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In arXiv:1909 .01269 it was shown that the scaling dimension of the lightest charge n operator in the 
U (1) model at the Wilson-Fisher fixed point in D = 4 − ε can be computed semiclassically for arbitrary 
values of λn, where λ is the perturbatively small fixed point coupling. Here we generalize this result to 
the fixed point of the U (1) model in 3 − ε dimensions. The result interpolates continuously between 
diagrammatic calculations and the universal conformal superfluid regime for CFTs at large charge. In 
particular it reproduces the expectedly universal O(n0) contribution to the scaling dimension of large 
charge operators in 3D CFTs.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is known that, even in a weakly coupled Quantum Field 
Theory (QFT), there exist situations where the ordinary Feynman 
diagram expansion fails. An example is given by amplitudes with 
a sufficiently large number of legs. This instance received some 
attention in the 90’s, in the study of the production of a large 
number of massive bosons in high-energy scattering [1–4].1 Mul-
tilegged amplitudes also occur in the correlators of operators car-
rying a large conserved internal charge, whose properties indeed 
defy perturbation theory for large enough charge.

Recently, it has been shown that, in conformal field theory 
(CFT), large charge operators can generally be associated, via the 
state-operator correspondence, to a superfluid phase of the theory 
on the cylinder [7–10]. The corresponding CFT data are then uni-
versally described, regardless of the details of the underlying CFT, 
by an effective field theory (EFT) for the hydrodynamic Goldstone 
modes [11,12] of the superfluid. The systematic derivative and field 
expansion of the resulting EFT coincide with an expansion in in-
verse powers of the charge.

While the effective superfluid description should equally well 
apply to strongly and weakly coupled theories, in the latter case it 
is also possible to work directly in the full theory, bypassing the 
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alexander.monin@unige.ch (A. Monin), riccardo.rattazzi@epfl.ch (R. Rattazzi).
1 The claims made in a recent revival [5] seem controversial. See indeed [6] for a 

critical perspective.

EFT construction, or, in fact, deriving it. This was recently illus-
trated in [13], by focusing on the two-point function of the charge 
n operator φn in the U (1) invariant Wilson-Fisher fixed point in 
4 − ε dimensions. For arbitrary n, the scaling dimension �φn was 
computed semiclassically by expanding the path integral around a 
non-trivial trajectory. The result can be structured as a loop expan-
sion in the coupling λ ∝ ε while treating λn as a fixed parameter, 
playing a role similar to that of the ’t Hooft coupling in large N
gauge theories.2 The result encompasses the small charge regime 
(λn � 1), where ordinary diagrammatic perturbation theory also 
applies, and the large charge regime (λn � 1), described by a 
superfluid phase. Similar ideas were also shown to apply in the 
context of N = 2 superconformal theories [15], with the double 
expansion remarkably associated to a dual matrix model descrip-
tion.

In this paper we apply this methodology to compute the scal-
ing dimension of φn in (φ̄φ)3 at its conformally invariant point in 
3 − ε dimensions. The result follows the same pattern observed in 
(φ̄φ)2 in 4 − ε dimensions. Besides confirming the generality of 
the method [13], the main interest of (φ̄φ)3 in D = 3 − ε lies in 
the possibility of non-trivially comparing to the universal predic-
tions of the large charge EFT of 3D CFT [7]. Indeed the β function 
of (φ̄φ)3 arises only at 2-loops. At the 1-loop level the theory is 
therefore conformally invariant at D = 3 for any value of λ. At this 
order, as λn is varied from small to large, our formulae non trivially 

2 A similar double expansion exists at large N [14].
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interpolate between the prediction of standard Feynman diagram 
computations and those of the universal superfluid description of 
large charge states in 3D CFT. In particular for t ≡ λn/

√
3π � 1

our result for the scaling dimension takes the form:

�φn = t3/2 [
c3/2 + c1/2t−1 + . . .

] + t0 [
d0 + d−1t−1 + . . .

