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2. Optimized Schwarz Methods

Martin J. Gander 1, Laurence Halpern 2, Frederic Nataf 3

Introduction

Schwarz methods lead to parallel preconditioners for large linear systems of equations
arising in the solution process of partial differential equations [SBG96]. Optimal con-
vergence results for the Schwarz method are known in the sense that the condition
number of the preconditioned system is independent of (or only weakly dependent on)
the mesh parameter and the number of subdomains. Thus asymptotically Schwarz
methods have optimal scalability.

This optimality result contains however constants which remain unknown in the
analysis. Thus it does not imply that the current Schwarz methods have optimal
performance. It does not guarantee either that Schwarz methods are competitive to
other parallel methods. Thus the word ”optimal” can be misleading.

We analyze the performance of the classical Schwarz method for two model prob-
lems, Laplace’s equation and the Helmholtz equation. Our analysis is performed at
the continuous level which seems natural for the Schwarz method since the method
itself is defined at the continuous level. Our investigation reveals that the convergence
rate of the Schwarz methods depends intrinsicly on the transmission conditions em-
ployed between subdomains. The classical transmission conditions used by Schwarz
are Dirichlet transmission conditions [Sch70]. These transmission conditions lead to
convergence rates which are not uniform with respect to frequency: high frequency
components converge rapidly whereas low frequency components converge only slowly.
Motivated by the analysis of Overlapping Schwarz Waveform Relaxation in [GHN99]
we construct optimal transmission conditions for the Laplace and Helmholtz equation
in two dimensions. These conditions are global in nature and thus not ideal for im-
plementations. We therefore introduce local approximations of the optimal conditions
and optimize them for performance, which leads to the optimized Schwarz methods.

Other people have looked at different transmission conditions before. Generalized
Schwarz splittings with Robin transmission conditions have been analyzed by Tang
[Tan92] and led to an over-determined Schwarz algorithm in [ST96]. The main diffi-
culty remaining in this approach is the determination of the relaxation parameter in
the Robin conditions, like for SOR methods. For Helmholtz problems radiation condi-
tions for overlapping Schwarz have been proposed by [CCEW98]. For non-overlapping
versions of the Schwarz algorithms Dirichlet transmission conditions are not effec-
tive and Lions proposed to use Robin conditions to obtain a convergent algorithm in
[Lio90]. Through the work by Charton, Nataf and Rogier [CNR91], Nataf and Rogier
[NR95] and Japhet [Jap98] new types of transmission conditions for convection diffu-
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sion problems have been introduced which are optimal in a physical sense and contain
the Robin conditions as a first order approximation. A similar approach was devel-
oped for the Helmholtz equation in [DJR92] and [CN98]. An overlapping version for
Laplace’s equation was analyzed in [EZ98]. The same type of analysis was applied to
overlapping Schwarz waveform relaxation algorithms in [GHN99] and led to optimized
Schwarz algorithms for evolution problems where one can easily visualize that the
optimal transmission conditions are absorbing boundary conditions. The key is that
a simple optimization procedure leads to local transmission conditions with optimized
performance for the Schwarz algorithm. We derive optimized Schwarz methods for
elliptic definite and indefinite problems in this note.

Optimized Schwarz Method for Laplace’s Equation

We consider Laplace’s equation in the domain Ω = R
2,

Δu = f(x, y), x, y ∈ Ω, u bounded at infinity. (1)

We decompose the domain Ω into two overlapping half planes Ω1 = (−∞, L]×R and
Ω2 = [0,∞)×R where L > 0 is the overlap parameter. The classical Schwarz method
to solve (1) solves iteratively Laplace’s equation on Ω1 and Ω2 and exchanges Dirichlet
values on the interfaces at 0 and L,

Δvn+1 = f(x, y), x, y ∈ Ω1,
vn+1(L, y) = wn(L, y),

Δwn+1 = f(x, y), x, y ∈ Ω2,
wn+1(L, y) = vn(L, y).

(2)

To analyze the convergence of the classical Schwarz method, it suffices by linearity to
consider the homogeneous problem, f(x, y) = 0 in (2), and to analyze convergence to
zero.

Fourier Analysis of the Classical Schwarz Method

Our results are based on Fourier analysis. We denote the Fourier transform f̂(k) of
f(x) : R −→ R by

f̂(k) = Fx(f)(k) :=
∫ ∞

−∞
e−ikxf(x)dx

and the inverse Fourier transform of f̂(k) by

f(x) = F−1
x (f̂)(x) :=

1
2π

∫ ∞

−∞
eikxf̂(k)dk.

