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New quantum Poincare algebra and K-deformed field theory 
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We derive a new real quantum Poincare algebra with standard real structure, obtained by contraction ofUq(0(3, 2)) (q real) , 
which is a standard real Hopf algebra, depending on a dimension-full parameter K instead of q. For our real quantum Poincare 
algebra both Casimirs are given. The free scalar K-deformed quantum field theory is considered. it appears that the K-parameter 
introduced nonlocal q-time derivatives with In q-1 /K. 

1. Introduction 

Recently the present authors considered quantum 
deformations of the D=4 Poincare algebra [ 1-4] 
obtained by the contraction of a real form of quan­
tum anti-de-Sitter algebra Uq(0(3, 2) ) . The method 
was based on finding the deformation of the Cartan­
Weyl basis, with generators self-conjugate with re­
spect to involutive homomorphisms (involutions) 
describing a real structure. In ref. [ 2] we considered 
all inner involutions of the Cartan-Weyl basis for 
Uq(Sp(4; IC)). We found in ref. [2] that only two 
(out of sixteen) provide examples of real forms of 
U q( Sp ( 4; IC )) suitable for our contraction procedure 
to quantum the Poincare algebra tti _ Unfortunately 
these two real forms were described by nonstandard 
involutions (one EB involution, used in ref. [ l ] , and 
one * involution listed in ref. [ 2] #2 ) . 

The standard + involution should be an antiauto-
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University of Wrowlaw, ul. Cybulskiego 38, PL-50 205 
Wroclaw, Poland. 
Partially supported by the Swiss National Science Foundation. 

3 Partially supported by KBN Grant Nr. 2/ 0124/91 / 01. 
4 On leave of absence from Institute of Physics, Pedagogical 

University, Plac Slowianski 6, Pl-65 029 Zielona G6ra, Poland. 
• 1 We required in refs. [ 1-3] that the nonrelativistic 0 ( 3) ro­

tations as a quantum subalgebra of the quantum Poincare al­
gebra remains undeformed. 

• 2 We use the notation described in ref. [ 2] . 

morphism in the algebra sector and an automorph­
ism in the coalgebra sector [ 5-7] 

( 1.1) 

In order to introduce the standard involution defin­
ing a real form ofUq(Sp(4)) suitable for our con­
traction procedure we are forced to consider involu­
tions which take out from the Cartan-Weyl basis #J_ 

It appears that one should consider the antipode-ex­
tended Cartan-Weyl basis {h;, e±;, e±A, S(e±A ) } 
where {h;, e±;} describe Cartan-Chevalley genera­
tors, and e ±A describe the generators corresponding 
to nonsimple roots (for Sp( 4 ): i= 1, 2; A= 3, 4 ) . In 
such a case the relations expressing physical real gen­
erators (in our case q-deformed 0 ( 3, 2) generators) 
in terms of antipode-extended Cartan-Weyl basis 
contains additional freedom (in our case we express 
10 physical generators in terms of 14 generators). In 
this paper we shall make a choice which after the con­
traction #4 (we recall that q is real) 

R->oo , Rlogq->K- 1 (O<K<oo) ( l.2) 

provides a new quantum (K-deformed) Poincare al-

• 3 In fact, these inner involutions of u.(Sp( 4; C)) were consid­
ered in ref. [2] (see ref. [2], formula (3.22)) but because 
they were not inner in the Cartan-Wey! basis they were not 
elaborated. 

•• The contraction ( 1.2) was firstly introduced by the Firenze 
group [8,9 ]. 
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gebra, which is a Hopf algebra with standard real 
structure. 

We would like to point out here that the contrac­
tion limit of U q( 0 ( 3, 2)) given in ref. [1] afterthe 
suitable nonlinear transformation of the K-deformed 
boost generators (see ref. [ 10]) provides a simpli­
fied form of the real quantum Poincare algebra. In­
terstingly enough, the contraction limits in ref. [ 1 ] 
(for I q I = 1 ) and given in this paper ( q real) which 
look quite different turn out after suitable nonlinear 
transformations, to be related simply by the replace­
ment K--> iK. It should be stressed however that in this 
paper we avoid at least three difficulties related with 
nonstandard EB involutions used in our earlier work 
on real Poincare algebras (see refs. [ 1,2], also ref. 
[ 10] ): 

(a) The reality condition for the coproduct 
(LI' =To LI) 

( 1.3) 

implies that the real spectrum of the algebra becomes 
complex on tensor products (e.g. the total three-mo­
menta of two independent subsystems becomes 
complex). 

