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Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in
neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell
types throughout the body, including tissues involved in metabolism. In the present study, we screen gene ex-
pression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant
expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glu-
cose and energy homeostasis inα7β2nAChR−/−mice revealed nomajor defect in insulin secretion and sensitiv-
ity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR−/− mice
presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight.
These observationswere associatedwith elevated spontaneous physical activity inα7β2nAChR−/−mice,mainly
due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained
unchanged. In contrast to α7nAChR−/− mice presenting glucose intolerance and insulin resistance associated
to excessive inflammation of adipose tissue, thepresentmetabolic phenotyping ofα7β2nAChR−/−mice revealed
a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central
β2nAChR deficiency.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The nicotinic acetylcholine receptors (nAChRs) consist of a wide
family of ligand-gated cation channels opened by the binding of the
endogenous neurotransmitter acetylcholine (ACh) or other biologic
compounds including nicotine. nAChRs are formed by the symmetrical
arrangement of five subunits around a central pore [1,2], resulting in
many combinations since in mammals 16 nAChR subunits composing
heteropentameric or homopentameric nAChRs have been discovered.
The subunit composition of these receptors determines their expression
pattern, function, and pharmacologic properties such as agonist
sensitivity, desentizing period or ionic selectivity [3–5]. α7 subunits
form homopentameric nAChRs with low agonist affinity, fast desen-
sitization and high permeability to Ca2+ [3,4]. In contrast, β2 con-
taining heteropentameric nAChRs present high agonist affinity and
slow desensitization [3,4].

The widespread central and peripheral expressions of nAChRs make
it difficult to study them in the context of regulation of energy homeo-
stasis. Different central nicotinic cholinergic circuits involving at least
α3, α4, α7, β2 and β4 nAChRs subunits regulate feeding through
modulation of various hypothalamic orexigenic and anorexigenic
neuropeptides [6]. Central nicotinic cholinergic signaling also regu-
lates energy homeostasis through modulation of energy expenditure
and control of spontaneous physical activity [6,7]. In this context, the
β2nAChR−/− mice present an elevation in locomotor behavior but a
dampened exploration behavior linked to alterations in the dopami-
nergic system [8–11]. In addition to these central roles in thebrain,more
subtle nAChR expression is detected in nonneuronal cell types through-
out the body [12–14], suggesting a paracrine role for ACh. Functional
binding of labeled nicotine, as well as detection of nAChRs in pancre-
atic islets and adipocyte [15–20] suggests that nicotinic cholinergic
signaling in metabolic tissues can peripherally regulate energy
homeostasis.

Nicotinic cholinergic stimulation improves the metabolic status of
several genetic/environmental obese and diabetic rodent models [21].
In contrast,α7nAChR−/−mice present excessive adipose inflammation,
impaired glucose tolerance and insulin resistance [22,23].
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In light of these recent reports, our present study aims 1) to screen
gene expression of nAChR subunits in pancreatic islets and adipose
tissues in wild-type mice and 2) to evaluate the metabolic impact of a
double α7 and β2 nAChR deficiency in mice, focusing our attention on
the regulation of glucose and energy homeostasis.

2. Materials and methods

2.1. Animal protocols

All animal procedures were approved by the “State of Geneva Veter-
inary Office” (Geneva, Switzerland). 6 month-old male α7β2nAChR−/−

and wild-type C57Bl/6J mice (Charles River Laboratories, France)
were housed in an environmentally-controlled room at the School
of Medicine animal facility (Medical Center University, University of
Geneva), in standard conditions (12 h light, 12 h dark cycle, temper-
ature = 22 °C, hygrometry = 55 ± 10%), with free access to food
(RM3 from Special Diet Services,Witham, Essex, UK) andwater. Gen-
eration of doubleα7β2nAChR−/−mice resulted from breeding of single
β2nAChR−/− and α7nAChR−/− mice for which genetic engineering
was previously described [24,25].

Ad libitum food intake was measured by weighing the solid pellets
placed in the grids on top of each cage during 5 consecutive days. For
the fasting/refeeding experiment (involving glycemia, insulinemia,
body weight and food intake monitoring), food pellets were removed
for 6 h or 18 h prior to refeeding. The same cohort of α7β2nAChR−/−

and wild-type C57Bl/6J mice underwent body composition analysis,
the indirect calorimetry experiment, the fasting/refeeding experiment
and the glucose homeostasis experiments with at least 1 week of recov-
ery between each experiment. At sacrifice, epididymal white adipose
tissues (eWAT) were weighed before being either fixed in paraformal-
dehyde (4%) or flash-frozen in liquid nitrogen before storage at
−80 °C for later analyses.

