UNIVERSITE

DE GENEVE Archive ouverte UNIGE

https://archive-ouverte.unige.ch

This version of the publication is provided by the author(s) and made available in accordance with the
copyright holder(s).

Sonner, Michael

How to cite

SONNER, Michael. The Influence Matrix Approach to Quantum Many-Body Dynamics. Doctoral Thesis,
2024. doi: 10.13097/archive-ouverte/unige:178628

This publication URL:  https://archive-ouverte.unige.ch/unige:178628
Publication DOI: 10.13097/archive-ouverte/unige:178628

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.


https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:178628
https://doi.org/10.13097/archive-ouverte/unige:178628

UNIVERSITE DE GENEVE FACULTE DES SCIENCES

Département de Physique Théorique Professeur J. Sonner

The Influence Matrix Approach to Quantum Many-Body Dynamics

présenté a la Faculté des Sciences de I’Université de Genéve pour obtenir le grade de
docteur és Sciences, mention Physique

par
Michael Sonner
de
Stuttgart-Bad Canstatt (Allemagne)

These N° 5824

Geneéve
Archive ouverte

2024



UNIVERSITE
DE GENEVE

FACULTE DES SCIENCES

DOCTORAT ES SCIENCES, MENTION PHYSIQUE

Thése de Monsieur Michael SONNER
intitulée :

«The Influence Matrix Approach to Quantum Many-Body Dynamics»

La Faculté des sciences, sur le préavis de

Monsieur J. SONNER, professeur ordinaire et directeur de these
Département de physique théorique

Monsieur T. GIAMARCHI, professeur ordinaire
Département de physique de la matiére quantique

Monsieur D. ABANIN, professeur
Department of physics, Princeton University, Princeton, United States

Monsieur A. LAUCHLI, professeur ’

Section de physique, Faculté des sciences de base, Ecole Polytechnique fédérale de
Lausanne (EPFL), Lausanne, Suisse - Laboratory for Theoretical and Computational
Physics, Center for Scientific Computing, Theory and Data (PSI), Villigen, Suisse

autorise 'impression de la présente thése, sans exprimer d’opinion sur les propositions qui y sont
énoncées.

Geneéve, le 10 juin 2024

Thése -5824 -

Le Décanat

N.B.- Lathése doit porter la déclaration précédente et remplir les conditions énumérées dans les "Informations
relatives aux théses de doctorat a I'Université de Genéve".



Summary

Studying the dynamics of complex quantum systems out-of-equilibrium is a central prob-
lem in modern physics. This field encompasses fundamental questions, like the nature of
thermalization and how it can be avoided by some quantum system as well as practical
questions about properties of materials. Recently, experimental techniques like ultra-
cold atom experiments and other platforms for quantum simulation emerged that can
access out-of-equilibrium phases such as Floquet time crystals.

However, the theoretical and computational study of out-of-equilibrium phenomena
remains challenging. From a computational perspective, the fundamental challenge in
quantum many-body physics lies in the exponential number of parameters necessary to
describe the wavefunction. If their spatial entanglement is low, wavefunctions can be
approximated with relatively few parameters using tensor network techniques. Since
equilibrium wavefunctions have low spatial entanglement, this aspect makes computa-
tions viable. However, when simulating dynamics, spatial entanglement grows rapidly
with the evolution time. In this thesis I present a new approach to many-body dynamics
building on Feynman and Vernon’s influence functional and combining insights from the
field of open quantum systems with matrix product state techniques.

We consider dynamics of a subsystem, and view the rest of the many-body system
as a quantum environment. The environment’s properties are encoded in the influence
matrix on the space of trajectories. Treating the influence matrix as a “wave function”
in the temporal domain, we introduce the concept of Temporal Entanglement which
can be interpreted as the “quantum memory” of the bath. In several broad and relevant
classes of systems, such as some chaotic systems, localized and integral systems, temporal
entanglement exhibits favorable scaling. This allows the influence matrix to be efficiently
compressed as matrix product state, opening the door to a new family of computational
methods based on low temporal rather than spatial entanglement.

Dynamical properties related to many-body localization and chaotic behavior are re-
flected in the influence matrix, allowing for analytical studies of these phenomena. I fur-
ther show that this approach can be successfully applied to quantum impurity problems,
where an interacting subsystem is coupled to environments consisting of free fermions.
These models are of high practical significance as an ingredient in current algorithms
used to study the properties of correlated materials



Résumé

Etudier la dynamique des systémes quantiques complexes hors équilibre est un prob-
leme central en physique moderne. Ce domaine englobe des questions fondamentales,
telles que la nature de la thermalisation et comment certains systemes quantiques peu-
vent I’éviter, ainsi que des questions pratiques concernant les propriétés des matériaux.
Récemment, des techniques expérimentales telles que les expériences avec des atomes
ultra-froids et d’autres plateformes pour la simulation quantique ont émergé, permet-
tant d’accéder & des phases hors équilibre telles que les cristaux temporels de Floquet.

Cependant, I’étude théorique et numérique des phénomenes hors équilibre reste un défi.
D’un point de vue numérique, le défi fondamental dans I’étude des systemes quantiques
a N corps réside dans le nombre exponentiel de parametres nécessaires pour décrire leur
fonction d’onde. Si leur intrication spatiale est faible, les fonctions d’onde peuvent étre
approximées avec relativement peu de parametres en utilisant des réseaux de tenseurs.
Comme les fonctions d’onde a I’équilibre ont une faible intrication spatiale, cet aspect
rend les calculs viables. Cependant, lors de la simulation de dynamiques, l'intrication
spatiale augmente rapidement avec le temps d’évolution, compliquant les simulations
numériques. Dans cette thése, je présente une nouvelle approche des dynamiques a
N corps en m’appuyant sur la fonctionnelle d’influence de Feynman et Vernon et en
combinant des éléments du domaine des systemes quantiques ouverts avec des techniques
d’état de produit tensoriel.

Pour ce faire, nous considérons la dynamique d’un sous-systeme, et considérons le
reste du systeme a N corps comme un environnement quantique. Les propriétés de
I’environnement sont encodées dans la matrice d’influence sur l’espace des trajectoires.
En traitant la matrice d’influence comme une « fonction d’onde » dans le domaine
temporel, nous introduisons le concept d’Intrication Temporelle qui peut étre interprété
comme la « mémoire quantique » du bain. Dans plusieurs classes génerales et pertinentes
de systémes, comme certains systémes chaotiques, localisés et intégrable, l'intrication
temporelle présente une mise a I’échelle favorable. Cela permet a la matrice d’influence
d’étre efficacement compressée comme état de produit tensoriel, ouvrant la porte a une
nouvelle famille de méthodes numériques basées sur une faible intrication temporelle
plutét que spatiale.

Les propriétés dynamiques liées a la localisation a N corps et au comportement chao-
tique se refletent dans la matrice d’influence, permettant des études analytiques de ces
phénomenes. Je montre en outre que cette approche peut étre appliquée avec succes
aux problemes d’impureté quantique, ol un sous-systéme avec interaction est couplé a
des environnements constitués de fermions libres. Ces modeles sont d’une grande im-
portance pratique comme composants dans les algorithmes actuels utilisés pour étudier
les propriétés des matériaux corrélés.
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Preface

Structure of thesis

This thesis is structured as follows. In the first chapter, I intoduce the field of out out-of-
equilibrium physics and basic concepts which are used throughout the rest of the thesis.
The second chapter introduces the influence matrix as well as the notion of temporal
entanglement. In the third chapter, I discuss how the influence matrix can be computed
in one dimensional systems and explain why temporal entanglement is low for infinite
systems which consist of free quasi-particles. The following chapters discuss different
application of the influence matrix formalism. They each contain a short introduction
along with a reprint of the arXiv version of the corresponding paper. The fourth chapter
discusses the exact influence matrices which can be obtained for dual unitary circuits.
In the fifth chapter many-body localization is studied using disorder-averaged influence
matrices. The sixth chapter employs the IM techniques to numerically compute the
real time evolution of impurity models. Finally the seventh chapter summarizes theses
developments as well as provide an outlook for future research in this field.