([3) If one wishes to define EB involution as an ad­
joint operation in the representation space Jx) en­
dowed with scalar product (x'Jx) it should be de­
fined on the tensor product Ix 1' x2) = Ix, ) EB I x2) as 
follows: 

(x',,x21x,,x2)=(x', Jx2)(x21x1). (1.4) 

The scalar product ( 1.4) is not positive definite. 
( y) It is not known how to describe the dual ob­

jects to EB real quantum Lie algebras which would de­
scribe standard real quantum groups. 

The plan of our paper is the following: In section 2 
we shall describe standard real quantum algebras 
U q( 0 ( 3, 2)) with q real, its antipode-extended basis 
and the corresponding 10 q-deformed 0 ( 3, 2) rota­
tion generators. In section 3 we perform the contrac­
tion limit ( ) and obtain a new real quantum Poin­
care algebra as standard * Hopf algebra. In section 4 
the nonlinear transformations simplifying the quan­
tum Poincare algebra are given and two K-deformed 
Casimir operators for our real Poincare algebra are 
given. In section 5 we outline the K-deformed scalar 
(Klein-Gordon) free field theory and by taking the 
square root of the K-deformed Klein-Gordon opera-

tor we propose a K-deformed Dirac equation. From 
these models we see that the K-deformation implies 
the replacement of the continuous time by a "q-lat­
tice time'', where ln q= i/2K. The comments and 
some open questions are presented in section 6. 

It should be added that at present two versions of 
the q-deformed Poincare algebra were proposed: 

(i) The one discussed in this paper, with commut­
ing four-momenta and Lorentz generators not form­
ing a quantum subalgebra (see refs. [ 1-4] ). 

(ii) The one with the four-momenta forming a 
quadratic algebra and the Lorentz generators form­
ing a quantum subalgebra. Such a structure was ob­
tained from q-deformation of the D=4 conformal al­
gebra [ 11, 12] or from the realization of q-differential 
calculus on q-deformed Minkowski space [ 13]. 

The first approach has the advantage that the q­

Poincare algebra is a genuine Hopf algebra, with co­
products embedded in the tensor product of a q­

Poincare enveloping algebra. The second approach 
leads to a desirable property that q-Lorentz algebra is 
a Hopf subalgebra, but it is rather a quantum Weyl 
than a quantum Poincare algebra (an eleventh scal­
ing generator is needed for defining the coproducts 
for ten q-Poincare generators). 

2. Standard real form ofUq(0(3, 2)) 

Firstly we recall the basic formulae defining the 
Cartan-Weyl basis ofUq(Sp( 4; C)) [ 1,2 ]. Introduc­
ing the symmetrized Cartan matrix for the Lie alge­
bra C2 = Sp ( 4), 

-1) 
2 ' 

(2.1) 

the quantum Lie algebra Uq(Sp( 4; C)) is described 
by the following Cartan-Chevalley generators, cor­
responding to the simple roots of C2 ( i = 1, 2): 

[e;, e_j] =c5u[hj]q, 

restricted by the following q-Serre relations 

[e± 1 , [e±" [e±" e± 2 Lpo1Lrcil<1"' =0, 

(2.2) 

(2.3) 
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where [ea, ep] 1/=eaep-q-<a,f3>epe"'. The coproduct 
and antipodes are given by the formulae 

L1(e±i) =e±i®ki +k;- 1 ®e±i, 

where ki = qh;/2 and 

(2.4) 

S(hi)=-hi, S(e±J=-q±d;12 e±i, (2.5) 

where di= (I, 2). 
The Cartan-Wey! basis is defined as 

e4=[e1,e3], e_4=[e_3,e_i]. 

