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ABSTRACT

This paper presents a method for video collection overview-
ing based the dynamic content of the scenes. In an unsuper-
vised context, our approach relies on the nonlinear tempo-
ral modeling of wavelet-based motion features directly esti-
mated from the image sequence. Based on SVM-regression,
the nonlinear model is able to learn the behavior of the mo-
tion descriptors along the temporal dimension and to catch
useful informations of the dynamic content. A similarity
measure associated to the temporal model is then defined. It
allows to compare video segments according to motion de-
scriptors and thus defines a high-dimensional feature space
where the video sequences under investigation are projected.
The Curvilinear Component Analysis algorithm is finally
used to map the feature space onto a 2D space. This opera-
tion enables us to display the video collection and gives an
overview of the content according to motion features.

1. INTRODUCTION

Video databases are growing so rapidly that most of the in-
formation they contain is lost in this mass and is thus in-
accessible. A valuable tool for the management of visual
records would provide the ability to automatically describe
and index the content of video sequences in order to create a
relevant overview of the data’s variety. Such a facility would
allow the users to navigate and to discover the existence of
video material contained in large databases.

In an unsupervised context, this issue is handled by ex-
tracting from videos! low level features which are related
to some high level concepts, such as film genre, particular
scenes or activities. The feature space spanned by those de-
scriptors is then analyzed in order to give to the users an
understandable view of the structure of the data that it rep-
resents. Amongst all the video primitives available (color,
shape, texture, audio descriptors,...), motion features are

LIn this paper videos are considered as consistent units, equivalent to
what is normally referred to as “shots”

well-suited to index video documents according to their dy-
namic content, for e.g. event characterization [13], human
behavior recognition [12] or video summarization [11]. An
efficient extraction of such information needs to consider
both spatial and temporal properties of the motion-based de-
scriptors. Spatio-temporal models have then to be defined in
order that dynamic main features are clearly expressed and
create suitable description of video documents. For exam-
ple, motion parameter trajectory combined to condensation
algorithm are considered in [1], temporal Gibbs model of
motion-related measures are used in [6] and a 3D Gabor de-
compositions performs a spatio-temporal video analysis in
[4].

Our approach, presented in this paper, relies on previous
work which concern global motion estimation between two
images using a wavelet-based parametric model [2]. This
model can directly be applied over the whole image without
any prior and generally unreliable segmentation stage. The
estimated motion parameters then provide a robust, global,
meaningful and compact description of activity content [3].
The motion descriptors are estimated between any two con-
secutive frames of the sequence so that the video sequence
is characterized by a sequence of descriptors. This tem-
poral content is captured by using a temporal model based
on the estimation of the nonlinear prediction function of
the sequence. This model enables us to define a similar-
ity measure between videos based on the prediction error,
which avoids facing the problem of temporal alignment.
The similarity measure defines a multidimensional feature
space where each video is an element of this space. A
2D representation of this feature space is obtained by us-
ing a nonlinear dimensionality reduction algorithm which
preserves local topology between elements. In this way, the
video database can be displayed on a 2D map where spatial
relations between documents correspond to local structures
in the feature space. Experiments are carried out on a set
of video shots containing sport and news programs and on
shots extracted from a TV movie.

The paper is organized as follow. Section 2 describes the
wavelet-based motion estimation and the motion descriptors



derived from the motion wavelet coefficients. The nonlinear
temporal model and similarity measure are presented in sec-
tion 3. Section 4 outlines the CCA algorithm. Experiment
on real videos are displayed in section 5 and conclusion in
section 6 ends this paper.

2. MOTION FEATURE EXTRACTION

The motion descriptors we propose to use are based on the
wavelet coefficients of the optical flow directly estimated
from the image sequence. These descriptors have the ability
to characterize activity according to the motion magnitude,
scale and orientation [3].

2.1. Motion wavelet coefficient estimation

In this section, we briefly outline the algorithm that we have
developed to estimate motion wavelet coefficients. Further
details can be found in [2].