Taking a Fourier transform in y of (2) for f(x, y) = 0 we obtain

v̂n+1
xx (x, k) − k2v̂n+1(x, k) = 0, x ∈ (−∞, L), k ∈ R, (3)

v̂n+1(L, k) = ŵn(L, k),
ŵn+1

xx (x, k) − k2ŵn+1(x, k) = 0, x ∈ (0,∞), k ∈ R, (4)
ŵn+1(0, k) = v̂n(0, k)
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where a subscript x denotes a partial derivative with respect to x. Solving the ordinary
differential equation (4) using the boundedness condition at infinity and inserting the
result into the boundary condition of (3) we find the solution of (3) at x = 0 to be

v̂n+1(0, k) = e−2|k|Lv̂n−1(0, k).

Similarly we obtain for the solution of (4) at x = L

ŵn+1(L, k) = e−2|k|Lŵn−1(L, k).

Defining the convergence rate

ρ(k, L) := e−2|k|L (5)

we see that the classical Schwarz method converges for all k �= 0 if there is overlap,
L > 0. The convergence rate is linear and depends on the size of the overlap L as well
as the frequency k. High frequency components converge fast, whereas low frequency
components converge only slowly. Note that for |k| → 0 the convergence rate ρ tends
to 1.

Optimal Transmission Conditions

The preceding analysis shows that the Schwarz method is slowed down by the low
frequency components. They are dictating the convergence rate and thus the perfor-
mance of the Schwarz method. For better performance, one would like to improve
the convergence rate for the low frequency components. This can be achieved by
changing the transmission conditions to become more transparent for low frequency
components. Following the approach in [GHN99] for evolution problems, we introduce
new transmission conditions into the classical Schwarz method (2). Instead of using
Dirichlet transmission conditions, we impose at the artificial boundaries

vn+1
x (L, y) + Λv(vn+1(L, y)) = wn

x (L, y) + Λv(wn(L, y))
wn+1

x (0, y) + Λw(wn+1(0, y)) = vn
x (0, y) + Λw(vn(0, y)), (6)

where the linear operators Λv and Λw are degrees of freedom we can use to optimize
the performance of the algorithm. Note that the Schwarz method itself remains the
same, only the transmission conditions have been changed. We have the following

Theorem 1 (Optimal Convergence) Choosing Λv to have the symbol λv(k) := |k|
and Λw to have the symbol λw(k) := −|k| the Schwarz method with transmission
conditions (6) converges in two iterations independently of the overlap L ≥ 0.

Proof Applying a Fourier transform in y to (3), (4) with transmission conditions (6)
we obtain

v̂n+1
xx (x, k) − k2v̂n+1(x, k) = 0, x ∈ (−∞, L), k ∈ R, (7)

v̂n+1
x (L, k) + λv(k)v̂n+1(L, k)) = ŵn

x (L, k) + λv(k)ŵn(L, k),

ˆ̂w
n+1

xx (x, k) − k2 ˆ̂w
n+1

(x, k) = 0, x ∈ (0,∞), k ∈ R, (8)
ŵn+1

x (0, k) + λw(k)ŵn+1(0, k) = v̂n
x (0, k) + λw(k)v̂n(0, k).
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Solving (8) at iteration step n for ŵn and inserting the result into the transmission
conditions of (7) we find for v̂n+1 at x = 0

v̂n+1(0, k) = ρlv̂
n−1(0, k)

and by a similar computation for ŵn+1 at x = L

ŵn+1(L, k) = ρlŵ
n−1(L, k)

where the convergence rate ρl is given by

ρl(k,L) :=
−|k| + λv(k)
|k| + λv(k)

· |k| + λw(k)
−|k| + λw(k)

e−2|k|L. (9)

Hence choosing λv(k) := |k| and λw(k) := −|k| the convergence rate vanishes, ρl ≡ 0
and thus, independently of the initial guess, after two steps of the Schwarz iteration the
iterates are zero on x = 0 and x = L respectively. To see that they vanish identically,
it suffices to note that by the boundedness condition at infinity, v̂2(x, k) = Ae|k|x and
ŵ2(x, k) = Be−|k|x for some constants A and B. But v̂2(0, k) = 0 then implies A = 0
and ŵ2(L, k) = 0 implies B = 0 and the result follows.
Note that the new convergence rate (9) still contains the exponential factor like the
classical one (5), but the new transmission conditions (6) introduced an additional
factor with the degrees of freedom λv(k) and λw(k). Theorem 1 shows what the
optimal choice is for the transmission conditions in theory. One can show that with
this choice and N subdomains in strips the Schwarz algorithm converges in N steps,
see [NRdS94]. This is an optimal result since the solution of Laplace’s equation in
one subdomain depends on the source term f in every other subdomain and when
only a local mechanism of communication is employed one has to communicate at
least N steps to get the information from the left most subdomain across all the other
subdomains to the rightmost subdomain.