Introducing 

the formulae for the antipode take the form 

S(e±3) =q±312e±3, S(e±4) = -q±2e±4, 

S(e±3) =q±312e±3, S(e±4) = -q±2e±4. 

(2.6a) 

(2.6b) 

(2.7) 

The 14 generators hi> e±i (i= I, 2) and e±A, e±A 
(A= 3, 4) form the antipode-extended Cartan-Wey! 
basis. One can introduce the following class of stan­
dard involutions, satisfying ( 1.1) 

e±3=-EA(py)±1q±e+3, A2 =E2=1, 

e±4=E(p 2y)±1q±1e+4, p, yreal, (2.8) 

The involutions (2.8) (with P=Y= 1) can be re­
lated with the class of EB involutions considered in 
refs. [ 1,2] (and in particular with the one considered 
in ref. [ 1]) if we introduce a complex linear morph­
ism Q of the UqSp( 4; C) Hopf algebra, replacing q by 
q-1, i.e. #5 

Q: Qei=ei, Qhi=hi, 

Qq=q-1. (2.9) 

#s The morphism (2.9) denoted by awe found in ref. [14], p. 
37. 
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Because Q is a EB involution (see ( 1.3)) we have 
+ = Qo EB. In particular the EB involution used in ref. 
[ 1 ] becomes after multiplying by Q the following 
standard +-involution: 

et =e-1, et= -e-2, 

(2.10) 

which is obtained from the relations ( 3.8) by putting 
p=y=l and A.=1, E=-1. Because for q=l the 
morphism (2.9) describes an identity transforma­
tion, it follows that the real form defined by the in­
volution (2.10) describes the deformation of0(3,2) 
Lie algebra, with the metric gAB=diag( -1, 1, 1, 1, 
-1 ). 

It should be mentioned that the q-deformed gen­
erators MAB, satisfying the condition MAB =M1B can 
be introduced in many ways not necessarily leading 
to the Jacobi identities for the contracted quantum 
Poincare algebra. We have performed the calcula­
tions for the following choice of the Cartan-Wey! ba­
sis for Uq(0(3, 2)) (qreal): 

M 3=M12 =h1 , M± =M23 ±iM31 =fie±i, 

L3 =M34 = - ~ (q-if2e3 +q1+;12e_3) , 

L+ =M14 +iM24=e4 +e_2, 

L_ =M14-iM24 = - (e2 +qe_4) , 

RPo =Mo4 =h3, 

RP =M = 1 (ql+i/2e -q-i12e ) 3 03 Ti -3 3 , 

RP+ =R(P2 +iP1) =M02 +iM01 =e2 -qe_4, 

RP_ =R(P2 -iP1) =Mo2 -iM01 =e4-e_2. 
(2.11 ) 

Because in the definitions ( 2.11) enter the genera­
tors e_3, e_4, in order to calculate the quantum alge­
bra of the generators ( 2.11) one should supplement 
the algebra satisfied by the generators hi> e ±; (i = 1, 
2), e±3 and e±4 (q-deformed Cartan-Wey! basis of 
U q( Sp ( 4; C)) [ 1,2]) by the additional relations for 
the generators (2.6b ). We have 
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[e3, e_3] = (q- 1-q)qh'e-2e2 

+(q-q-1)q-h2e_1e1 +qh1-h2_(h1 +h2+l), 

[e3, e_4] = (q-q-l )(q-1)q-h2e:_1 e1 

+ (1-q2)qh'e2e_3 +q-iq-h'e_,, 

[e4, e_3] = (q-q-l )(q-1-1 )q-h2e_,ef 

+ (q-2-1 )·qh'e3e_2 -q-iq-h'e,' 

[e4, e_4] 

= (q-q- 1
) (q-'-1 )q-h2(qe:._ 1ef-e_,efe_,) 

+ (q-1-q)qh'e3e_3 + ( l-q2)q2h'e2e-2 

+ (q-q-') ·q2h'e-2e2 + (q-' -q)qh1-h2e_ 1 e1 

+q-lq-h'[h1 ]-q2h1-h2+qh'(h1+h2+1). 

