3.3:1 18  

4d L5 80 16.3 : 2.8 : 1 3.3:1 3  

5 L6 >95 11.3 : 1 : 1.9 5.3:1 87  

6 L7 51 6.1 : 1 : 6 5.3:1 70  

7 L8 59 5.7 : 1 : 1.7 2.3:1 –79  

8 L9 >95 11.1 : 1 : 1.9 5.3:1 92 

9e L9 >95 13 : 1 : 2.1 7.0:1 92  
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Figure 3. Scope of the diastereoselective and enantioselective Ni-catalyzed 3,4-hydroalkylation of branched dienes using 

imides and a -ketoester. 1a-m (0.2 mmol) and 3a-j (1.2 equiv.). Yield reported for the major diastereoisomer, isolated after 
purification by column chromatography. Regioisomeric ratio (rr) expressed as the ratio between 6 and all other isomers 
(7+8) as determined by 1H NMR with an internal standard. Enantiomeric excess determined by HPLC using a chiral station-
ary phase. a 48 h. b MeOK (0.2 equiv.) as base.  

 

Figure 4. Post-catalytic derivatizations starting from diastereomerically pure 6aa. Yields of isolated products after purifi-
cation. Diastereomeric ratio determined by 1H NMR with an internal standard. Enantiomeric excess determined by HPLC 
using a chiral stationary phase. 
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dienes with unstabilized C(sp3) nucleophiles. The first sys-
tem uses an achiral C1-symmetric phosphinooxazoline lig-
and and simple amides which, once deprotonated in situ, 
undergo a highly 1,4-selective addition process with excel-
lent stereocontrol of the trisubstituted C=C bond genera-
ted. The method displays a broad scope in both the nucle-
ophilic and electrophilic component, enabling the use of 
sensitive functionalities and heteroaromatic-containing 
precursors. Switching to imides as carbon nucleophiles fa-
vored formation of the 3,4-addition products. The con-
struction of the two vicinal tertiary stereocenters was 
achieved with moderate to high diastereoselectivity and 
excellent enantioselectivity by means of a novel chiral 
(P,N) ligand. Notably, a wide range of functional groups 
were compatible with the mild conditions employed and 
several post-catalytic derivatizations were conducted to 
measure the synthetic potential of the method. Studies 
aiming at understanding the factors that determine reac-
tivity and selectivity for both systems are currently ongo-
ing in our laboratories.19 

ASSOCIATED CONTENT  

Experimental procedures, characterization of all new com-
pounds and X-ray data for compounds (E)-5da, (2R,3S)-6ab 
and (2R,3R,4S)-12 (CCDC 2018944-2018946). This material is 
available free of charge via the Internet at http://pubs.acs.org.  
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