However to use the algorithm in practice, one either needs to work in Fourier
space or one has to back-transform the optimal transmission conditions to the real
space. The inverse Fourier transform of λvw = ±|k| leads to the optimal transmission
operators Λvw which are non local in y and thus harder to implement. Note that the
optimal transmission operators correspond to the Dirichlet to Neumann map at the
artificial interfaces and thus the optimal transmission conditions are the absorbing
boundary conditions as in the case of the evolution problems [GHN99].

Optimized Local Transmission Conditions

For a real implementation of the Schwarz algorithm, it is desirable to have local
transmission conditions. We therefore approximate the nonlocal optimal transmission
conditions found in the previous subsection by local ones. Local operators are repre-
sented by polynomials in Fourier space and we analyze in the sequel the performance
of the zeroth and second order approximation of the optimal transmission conditions,

λvw = ±p or λvw = ±(p + qk2). (10)

The parameters p, q > 0 are free parameters and they can be used to optimize the
performance of the new Schwarz method which leads to the optimized Schwarz method.
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Figure 1: Dependence of the convergence rate on the frequency k and the optimization
parameter p for Laplace’s equation.

Since real computations are performed on bounded domains and discretized operators,
the range of the frequency parameter k is not arbitrary. It is bounded from below by a
lowest frequency dependent on the size of the domain in y direction and the boundary
conditions imposed, k2 > k2

min and from above, k is bounded by the mesh size h in y
direction, k2 < k2

max := (π/h)2. Thus to obtain optimal performance of the Schwarz
method, we have to solve the min-max problem

min
p>0

(
max

kmin<k<kmax

(|k| − p)2

(|k| + p)2
e−2|k|L

)

in the case of the zeroth order approximation. Figure 1 shows the dependence of
the convergence rate on the frequency k and the free parameter p. Note that the
convergence rate is symmetric in k and only the part for kmin < k < kmax is shown in
the figure. One can clearly identify that for a certain parameter value p the convergence
rate will become small for all values of k, kmin < k < kmax. For large p however the
low frequencies will dominate again the convergence rate and in the limit as p goes to
infinity, we recover the classical Schwarz method.

For the second order approximation of the optimal transmission conditions, we
find the min-max problem

min
p,q>0

(
max

kmin<k<kmax

(|k| − p − qk2)2

(|k| + p + qk2)2
e−2|k|L

)
.

Both min-max problems can be solved analytically and we show in Figure 2 the conver-
gence rates obtained for the classical Schwarz method and the two optimized Schwarz
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Figure 2: Convergence rates in Fourier space for Laplace’s equation. The classical
Schwarz method on the left, zeroth order optimized Schwarz method in the middle
and second order optimized Schwarz method on the right. Note the scaling factor of
10 in the right most figure.

methods for the model problem (11) with mesh parameter h = 1/80. Note how the
zeroth order approximation, which leads to a Robin condition instead of a Dirich-
let one in the Schwarz algorithm, reduces the convergence rate already from 0.82 to
0.05 and the second order approximation reduces it further to 0.006. The numerical
experiments in the following subsections confirm the enormous improvement of the
optimized Schwarz algorithm over the classical one.

Numerical Experiments for Laplace’s Equation

We solve Laplace’s equation on the rectangular domain Ω = [0, 2] × [0, 1],

Δu = 0, x, y ∈ Ω (11)

with given Dirichlet boundary conditions. We decompose Ω into two subdomains
Ω1 = [0, 1 + δ] × [0, 1] and Ω2 = [1 − δ, 2] × [0, 1] and apply the Schwarz algorithm as
an iterative solver. Figure 3 shows the performance of the classical Schwarz method
compared to the zeroth order optimized one and the second order optimized one for
an overlap of 2δ = 1/40. Clearly the optimized Schwarz method perform much better
than the classical one. The convergence rate improvement due to the new transmission
conditions manifests itself in the numerical experiments. While the classical Schwarz
method only reduces the error by a few percent in 8 iterations, the zeroth order
optimized Schwarz method reduces the error by a factor of 105 and the second order
optimized Schwarz method reduces the error by a factor of 1013. Note that these
contraction rates are comparable to multi-grid, and we have not used a Krylov method
yet, just classical Schwarz as an iterative solver.