(2.12) 

The commutation relations for two tilded generators 
can be obtained from the formulae in ref. [ 1 ] by the 
action of antipode, e.g. 

[e3, e4] = -q 712S( [ e3, e4]) =q- 712
( l -q)S(e4e3) 

( 2.13) 

Calculation of coproducts for physical generators 
requires the knowledge of the following formulae: 

A ( e3) = e3 ®qh,12 + q-h3120e3 

+ (q-1-q)q-h1/2e2 ®ei qh212, 

A ( e_3) = e_3 ®qh,12 + q-h3120e_3 

-(q-1-q)q-h2/2e_ 1 ®e_2qh1/2, 

A(e4) =e4®qh•12+q-h•120 e4 + (q-q-1) 

. [ ( l-q-1 )q-h'e2®efqh212_q-h1/2e3®e,qh'12 1, 

A(e_4) =e_4®qh.12+q-h•/4®e_4 + (q-q-1) 

. [ (q-1 )q-h2/2e2_1 ®e_2qh' 

(2.14) 

3. The contraction to standard real quantum Poincare 
algebra 

In order to obtain our new q-Poincare algebra we 
proceed further as follows: 

(i) Using the formulae for the commutators and 

coproducts of the antipode-extended Cartan-Weyl 
basis and the definitions ( 2.11) we can write the q­
deformation of the 0 ( 3, 2) Lie algebra as well as the 
coproduct relations for the q-deformed 0 ( 3, 2) 
generators. 

(ii) We perform further the quantum de-Sitter 
contraction, obtained by the conventional rescaling 
of the 0(3, 2) rotation generators 

Mµv unchanged (M:v =Mµv), 

Moµ=RPµ (P:=Pµ), µ,v=l, ... ,4, 

and the R-+co limit described by ( 1.2 ). 

( 3.1) 

As a result we obtain the following q-deformed 
Poincare algebra: 

(a) Three-dimensional 0(3) rotations (M ± = 
Mi +iM2=M23±iM31; M3=M12). 

(i) commutation relations: 

(ii) coproducts: 

11Mi=M;®l+I®Mi; 

(iii) antipode: 

S(MJ=-M;. 

( 3.2a) 

(3.2b) 

( 3.2c) 

(b) Boosts sector 0(3, 1) (L± =M14 ±iM24, L3= 
M34). 

(i) Commutation relations: 

[L+, L_] = -2M3 cosh Po + -
2

1 
2 
P~ 

K K 

1 M 2 • hPo + 2 3P3-Sm -
K K 

[L+, L 3 ] =exp( - ; )M+ + 2~ (iP3L+ +L3 P _) 

- 2~2 M3P3P_+ 4~2 (2-i)P3P_, 

(3.3b) 
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1 
[M±,L±J=+ 2KM±P+, 

1 i 1 
[M+,L_]=2L3--

2 
P+M++-M3P3+-P3, 

K K K 

1 i 
[M+,L3]=-L++ 

2
KM3P_+ 

2
KP_, 

1 i 
[M_,L3]=L_-

2
KP+M3+ 

2
KP+; 

(3.3bcont'd) 

(ii) coproducts: 

Af-3 =L3 ®exp(~~)+ exp( - ~~)®L3 

+ Lexp(- ~~)(M+®P++M_®P_), 

M± =L± ®exp(~~)+ exp( - ~~)®L± 

+ 2
1
K[P+ ®M3exp (~~)-exp (- ~~)M3®P+ J 

( 3.3c) 

(iii) antipode: 

i 1 
S(L3) = -L3 + 

2
KP3 + 

2
K (M+P+ +M_P _), 

1 i 
S(L±)=-L±+-P++-M±P3 . 

K K 
( 3.3d) 

( c) Translations sector (P ± =P2 ± iPi, P3, P0 ). 