2.2. Glucose homeostasis

Different physiological assays were performed to assess glucose
homeostasis in α7β2nAChR−/− mice. For the 2-deoxyglucose (2-DG)
tolerance test, after a 6 h fast, 2-DG (1 mg/g b.w.) in normal saline
(0.9%NaCl)was administered intraperitoneally. Blood glucose and insu-
lin levels were determined using tail blood at 0 and 10 min after 2-DG
injection. For the glucose tolerance test (GTT), after a 6 h fast, glucose
(2 mg/g b.w.) in normal saline (0.9% NaCl) was administered intraperi-
toneally. Blood glucose levels were determined using tail blood at 0, 15,
30, 60, 90 and 120 min after glucose injection and insulin levels were
determined at 0, 15 and 120 min after glucose injection. For the pyru-
vate tolerance test (PTT), after a 6 h fast, pyruvate (2 mg/g b.w.) in
normal saline (0.9% NaCl) was administered intraperitoneally. Blood
glucose levels were determined using tail blood at 0, 15, 30, 60, 90
and 120 min after pyruvate injection. For the glucagon tolerance test,
after a 6 h fast, glucagon (25 μg/kg b.w.) in normal saline (0.9% NaCl)
was administered intraperitoneally. Blood glucose levels were deter-
mined using tail blood at 0, 15, 30, 60 min after glucagon injection. For
the insulin tolerance test (ITT), after a 3 h fast, insulin (0.5 mU/g body
weight; Actrapid, NovoNordisk, Bagsvaerd, Denmark) in normal saline
(0.9% NaCl) was administered intraperitoneally. Blood glucose levels
were determined using tail blood at 0, 15, 30, 60, and 90min after insu-
lin injection. Chemicals and reagents were provided by Sigma-Aldrich
(St. Louis, MO, USA).

2.3. Body composition

Body composition, to dissociate lean, fat and bone compartments,
was determined by DEXA (dual X-ray absorptiometry). The mice were
anesthetized with intraperitoneal injections of ketamin (100 mg/kg)
and xylazinhydrochlorid (rompum, 10 mg/kg) and scanned using a

Lunar PIXImus densitometer (Lunar,Madison,WI). Calibration of the in-
strument was conducted before each run with an aluminum/lucite
phantom provided by the manufacturer. Whole-body scans were
analyzed using the software provided by the manufacturer. All data
used for the analysis of body composition exclude the head and repre-
sent the subcranial body composition.

2.4. Indirect calorimetry and physical activity

Indirect calorimetry and spontaneous physical activity were moni-
tored on α7β2nAChR−/− and wild-type C57BL/6J mice using the
LabMaster system (TSE Systems GmbH, Berlin, Germany) in the Small
Animal Phenotyping Facility (CMU, University of Geneva, Geneva),
under standard laboratory conditions (22 ± 1 °C ambient temperature,
light–dark cycle of 12/12 h, ad libitum food andwater). Animals of both
genotypes were housed in individual chambers for 5 days for acclimati-
zation before starting the measurements with free access to food and
water. Measurements were performed every 40 min during 48 h. For
each time point, the measurements were averaged for each group. The
calorimetry system is an open-circuit determining O2 consumption
(ml/kg/h), CO2 production (ml/kg/h) and respiratory exchange rate
(RER = VCO2 / VO2, where V is volume). Detection of animal location
and movements was monitored by infrared sensor pairs arranged in
strips, discriminating between horizontal (ambulatory) movements
and vertical (fine exploration/rearing) movements, each of them occur-
ring either in the central or the peripheral zone of the cage. Counts of ac-
tivity were then added for each animal and averaged for each genotype.

2.5. Islet isolation

Human pancreatic islets were kindly provided by the University
Hospital of Geneva (HUG), through the JDRF award 31-2008-413
(ECIT Islet for Basic Research Program). For mice islets, pancreata of
male wild-type C57BL/6J mice (Charles River Laboratories, France)
were immediately excised and cut into small pieces in Hanks solution
before transfer into 5 ml of Hanks-collagenase type V solution (Sigma
Aldrich, Buchs, Switzerland) incubated in a 37 °C water bath for
7 min. Digestion was stopped by addition of Hanks/BSA on ice and the
pancreatic tissue was centrifuged several times before undigested
fragments were carefully removed. After washing with Hank's solution,
the tissue was concentrated into a pellet which was suspended on a
Histopaque® 1077 gradient (Sigma Aldrich, Buchs, Switzerland). After
centrifugation at 2500 rpm for 20 min, islets were harvested from the
interface between the layers, washed and finally concentrated into
pellets and immediately used for RNA extraction or cell culture.