]
, (1)

with c’s and d’s having specific calculable values. This result nicely 
matches the universal predictions of the large charge EFT. Within 
the general EFT construction the ck ’s are model dependent Wilson 
coefficients, but the d’s are universally calculable effects associated 
to the 1-loop Casimir energy. Our result for the d’s should thus 
match the general theory, and they do. In particular we find

d0 = −0.0937255(3) (2)

in agreement with [8]. The prediction of d−1 is similarly matched, 
but the statement is less direct as it involves a correlation with 
the subleading corrections to the dispersion relations of the Gold-
stone; we discuss the precise expression in section 5. Previously, 
eqs. (1) and (2) were verified at large N for monopole operators 
[16]; the results of Monte-Carlo simulations for the O (2) model at 
criticality are consistent with the expansion (1) [17], though their 
present precision is not sufficient to check the universal predic-
tion for d0. Our paper provides an alternative verification where 
the large charge regime is continuously connected, as λn is varied, 
to diagrammatic perturbation theory.

2. Lagrangian and conventions

We consider the following U (1) symmetric theory in D = 3 − ε

dimensional euclidean space-time

L = ∂φ̄∂φ + λ2
0

36

(
φ̄φ

)3
. (3)

Within this convention for the Lagrangian, one can easily realize 
that λ0 is the loop counting parameter by rescaling φ → φ/

√
λ0. 

The renormalized coupling and field are defined as

φ = Zφ[φ], λ0 = MελZλ , (4)

where M denotes the sliding scale. The β-function is given by [18]

∂λ

∂ log M
≡ β(λ) = λ

[
−ε + 7λ2

48π2
+O

(
λ4

(4π)4

)]
. (5)

For ε � 1, this implies the existence of an IR-stable fixed point at

λ2∗
(4π)2

= 3

7
ε +O

(
ε2

)
. (6)

Notice that the β-function (5) starts at two-loop order at ε = 0. 
Hence the model is conformally invariant up to O(λ) in exactly 
D = 3. This observation will be important for what follows. The 
field wave-function renormalization starts at four loops and we 
shall always neglect it in the following.

3. Anomalous dimension of large charge operators

In this paper we focus on the calculation of the scaling dimen-
sion of the U (1) charge n operator φn , focusing on the regime 
n � 1. In complete analogy with the (φφ̄)2 case discussed in [13], 
the diagrammatic calculation for the anomalous dimension takes 
the form

γφn = n
∑

=1

λ
 P
(n), (7)

Fig. 1. Two-loop diagram contributing to the φn anomalous dimension. The crossed 
circle denotes the φn insertion.

where P
 is a polynomial of degree 
 for 
 ≤ n, and of degree 
n for 
 > n. Thus, the loop order 
 contribution grows as λ
n
+1

for 
 ≤ n, implying that the diagrammatic expansion breaks down 
for sufficiently large λn. Re-organizing the series in (7), the scaling 
dimension can also be expanded as

�φn = n

(
D

2
− 1

)
+ γφn =

∑
κ=−1

λκ�κ(λn). (8)

The main result of [13] is that it is possible to compute the func-
tions �κ(λn) for arbitrary λn via a perturbative semiclassical cal-
culation around a non-trivial saddle; the result can be organized 
as an expansion in λ � 4π while treating λn as a fixed parame-
ter, closely analogous to the ’t Hooft coupling of large N theories. 
The goal of this paper is to compute the leading term and the first 
subleading correction in (8).

The scaling dimension (8) is a physical (scheme-independent) 
quantity only at the fixed-point (6). However, in light of the obser-
vation at the end of the previous section, working at order O(λ)

we can take ε → 0 without affecting the conformal invariance of 
the theory.3 The leading order term �−1(λn) and the one-loop cor-
rection �0(λn) are hence scheme-independent for generic λ.

Working at fixed n, at leading order in λ, the anomalous di-
mension of φn(x) is determined by the diagram in Fig. 1 and it is 
given by

γφn = λ2n(n − 1)(n − 2)

36(4π)2
+O

(
λ4n5

(4π)4

)
. (9)

Comparing with (8), one can readily extract the lowest order terms 
in the expansion of �−1 and �0 at small λn. We will use this ex-
pression as a check of the more general result that we will derive 
in the next section.