Let us consider an image sequence I(p;,t) with p, =
(zi,y;) €  the location of each pixel in the image. The
brightness constancy assumption states that the image bright-
ness I (p;, t+1) isasimple deformation of the image at time
t

I(piat) :I(pi+v(pi)7t+1)v (1)

where v(p;,t) = (u,v) is the optical flow between I(p;,t)
and I(p,, t+1). This velocity field can be globally modeled
as a coarse-to-fine 2D wavelet series expansion from scale
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where ®;, 1, 1, (p;) is the 2D scaling function at scale L,
and \Ilfk? ’k‘; (p;) are wavelet functions which respectively
represent horizontal, diagonal and vertical variations. These
functions are dilated by 27 and shifted by k; and k,. The
coarsest level corresponds to L = 0 whereas [ defines the
finest details that can be fitted by the motion model.

In order to recover a smooth and regular optical flow,
we use B-spline wavelets, which have maximum regularity
and symmetry. The degree of the B-spline determines the
approximation accuracy.

The motion parameter vector 8, which contains wavelet
coefficients ¢z, x, x, and df,;ﬁ;m forall j, kq, k- is estimated

by minimizing an objective function

0 =argmin y  p(I(pi +ve(p;),t +1) = I(p;,1))

®)
where p(-) is a robust norm error (M-estimator). The min-
imization step is achieved using an incremental and mul-
tiresolution estimation method [8].

The wavelet-based motion model enables to estimate for
successive frames an accurate optical flow defined by its
wavelet coefficients. The finer scale [ determines how pre-
cise the final estimation is. In the context of video indexing,
a fine estimation is not needed, as we only want discrimina-
tive descriptors over a wide range of contents. Figures 1.b.,
c. and d. display the estimated optical flows for various fi-
nal scale levels. For our experiment, we have used a final
scale | = 3 which correspond to a motion model configured
by 128 wavelet coefficients.

2.2. Activity descriptors

As we can see in Figure 1, the motion parameter vector
contains an accurate description of the optical flow. For the
purpose of video overviewing, we have observed that such
an accuracy is rather a shortcoming since large variabilities
between descriptors may occur only because of local differ-
ences within optical flows. To overcome this problem, we
consider a variance measure of the wavelet coefficients in
the different subbands of the representation
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where [ is the finest scale level used in (2), meaning that o
is a 10-component vector in our case, characterizing optical
flow in term of its global magnitude, scale and orientation.

Hence, given an image sequence of NV frames, the activ-
ity description consists in a sequence of N — 1 descriptors
o computed over all consecutive frames.

3. SYM REGRESSION FOR NONLINEAR
TEMPORAL MODELING AND SIMILARITY
MEASURE DEFINITION

3.1. Featuretemporal modeling asatime series predic-
tion problem

Let S be an image sequence characterized by a set of de-
scriptors {Xo, X1, ..., Xn 1} X € RP, with N the length
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(a) Frame from Mobile and
Calendar sequence

(b) Estimated flow field at
j=2

(c) Estimated flow field at
ji=3

(d) Estimated flow field at
j=4

Fig. 1. Frame from Mobile and Calendar sequence and global motion estimated at level a) 2, b) 3 and c) 4. B-spline of degree

2 were used to model motion.

of the descriptor sequence. The H th order prediction func-
tion F : RP*H — RP of the temporal series {X;}Y, is
defined

X =FX; 1,Xt2,...,Xsg)Vt€ [H,N]. (5)
The multidimensional function F can be considered as a
temporal model of the visual descriptors and is therefore
able to characterize the dynamic content of the sequence S.
The order H determines the memory of the model since X 1
is a function of the H previous descriptors {X,}/} .
The larger H is, the more the model is specific to the se-
quence and over-fits the dynamic content. On the other
hand, the information characterized by the prediction func-
tion tends toward zeros as the model memory decreases.

The estimation the multidimensional function F (eq. 5)
is done separately over each dimension, which implies that
there is no interaction between dimensions. Let us note 2!
the Jth component of X, the problem therefore consists in
estimating f' such as

l 1.l l
zy = f(Ty T g,

- 7$£57H)' (6)

Then
F=[f ... " (7

For the sake of simplicity in the notation, we define the
H —dimensional vector

x} = [2,2)_y,...,2i_y] Vt € [H,N], (8)

in a such way that equation (6) can be written as z! =
F(xt_,). The main difficulty of this approach is to estimate
f efficiently. As the descriptor sequence is nonstationary,
we have to estimate a nonlinear prediction function from
the set of the N — H observations. Many regression tech-
niques can used to solve this problem, but results obtained
by using Support Vector Machines in regression show that
this kernel-based algorithm is well-suited for such nonlinear
estimation [7].