2.6. Cell culture for insulin secretion

After isolation, islets were maintained in Krebs–Ringer bicarbonate
HEPES buffer containing 0.1% BSA and 2.8 mmol/l glucose. Batches of
10 islets from α7β2nAChR−/− and wild-type C57BL/6J mice were
handpicked and incubated in the presence of 22.8 mmol/l glucose for
1 h. Then, the supernatant was collected for insulin measurements
using a mouse insulin Elisa kit (Mercodia, Uppsala, Sweden).

2.7. Blood measurements

For basal and challenged circulating glucose levels (during fasting/
refeeding, 2-DG, GTT, ITT, PTT, Glucagon tolerance test), blood samples
were collected by tail puncture for immediate glycemia measurement
using a glucometer (Glucotrend Premium, Roche Diagnostics, Rotkreuz,
Switzerland). For insulin and thyroid hormones measurements, blood
was collected from a tail puncture, in heparinized tubes, placed on ice,
centrifuged (3000 g, 10min) and plasmawas directly frozen before dos-
age using a mouse insulin Elisa kit (Mercodia, Uppsala, Sweden), a
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mouse/rat T3 total Elisa kit (T3043T-100) and amouse/rat T4 total Elisa
kit (T4044T-100) (Calbiotech, Spring valley, CA, USA).

2.8. RNA preparation and gene expression analysis

Total RNA from pancreatic islets andwhite/brown adipose tissues
were extracted using the RNeasy Mini Kit® according to the
manufacturer's protocol (Qiagen, Basel, Switzerland). One to fivemi-
crograms total RNAwere reverse-transcribed using 400 units ofMoloney
Murine Leukemia Virus (MMLV) Reverse Transcriptase (Invitrogen,
Basel, Switzerland), in the presence of 1 unit/μl RNAsin (Promega Corp,
Madison, WI, USA), 0.2 μg random primers (oligo(dN)6) (Promega
Corp, Madison, WI, USA), 2 mM dNTP and 20 μM DTT (Invitrogen,
Basel, Switzerland). The expression of the cDNAs was determined by
quantitative real-time PCR using anABI StepOne Plus SequenceDetection
System (Applera Europe, Rotkreuz, Switzerland) and were normalized
using the housekeeping genes Ribosomal Protein S29. PCR products
were quantified using the Master SYBR Green mix (Applera Europe,
Rotkreuz, Switzerland) and results are expressed in arbitrary units
(A.U) relative to the control group mean value or the predominantly
expressed nAChR subunits. Primer sets (designed using the Primer
Express software, Applera Europe, Rotkreuz, Switzerland) were tested
for amplification efficiency (N90%) and were chosen when possible on
both sides of an intron to avoid amplification of possible contaminating
genomic DNA. The annealing temperature (60 °C) and amplicon size
(50–150 bp) were automatically determined by the software. Oligos
were used at 217 nM each (Microsynth, Switzerland). The sequence of
the primers used is provided in Table 1.

2.9. Histological examination of adipose tissue

Epididymal white adipose tissue (eWAT) of α7β2nAChR−/− and
wild-type mice was fixed in a paraformaldehyde solution, embedded
in paraffin, cut and stainedwith hematoxylin/eosin (H&E). Photographs
were then taken using an Axiocam camera (Carl Zeiss, Gottingen,
Germany) and the morphometric measurements were performed

using the Image J software (Rasband W.S, ImageJ, NIH, Bethesda, MD,
USA) as previously reported [26].

2.10. Statistics

Results are expressed as mean± SEM for the indicated number of
observations. One-way analysis of variance (ANOVA) and post-hoc
analysis (using Student–Newman–Keuls) were performed using
SigmaPlot11 (Systat Software). A p-value of b0.05 was considered
statistically significant.

3. Results

3.1. α7 and β2 are the main nAChR subunits expressed in pancreatic islets
of mice

The real-time quantitative PCR techniquewas used to screen the rel-
ative gene expression of α and β nAChR subunits in metabolic tissues.
As in the hippocampus, a limbic part of the brain used as positive control
(Figs. 1A and B), α7 and β2 were the nAChR subunits most predomi-
nantly expressed in pancreatic islets isolated from mice (Figs. 1C and
D). In comparison, human pancreatic islets express predominantly α5
and β2 nAChR subunits (Figs. 1E and F). In mouse white (WAT) and
brown (BAT) adipose tissue, α2 was the most expressed alpha nAChR
subunit (Figs. 1G and I). MiceWAT expressesmainly β1 (Fig. 1J)where-
as mice BAT expresses comparable amounts of β1 and β2 nAChR
subunits (Fig. 1H). Nevertheless, peripheral nAChR expressions in pan-
creatic islets (Ct forβ2≈29 cycles inmice; Ct forα5 andβ2≈ 25 cycles
in humans) aswell as in fat pads (Ct forα2≈ 24 cycles; Ct for β1-β2≈
24–25 cycles) are consistently lower when compared to central levels
(Ct for α7 ≈ 20 and for β2 ≈ 22 in the mice hippocampus).