4. Semiclassical computation

To compute the scaling dimension �φn for arbitrary λn we pro-
ceed as in [13]. Here we review the logic and outline the main 
steps.

We first use a Weyl transformation to map the theory to 
the cylinder R × S D−1. Parametrizing RD by polar coordinates 
(r, �D−1), where �D−1 collectively denotes the coordinates on 
S D−1, and R × S D−1 by (τ , �D−1), the mapping is simply given 
by r = Reτ/R with R the sphere radius [19,20]. The Lagrangian of 
the theory on the cylinder reads:

Lcyl = ∂φ̄∂φ + m2φ̄φ + λ2

36

(
φ̄φ

)3
, (10)

where m2 =
(

D−2
2R

)2 D=3= 1
4R2 arises from the R(g)φ̄φ coupling to 

the Ricci scalar which is enforced by conformal invariance. Work-
ing at O(λ), we neglect the difference between bare and renormal-
ized coupling, as that arises at O(λ2).

For small λn, when diagrammatic perturbation theory holds, φn

is the operator of lowest dimension with U (1) charge n. Then for 

3 Dimensional regularization is still used in the intermediate steps.
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generic λn, we define the operator φn to be the lowest dimen-
sion charge n operator. While this seems natural to us, the precise 
relation between such lowest dimension operator and its explicit 
functional expression in terms of field variables (φn , φn−2∂2(φ)2, 
etc.) in the path integral, is not obvious in the regime λn � 4π . 
It should however become clear from our discussion that the pre-
cise form of the lowest dimension operator is a separate issue. It 
does not affect our computation of its scaling dimension but it 
matters for the computation of the normalization of the correlator, 
and thus for the computation of higher point functions. We plan 
to explore this in future work.4

According to the above natural definition, �φn is directly deter-
mined by studying the expectation value of the evolution operator 
e−H T in an arbitrary state |ψn〉 with fixed charge n.5 As long as 
there is an overlap between the state |ψn〉 and the lowest energy 
state (with charge n), in the limit T → ∞ the expectation gets sat-
urated by the latter

〈ψn|e−H T |ψn〉 =
T →∞ Ñ e−Eφn T , Eφn = �φn/R . (11)

To pick a specific state, we work in polar coordinates for the field:

φ = ρ√
2

eiχ , φ̄ = ρ√
2

e−iχ . (12)

Following [8], we then consider the following path integral:

〈ψn|e−H T |ψn〉 = Z−1
∫

DχiDχ f ψn(χi)ψ
∗
n (χ f )

×
ρ= f , χ=χ f∫

ρ= f , χ=χi

DρDχe−S ,

(13)

where the insertions of the wave-functional

ψn(χ) = exp

(
i n

R D−1�D−1

∫
d�D−1χ

)
(14)

ensure that the initial and final states have charge n, while the 
boundary value f for ρ is arbitrary and will be fixed later by 
convenience. The factor Z ensures that the vacuum to vacuum am-
plitude is normalized to unity:

Z =
∫

DρDχe−S . (15)

The structure of the expansion (8) follows from performing the 
path-integral in a saddle-point approximation. This is easily seen 
rewriting eq. (13) as

〈ψn|e−H T |ψn〉 = Z−1

ρ= f∫
ρ= f

DρDχe−Sef f , (16)

where the action on the right hand side is given by

Sef f =
T /2∫

−T /2

dτ

∫
d�D−1

[
1

2
(∂ρ)2 + 1

2
ρ2(∂χ)2

+m2

2
ρ2 + λ2

2(12)2
ρ6 + i

n

R D−1�D−1
χ̇

]
. (17)

4 In [13] the analyticity of �φn in λn as it directly emerges from the computation 
was taken as indication that there is no level crossing as λn is varied. However, 
unlike argued in [13], we now realize that does not imply that the field expression 
for the lowest dimension charge n operator remains φn for all values of λn.