(i) Commutation relations(µ, v=O, 1, 2, 3): 

[Pµ, Pv] =0, [M;, Pj] =iEukPk, 

[M;,P0 ]=0, 

(L3, Pa] =iP3, 

[L3, P3] =iK sinh Po -
2
i P +P _, 

K K 
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( 3.4a) 

( 3.4b) 

[L±, Pa] =iP1 +Pz, 

_ . Pa 1 o 
[L+,P2 ]=+Ksmh- ± -

2 
P3, 

- K K 

(3.4bcont'd) 

(ii)coproducts: 

M 0 =Pa®I+I®P0 , 

M;=P;®exp(~~)+exp(- ~~)®P; 
(i= 1, 2, 3) ' ( 3.4c) 

(iii) antipode: 

S(Pµ)=-Pµ. (3.4d) 

4. Casimirs and elements of the representation theory 

One can construct the quantum deformation of the 
quadratic Casimir, describing the quantum relativis­
tic mass square operator. One gets 

Ci =PT +P~+P~ +2K2
( 1-cosh ~) 

=p2 -(2Ksinh~~y (4.1) 

It should be mentioned that recently the D=4 mass 
square Casimir was proposed in refs. [9,15] as the 
extension of the results obtained for D= 3 Poincare 
algebra. We can say therefore that the deformed 
square mass formula from refs. [ 9, 15] found full the­
oretical justification in this paper. 

In order to introduce the K-deformation of second 
Casimir of Poincare algebra described by the Pauli­
Lubanski fourvector square, following ref. [ 10] we 
introduce a nonlinear transformation of the boost 
generators 
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- i 1 
L+ =L+ +-M+P3 - -

2 
P_, 

2K K 

- i 1 
L_ =L_ -

2
KP3 M_ -

2
KP+, 

simplifying the K-Poincare algebra substantially. The 
new boosts satisfy the following relations: 

[Mi, Lj] =iEijkLk, 

[Po, Lk] = -ih, 

[Pb Lj] = -im5kj sinh Po , 
K 

- - . ( P0 1 ) [L;,Lj]=-IE;jk Mk cosh~ -
4

K2 Pk(P·M) . 

( 4.3) 

It is interesting to observe that the algebra ( 4.3) 
differs from the one obtained in ref. [ 10] only by the 
replacement K-4 iK. The same holds for the coproduct 
formulae: 

f).(f;) =L;®exp(~:)+exp( - ~:)®£; 

+ L Eu{Pj®Mkexp(~:)+exp(- ~:)Mj®Pk J. 
( 4.4) 

The coproduct ( 4.4) which satisfies the relation 
( 1.1) permits to define the tensor product represen­
tations in Hilbert space. For completeness we give also 
the antipodes: 

( 4.5) 

The second Casimir can be obtained by introduc­
ing the K-deformed Pauli-Lubanski fourvector: 

W0 =P·M, 

( 4.6) 

Writing the commutators of Wµ with themselves and 
L; one obtains the relations, presented in ref. [ 10], 
modified only by the replacement K-4iK. The for-

mula for the second Casimir takes the form 

C ( h Po P
2

) , , 
2 cos ~ - 4K 2 W5-W-. ( 4.7) 

The formulae ( 4.3) simplify substantially the K­

deformed Poincare algebra and can be used as a start­
ing point for the description of the realizations of the 
K-deformed Poincare algebra. Using the spinless re­
alization of K-Poincare algebra, for which P· M = O 116 

where 

- Po Po(P0 ) =K sinh-; 
K 

( 4.8a) 

( 4.8b) 

( 4.8c) 

we see that we obtain a new type of realization con­
taining the derivatives of arbitrarily high orders. The 
K-deformed boosts L; act explicitly on the scalar field 
¢(x, t) as follows 117 : 

- i a 
L;</J(x, t) = -:-Xo-a ¢(x, t) 

1 X; 

( 4.9) 

In order to obtain the finite-dimensional (nonun­
itary) matrix realizations of the algebra ( 4. 3) one can 
expand the function ¢ ( x, t) in power series. In partic­
ular considering the five-dimensional representa­
tion, described by a linear function ¢ 1 (x) = V + Vµxµ 
one obtains the classical result. The K-dependence 
starts to be seen if we consider the tensors described 
by the third order polynomial </J3(X) = v+ Vµxµ+ 
Vµ,,.XµXv + Vµv,,.XµXvXp. 