Conventions used in this thesis

In this thesis, I use a version of Einsteins Summation convention to keep the length of
equations manageable. Indices which appear exactly twice are understood to be summed
over. This only applies to “first-level” indices and not indices of indices. Furthermore,
unless specifically mentioned otherwise, Greek indices refer to vectorized density matrix
degrees of freedom. Hence density matrices typically have one index per Hilbert space
and channels which are operators on the space of density matrices have two.

For example the following matrix product state expansion of a density matrix

4
p{ak}iﬂ - U/BO (H MBklaO‘Ika) w34 (0'1)
k=1
is understood to expand to
’0041704270137044 = UﬂoMﬁoaoﬁ7»31Mﬁl,azyﬁzMﬁz7‘13»/33M53»043w64w54 (02)

and is then be contracted using Einsteins convention as
2 42 42 42 42

’Oalaazaasvazl = Z Z Z Z Z UBOM/BOvOll’ﬁlMﬁl:0421/32M327a3a53M53’a3754w54

Bo=1 B1=1 By=1 Bg=1 B4=1
(0.3)

These conventions do not apply to reprints of papers which form part of this thesis.



1 Out of equilibrium dynamics

1.1 Introduction

I begin this thesis by lining out current developments in the study of out-of-equilibrium
quantum systems and introduce basic theoretical concepts which will be used throughout
the rest of the thesis.

In this thesis, I will discuss quantum systems out-of-equilibrium. Typically and apart
from few exceptions such as phosphorescence, quantum systems in highly excited states
relax quickly to their equilibrium due to interactions with the environment. This makes
it difficult to study out-of-equilibrium physics experimentally. However, the advent of
quantum simulation platforms consisting of carefully controlled and isolated quantum
systems such as ultra-cold atoms [11, 12], Rydberg atoms[13] and other quantum sim-
ulation platforms [14] lead to progress in this field[15]. One typical setup to study
out-of-equilibrium dynamics is a quantum quench. The quantum system is prepared
in the ground state of one Hamiltonian, which is then suddenly changed to a different
Hamiltonian. The quantum system finds itself then in a highly excited state and its
thermalization or lack thereof can be observed. Thermalization of quantum systems is
discussed in more details in Sec. 1.3 below. Out-of-equilibrium physics of a quantum
system can also be probed by considering transport. This is most natural in mesoscopic
systems [16, 17], but is also possible using other platforms like ultra-cold atoms [18].
Another intriguing possibility are periodically driven systems. Periodically changing the
Hamiltonian allows for novel exotic phases of matter in out-of-equilibrium systems such
as Floquet time-crystals [19-22] or topological phases [23] which are not possible in
equilibrium.

Furthermore, out-of-equilibrium behavior can be used to study properties of matter by
exciting it using photons and observing its relaxation. One important technique in this
class is nuclear magnetic resonance (NMR)[24], where nuclear spins in a strong static
magnetic field are excited using pulses of radio waves. The nuclear spins emit a radio
echo upon returning to their ground state, which depends on their local environment.
This technique is routinely used to identify and determine the structure of chemical
compounds.

Quantum circuits used in quantum algorithms can themselves be seen as highly non-
equilibrium quantum systems. This enables the use of generic quantum computing plat-
forms such as superconducting qubits[25] which do not directly resemble isolated quan-
tum systems to probe out-of-equilibrium physics[4, 20]. Understanding which classes of
quantum circuits can be efficiently simulated on classical computers and which cannot
is a promising approach to find problem where quantum computer possess a quantum
advantage.



1 Out of equilibrium dynamics

This introduction is structured as follows. First I will discuss the basic formalism
of open quantum systems. Then we discuss basic phenomenology of thermalization.
Finally, I introduce matrix product states which play an important role throughout this
thesis.

1.2 Open quantum systems and Markovian dynamics

This thesis relies extensively on the formalisms used to treat open quantum systems. In
this section, I introduce the most important concepts and definitions, which are used
throughout the rest of this thesis. One excellent review, which uses similar conventions
is Ref. [26]

The major challenge in building quantum computers and other controllable quantum
systems are its interactions with their environment. Quantum environments, which can
encompass everything from the measurement devices to the scientist performing the
experiment are themselves very large and complicated quantum systems. Interactions
with the large environment quantum system result in entanglement between these two
quantum systems, which in turn manifests as dissipation on the small quantum system.
To avoid describing large quantum environments system exactly, we derive an effective
description of a subsystem embedded in a large quantum system.

Consider a quantum system defined on a Hilbert space  which factorizes into a large
environment Hilbert space F(¢" and a subsystem Hilbert space F 5",

H o= H @ H o (1.1)

By definition we can write any wavefunction |¢)) on the full Hilbert space as linear
combination of tensor products:

() = D A ). (1.2)
k

This decomposition is not unique, but it is always possible to choose the vectors in
each part of the Hilbert space to be orthonormal [26, 27]. This is called the Schmidt-
decomposition and the non-negative, real values A, conventionally sorted in descending
order are the Schmidt-values. We hence use

(WRPIP) = (W) = .- (1.3)
The number of Schmidt-values d is called the Schmidt-rank and is bounded by
d < min (dim(A®), dim(H ™)) . (1.4)

Suppose one wants to measure an observable which is only supported on the subsystem
Hilbert space #S"P. Its expectation value can be expressed as

d

(WIOW) = > AW [ O [, (1.5)

k.l

10



1 Out of equilibrium dynamics

using the orthogonality of the Schmidt-vectors in the environment space and we can
rewrite this expression as:

(¥Of) = Tr(Op™) (1.6)

where p'P is the reduced density matriz (RDM) and can be written as

d
P = 3 ) W] = Treny ([0 (2]): (L7)
k

where Tr, , corresponds to the trace over the environment Hilbert space. Remarkably
the RDM is the only object necessary to compute any observable. In particular the
exact structure of the wavefunction within the environment Hilbert space is no longer
necessary! The full wavefunction corresponding to a given RDM p is not unique, a
wavefunction [¢) that satisfies Eq. (1.7) is called purification of p. The number of
parameters of the RDM is given by dim(A"")? = dim(A*"P) x dim(#*"®) and does not
depend on the Hilbert space dimension of the environment. The expression in Eq. (1.7)
can be viewed as a diagonalization of p, where the eigenvalues are given by A\Z. Hence, a
RDM is a positive semidefinite, hermitian matrix. Normalization of the full wavefunction
|1) yields the additional constraint that the trace is one

Tr(p) = > A =1. (1.8)
k

Any positive definite, hermitian matrix with trace one can be purified using an envi-
ronment Hilbert space equivalent to the subsystem Hilbert space. This is called the
purification theorem[28-30).

The notion of density matrix can also be understood without reference to any pu-
rification. Consider a quantum system which is with probability p, in a state with
wavefunction |®,). These wavefunctions do not necessarily need to be orthogonal. We
can compute any observables of this mixed state by computing

(0) = ZPk@k‘OM’k) =Tr(O Zpk‘q)k><q)k’) = Tr(Op) (1.9)
k
with the density matrix p defined as:

p= Zpk|q>k><q>k| (1.10)
k

A subsystem of a large quantum system thus behaves with respect to measurements like
a classical mizture of pure states. Conversely and classical mixture can be understood
as a subsystem of a large quantum system. This allows us to represent various classical
ensembles using density matrices: Thermal states with an inverse temperature [ in a
system with a local Hamiltonian H can be expressed as density matrix

efH

P = To(eT (1.11)

11



1 Out of equilibrium dynamics

In the limit of infinite temperature 5 — 0 we obtain the infinite temperature or maximally
mized state

1

_ =  qsub
= Fmen ™ (1.12)

p

The density matrix corresponding to a quantum state described by a single local wave-
function |1), a pure state, is given by the projector onto the wavefunction:

p =) (. (1.13)

Interpreting the eigenvalues of the density matrix as probabilities suggests using the
notion of entropy from the field of information theory[31] to quantify the “mixedness®
of a density matrix. We can write the von-Neumann entropy of a density matrix[32]

SH

S=> p,log(p,) = Tr(plog(p)). (1.14)

n=1

For thermal states as in Eq. (1.11), this coincides with the thermodynamic entropy[33]'.