3.2. α7β2nAChR−/− mice display no major defect in insulin secretion but
present a lower glycemia

The predominant expression of α7 and β2 nAChR subunits in mice
pancreatic islets led us to investigate whether these nAChR subunits

Table 1
PCR primers for quantitative real-time PCR.

Specie Target gene Forward Reverse

Human Chrna1 5′-CAACCTAAAATGGAATCCAGATGA-3′ 5′-CGCCAGATCTTTTCTGAAGGA-3′
Human Chrna2 5′-GGTTCTCTGCATCCTTTCAATGA-3′ 5′-TCTGCGAGGCTTCCTCTCA-3′
Human Chrna3 5′-GCTGAAAATATGAAAGCACAAAATG-3′ 5′-ACCATGGCAACATACTTCCAATC-3′
Human Chrna4 5′-CCTGAAGGCCGAAGACACA-3′ 5′-CCATGGCCACGTACTTCCA-3′
Human Chrna5 5′-GTTTGATAATGCAGATGGACGTTT-3′ 5′-ACAGTGCCATTGTACCTGATGACT-3′
Human Chrna6 5′-GCCTGAAGTTGAAGATGTGATTAACA-3′ 5′-TTCTACCTCCTTGGTTTCATTGTG-3′
Human Chrna7 5′-GAATGGGACCTAGTGGGAATCC-3′ 5′-GGCTCTTTGCAGCACTCATAGA-3′
Human Chrna9 5′-TGCCGGCCTCAGAAAATG-3′ 5′-AGGGCCATCGTGGCTATG-3′
Human Chrna10 5′-GCCGCTCATCGGGAAGTAC-3′ 5′-GAGTGCTGTTGAGAATGTGACCAT-3′
Human Chrnb1 5′-CCGTCAGATCTTCATTCACAAACT-3′ 5′-CGGGTTTGGGCCTTTTTAG-3′
Human Chrnb2 5′-CGGCGTGCGCTTCATC-3′ 5′-ACCATGGCGACGTACTTCCA-3′
Human Chrnb3 5′-GAAAGAACATTTTATCAGCCAGGTAGTA-3′ 5′-CACAGGAAGATTCGGTCAAGAAC-3′
Human Chrnb4 5′-GCACATGAAGAATGACGATGAAG-3′ 5′-CCACCACCATAGCCACGTACT-3′
Mice Chrna1 5′-GGTGCGGAAGGTTTTTATCG-3′ 5′-TCTCTGGATGGTCTTTTCATTGTG-3′
Mice Chrna2 5′-TGCTGACTCTTCGGTGAAGGA-3′ 5′-GCCAGAGGAAGATCCGGTCTA-3′
Mice Chrna3 5′-GCTGAAAATATGAAAGCACAGAATG-3′ 5′-ACCATGGCAACATACTTCCAATC-3′
Mice Chrna4 5′-GAAGGCGTCCAGTACATTGCA-3′ 5′-CCTTCACCGAGAAGTCTGTGTCT-3′
Mice Chrna5 5′-TGGATCCCAGACATCGTTTTG-3′ 5′-CGTACTGGCCCCTTCGAA-3′
Mice Chrna6 5′-AAACATGAAGAGCCACAATGAAAC-3′ 5′-CCACCATAGCCATGTATTTCCA-3′
Mice Chrna7 5′-CAGCAGCTATATCCCCAATGG-3′ 5′-GGCTCTTTGCAGCATTCATAGA-3′
Mice Chrna9 5′-TGCCAGCCTCAGAAAACGT-3′ 5′-GATCAAGGCCATGGTAGCTATGT-3′
Mice Chrna10 5′-AGCATGCCACCTGCAGAGA-3′ 5′-CTGTGGAGAATGTGACCATGGT-3′
Mice Chrnb1 5′-CCGCCAGATCTTCATTCACA-3′ 5′-GGGTTTGGGCCTCTTCAGA-3′
Mice Chrnb2 5′-CGGACCATATGCGAAGTGAA-3′ 5′-TGGCAACGTATTTCCAATCCT-3′
Mice Chrnb3 5′-GAGGCATGTGAAGAAGGAACACT-3′ 5′-TGAGCCACGAATTTCCAGTCT-3′
Mice Chrnb4 5′-GTCGTCGACCGCCTGTTC-3′ 5′-CCCCATGGTGCCCAGAA-3′
Mice Il6 5′-CCTTCAGAGAGATACAGAAACTCTAATTCA-3′ 5′-CTGTTAGGAGAGCATTGGAAATTG-3′
Mice Tnf 5′-CAAAATTCGAGTGACAAGCCTGTA-3′ 5′-CTCCAGCTGCTCCTCCACTT-3′
Mice RPS29 5′-GCCAGGGTTCTCGCTCTTG-3′ 5′-GGCACATGTTCAGCCCGTAT-3′
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could be involved in the regulation of glucose homeostasis and insu-
lin secretion. To this aim, we studied the double α7β2nAChR−/−