It should be added that in the discussion of the K­

deformed Poincare invariance the following nonlin­
ear Fourier transform is useful: 

#6 The realization ( 4.8) was firstly obtained independently by 
P. Zaugg and the Lodz group [ 10]. We were informed [ 16] 
that the realization ( 4.8) was extended by the Lodz group to 
arbitrary spin. 

#1 For the quantum Poincare algebra given in ref. [I ] the shift 
of the time arguments is real. 
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Fg(x, r) = ( 2~) 4 f d 3p f dpo F(p, Po) 

xexp{i[p-x+g(p0 )r]}. ( 4.10) 

Puttingg(p0 ) =Ksinhp0 /Kone obtains from ( 4.8b) 
the classical Minkowski rotations in the (x, r) plane; 
puttingg(p0 ) =2Ksinhp0 /2K one can write the K-de­
formed Klein-Gordon and Dirac equations in a clas­
sical form, as will be seen in the next section. 

5. K-deformed free field theory 

Using the realization ( 4.8a) one gets the following 
K-deformed Klein-Gordon equation for free spinless 
(scalar) filed (A=aia;): 

[ A-2K2
( 1-cos ~) }(x, t) 

=[A-( 2K sin ~~Y}(x, t) 

=m 2 ¢(x, t), ( 5.1) 

which can be obtained from the usual KG equation 
by the replacement of the standard time derivative 
by the q-deformed one (see e.g. refs. [ 17,18] ) with 
the value ln q= i/2K. The lagrangian providing eq. 
( 5.1) has the form 

Y=! f d4x¢(x{A-(2Ksin~~Y-m 2}(x). 
(5.2) 

The action ( 5.2) resembles the ones discussed by Pais 
and Uhlenbeck [ 19] in the early days of renormali­
zation theory.Using the general quantization scheme 
(see e.g. ref. [ 20] ) one gets the following formulae 
for the K-extension of the scalar field Green functions: 

(a) K-deformed Pauli-Jordan commutator function. 

[¢(x), ¢(x')] =iL1Ax-x'; m 2
), (5.3) 
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where (x= (x, t) ), 

A ( • 2) -i f 4 
Llx: x, m = (2n) 3 d P €(Po) 

2 

x5(p 2 +m2
-( 2Ksinh ~~)) 

X exp[ip-x-wx:(p)t] 

-1 I d3p . . 
= (2n) 3 fx:(p) exp(1p·x)7('sm[wx:(p)t], 

(5.4) 

and(w=Jp2 +m 2
) r~..:-~~ 
l 't-~4-

Po= ±2K arcsinh ~ = ±wx: ( 5.4') 

solves the K-mass-shell condition 

p
2 +m 2

=(2K sinh ~~)
2 

( 5.4") 

The commutator function (5.4) satisfies the homo­
geneous K-Klein-Gordon equation 

[A-( 2Ksinh ~~Y-m2}x:(x; m 2
) =0, 

(5.5) 

and ET relations 

L1x:(x,O;m 2 )=0, a1L1(x,t;m 2 )[ 1= 0 

-1 f d3p . 
= (2n) 3 f(p) Wx:exp(1p-x). (5.6) 

(b) K-deformed Feynman propagator. We assume 
that 

LJ<Fl(x m1)= _1_ 
K ' (2n)4 

f d 4 exp(ipx) 
X p p 2 +m 2 - (2K sinh P0 /2K) 2 -i€ · (5.7) 

Because the light-cone invariant is defined by the 
propagation of massless particles, s 2 ~ [LJF (x; O) i - 1, 

one can employ a similar definition of the K-de­
formed light cone. 