If quantum system is in a pure state, we call the entropy of the RDM of a subsystem
its entanglement entropy. The scaling of the entanglement entropy with the size of the
subsystem is widely used ad a witness to diagnose physical phases[34]. If the entangle-
ment entropy scales linearly with the volume, that is the number of degrees of freedom,
in a subsystem it is said to scale as a volume law. This is for example the case for random
quantum states[34]. Scaling with the surface of the subsystem is called area-law scaling.
Ground states of gapped local Hamiltonians scale are an example of area law states. In
one dimension, the surface of any interval is a point, which means that entanglement
entropy of area law state does not scale with system size in one dimension. The ground
states of critical states in one dimension scales logarithmically in system size[35]. Despite
its usefulness as a computable quantity, it is difficult to measure entanglement entropy in
experiments, since it is non-linear in the density matrix and hence not an observable in
the normal sense. However, experimental protocols to measure entanglement entropies
by using multiple copies of the same state have been devised[36-38].

To derive the time evolution of mixed states, we return to the idea that potentially
mixed quantum systems can be understood as small subsystem embedded in a large
quantum system in a pure state. Any physical time evolution of the entire quantum
system composed of subsystem and environment can be expressed by applying a time
evolution operator U to the wavefunction [¢) of the large quantum system:

[¥") = Ul). (1.15)

where |1’} is the time evolved wavefunction. Unitarity of U guarantees that orthogonal
states remain orthogonal and that norm is preserved. The action of U on mixed states
of the subsystem is fully defined by specifying its action on pure states. We can hence

IThe historical development was opposite: thermodynamic entropy was introduced first[33] then von
Neumann entropy[32], and finally the information theory notion[31].

12



1 Out of equilibrium dynamics

choose the initial wavefunction as a product state between a pure subsystem state |¢)*""
with an arbitrary pure environment state |0), that is [¢)) = [1/*"") ® |0). We can compute
the time evolved reduced density matrix by performing the trace over the environment
Hilbert space

P = Trony (W) (¥']) = Treny (U} ($|UT) = Tren (U]0)[47°) (> (0[UT)  (1.16)
By defining the Krauss operators

M, =cny (01U|a) ey (1.17)

a ~ env
we can write the density matrix time evolution as

f7[761’1\7
p=> MipM,. (1.18)
a=1

The Krauss operators fulfill the condition

(”OI)V
1= > MM, (1.19)

a=1

which follows from unitarity of U. It turns out that with at most dim(#"?)? Krauss-
operators, any linear map which is completely positive and trace preserving (CPTP), i.a.
maps valid density matrices to valid density matrices can be represented using the opera-
tor sum representation in Eq. (1.18) with condition Eq. (1.19)[26]. Such maps are called,
depending on context quantum channels[26], superoperators[39] or CPTP-maps[40, 41].
The limit of dim(#%")? Krauss-operators also define the maximal additional Hilbert
space size the environment needs to have in order to be able to represent all channels
using a unitarity time evolution. The representation of channels using a unitary time
evolution is called the Stine-spring dilation[42]. Successive application of quantum chan-
nels correspond to Markovian time evolution, since the time evolved density matrix only
depends on the previous density matrix and not on any internal state of the environ-
ment. Extensions to non-Markovian time evolutions have been proposed[43-45] and
in fact lead to a very similar construction to what the one described in this thesis in
Chap. 2. Furthermore it is common in the literature to consider the continuous time of
Markovian system using Lindbladian master equations[46]. However, for the purposes
of this thesis discrete time evolution is sufficient.

Physically a set of operators in the form of Eq. (1.19) can be understood as a gener-
alized measurement of the subsystem by the environment in form of a postive operator
valued measurement (POVM). Each Krauss operator corresponds to a measurement
outcome, with the associated probability given by

Pa = Tr(pMIM,). (1.20)

This allows us to identify and interpret some important channels: If there is only one
Krauss operator, it has to be unitary and it corresponds to the absence of a measurement.

13



1 Out of equilibrium dynamics

Instead the subsystem evolves unitarily without interacting with the environment. We
can write such a unitary channel as:

Cylpl = (U@ U)ol = UpU™. (1.21)

Consider now a single spin as subsystem. If the environment measures the spin in the
z basis, we can write the corresponding channel as

1 1
Cdephasing[p;’y = 1] = | T><T |p‘ T><T | + | \l/><~l/ |P| \L><\L ‘ = E:I]-p]]- + io-zpo-z' (122)

This is called a (perfectly) dephasing or phase-damping channel [26]. On the density
matrix it acts by completely suppressing the off-diagonal elements, thereby projecting
the density matrix onto the z axis. Instead of performing a strong measurement, the
environment can also only measure with a given probability p. In this case, we obtain
the more generic dephasing channel:

Cdcphasing[p} - (1 - g)ﬂpﬂ + gazpaz (123)
If we understand each application of the channel as a discrete timestep, this means that
the off-diagonal element are exponentially dampened in time.

We can also consider an environment that perform what is called an information com-
plete measurement which transfers all information from the subsystem into the environ-
ment, leaving the subsystem in a maximally mixed state. We can write this measurement
by using all Pauli matrices as Krauss operators, resulting in a channel that always yields
the maximally mixed state:

1 1 1 1
Cdepolarizing[p] = —1pl + 70‘1:/00-1 + SoYpo? + ZO-ZPO-Z =

1
1 1 1 —Tr(p) (1.24)

2
This channel is called a (perfectly) depolarizing channel. Note that we need the maximal
number of d? = 4 Krauss operators to represent it in operator-sum form.

In this thesis, I generally use vectorized indexing for density matrices, operators and
channels in order to make expressions more concise. This means that a density matrix
or operator is indexed by a single (Greek) index running through the dimension of the
doubled Hilbert space. Correspondingly, channels possess two indices. This convention
does not apply to reprints which form part of the thesis.

1.3 Thermalization and MBL

In this section, I briefly discuss the presence and absence of thermalization in quantum
systems, characterizing their long time behaviors. For comprehensive reviews, I refer to
Refs. [47, 48].

If we pour ourselves a hot cup of coffee and let it sit on the desk for too long, it gets
colder until it reaches room temperature. From daily experience we know that most
physical systems have a tendency to return to a thermal equilibrium. This means that

14



1 Out of equilibrium dynamics

macroscopic observables, such as particle or energy density, evolve towards a state only
defined by the conservation laws in a system, irrespective of their initial conditions. This
thermalization process hence defines a direction of time. The fact that there seems to
be a preferred direction of time evolution is surprising, since the laws of motions gov-
erning the microscopic constituents of physical systems are generally ? invariant under
time reversal. In classical physics, this apparent paradox can be resolved by considering
the number of individual microscopic configurations corresponding to each macroscopic
state. We find that there are vastly more microscopic states corresponding to the thermal
equilibrium, then to out-of-equilibrium states. This is quantified by the thermodynamic
entropy of a given macroscopic state, which roughly corresponds to the logarithm of
the number of microscopic configurations. Chaotic systems, which are defined by the
property that trajectories corresponding to slightly different initial state diverge expo-
nentially, are expected to be ergodic. This means that after a long time the system is
equally likely to be found in any microscopic state conforming to the same conserved
quantities as the initial state. Since most microscopic states correspond to macroscopic
states close to thermal equilibrium, the system will move towards thermal equilibrium.
This explains how the thermodynamic arrow of time can arise from time-reversal sym-
metric microscopic laws of nature. FErgodicity has been proven for some special cases like
hard spheres[50] on a torus, or some billards[51, 52]. However, even in classical systems,
determining whether a system is ergodic or not is, in general a difficult proposition[53].