mouse model. Pancreas to body weight ratio was unchanged
in α7β2nAChR−/− mice (Fig. 2A). After 6 h or 18 h of fasting, as
well as 1 h following refeeding, insulinemia was not different in
α7β2nAChR−/− in comparison to wild-type mice (Fig. 2B). In contrast,
glycemia was decreased by 15± 3% (p b 0.05) inα7β2nAChR−/− mice
(6 h) and by 11± 3% (p b 0.05) (18 h) following food removal but rose
to similar levels as in wild-type mice 1 h after refeeding (Fig. 2C). We
assessed the β-cell response to vagal stimulation using the administra-
tion of 2-deoxyglucose (2-DG) (a glucose analog that is notmetabolized
and blocks intracellular glucose utilization, promoting neuroglycopenia,
vagus nerve stimulation and islet hormonal secretion). Insulinemia
(Fig. 2D) and glycemia (Fig. 2E) were increased to the same extent in
wild-type and inα7β2nAChR−/−mice 10min following 2-DG adminis-
tration, suggesting similar parasympathetic input in both genotypes.
We also investigated potential consequences of α7 and β2 nAChR sub-
unit deficiency on glucose-induced insulin secretion, both in-vitro
(using isolated islets, Fig. 2F) and in-vivo (using intraperitoneal glucose
tolerance test, Figs. 2G–I). In-vitro, pools of 10 islets fromwild-type and
α7β2nAChR−/− mice secreted comparable amounts of insulin in re-
sponse to hyperglycemia (22.8 mM glucose concentration) (Fig. 2F).
In-vivo, relative to basal glucose excursion during i.p. GTT was not
modified in α7β2nAChR−/− compared to wild-type mice (Fig. 2G),
confirmed by area under the curve values (Fig. 2H). Insulin secretion,

expressed in absolute values (Fig. 2I), was similar in α7β2nAChR−/−

andwild-typemice. Relative to basal glucose excursion during i.p. insu-
lin tolerance test (Fig. 2J) and glucagon tolerance test (Fig. 2K) were
globally similar between α7β2nAChR−/− and wild-type mice. During
pyruvate tolerance test (Fig. 2L), relative to basal glucose levels were
slightly increased 60 and 120 min after pyruvate administration in
α7β2nAChR−/− mice. Taken together, these results show that double
α7 and β2nAChR deficiency does not impact insulin secretion and in-
sulin sensitivity, but dampens basal circulating glucose levels in the
inter-meal interval or the fasted state without drastically reducing
gluconeogenesis or glycogenolysis.

3.3. α7β2nAChR−/− mice display a defect in energy storage and modifica-
tions in food intake and body composition