To accelerate convergence, one usually uses the Schwarz method as a precondi-
tioner, which greatly improves the performance of the classical Schwarz method. Fig-
ure 4 shows the decay of the error in the same experiment as above, but now the
Schwarz methods are used as preconditioners. Clearly the classical Schwarz method is
improved a great deal by the Krylov method, but the optimized Schwarz methods are
accelerated as well and still converge much faster than the classical Schwarz method.
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Figure 3: The performance of the optimized Schwarz methods for Laplace’s equation
compared to the classical Schwarz method as an iterative solver.
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Figure 4: Optimized Schwarz methods used as preconditioners for Laplace’s equation.
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Figure 5: Comparison of the optimal parameters found by Fourier analysis and the
best parameters in numerical experiments for Laplace’s equation.

Note again that with the second order optimized Schwarz method, we observe a sim-
ilar phenomenon like with multi grid: the acceleration with the Krylov method is not
really necessary, it only brings a small improvement, since the basic iterative solver is
already converging at an extremely fast rate.

Finally we investigate how close the optimal parameters obtained by Fourier anal-
ysis are to the really optimal parameters we obtained from numerical experiments.
Note that the optimal discrete parameters could also be obtained for regular rectangu-
lar meshes by a discrete Fourier analysis, but such an analysis would have to be redone
for every mesh, whereas our continuous analysis is valid independently of the mesh. It
is more important to have results at the continuous level for a method defined at the
continuous level, since then these results remain relevant once the problem is solved
on a mesh which resolves the continuous properties, independently of the particular
mesh. Figure 5 shows on the left the error reduction obtained after 4 iterations of the
zeroth order optimized Schwarz method for various parameters p and also indicated
by a star the optimal parameter obtained by Fourier analysis. Clearly the Fourier
analysis indicates where the discrete optimum lies. On the right we show a level set
plot of the error after four iterations for the second order optimized Schwarz method.
Again the star indicates the optimum found by the Fourier analysis. This shows that
Fourier analysis is a viable tool to compute optimized Schwarz methods and the fig-
ures also show that optimized Schwarz methods are rather robust with respect to the
optimization parameters.

Optimized Schwarz Method for the Helmholtz Equa-
tion

We consider the Helmholtz equation in the domain Ω = R
2,

(Δ + ω2)(u) = f(x, y), x, y ∈ Ω (12)
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with Sommerfeld radiation conditions at infinity. We decompose Ω into two overlap-
ping half planes Ω1 = (−∞, L] × R and Ω2 = [0,∞) × R where L > 0 is the overlap
parameter. The classical Schwarz method to for (12) is given by

(Δ + ω2)(vn+1) = f(x, y) x, y ∈ Ω1,
vn+1(L, y) = wn(L, y),

(Δ + ω2)(wn+1) = f(x, y) x, y ∈ Ω2,
wn+1(L, y) = vn(L, y).

(13)

To analyze if the classical Schwarz method converges for the Helmholtz equation, it
suffices by linearity to consider again the homogeneous problem, f(x, y) = 0 in (13)
and to analyze convergence to zero.

Fourier Analysis of the Classical Schwarz Method

Taking a Fourier transform in y of (13) for f(x, y) = 0 we obtain

v̂n+1
xx (x, k) + (ω2 − k2)v̂n+1(x, k) = 0, x ∈ (−∞, L), k ∈ R, (14)

v̂n+1(L, k) = ŵn(L, k),
ŵn+1

xx (x, k) + (ω2 − k2)ŵn+1(x, k) = 0, x ∈ (0,∞), k ∈ R, (15)
ŵn+1(0, k) = v̂n(0, k).

Solving the ordinary differential equation (15) using the radiation condition at infinity
and inserting the result into the boundary condition of (14) we find the solution of
(14) at x = 0 to be

v̂n+1(0, k) = e−2
√

k2−ω2Lv̂n−1(0, k)

and similarly for (15)

ŵn+1(L, k) = e−2
√

k2−ω2Lŵn−1(L, k).

Defining the convergence rate

ρ(k, ω, L) := e−2
√

k2−ω2L (16)

we have now two cases to distinguish: if k2 > ω2 then |ρ(k, ω, L)| < 1 and the
algorithm converges as in the case of Laplace’s equation. If however k2 < ω2 then

|ρ(k, ω, L)| =
∣∣∣e−2i

√
ω2−k2L

∣∣∣ = 1

and convergence is lost. Therefore the classical Schwarz algorithm for the Helmholtz
equation does not converge in general, the low frequencies in the error are not damped.
Often it is precisely the low frequencies which are important in Helmholtz problems,
since they correspond to the propagating frequencies. Thus for Helmholtz problems
one is obliged to modify the Schwarz algorithm to make it work. In [CW92] a coarse
mesh is introduced, fine enough to carry all the propagating modes, and in [CCEW98]
the classical radiation conditions of Robin type are employed at the interfaces to obtain
damping of the propagating modes. In [DJR92] and [CN98] non-overlapping variants
of the Schwarz algorithm are analyzed with approximately absorbing transmission
conditions. Following our analysis for Laplace’s equation, we first compute the optimal
transmission conditions for the Helmholtz case.
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Optimal Transmission Conditions