For quantum systems the situation is a bit different. Since quantum systems are
governed by the linear Schroedinger equation, they cannot behave chaotically in the
classical sense. Unitarity further implies that states that are completely distinguishable,
i.e. orthogonal at the initial time, remain orthogonal throughout their time evolution.
Overlaps with the eigenstates of the Hamiltonian are constant in time, yielding an ex-
tensive set of integrals of motions. Despite this, the physical intuition that most systems
thermalize still holds. Instead of considering the entire wavefunction, we can consider
the expectation value local or few site operators. A system thermalizes, if the long
term average of local operators O returns to its thermal values. In systems without any
additional conservation laws, this is given by the Gibbs ensemble:

Tr(OePH)

0= Tr(e PH)

(1.25)
where the inverse temperature § is determined by the energy of the initial state. Physi-
cally this thermalization can be understood as the system acts as a thermal bath on its
subsystems. Information about the initial state is still present in the full wavefunction
of the quantum system. However, it is spread over the entire system and thus essentially
unrecoverable.

To understand how thermalization can arise from quantum mechanics, we consider a
microcanonical ensemble description. Provided the entropy is a fast rising function of
the energy, as in typical physical systems, we can write the thermalization condition in

2 Apart from some tiny deviations related to the weak force [49]
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1 Out of equilibrium dynamics

Eq. (1.25) equivalently as[54]

0= A(E,n)(n|Oln), (1.26)

where A(FE,n) is normalized in n and peaked around E = E,, and the energy FE is given
by the initial state E = (¢|H|1). We can write down the time evolution of operator O
by expanding the wavefunction in terms of energy eigenstates

(1) =Y c,ln), (1.27)
and obtain

WDI0[(1) =Y le,*(n|Oln) + Y e Fn=Fmltcr e, (m|On). (1.28)

In the long time average, the terms proportional to the off-diagonal matrix elements do
not contribute, as the phases average to zero. Hence, for thermalizing systems, energy
eigenstates themselves act locally as thermal states. This implies for example volume law
entanglement entropy for energy eigenstates of thermalizing Hamiltonians. The analysis
can be be extended to off-diagonal elements, by assuming that local observables behave
like random matrices in the basis of energy eigenstates which are close in energy|[55].
The off-diagonal elements are then given by overlaps of random vectors with similar
energy and hence suppressed by the thermodynamic entropy e~ 25(E) We hence write
the Eigenstate thermalization hypothesis (ETH)[54, 56] ansatz for matrix elements of
operators O:

(n|Olm) ~ 6,,,0(E) + e 25E) f(E,w)R,,,,. (1.29)

E, +E,,

where O(F) and f,(E,w) are smooth function of the energy E = andw=FE, —
E, . R,,, denotes a random variable with zero average and variance one. The connection
to random matrices has implications for the spectrum of thermalizing Hamiltonians. For
example, the level spacing between neighbouring levels exhibit a level repulsion and are
distributed by the Wigner-Dyson distribution

P(A) xx A%eA (1.30)
instead of being Poisson distributed
P(A) o e7¢A (1.31)

which would correspond to independently chosen levels and is common in non-thermalizing
systems. These probes are commonly used to identify thermalizing quantum systems [7,
57]

However, not all quantum systems exhibit thermalization. Similar to classical systems,
it is possible to fine-tune Hamiltonians such that they commute with an extensive number
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of integrals of motions that can be expressed in terms of local operators. Such so-
called integrable systems include non-interacting fermions and bosons as well as Bethe-
integrable models like the X X Z chain[58]. In this case typical eigenstates still observe
ETH[48, 59, 60], but there is a small number of eigenstates which does violate ETH.
This is called weak ETH.

Surprisingly it was found that even generic quantum systems can escape thermalization
by being strongly disordered[61-63]. These Many-body localized (MBL) systems can be
thought of interacting extension of Anderson localization[64]. Localized systems are
characterized by the suppression of transport and retention of information of the initial
state in local observables. This can be understood by the emergence of local integrals
of motions [65-67]. In MBL systems, entanglement entropy grows logarithmically in
time[68], in contrast to the typical linear growth observed in thermalizing and integrable
systems [69-71]. For comprehensive reviews about MBL see Refs. [72-75]

1.4 Matrix Product States

In this section I will briefly review basic Matrix Product State (MPS) techniques which
are used throughout this thesis. For a more comprehensive introduction I refer to the
reviews [76-79].

The Hilbert space dimension of a quantum many-body system is exponential in the
system size. This puts severe limits on computational methods which rely on manipu-
lating the entire state in vector form. Finding an efficient parametrization of relevant
states using fewer parameters allows for larger system size at the cost of making an
approximation. The quality of the approximation generally depends on the number of
parameters used, as well as the state which is being represented.

For one dimensional systems, the Matriz product state (MPS)[80-82] representation,
which is also called Tensor Train decomposition[83] can be such an efficient represen-
tation. A MPS representation of a wavefunction 1 of a quantum system with L sites
which are indexed by the physical indices 1,, is given by:

L
w{in}ﬁzl = H Mlif:?zvkml ‘klszﬂ:l (132)
n=1
where the tensors M are called the MPS kernels, and the indices k,, are the virtual indices.
The dimensionality of this virtual space indexed by the virtual indexes is called the bond
dimension x,,. To simplify notation, one usually uses the maximal bond dimension x =
max(x,,) as the parameter which controls the expressiveness of the MPS representation.
The MPS parametrization uses O(Ldx?) complex parameters. Arbitrary states can be
represented as MPS, one way to do this is for example by using identities for all MPS
kernels except from the first:

L
Ve, = Vi, {0k, llﬂ{ik}gzn,z‘n,{ik}ﬁ:w\kmzl (1.33)
n=
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Of course the bond dimension x of the exact representation of an arbitrary state scales
exponentially in the system size L. An important building block of many MPS algo-
rithm are hence algorithms to compress an MPS, i.e. finding an MPS with lower bond
dimension which approximates the same vector.

To approach the problem of compression, it is useful to focus on a single bond. By
writing the summation over this bond k explicitly, this defines effectively a linear de-
composition of the wavefunction in terms of product states. We can find the Schmidt
decomposition corresponding to Eq. (1.34) [27]:

'n k+1

Xk
(L,k,m) . (R,k,m)
Y, =D Ak%n} w{z (1.34)
m=1
where the left and right factors are orthonormal:
(Lkd) ) (Lkm)
Y B = S (1.35)

We can now describe a local truncation to bond dimension x; by only performing this
sum over the xj. largest Schmidt values. While each of these local truncation step is
globally optimal, this does not apply if multiple bonds are truncated.

For an efficient algorithm, the Schmidt decomposition needs to be computed by only
using local degrees of freedom. We start by noting that the MPS representation defined
in Eq. (1.32) is not unique. On each bond between two kernels, one can introduce a
resolution of identity in form of an invertible matrix 1 = X 'X. This gauge freedom
allows us to find a canonical forms of MPS. The left-canonical form is defined by

L—1
_ (¥,n) (¥,L)
Ve, = (1_[1 Ajn,z‘n,jm) M; ip i =ia =1 (1.36)
where the tensors A fulfill a similar isometry condition
5kn+17k;7+1 - 6k k7 A;:Z”Z kn+1Ak<jj”Ln?kn+1 (137)

It is possible to bring any MPS to left-canonical form, by using successive QR-decomposition,
which decomposes a matrix M = QR in a product of a orthogonal matrix ¢ with
Q" = Q7' and a upper triangular matrix R. Assuming that all matrices to the left
of bond k£ — 1 fulfill the isometry condition Eq. (1.37), we can obtain a MPS where
all matrices to the left of bond k are isometric by decomposing the first non-isometric
matrix.