Seeking to explain decreased basal glycemia unrelated to apparent
modification in glycogen metabolism or insulin secretion/sensitivity,
we further investigated energy homeostasis in α7β2nAChR−/− mice.
At 6 months of age, bodyweight ofα7β2nAChR−/−micewas not differ-
ent from that of wild-type mice (Fig. 3A). Daily food intake was slightly
increased by 10 ± 2% (p b 0.05) in α7β2nAChR−/− mice (Fig. 3B).
α7β2nAChR−/− mice lost 39 ± 9% (p b 0.05) more weight than wild-
type mice following a 18 h fasting period (Fig. 3C). Under ad libitum
conditions, the α7β2nAChR−/− mice ate more than wild-type mice at
different refeeding time points following the fasting period (Fig. 3D).
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Fig. 1. Screening of nAChR subunits in pancreatic islets and adipose tissues.A: Relative gene expression for alpha nAChR subunits (arbitrary units, A.U) inmouse hippocampus. B: Relative
gene expression for beta nAChR subunits (arbitrary units, A.U) in mouse hippocampus. C: Relative gene expression for alpha nAChR subunits (arbitrary units, A.U) in mouse pancreatic
islets. D: Relative gene expression for beta nAChR subunits (arbitrary units, A.U) in mouse pancreatic islets. E: Relative gene expression for alpha nAChR subunits (arbitrary units, A.U)
in human pancreatic islets. F: Relative gene expression for beta nAChR subunits (arbitrary units, A.U) in human pancreatic islets. G: Relative gene expression for alpha nAChR subunits
(arbitrary units, A.U) inmouse BAT.H: Relative gene expression for beta nAChR subunits (arbitrary units, A.U) inmouse BAT. I: Relative gene expression for alphanAChR subunits (arbitrary
units, A.U) inmouseWAT. J: Relative gene expression for beta nAChR subunits (arbitrary units, A.U) inmouseWAT. Results are expressed asmeans± SEM.N=6animals in panels A, B, G,
H, I, and J. N = 3 pools of 2 animals in panel C and D. N = 3 human donors in panel E and F. List of primers used is given in Table 1.
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The greater weight loss during food unavailability led us to investigate
body composition inα7β2nAChR−/− mice by dual energy X-ray absorp-
tiometry (DEXA).α7β2nAChR−/−mice presented significantly increased
lean body mass and a tendency to decreased body fat mass (p = 0.06)
(Fig. 3E). In contrast, bone mass content was increased by 9 ± 2%
(p b 0.05) in α7β2nAChR−/− compared to wild-type mice (Fig. 3F).
Both femur and subcranial whole body skeleton of α7β2nAChR−/−

mice showed elevated levels of mineral density compared to wild-type
mice (Fig. 3G). Weight of epididymal fat pads was reduced by 51 ± 5%
(p b 0.05) in α7β2nAChR−/− compared to wild-type mice (Fig. 3H).
Gene expression of pro-inflammatory cytokine TNF-α and IL-6 showed
a non-significant trend to decrease in eWAT of α7β2nAChR−/− mice
(Fig. 3I). To determine the underlying mechanism involved in the limi-
tation of eWAT accretion observed inα7β2nAChR−/− mice, histological
sections of eWAT were obtained from each genotype (Figs. 3J–K).

Quantitative analysis of these sections (Fig. 3L) showed a decrease of
29 ± 7% (p b 0.05) in the size of the adipocyte from α7β2nAChR−/−

mice compared to those of wild-type mice, suggesting that hypotrophy
of the adipocyte contributes to fat pad atrophy in α7β2nAChR−/− mice.

A potential explanation for the unaltered body weight of
α7β2nAChR−/− mice and decreased fat storage despite their increased
appetite might be an elevation in their energy expenditure. VO2

consumption monitored on two consecutive days (Fig. 4A) was in fact
increased in α7β2nAChR−/− compared to wild-type mice [by 7 ± 2%
(p b 0.05) during the dark phase (active period for rodents) and by
9 ± 2% (p b 0.05) during the light phase (resting period)] (Fig. 4B).

Elevation in VO2 consumption was associated to an increase
of 24 ± 6% in total T3 levels in α7β2nAChR−/− mice (0.88 ±
0.04 ng/ml, N = 15) compared to wild-type mice (0.71 ± 0.03 ng/ml,
N = 16, p b 0.01) whereas no change was observed in total T4 levels
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in α7β2nAChR−/− mice (1.29 ± 0.12 μg/dl) compared to wild-type
mice (1.44± 0.24 μg/dl, p= 0.58) (data not shown). The altered adap-
tation to fasting previously observed in α7β2nAChR−/− mice (Fig. 3C)
is corroborated by changes in energetic substrate use since the respira-
tory exchange ratio (RER = VCO2/VO2), was significantly reduced in
α7β2nAChR−/− mice during the light phase (Fig. 4C), indicating that
α7β2nAChR−/− mice oxidated more lipids than wild-type mice during
this period. The circadian pattern of spontaneous physical activity was
also assessedwith the LabMaster system, allowing to discern horizontal
(ambulatory)movements and vertical (fine exploration/rearing)move-
ments, each of them occurring either in the central or the peripheral
zone of the cage. Central ambulatory activity patterns appeared to be
similar in α7β2nAChR−/− and wild-type mice (Fig. 4D). In contrast,
central fine activity patterns appeared higher in α7β2nAChR−/− com-
pared to wild-typemice (Fig. 4E). Summing these periodic movements,
central activity was significantly increased by 22±2% (p b 0.05) during
the dark phase and by 37 ± 4% (p b 0.05) during the light phase in
α7β2nAChR−/− mice, both times due to elevation in fine/rearing

activity (Fig. 4F). In the same way, peripheral activity was significantly
increased by 30 ± 2% (p b 0.05) during the dark phase and by 41 ±
3% (p b 0.05) during the light phase in α7β2nAChR−/− mice, always
due to elevation in fine/rearing activity (Figs. 4G–I).