3.2. Support Vector Machinesfor regression

We present here a short description of SVM for regression.
Further details can be found [10, 9], especially for issues
related to the robustness of the algorithm. This classical
problem of regression consist in approximating an unknown
function g : R — R from sampled data {x;, y;}}¥, such
as y; = g(x;) + n, with  some noise. In order to approxi-
mate g, the SVM algorithm considers a parametrical model

of the form
L

f(x) =) cigi(x) +b, )
i=1
where {¢;}L_, are basis functions. Parameters band {c; }Z_,
are unknown parameters that have to be estimated by mini-
mizing the functional

N
R() = 5 Sl = Foxl + Allell?, (10)
i=1

with ¢ = [e1,...,cn] and A a smoothness constraint ap-
plied to the solution space. The error function is defined as

follow )
ifz<e

jale =1 ;
€ z otherwise.

In [10], Vapnik has shown that the function which minimize
the functional (10) has the following form

(11)

N
f(x,a,a®) = Z(a;‘ —a)K(x,x;)+b  (12)

i=1
with ofa; = 0, oy,af > 04 = 1,...,N and where

K (x,y) is the so-called kernel function that describes the
inner product in the D-dimensional feature space defined
by the functions ¢;

L

K(x,y) =Y ¢i(x)¢i(y)- (13)

i=1



The main interest of SVM technique is that only the ker-
nel K has to be known and the feature space spanned by ¢;
never need to be explicitly computed. This allows to uses
several type of basis functions, including infinite sets, which
give a wide choice of nonlinear models to approximate the
unknown function.

Concerning sequences of visual descriptors, where no
priors about the solution form are known, we use the radial
gaussian kernel K (x,y) = exp(—7||x — y||?) which can
fit a large range of complex functions. The scale parameter
~ determines distances between observations {x;} ,- and
thereby the smoothness of the solution in the observation
space. We set it as follow

—1
_1 1 2
T=5 (mZt:HAtXtH > : (14)

where A;x; = x; 1 —x;. This setting ensures that, on aver-
age, distance between temporal neighbors is small enough
to obtain a smooth prediction function and to avoid over-
fitting effects.

3.3. Similarity measureasa prediction error

Let F and G be the prediction functions (or temporal model)
respectively estimated on time series of descriptors {X ; }¥_,
and {Y;} M, related to the image sequences S et S». From
these prediction functions, we can built two new time series
by crossing models and descriptors

X, =G(X¢_1,...Xy_p),Vt € [H,N]
Y, =F(Y_1,...Y_p),Vt € [H,M], (15)

and then define the distance

1 ~ .

D(X,)Y) = B [d ({Xt}t; {Xt}t) +d ({Yt}t; {Yt}t])
(16)

with d(-, -) the quadratic error between the predicted and
the original time series. If the sequence {Y}; is closed
to the sequence {X,};, the prediction function F and G
will be also similar. In this case, the error of prediction

d ({Xt}t, {xt}t) will be low. On the other hand, dissimi-

lar sequences will produce models unable to predict both of
them, and then the error of prediction will be high.

As an illustration of the efficiency of the SVM-based
similarity measure for motion descriptors, we have applied
our approach on video representing two class of human ac-
tivity, which consist of five different persons coming toward
and going away the video camera (Fig. 2). The test set con-
tains thus ten videos of length comprised between 30 and 40
frames. A 15-order prediction function is used (H = 15).

For each image sequences, motion descriptors are es-
timated and a dissimilarity matrix D is computed between

each sequence of descriptors according to the similarity mea-
sure (16) (Fig. 3.a). As a comparison, a second dissimi-
larity matrix D’ is computed by considering the Euclidean
distance between the centroid of each sequence of descrip-
tors, meaning removing the temporal information of the de-
scriptors (Fig. 3.b). To quantify the benefit of the temporal
model, an agglomerative clustering is applied on these two
matrix. The classification rate is 100% for D, whereas it is
only 60% for D’. This result shows the importance of tak-
ing into account temporal variations of the descriptors and
highlights the relevance of the proposed temporal modeling
based on the prediction function.

4. 2D REPRESENTATION OF THE FEATURE
SPACE

The dissimilarity matrix computed from a set of videos gives
distances between videos in a high-dimensional feature space.
Itis clearly impossible to directly display this feature space,
and a 2D or 3D representation has to be derived in order to
give an overview of the structure of the data set.