(k)

kot dris1 ijvikym My Jrt1

(1.38)

and absorb R into the next non-isometric matrix M(**+1) Repeating this step until
k = L results in an MPS in left-canonical form.
Analogous, we define a right-canonical form

L
_ 1) (¥,m)
'l/}{in}ﬁzl - MkhilﬂkQ H Bknﬂinvkrwrl ‘klszJrl:l (139)

n=2
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Where the tensors B fulfill the isometry condition:

O g =BT B 6, (1.40)

/
/
otk Ky i,k ntl

Combining those definitions allow us to define the mized-canonical form:

m—1 L
_ (¢,n) (¢,m) (¥,n)
w{in}£:l - <HL Ak’?b7i7b’k7b+1> MkL7iL?kL+l ( H Bk7wi'n7kn+l) |k1:kL+1:1. (1.41)
n=

n=m-+1

The non-isometric tensor M at position m is called the orthogonality center. The or-
thogonality center can be moved to the left using QR-decomposition using Eq. (1.38).
Analogous, we can use the RQ decomposition to move the orthogonality center one ker-
nel to the left. For both movements the only requirement of the decomposition is the
property of the orthogonal matrix. In particular, we can also move the orthogonality
using the singular value decomposition (SVD) M = UXVT, where U and VT are left
(right) isometries and ¥ is diagonal. By setting Q = U and R = XV, we can use this
decomposition in place of the QR-decomposition. However, this only makes sense if SVD
needs to be computed for a different reason, since SVD algorithms are generally more
expensive and not parallelizable then QR algorithms.

Bringing MPS into a canonical form is helpful, since it allows expressing the Schmidt
decomposition only in terms of the orthogonality center without referencing other MPS
kernels. Decomposing the orthogonality center using the singular value decomposi-

tion (SVD) yields

Xk
Mjkvikvjk+1 - Z EmUjkvikvmVTJfrl:jku (1'42)

m=1
where U fulfills the left-isometry condition in Eq. (1.37) and VT fulfills the right isometry
condition. By inserting this decomposition into the formula for the mixed canonical form
Eq. (1.41), we can see that the sum over the bond k actually corresponds to computing
the Schmidt decomposition! This means, we can truncate the lowest Schmidt values by
only performing local SVD.

The formulation of the full truncation procedure is the following: Start by bringing
the MPS in left canonical form using repeated QR decomposition as described above.
Perform a singular value decomposition on the orthogonality center and truncated to the
desired bond dimension. Use the SVD result to shift the orthogonality center by one site
and repeat until reaching the end of the MPS. Typically truncation is relatively weak;
in this case the different local truncation steps approximately commute and the entire
procedure becomes close to globally optimal. However, it requires L expensive SVD
operations. For this reason, alternative compression schemes based on the variational
method[76] or QR decomposition[84] are used.

Not all states in the Hilbert space can be efficiently represented as MPS. To have
a representation with few parameters it is required that the Schmidt values of each
bipartition decay fast. The entanglement entropy between bipartition can be used to
estimate how fast the Schmidt values decay. If entanglement entropy is low, Schmidt
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values decay fast, which in turn means that such states can be closely approximated
by MPS of low bond dimension. Since ground states of gapped Hamiltonian have area
law entanglement entropy[34], this means that MPS are in one dimension an effective
tool to study equilibrium physics. However, in chaotic and integrable quantum systems,
entanglement entropy scales linear with evolution time after quantum quenches[69-71].
This makes treating out-of-equilibrium problems challenging.

Even though time evolved states generically have entanglement entropy linear in evo-
lution time, we can formulate algorithms to compute their MPS representation. High
entanglement entropy will eventually limit the reachable time scales. One straight for-
ward way is to utilize a trotter decomposition of the time evolution operator. This allows
us to approximate the time evolution operator as matrix product operator with low bond
dimension. Repeatedly applying this operator and compressing the result yields a time
evolution algorithm which is called Time evolving block decimation (TEBD) [85, 86]. For
continuous time evolution, it is also possible to pose the time evolution problem as a local
optimization problem, which is called Time evolving variational principle (TDVP) [87].
These algorithms are reviewed in detail in Refs. [88-90].

In recent years a number of ideas have been introduced to mitigate the high temporal
entanglement for time evolved states. The recurring idea is to remove correlations which
contribute to high entanglement entropy, but are not necessary to compute the time
evolution of operators. This can be done by truncation while preserving symmetries[91],
which also works for the time evolution of mixed states, called Density matriz trunca-
tion (DMT) [92, 93]. An alternative approach is to convert entangled degrees of freedom
into classical mixture[94] or to manually add dissipation operators which reduce long
range entanglement, as in dissipation assisted operator evolution (DAOE) [95, 96]

Another approach to the problem of entanglement growth are transversal contraction
schemes [6, 97-100], which are closely related to the IM approach laid out in this thesis.
More details on these approaches can be found in Chap. 3.
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2.1 Introduction

Simulating the dynamics of observables in quantum-many body systems is a central
challenge in the field of computational quantum physics. For generic quantum system,
the conventional approach to this problem is to find an efficient approximation of the
wavefunction. While ground states of local Hamiltonians in low dimensions can be
parametrized efficiently as matrix product states [34, 78], the complexity of time evolved
states increases exponentially with evolution time in thermalizing systems [69-71]. This
limits the simulation time of algorithms like time evolving block decimation (TEBD) [85,
86, 101] or the time dependent variational principle (TDVP)[87].

This complexity largely encodes for quantum correlations between distant parts of
thermalizing systems. For the computation of local observables, many of these long range
correlations are not relevant. Approaches like dissipation assisted operator evolution [95,
96], density matrix truncation [92, 93] or local purification [102, 103], take advantage
of this fact by truncating some of those irrelevant correlations and are hence able to
improve the simulation times. However, these approaches require insight of the physics
in a given quantum system to determine which correlations can safely be discarded.

Here I introduce a generic approach to the problem of local dynamics based on Feyn-
man and Vernon’s influence functional [104] and inspired by the theory of open quantum
systems as well as transversal folding algorithms [97, 99]. We consider the discrete time
evolution of a quantum many-body system and express it as a tensor network. Now, we
focus on a subsystem and view the rest of the many-body system as its quantum envi-
ronment. By contracting all legs associated with bath degrees of freedom of the tensor
network we obtain the Influence Matriz (IM) of the bath. All of the environment’s prop-
erties are now encoded in the IM. Analogous to how the knowledge of the density matrix
of a quantum state is sufficient to predict the probability distribution of results of all
possible quantum measurements, the knowledge of the IM of an environment is sufficient
to predict dynamics for arbitrary quantum systems coupled to this environment.

Treating the influence matrix as a ”"wave function“ in the temporal domain we intro-
duce a Matriz Product State (MPS) representation of the IM. This step corresponds to
replacing a large complicated quantum environment by a smaller environment where the
size is given by the MPS bond dimension, effectively truncating degrees of freedom ir-
relevant for local time evolution. The compression of the environment can be performed
automatically and independently of further analytical insight, using conventional singu-
lar value decomposition. To quantify for which quantum environments such an efficient
IM representation exists, the concept of Temporal Entanglement (TE) is introduced.
Physically, TE can be interpreted as the amount of "quantum memory* of the bath has.
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Low TE indicates the existence of an efficient MPS representation of the IM. In later
chapters of this thesis, several classes of quantum systems where TE is low are explored,
such as near dual-unitary circuits in Chap. 4, many-body localized systems in Chap. 5,
or free fermion systems in Chap.6. Besides being an effective numerical tool, the IM
approach can also serve as a starting point for analytical studies. Treating parts of a
homogeneous quantum system as environment for the remaining subsystem connects
dynamical properties of the quantum system to properties of the IM.