4. Discussion

In the present study, we investigated metabolic features of the dou-
ble α7β2nAChR−/− mice. α7β2nAChR−/− mice present a moderate el-
evation in spontaneous food intake. Beyond nicotine anorectic action,
nAChRs are well known to be involved in the regulation of food intake.
In the lateral hypothalamus, neuronal networks express α4β2 and
α7nAChRs [27–29] whereas α3β4 nAChRs seem rather implicated in
both stimulation of POMCneurons [30] and inactivation of hypothalam-
ic AMPK [31]. Surprisingly, the slight hyperphagia of α7β2nAChR−/−

mice did not change their body weight but was associated with a mod-
ification of their body composition, with increased lean and bone mass

Fig. 3. Energy homeostasis inα7β2nAChR−/−mice.A: Bodyweight (g).B: Food intake (g/day), *p b 0.05 vs.wild-type. C: Bodyweight loss after an 18 h-fasting period (in g or % of initial b.w.),
*p b 0.05 vs. wild-type.D: Food intake (g) after an 18 h-fasting period, *p b 0.05 vs. wild-type. E: Body composition (leanmass and fatmass in %), *p b 0.05 vs. wild-type. F: Bonemass content
(g), *p b 0.05 vs. wild-type. G: Bone mineral density (g/cm2), *p b 0.05 vs. wild-type. H: Epididymal white adipose tissue (eWAT) mass (in g or % of b.w.), *p b 0.05 vs. wild-type. I: Relative
gene expression of TNF-α and IL-6 in eWAT (A.U). J: Epididymal white adipose tissue (eWAT) histology of wild-type mice. K: Epididymal white adipose tissue (eWAT) histology of α7β2
nAChR−/−mice. L:Mean area of adipocytes (μm2). Results are expressed as means± SEM forα7β2 nAChR−/− (■) or wild-type (□) male mice. N= 10–12 animals in each group for panels
A, B, C, D, H, and I; N= 12–16 animals in each group for panels E, F, and G. N= 5 animals in each group for panel L.
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and decreased fat pads, which can explain their increased sensitivity to
fasting-induced weight loss.

Different explanations can be put forward concerning the limitation
of fat accretion in α7β2nAChR−/− mice.

First, this lean phenotype can be related to their elevation in energy
expenditure. In fact, we observed a higher VO2 consumption in
α7β2nAChR−/− compared towild-typemice. As expected for nocturnal
rodents, the activity was higher during the night period than during the
light period in both genotypes. Nevertheless, α7β2nAChR−/− mice
present increased spontaneous physical activity when compared to
wild-type mice. It clearly appeared that independently of the photope-
riod (light/dark) and the location within the cage considered, the fine
activity (corresponding to vertical exploration/rearing) mainly contrib-
utes to this increased spontaneous physical activity in α7β2nAChR−/−

mice. In contrast, the ambulatory activity (horizontal locomotion) was
not drastically changed, except during the beginning of thefirst dark pe-
riod, corresponding to introduction into the system and discovery of
this novel environment. These observations supplement previous
behavioral investigations linked to global nAChR deficiency. In fact,
α7β2nAChR−/− mice showed enhanced motor performance on the
rotarod [32] and β2nAChR−/− mice were described as hyperreactive
to novelty, suggesting that endogenous nAChR stimulation may exert
a tonic control on monoamine-mediated locomotor responses [8]. Hy-
peractivity associated to β2nAChR deficiency appeared to be linked to
selective dissociation of the high-order spatiotemporal organization of
locomotor behavior (involving conflict resolution/social interaction)
from low-level (more automatic motor behaviors) [9] and to the

absence of specific inactive states (corresponding to decisionmoments)
allowing to scan the environment and organize sequences of behavior
[10]. Interestingly, hyperactivity of β2nAChR−/− mice can be normal-
ized by selective expression of β2nAChR in the nigrostriatal and
mesolimbic brain regions [11].

Besides the increased physical activity, the elevated level of T3,
but not T4, also questions a possible mild hyperthyroidic status in
α7β2nAChR−/− animals. In this sense, further studies are required to
investigate a possible nicotinic cholinergic control of desiodase activity.