5 Alternatively, one could include explicitly the operator insertions in the action 
as sources; this was done in [21] in the limit λ2n2 � (4π)2.

Rescaling then the field as ρ → ρ/λ1/2 and collecting up front the 
overall λ−1, one immediately recognizes eq. (8) as the result of 
performing the path-integral (16) as a systematic loop expansion 
around a saddle-point (see [13] for details).

Properly tuning the initial and final value ρi = ρ f = f in eq. 
(16), the stationary configuration for the action (17) is given by a 
superfluid configuration:

ρ = f , χ = −iμτ + const. , (18)

where μ is interpreted as the chemical potential of the system and 
μ and f satisfy

μ2 − m2 = λ2

48
f 4, μ f 2 R D−1�D−1 = n . (19)

Given the constraint f 2 ≥ 0, the eqs. (19) admit a unique solution. 
In particular, in D = 3 and for n > 0, μ reads:

Rμ =

√
1 +

√
1 + λ2n2

12π2

2
√

2
. (20)

For λn < 0 the chemical potential is given by minus the expression 
in (20) and is hence discontinuous at λn = 0.6 In the following we 
always assume λn > 0.

Plugging the solution into the classical action we extract the 
leading order contribution to the scaling dimension:

Sef f /T = n

3

(
2μ + m2

μ

)
D=3= 1

R

�−1(λn)

λ
. (21)

Explicitly, the result reads

�−1(λn) = λn F−1

(
λ2n2

12π2

)
, (22)

where

F−1(x) = 1 + √
1 + x + x/3√

2 (1 + √
1 + x)3/2

. (23)

To compute the one-loop correction we expand the fields 
around the saddle point configuration:

ρ(x) = f + r(x) , χ(x) = −iμτ + 1

f
√

2
π(x) . (24)

The action (17) at quadratic order in the fluctuations reads

S(2) =
T /2∫

−T /2

dτ

∫
d�D−1

[
1

2
(∂r)2 + 1

2
(∂π)2

− 2iμ r∂τπ + 2(μ2 − m2)r2
]

. (25)

This action describes two modes, with dispersion relations given 
by

ω2±(
) = J 2

 + 2(2μ2 − m2) ± 2

√
J 2

μ

2 + (2μ2 − m2)2 , (26)

where J 2

 = 
(
 + D − 2)/R2 is the eigenvalue of the Laplacian on 

the sphere. The first mode has a gap ω+(0) = 2
√

2μ2 − m2 ∝ √
λn

6 This discontinuity is required as the scaling dimension of φn and the conjugated 
operator, φ̄n , must be the same.
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for λn � 1. The dispersion relation ω−(
) describes instead a gap-
less mode, the Goldstone boson for the spontaneously broken U (1)

symmetry. These modes, except for the zero mode of the Goldstone 
which relates different charge sectors, provide a basis for the Fock 
space describing charge n operators with higher scaling dimension. 
In particular, the descendants, obtained by acting q times with the 
Pi generators of the conformal algebra, correspond to states involv-
ing a number q of massless spin one quanta, each increasing the 
energy by ω−(1) = 1/R . Other modes describe different primaries; 
non-trivially, the expressions (26) include the leading λn correc-
tions to the free theory values, effectively resumming the effect of 
infinitely many loop diagrams in standard diagrammatic calcula-
tions.