This chapter is structured as follows. First we define the IM in terms of the discrete
time evolution of a quantum system coupled to an environment. In the next section, we
discuss how the IM can be represented as MPS and introduce the TE, which determines
whether this representation is efficient. We then discuss how we can compute the time
evolution of observables as well as the time evolution of the local density matrix using
the MPS representation. Finally we connect this discussion to the Keldysh path integral
and the influence functional introduced by Feynman and Vernon.

2.2 Influence matrix

In this section, I derive the IM as a representation of a quantum environment by con-
sidering the time evolution of a quantum system coupled to it.

For the purposes of this thesis, a quantum environment can be any part of a larger
quantum system. The targeted local observables can not have support within the en-
vironment. While this discussion can be extended to more general initial states, here
we will focus on quenches from a decoupled environment. Beyond these points, there
are no restriction on the dynamics or structure of a quantum environment. This is in
contrast to the typical treatment of environments in the field of open quantum system,
where the Markovianity approximation usually implies that the environment degrees of
freedom are faster then the ones of the subsystem coupled to it[105].

We consider the time evolution of a quantum system consisting of the environment
coupled to a subsystem. The Hilbert space of the subsystem is further factorized into
the Hilbert space of the interface which couples to the environment and the rest, which
does not. Hence our total Hilbert space A can be expressed as

K = Frenv ® j_[if ® j_[rest. (21)

In the following, the state of the entire quantum system can be mixed and is hence
described by a density matrix. The time evolution can be dissipative and is described
by quantum channels. For a brief review of the theory of open quantum systems refer
to Sec. 1.2.

The state of the quantum system at each point in time will be described by a density
matrix p,,(7) where the vectorized indices correspond to the environment, interface
and rest Hilbert space respectively. We consider a quantum quench where the coupling
of the subsystem to the environment at time is switched on at 7 = 0. The initial state of
the environment is chosen to be a product state between environment and subsystem:

p<0)au}\ = pgp,i)\ (22)
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(@) (b) ©
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Figure 2.1: The effect of the environment on local time evolution can be captured by
the IM. (a) Tensor network representing the time evolved reduced density
matrix p°(t = 3) of a subsystem coupled to a quantum environment. The
initial state is a product state between the environment and the subsystem
(orange ovals). The time evolution alternates between the channel V acting
on the environment and part of the subsystem (blue rounded boxes) and a
channel W acting only on the subsystem (red rounded boxes). After the last
step, the environment is traced out (purple trapezoid). (b) The quantum
environment can replaced by the IM tensor (green rounded box) without
any regards to its internal structure (green shaded region of (a)). (¢) This
tensor can in turn be parametrized by a MPS.
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We consider a discrete time evolution which is split between the time evolution of
the environment including the coupling to the subsystem and the time evolution of
the subsystem. This is realized by applying a channel Vg, , acting on the vectorized
environment and interface density matrix space on integer time steps and a channel
Wy, ux acting on the vectorized subsystem density matrix space on half-integer time
steps. The discrete time evolution of the density matrix is given by

1
p(T + §>Bw~e = Vﬁy,aup(’r)aun

1
p<7_ + 1)ow)\ = Wuk,unp@_ + 5)0(/1,&‘ (23)

This structure of time evolution is generic in the sense that any stroboscopic time evolu-
tion represented by channels on the entire quantum system can be approximated using
such decomposition given sufficient additional time steps. For a concrete example of how
such a time discretization can be obtained for a continuous time, Hamiltonian model,
refer to chapter 3.

At any time step, the density matrix of the subsystem can be obtained by tracing over
the environment:

piTnT(T) = jlcEpraTMTRT(T). (24)

To compute the density matrix of the subsystem at time T, we iterate the time evolution
Eq. (2.3) and trace out the environment as in Eq. (2.4).

T—-1
pr)\T(T> = ]]-gT (H W#T+1K-,T+17VTK/TVaT+1VT;a1—IUJT) pglpilnl (25)
T=1

This contraction is depicted as a tensor network diagram in Fig. 2.1. We now want
to encapsulate the effect of the environment by collecting terms which depend on the
environment’s internal state, i.e. all terms which possess environment indices «, 8. This
leaves us with the following tensor which we call the Influence Matriz (IM):

T
f{NT7VT}I;f = II_ET (H Va"”l/";a";ﬂ) pgl (26)

T=1

The time-evolved density matrix of the subsystem can be expressed in terms of this new
tensor (see Fig. 2.1):

T-1
p(T)yT)\T — j{uf,yr}z;l (H WMT+1HT+17V‘FHT) pillﬁl . (2.7)
=1

Note that the time evolution of the subsystem can now entirely be expressed in terms
of the subsystem time evolution represented by the channel W and the IM of the en-
vironment. The internal structure of the environment given by the environment time
evolution channel V and the initial state p¥ is no longer referenced when computing the
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local time evolution of the subsystem. While this implies that it is no longer possible
to compute any observable with support inside of the environment Hilbert space, it also
means that we can switch out a complicated, large environment with a simpler, smaller
environment as long as their IM are the same.

The IM represent the minimal amount of information necessary to fully characterize
a quantum environment. It can be seen as a kind of density matrix for quantum en-
vironments: A density matrix is sufficient to predict the distribution of measurement
outcomes for arbitrary measurements, regardless of how the state is prepared or what its
purification is (see 1.2). The IM is sufficient to predict the time evolution of arbitrary
subsystems coupled to a quantum environment, regardless of how the environment is in-
ternally realized. We can hence view the IM as a tool to classify generic, non-Markovian
quantum environments. Indeed, a similar object to the IM called Process tensor has
been introduced in the field of open quantum systems to generalize channels beyond
Markovian environments [43-45].

The legs of the IM can be understood as pairs of input and output legs where at
each time step the state of the interface is acted upon by the environment. The IM
has therefore 27" legs where each leg corresponds to the vectorized Hilbert space of the
interface. The dimensionality of the IM is hence given by

dim [.#] = (dim(FF))4T. (2.8)

If we take only a single time step, the space of IM reduces to the space of channels
on the interface Hilbert space. Longer IM can be interpreted as a channel between all
input legs and all output legs. However, causality implies further constraints on the IM
tensor. The channel structure of the IM implies that the IM when viewed as a state on
a virtual vectorized Hilbert space formed by the input and output legs is proportional
to a density matrix, called the Choi matrix[41, 43, 106] (see Sec. 1.2).

The distinction between environment and subsystem is an arbitrary choice. The only
restriction is that the time evolution of the entire quantum system can be efficiently
cast in the form of Eq. (2.3). In particular, we can use the IM approach to analyze
homogeneous systems by studying how parts of the system acts on other parts. Ther-
malization in ergodic system can be understood as the quantum system acting as an
efficient thermal bath on its subsystem. In localized systems, local environment are not
thermal bath. This dynamical property of quantum systems is therefore encoded in the
IM of its subsystems. We explore how the IM can be used as an analytical starting point
to study thermalization in large quantum systems in Chapters 4 and 5.

It is possible to apply this procedure of splitting of the environment and encapsulating
its effect in an IM recursively. For example the bulk of an infinite chain can be seen as
a subsystem coupled to two environments, one representing the left semi-infinite chain
and one representing the right semi-infinite chain. For details of how observables can
be computed in such a setup, see Sec. 2.4 below. It is also possible to consider more
complex geometries, where each IM can be used as a building block, representing an
entire, potentially infinite, environment. This was explored in the context of a related
approach called Time evolving matrix product operator (TEMPO)[107-110].
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For specific environment exact expressions for the IM have been found. One such
example is dual unitary circuits [111, 112] with infinite temperature initial conditions
which is discussed in [1] as well as in Chap. 4 of this Thesis. Furthermore exact solutions
have been found for Rule 54 quantum cellular automata [113], and more general initial
conditions for certain dual unitary circuits [10, 114].