It is easy to see that the p0-integration in ( 4. 7) 
is damped exponentially. Let us observe further 
that the static Yukawa potential described by 
f dt L1: ( x, t; m 2 ) is not modified. 
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We would like to add the following: 
(i) Using the know techniques for higher order la­

grangian theories [20,21] one can calculate from the 
lagrangian (5.2) the hamiltonian, energy-momen­
tum tensors, Poincare generators etc., 

(ii) The K-deformed Dirac equation can be de­
fined by a square root of K-deformed KG operator 

[yiai+2KY4 sin(;~)-m }v=O, (5.8) 

where ( yi, y4
) are usual D = 4 Minkowski y µ-matrices 

satisfying{yµ,yv}=21/µv(1/µv=diag(l, 1, 1, -1)). 
We see from ( 5.8) that the K-deformation of the 

Dirac operator is given by the replacement of the time 
derivative by a q-deformed time derivative, with K­

dependent deformation parameter ln q= i/2K. 
(iii) An interesting question is to reconcile the 

nontrivial coproducts with the form of the vertex op­
erators describing interaction. We expect that the ap­
pearance of the K-parameter will smooth the diver­
gences in local QFT. In particular it will be interesting 
to K-regularize the nonrenormalizable QFT, e.g. 
quantum gravity. 

6. Discussion 

The aim of this paper is to present a new quantum 
Poincare algebra, with standard reality condition 
having properties given by ( 1.1 ) . In such a way the 
problems, related with the choice of EE> involution in 
refs. [ 1-4] are avoided. In particular the composi­
tion law of two three-momenta leads to the following 
real value of the total fourmomentum (see also (3.4)) 

pp+2> =pP>exp(Pb2>)+pP>exp(- Pb1>) 
1 1 2K 1 2K 

-pP>+pP>+ __!__ (PP>p<2>_pP>pO>) 
- I I 2K I 0 I 0 

+0(~2)' ( 6.1) 

with the classical addition formula valid for Pbil « 
K. The existence of coproduct implies the existence 
of the tensor product of representations, i.e. one can 
pass from irreducible representations in Hilbert space 
(quantum mechanics) to the reducible representa-

tions in Fock space (free quantum fields). 
In particular in order to define the multiparticle 

states correctly, one has to do it consistently with 
nontrivial coproduct rules. This program, as well as 
studying the vertex functions and the S-matrix in K­

deformed QFT is under consideration. 
Physically the K-deformation means introducing the 

discrete "q-lattice" time, with preserving almost all 
classical properties of three-dimensional euclidean 
space. In such a way the K-deformation introduces a 
separation between the space and time degrees of 
freedom, with linear algebra replaced by a nonlinear 
(non polynomial) one. In the formalism there is a new 
dimension-full deformation parameter K(ln q ~ 1 I K) 
which permits to exponentiate the time derivatives 
carrying the dimension. In particular looking at the 
Dirac equation ( 5.8) we see that it can be written as 
follows: 

where (i= 1, 2, 3 ), 

H!]IR=y4(yiai-m), 

( 6.2) 

- 1 
D;J(t) = 

2
M [f( t+ Lit) - f( t- M)] I <lr=i/210 ( 6.3) 

which differs slightly from ref. [ 17]. We see there­
fore that contrary to most regularizations in QFT it 
is the time variable for which the continuous limits 
are replaced by finite time difference expressions in 
K-deformed theory. 

We would also like to add that 
(i) one can develop the calculus of differential 

forms, and introduce the K-deformation of Cartan­
Maurer equations corresponding to our "nonlineari­
zation procedure" of Po in care algebra for finite K. 

(ii) For both real Poincare algebras- from ref. [ 1] 
as well as from the present paper - the contraction of 
the universal R-matrix for U q( 0 ( 3, 2)) (see e.g. ref. 
[ 22] ) leads to divergencies. It appears however that 
there exists a whole class of contractions ofUq(0(3, 
2)) for which the universal R-matrix can be found 
[ 23,24]. These contraction limits describe twisted 
classical Lie algebras. 

(iii) In this paper we propose a contraction scheme 
leading to the K-deformation of the time variable with 
finite difference derivatives in time. It appears that if 
we use the contractions of U q( 0 ( 3, 2)) leaving the 
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0 ( 2, 1 ) subalgebra invariant [ 2,24], the contraction 
limit describes the geometry with K-deformation of 
one of the space directions. It would be interesting to 
describe the contractions of the new quantum alge­
bras (generalized Sklyanin algebras describing the 
multiparameter deformation of 0 ( 3, 2)) permitting 
to obtain independent quantum deformations in 
space and time directions. 
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