Imposing the new transmission conditions (6) in the Schwarz algorithm for the Helmholtz
equation we obtain the analog to Theorem 1 in the case of Laplace’s equation:

Theorem 2 (Optimal Convergence) Choosing Λv to have the symbol λv(k) :=√
k2 − ω2 and Λw to have the symbol λw(k) := −√

k2 − ω2 the Schwarz method with
transmission conditions (6) for the Helmholtz equation converges in two iterations
independently of the overlap L ≥ 0 and the frequency parameter k.

Proof A Fourier transform in y and a similar calculation as in the case of Laplace’s
equation leads to

v̂n+1(0, k) = ρhv̂n−1(0, k)

and similarly for ŵn+1

ŵn+1(L, k) = ρhŵn−1(L, k)

where the convergence rate ρh is given by

ρh(k,L) :=
−√

k2 − ω2 + λv(k)√
k2 − ω2 + λv(k)

·
√

k2 − ω2 + λw(k)
−√

k2 − ω2 + λw(k)
e−2

√
k2−ω2L. (17)

Hence for λv =
√

k2 − ω2 and λw = −√
k2 − ω2 the convergence rate (17) vanishes,

ρh ≡ 0 and thus, independently of the initial guess, after two steps of the Schwarz
iteration the iterates are zero. Again
the optimal transmission conditions involve the Dirichlet to Neumann map, as in the
case of Laplace’s equation, and to avoid a nonlocal implementation, we propose local
approximations of the optimal transmission conditions.

Optimized Local Transmission Conditions

Using a zeroth and second order approximation as given in (10), we are led to the
optimization problems

min
p>0

(
max

kmin<k<kmax

∣∣∣∣∣ (
√

k2 − ω2 − p)2

(
√

k2 − ω2 + p)2
e−2

√
k2−ω2L

∣∣∣∣∣
)

(18)

in the zeroth order approximation case and to

min
p,q>0

(
max

kmin<k<kmax

∣∣∣∣∣ (
√

k2 − ω2 − p − qk2)2

(
√

k2 − ω2 + p + qk2)2
e−2

√
k2−ω2L

∣∣∣∣∣
)

(19)

in the second order approximation case. But these optimization problems have an
intrinsic difficulty in the Helmholtz case: for k2 = ω2 we obtain 1, independently of
the choice of the parameter p in (18) and the parameters p and q in (19). Thus there
is no hope to minimize the convergence rate uniformly in k and even the optimized
Schwarz method might not converge when applied in an iterative way to the Helmholtz
problem. When used as a preconditioner however, the Krylov method can easily cope
with outliers in the spectrum and thus we optimize the convergence rates for all k
relevant to the discrete spectrum except k = ω. This leads to the convergence rates
shown in Figure 6 for the model problem (20).
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Figure 6: Convergence rates in Fourier space for a Helmholtz problem. The classical
Schwarz method on the left, zeroth order optimized Schwarz method in the middle
and second order optimized Schwarz method on the right.

Numerical Experiments for the Helmholtz Equation

We solve the Helmholtz equation on a rectangular domain Ω = [0, 2] × [0, 1]

(Δ + ω2)(u) = 0, x, y ∈ Ω, (20)

Robin conditions on the left and the right and homogeneous Dirichlet conditions on
top and bottom. We decompose Ω into two subdomains Ω1 = [0, 1 + δ] × [0, 1] and
Ω2 = [1− δ, 2]× [0, 1] and apply the Schwarz algorithm as preconditioner for GMRES.
Figure 7 shows the performance of the classical Schwarz method compared to the
zeroth order optimized one and the second order optimized one for an overlap of
2δ = 1/10 with mesh parameter h = 1/80 and ω = 10. Clearly the optimized Schwarz
method shows a much better performance than the classical one.

Conclusions

We have introduced a small modification to the classical Schwarz method with a
big impact. Exchanging the classical transmission conditions of Dirichlet type with
transmission conditions involving local approximations of the Dirichlet to Neumann
operator, the Schwarz algorithm converges orders of magnitudes faster, both when
used as an iterative solver and as a preconditioner for symmetric definite and indefinite
model problems.
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