2.3 Temporal entanglement and MPS representation

In this section, it is explored how the IM tensor defined in Eq. (2.6) can be efficiently
parametrized as matrix product state (MPS).

When viewed as a tensor, the dimensionality of the IM given by Eq. (2.8) scales
exponentially in the number of time steps 7. For numerical methods based on the
IM, this puts strong limits on the number of time steps one can reach if the IM is
implemented as a full vector. In order to perform numerical computations, it is thus
necessary to find an efficient parametrization of this object with fewer parameters. The
IM has a temporal structure, where different legs are associated with different times. For
thermalizing systems where information is quickly dissipated, we expect little correlation
between early and late times. This suggests representing the IM as MPS.

In trotterized Hamiltonian models, the bath changes the subsystem only slightly at
each time step, resulting in maximal entanglement between the input and output legs.
It is thus efficient to group the corresponding input and output legs on the same MPS
kernel. This means that the physical dimension is given by d* where d = dim(A') is
the interface Hilbert space dimension. Using the definition and conventions in Eq. (1.32)
the MPS representation of the IM is given by:

T
J— T
Furarigs = [ ME ool 29

=1

where M™ are the MPS kernels associated with each time step and i, j correspond to the
virtual indices.

Let us compare the MPS representation in Eq. (2.9) with the definition of the IM in
Eq. (2.6). We can interpret the MPS kernels as defining the time evolution of a virtual
environment with the same IM as the original environment. This interpretation will
be used extensively in Sec. 2.4 to efficiently compute observables for quantum systems
where environments are described by IM in MPS form. However, the MPS kernels M™
are in general not channels; their properties depend on the gauge of the MPS. However,
we can still understand the square root of the bond dimension as an estimate of the size
of the Hilbert space such an effective environment would have.

The number of parameters for the MPS parametrization and hence the memory com-
plexity is given by O(T'x2d*) which scales quadratically with the bond dimension. For
this reason it is important to find an approximate MPS representation with a low bond
dimension. This can be achieved by truncating the lowest singular value, which is a
well-known algorithm for MPS and described in Sec. 1.4. This procedure ensures that
for each truncation steps the overlap according to the square norm of the compressed
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MPS with the original MPS is maximized while constraining the bond dimension of the
compressed MPS. It should be noted that the square norm as measure for distance be-
tween IM is not perfect, as it does not represent the difficulty of distinguishing different
IMs. However, even the easier problem of finding a good measure of distances between
channels is a problem under active research[115, 116].

To compress a MPS efficiently it is important that legs are ordered in a way where
strongly entangled legs are close to each other. The ordering implied by Eq. (2.9) is
efficient, in particular it turns out to be crucial to use the vectorized Hilbert space
for each leg. While this order is intuitive in the derivation laid out in this work, it
is not obvious if the IM is derived from Keldysh tensor networks for unitary baths.
On the Keldysh contour the vectorized legs is split between the forward and backward
contour, see Sec. 2.5 below. However, it was found by works using this approach [97-99]
that ”folding“ the Keldysh contour and effectively using vectorized legs is required for
obtaining low bond dimensions. The difference between "folded“ and “unfolded* IM
entanglement entropy is briefly discussed in Chapter 5. Physically, correlations between
equal times on the forward and backward contour that is, within the vectorized space,
correspond to dissipation. The compression of unitary baths can therefore be understood
as trading a large unitary bath for a small dissipative bath.

The IM-MPS bond dimension x necessary for a given accuracy is an intrinsic property
of the quantum environment. It does not depend on the concrete realization and can
be understood as the quantum memory of the environment. This bond dimension also
corresponds to the computational complexity of simulating such an environment. Since
it is difficult to estimate the minimum bond dimension corresponding to a given accuracy,
we introduce the quantity temporal entanglement (TE) to measure the complexity of the
IM. TE is defined as the maximal bipartite von-Neumann entanglement entropy of the
IM as defined in Eq. (2.6) when square normalized like a wavefunction. Formally this
means that the TE for a bipartition at timestep 7/ can be defined in terms of a temporal
reduced density matrix & as [117]

T
() _ .
R I PAd T ARt H O O, (2.10)
S(1) = —Tr(2) log 2M) (2.11)

LR avAl
states which correspond to Markovian baths, TE is zero. If TE is lflighfidlle expectation
is that a high bond dimension y is necessary to approximate the IM well. Since the
IM is proportional to a density matrix, TE can be seen as an operator space entangle-
ment entropy [118]. While such entropies are widely used to estimate the complexity
of density matrices, they do not correspond to bounds on the bond dimension like the
conventional entanglement entropy of wave function. For TE, in particular the Trotter
limit of Hamiltonian dynamics can be dangerous, as TE often vanishes in this limit, even
for models which can not be approximated as product states [8]. However, even with
this caveat TE remains a useful measure to estimate IM complexity.

In recent years, TE has been extensively studied for different systems. In integrable

with the square norm of the influence matrix .7 = .7 pr T . For product
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2 Influence matrix

systems with [10] and without [5, 6, 119] interaction was shown to scale sublinearly in
time. An intuitive argument for the case of free quasi-particles is presented in Chapter 3
and Ref. [6]: The key point is that quasi-particles travelling away from the subsystem can
never return and hence can be truncated for the purposes of time evolution, analogous
to some dissipation assisted operator evolution schemes[95, 96], except that this is done
implicitely and automatically by singular value truncation. Low TE for environments
consisiting of free fermions enables the use of the IM approach for quantum impurity
problems, which is described in Chapter 6 and Refs. [3, 119]. Another intuitive case
where TE is low is if the environment is intrinsically dissipative [8]. Here the dissipation
time sets the memory time scale limiting TE. This was utilized to simulate an experiment
on a real quantum computer in Ref. [4]. Many-Body localized systems where strong
disorder prevents thermalization are another cathegory of environments with low TE.
While in this case memory time is long, the bath is effectively a shallow bath of only
a few qubits which limits the TE. This is further discussed in Chapter 5 and Ref. [2].
Analytically it was found that TE in generic, chaotic systems scales as a volume law
with evolution time [114, 117]. A priori this is surprising since thermalizing systems act
dissipatively on local subsystems. For now it is an open question what the multi-time
correlation, which contribute to high TE encode. However, in the proximity to dual
unitary points[111, 112] for infinite temperature initial states, TE is parametrically low
as shown in Chapter 4 as well as Ref. [1]. This allows for relatively long evolution times.
For environments with small Hilbert space dimension dim(F“"), an efficient MPS
representations can be obtained via compression from the definition in Eq. (2.6). For
large or even infinite environments this is infeasible. Hence algorithms which can com-
pute the MPS form of the IM of such environments are required. In Chapters 3 and 6 two
such approaches for one dimensional respectively free fermionic systems are described.

2.4 Compute observables

In this section we discuss how one can compute the full time evolution of the density
matrix including for intermediate steps of a subsystem coupled to one or multiple envi-
ronments described by IMs.

While we can use Eq. (2.7) to compute the reduced density matrix of the subsystem
for the final time, we usually also want to compute the reduced density matrix for all
intermediate times in order to fully understand the trajectory of the system. Instead we
view the MPS kernels of the IM as a kind of time evolution operators on the environment
and interface. We have that in typical models, the environment is composed of multiple
independent environments. For example if one wants to compute the dynamics of a
subsystem in the bulk of a infinite chain, the environment is formed by two effectively
independent semi-infinite chains which are only coupled via the subsystem. We can
take advantage of this structure by encoding independent environments in separate IMs.
Formally this can be done by using the definition Eq. (2.6) recursively.