In the large λn regime we can integrate out the gapped mode 
and describe the lightest states at charge n through the superfluid 
effective theory for the gapless mode [8]. In this limit the disper-
sion relation of the Goldstone boson can be expanded in inverse 
powers of λn and reads

Rω−(
) =
[

1√
2

−
√

3π√
2λn

+O
(

1

(λn)2

)]
J


+
[√

3π

2
√

2
+O

(
1

λn

)]
J 3



λn
+O

(
J 5



(λn)2

)
. (27)

From this expression we see that the Goldstone sound speed ap-
proaches the value cs = 1/

√
2 as λn → ∞, as dictated by confor-

mal invariance in the superfluid phase.
The one-loop correction �0 is determined by the fluctuation 

determinant around the leading trajectory (18). Explicitly, we find7

�0(λn) = 1

2

∞∑

=0

n
 [ω+(
) + ω−(
) − 2ω0(
)] , (28)

where ω2
0(
) = J 2


 +m2 =
(

 + D−2

2

)2
/R2 is the free theory disper-

sion relation and n
 = (2
+D−2)�(
+D−2)
�(
+1)�(D−1)

is the multiplicity of the 
Laplacian on the (D − 1)-dimensional sphere. The analytic contin-
uation to negative D of the sum (28) is convergent; the final result 
is finite in the limit D → 3, consistently with the coupling not 
being renormalized at one-loop. Eventually, �0 can be written in 
terms of an infinite convergent sum as in [13]

�0(λn) = 1

4
− 3(Rμ)2 +

√
8R2μ2 − 1

2
+ 1

2

∞∑

=1

σ(
) , (29)

where σ(
) is obtained from the summand in (28) by subtracting 
the divergent piece:

σ(
) = (1 + 2
)R [ω+(
) + ω−(
)]

− 4
 (
 + 1) −
(

6R2μ2 − 1

2

)
. (30)

In (29) all quantities are evaluated in D = 3, hence μ is given by 
eq. (20) and m = 1

2R .

5. Analysis of the result

Eqs. (22) and (29) provide the first two terms of the expan-
sion (8) for the scaling dimension of the operator φn , �φn . The 

7 In (28) we neglect the integration over the zero mode associated to the U (1)

symmetry, whose result is independent of T and hence does not contribute to Eφn

in eq. (11).

result holds for arbitrary values of λn. Here we explicitly show 
that �φn matches the diagrammatic result (9) and the large charge 
prediction (1) in the two extreme regimes of, respectively, small 
and large λn.

Let us consider first the small λn regime. From eq. (20) it fol-
lows that the chemical potential, and consequently all the func-
tions �κ , can be expanded in powers of λ2n2. Explicitly neglecting 
terms of order O

(
λ6n7

(4π)6

)
, we get:

�φn = n

2
+ λ2

(4π)2

[
n3 − 3n2

36
+O (n)

]

− λ4

(4π)4

[
n5

144
− n4(64 − 9π2)

1152
+O

(
n3

)]
+ . . . . (31)

In this regime we can compare eq. (31) with the diagrammatic 
result (9), finding perfect agreement.

Let us now discuss the large λn regime. The classical result (22)
is easily seen to admit an expansion in inverse powers of λn with 
the expected form. The one-loop contribution (29) can be eval-
uated numerically for large μ ∼ (λn)1/2 and then fitted8 to the 
functional form (1). When doing this we also verified that the co-
efficients of terms which might modify the form of the expansion, 
such as a term linear in λn, are compatible with zero within the 
numerical uncertainty. The final result reads

�φn = t3/2
[

c3/2 + c1/2t−1 + c−1/2t−2 + . . .
]

+ [
d0 + d−1t−1 + . . .

]
, (32)

where we defined t = λn√
3π

and the coefficients read

c3/2 =
√

3π

6λ
− 0.0653 +O

(
λ√
3π

)
,

c1/2 =
√

3π

2λ
+ 0.2088 +O

(
λ√
3π

)
,

c−1/2 = −
√

3π

4λ
− 0.2627 +O

(
λ√
3π

)
, (33)

d0 = −0.0937255(3) ,

d−1 = 0.096(1) +O
(

λ√
3π

)
.

The parentheses show the numerical error on the last digit, when 
the latter is not negligible at the reported precision.

To interpret this result notice that, as already mentioned above 
eq. (27), in the large λn regime we can integrate out the gapped 
mode. We are then left with an effective theory for the Goldstone 
boson on the cylinder. The form of the latter is determined by U (1)

and Weyl invariance and, in D = 3, reads:

L/
√

g = −1

λ

{
α1|∂χ |3 + α2Rμν

∂μχ∂νχ

|∂χ |

− α3|∂χ |
[
R+ 2

(
∂μ|∂χ |)2

|∂χ |2
]

+ . . .