This issue is resolved by the use of the Curvilinear Com-
ponent Analysis (CCA) [5], which is a nonlinear mapping
algorithm allowing dimensionality reduction and preserving
nonlinear structure. As an input, CCA just needs the dissim-
ilarity matrix, and provides, as an output, the projection of
the data onto a lower dimensional space (2D space in our
case). During unfolding the feature space, CCA tries to pre-
serve local topology. This fact means that local structures in
the projected space are strongly related to those in the fea-
ture space. On the other hand, long range structures have
no meaning, and should not be considered for any interpre-
tation.

5. EXPERIMENTAL RESULTS

Our approach has been tested with a collection of 41 video
shots representing TV news program (anchor scene) and
sport videos (basket-ball, football, windsurf, trial). These
videos have been chosen in such a way that dynamic con-
tent is relevant to organize the collection.

As detailed above, motion feature and temporal model
are estimated (with prediction function of order H = 20),
allowing to compute a dissimilarity matrix for the whole
video set. The feature space corresponding to this matrix
is then mapped on 2D space. The result of this mapping is
displayed in figure 4. Video shots are represented by their
median frame. The position of the center of the frames are
the coordinates of the feature space elements into the 2D
space. When reviewing the results, one has to keep in mind
that no spatial criterion is explicitly accounted for (only the
motion estimation is used). That makes the reviewing or
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(a) Matrix D computed from (b) Matrix D’ computed from
Fig. 2. Two class of activity “come” and “go”. The set of  the temporal models the descriptor’s centroid
videos contains 5 sequences with ”come” activity and 5 se-
guences with "go”. Fig. 3. Dissimilarity matrix computed for the 10 videos. Line
entries 1 to 5 correspond to “come” activity, 6 to 10 to "go”
activity.

Fig. 4. Sport & News video collection. Nonlinear projection of the video feature space into a 2D space. Spatial video
relationships exhibit the diversity of the dynamic properties contained in the documents.



Fig. 5. 2D representation of the The Avengers video collection.




results slightly misleading as one should inspect the local
motions to check on the validity of the results.

The overview provided by the CCA of the feature space
highlights the diversity of the collection content. We can
observe that, as expected, a clear partition has been achieved
between TV news and Sport programs. Among sport videos,
the spatial organization of the documents seems determined
by motion content, and more precisely, motion scale. In-
deed, sport videos on the top-right corner of the representa-
tion exhibit close up views of the scene, whereas they corre-
spond to broader plan when going to the bottom left corner.

A second experimentation result is displayed on figure
5. The video collection contains the 28 first shots of The
Avengers TV movie?. In this example, as the videos are
less characterized by typical motion or activity content, the
2D representation does not display a clear partition between
different documents. However, one can observe that that
scene containing close-up views on actors are concentrated
on the center of the map, whereas broad plan and higher
activity scenes are spreaded on the periphery.

6. CONCLUSION

We have proposed a method for overviewing the content of
video collections according to scene motion. This method
is unsupervised and allows to deal with generic video doc-
uments. The motion features are derived from a wavelet-
based motion estimation algorithm and provide robust and
stable informations on the optical flow. The temporal behav-
ior of the descriptors is captured by a nonlinear model. This
model consists in a prediction function estimated over the
sequence of descriptors. An SVM algorithm is used to deal
with the nonstationarity of the descriptors. The prediction
error associated to a temporal model and a sequence of de-
scriptors is defined as a similarity measure between videos
and then allows to build a high-dimensional feature space
where videos are projected. A CCA algorithm is used to
reduce the dimensionality of it and to obtain a 2D represen-
tation of the collection of videos. Experiments on generic
videos have shown the efficiency of the approach.

In the framework of the nonlinear temporal modeling,
future research will focus on adding more low-level descrip-
tors (such as color, texture, shape, audio). Indeed, the last
result presented in the above section highlight the problem
of organizing data according to various visual primitives
and modalities in order to obtain a meaningfull represen-
tation of the collection. The main challenge will be then to
define an interactive scheme for weighting the different in-
formation sources which allows the end-user to define his
view point of the meaningfull represenation.

2This video is extracted from the AIM corpus developed within the
French inter-laboratory research group ISIS and the French National Insti-
tute of Audiovisuel (INA)
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