In addition to the role of central nAChRs in regulation of food intake
and physical activity, the lean phenotype of α7β2nAChR−/− mice
reported here could reflect a primary peripheral role for nAChRs in the
biology of adipose tissue. We presently report that α2 nAChR is the
most expressed alpha nAChR subunit in murine WAT and BAT, in
adequation with both recent similar observations in mice [19] and
with clinical associations between the rs2043063 SNP in the CHRNA2
gene and obesity [33]. We also detected low but relevant levels of α7
and β2nAChR mRNA in WAT and BAT. α7nAChRs appear to play an
anti-inflammatory role in adipose tissue [22] and were shown to be
downregulated in human obesity [20]. On the other hand, studies in
β2nAChR−/− mice demonstrate that nAChRs containing the β2 subunit
mediate transcription of adipokines in a depot-specific manner in WAT
and BAT [19]. Future work involving tissue-specific knock-out mice
models is nevertheless required to dissociate central and peripheral
role of nAChR in adipose biology.

In the same way, functional binding of labeled nicotine, and detec-
tion of nAChRs in pancreatic islet cells [15–17] have suggested a local
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role in these endocrine structures. The secretory activity of pancreatic
islets is a highly regulated process, under the control of nutrition, hor-
mones and the nervous system involving cholinergic signaling. The
muscarinic receptor is classically described as the terminal effector of
the cholinergic signaling in pancreatic β-cells [34–36] and the function
of nAChRs in the context of pancreatic islets has long been limited to
their role in ganglionic autonomic vagal neurotransmission [37–40].
Nevertheless, paracrine cholinergic signaling sensitizes the glucose-
induced β-cell response in human islets [41] and nicotinic cholinergic
stimulation dampens insulin secretion [15,42] whereas antagonism of
the α7nAChR increases insulin release [43,44] according to previous
studies.

We presently report that α7 and β2 are the nAChR subunits most
predominantly expressed in pancreatic islets isolated frommicewhere-
asα5 and β2nAChR subunits are prevalent in human islets, highlighting
clinical associations between variants in the genes encoding these
nAChR subunits with both insulin resistance and type 2 diabetes [45].

It can still be considered that nAChR expressions are subtle
in pancreatic islets compared to central levels. Physiologically,
α7β2nAChR−/− mice present no difference in basal insulinemia, as
well as in glucose-induced and parasympathetically-mediated regu-
lation of insulinemia in comparison to wild-type mice, ruling out a
primordial role for these nAChR subunits in insulin secretion.
α7β2nAChR−/− mice only exhibit reduced inter-meal and fasted
glycemia compared to age-matched wild-type mice. Modifications
in glycogenolysis or in gluconeogenesis were investigated to explain
these decreased circulating glucose levels since chronic nicotine at-
tenuates glycogenogenesis and gluconeogenesis in Zucker fatty (fa/fa)
rats liver [46]. Neither sensitivity to glucagon nor neosynthesis of glu-
cose from pyruvate appeared modified in α7β2nAChR−/− mice. Equal-
ly, sensitivity to insulinwas not changed inα7β2nAChR−/−micewhich
was more surprising since the single knock-out α7nAChR−/− mouse is
gluco-intolerant and resistant to insulin [22,23], due to inflammatory-
prone status and increased adipose tissue infiltration by activatedmac-
rophages [22]. Unaltered insulin sensitivity in α7β2nAChR−/− mice
presently observed is nevertheless consistent with the absence of
excessive inflammation in their adipose tissue shown by unchanged
TNF-α and IL-6 mRNA levels.

5. Conclusion

In the present study, we characterized the metabolic phenotype of
mice deficient for both the α7 and β2nAChR subunits. Despite slight
hyperphagia, body weight was unchanged in α7β2nAChR−/− mice
which showed an increased bone accretion and reduced fat deposition.
Unlike single knock-out α7nAChR−/− mice, the adipose tissue of
α7β2nAChR−/−mice presented no evident sign of excessive inflamma-
tion. This fit phenotype of α7β2nAChR−/− mice could be linked to the
elevated spontaneous physical activity associated to central deficiency
in β2nAChR. The local role of nAChRs in adipose depot and pancreatic
islet (a recent field of investigation which deserves further studies)
could not be ruled out since various nAChR subunits are expressed in
these metabolic tissues. Nevertheless, α7β2nAChR−/− mice showed
no major defect in glucose homeostasis and insulin secretion, except
for a reduced glycemia, possibly linked to their lean phenotype.
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