}
. (34)

The field is expanded around the classical value χ = −iμτ and 
the factor 1/λ in front ensures that the Wilson coefficients αi

scale as λ0. In the EFT the derivative expansion coincides with an 

8 We computed �0 numerically for Rμ = 10, 11, . . .210 to perform the fit; the 
final results are obtained using six fitting parameters in the expansion (1).
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expansion in inverse powers of λn; the loop counting parameter 
is λ/(λn)3/2 instead. It follows that the scaling dimension of the 
lightest charged operator takes the form (32), where the first line 
corresponds to short distance (classical plus quantum) contribution 
from both the radial and Goldstone mode, while the second line 
corresponds the one-loop Casimir energy of the Goldstone mode. 
This second contribution is thus a genuinely long distance one. 
Matching the explicit calculation in the full theory with the result 
of the effective theory we can determine the Wilson coefficients 
α1 and α3 to next to leading order in λ through the relations:

λc3/2 = π

33/4√α1
, λc1/2 = 4πα3

31/4√α1
. (35)

From these we extract α1 = 4/
√

3 + 0.3326 λ + O(λ2) and α3 =√
3/4 + 0.0644 λ + O(λ2). Notice that the coefficient α2 does not 

contribute to the scaling dimension at order (λn)1/2 since R00 = 0.
To discuss the value of the coefficients d’s in eq. (33), notice 

first that from the Lagrangian (34) one derives the dispersion rela-
tion of the Goldstone boson as:

Rω−(
) =
[

1√
2

− 4π(α3 + 2α2)√
2λn

+O
(

1

(λn)2

)]
J


+
[√

2πα3 +O
(

1

λn

)]
J 3



λn
+ . . . . (36)

Comparing this equation to eqs. (27), (33) and (35), at leading or-
der we find α2 = 0, and we can also check the consistency of the 
result for α3: α3 = √

3/4.9 Moreover with (36) we can compute 
the one-loop Casimir energy of the Goldstone mode and determine 
the second line of (32) in terms of the EFT Wilson coefficients:

d0 = −0.0937255 , (37)

d−1 = α2 × 0.4329 + α3 × 0.2236 . (38)

As remarked in [7], d0 is a theory independent number. The result 
of the explicit computation in the full model (33) agrees with its 
value (37) almost to seven digits accuracy. Using the previously 
extracted values for the αi , the EFT prediction in eq. (38) gives 
d−1 = 0.0968, again in agreement with the explicit result in eq. 
(33) within its numerical accuracy.

6. Conclusions

In conclusion, in the tricritical U (1) CFT in 3 −ε dimensions we 
computed the scaling dimension of the operator φn at the next-
to-leading order in the coupling λ, but for arbitrary values of λn. 
Our results nicely interpolate between the small λn regime, when 
it is given by (31), in agreement with diagrammatic calculations, 
and the large λn regime, where it reads as in (32) and it agrees 
with the expectation for the universal conformal superfluid phase 
of CFTs at large charge. The remarkable agreement between the 
form of the quantum corrections in eqs. (37) and (38) and the ex-
plicit result (32) provides a nontrivial check of the validity of our 
methodology.

By further developing these ideas, in the future it would be 
interesting to study the transition from diagrammatic perturba-
tion theory to semiclassics in other observables studied by the 
large charge expansion in CFT. Possible examples include three-
point functions of charged operators [8] or the scaling dimension 
of charged operators with large spin [22,23]. Perhaps, these ideas 

9 That α2 = 0 at the tree level in the effective lagrangian simply follows from the 
fact that, in the microscopic lagrangian, χ only appears through (∂χ)2.

might be applied as well in the study of inhomogeneous phases, 
which are conjectured to describe operators in mixed symmetric 
representations of the O (n) models [24,25].
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