For concreteness, I formulate here the algorithm for a subsystem coupled to two en-
vironments, which I will call left and right environments. Those environments will be
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a) b)

Figure 2.2: Computing the time evolved density matrix p°(¢) of a subsystem coupled
to two environments described by IMs in MPS form {M7}Z_,. (a) Recur-
sion for the vectors r” in virtual MPS space representing the trace over the
environment. (b) Computation of an integer time step subsystem density
matrix p°(t = 1) (c) Contraction corresponding to the computation of the
subsystem density matrix at a half-integer time step p°(t = 1 + %)

represented by the IM-MPS {M7™}T_ and {M7)}T_ respectively. We define the
augmented density matriz (ADM) p; ,5p; as a tensor with 5 indices, one index 4 cor-
responding to the virtual space of the left IM-MPS, two indices «, 8 corresponding to
the vectorized Hilbert space H/(L/E) of the interface between the subsystem and the
left /right environment, one index X for the vectorized Hilbert space of the remaining
Hilbert space FH "¢t of the subsystem and one index j corresponding to the virtual space
of the right IM-MPS. This tensor will represent the internal state during our algorithm.
We compute the time evolution of the ADM as in Fig. 2.2, where the ADM is depicted

by the yellow shaded region:

- - 1

Pians.i(T) = Worg.arx g Piarn g (T — 5) (2.12)
~ 1 T, L ~ T, R
Piaxg i (T + §> = Mi/,ia)f,iﬂz’,a/w,j’Mj',%ﬁ)’,j' (2.13)

To compute the reduced density matrix of the subsystem from the ADM, we need to
understand what ”tracing out the environment®“ means for the virtual space. At the last
step this is not necessary, since the trace over the environment is already included in
the definition of the IM (c.f. Eq. (2.6)). For all other time steps 7 we can find a vector
rL/B.T in virtual space which corresponds to computing the trace over the environment.

We can recursively compute the trace vectors /%7 by contracting the IM-MPS ker-
nels with a possible time evolution, according to Fig. 2.2

rT (LI R) = 1 (2.14)
(L/R) _ 1 ry1(L/R), r(L/R)
T’i = WTJ Mi,aﬁ,j I]'Q:I]'B (215)
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2 Influence matrix

where d'*/%) = dim(F ffL /1) is the (unvectorized) Hilbert space dimension of the interface
corresponding to the left and right environment respectively. The reduced density matrix
of the subsystem can now be computed by contracting the internal ADM with the trace
vectors as shown in Fig. 2.2:

7, L ~ 7,L
pg)\B(T) = pi,a)\ﬁ,j(T)Tj ) (2.16)
1 T+1,L ~ T+1,L
ngﬂ(T + 5) = 7“1‘+ pi,ak,@,j<7>rj+ . (2.17)

Let us briefly analyze the time and memory complexity of this algorithm. For com-
puting the time evolution of a subsystem with Hilbert space dimension D coupled to n
environments represented by IM-MPS with bond dimension y, this the ADM requires
O(x™D?) memory. The IM itself requires O(Tx?d*) memory, where d is the dimension
of the interface Hilbert space. The time complexity of the contraction algorithm is given
by O(nx“d?” + D**) where w depends on the matrix multiplication algorithm used and
is w = 3 for the "OpenBLAS* implementation [120, 121] used for the numerics in this
thesis. However, the time complexity is less useful then it appears, since matrix multipli-
cation can be parallelized efficiently and accelerated by using GPUs or TPUs. Hence the
question of whether the ADM fits into the memory of those devices is often the relevant
question when assessing the computational limits.

2.5 Keldysh path integral

We discuss how to connect the IM to Feynman and Vernon’s Influence functional [104]
which arises from the Keldysh path integral.

Before introducing the path integral formalism, it is necessary to specify the structure
of the Hilbert spaces H ™, Ff and F*. For the purposes of this section, we will
assume that these Hilbert spaces are bosonic or fermionic Fock spaces generated by the
vectors of raising operators denoted by af,b’ and cf respectively. We introduce the
coherent states on these Fock spaces as

W)= [ a0,

)= [ e dnjo.

o) = [ e dplo) . (21)
where |0) are the vacuum states and 1), 1, ¢ are vectors of normal or Grassmann variables,

depending on whether the respective Hilbert spaces are bosonic or fermionic. We find
the resolutions of identity on the environment Hilbert space in terms of coherent states:

Loy = / depigpe o) (3, (2.19)

and analogous for the other two Hilbert spaces.
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2 Influence matrix

With these tools, we can now define the Keldysh path integral based on the time
evolution of the density matrix in Eq. (2.3). Let us consider a system where the under-
lying dynamics is Hamiltonian. The time evolution of the form in Eq. (2.3) can then be
defined by the operators

Va (1+i6tH®) @ (1 — i6tH) (2.20)
W a (1 +i0tH"P) ® (1 — it H*"P). (2.21)

where 6t — 0 is a small time step, H* = H™ + H"P the sum of the environment and
coupling Hamiltonian and H*"P the Hamiltonian for the subsystem. We can express the
Keldysh partition function, which is really just the trace over the final density matrix
as:

Z[0] = Tr[p(T)] =1
Z[0] = Tr [((1 + i6t H) (1 + idt H"P))Tp(0)((L — i6t H*) (1 — ist H"P))T]  (2.22)

Using the cyclicity of the trace, this can be seen as a time evolution along a closed loop
in time. Up to time t,,,, we evolve forward in time, afterwards the direction of time is
changed and we evolve backwards in time. This defines the Keldysh contour.

We now write this expression as a Keldysh path integral by inserting the resolutions
of identity Eq.(2.19) between each time steps and taking the continuoum limit §¢ — 0.
We obtain:

Z[O] :/D’(,[JD’I/JDUZ)UZ){’QZ)SOQ5[1/’1"",71771#;9,90]

S, P, n. 7, 0,0 = / dtypd, 2 + 70,0 + @O, + io () H (1,4, n,7) + io (t) H™ (¢, @,1,7)
C
(2.23)

where H®(1,,n,7) and H*"P(p,®,n,7) are the coherent state Hamiltonian matrix
elements corresponding the environment with coupling and the subsystem respectively.
They are defined as:

He (4,4, 1,m) = (|(n|H*|n)|4)
H**(p,%,1,m) = (@|(n|H*""n)|p) (2.24)

The integrals [ run along the Keldysh contour, which corresponds to the forward
integral from O to ¢, and the backward integral from ¢, to 0. To distinguish these
Keldysh branches we use o(t) = +1 on the forward contour and o(t) = —1 for the
backward contour.

Separating the environment terms from the terms corresponding to the subsystem
in Eq. (2.23) and we obtain a version of Feynman and Vernon’s celebrated influence
functional[104, 122]:

In,7) :/Q)¢Z)¢efcdt¢8t¢+ia(t)H“(¢7¢,nm) (2.25)
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The Keldysh path-integral can be recovered analagous to Eq. (2.7)
Zm%i/@wﬂ¢DmMﬂmméﬂﬂW@W”””“W”“m (2.26)

Note that the effective action of the subsystem does not contain any environment terms
anymore. The Influence functional formalism was used to study harmonic oscillators[122]
or particle reservoirs [123, 124].

Using the definition Eq. (2.18) we can explicitely write the influence matrix in terms
of coherent states.

fz/%wmmwwm (2.27)

where the bra corresponds to the "input® legs and the ket correspond to the output leg.
The IM can hence be understood as a discrete version of the Feynman vernon infuence
functional[3, 107, 109, 119] . For more details and concrete examples on how path-
integral expressions can be used in the context of the IM formalism, refer to Chapters 4
and 6.
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3 Influence Matrix in 14+1 dimensions

3.1 Computing the Influence Matrix

In the previous chapter, I established how the effect of a quantum environment on the
dynamics of any quantum system coupled to it can be parametrized in the form of an
influence matriz (IM). For certain quantum environments, specifically those with low
temporal entanglement (TE), the influence matrix can be closely approximated by a
matriz product state (MPS) with low bond dimension. However, Finding such a low
bond dimension MPS representation of the IM for large quantum environments, is a
separate challenge.

In this chapter, I consider one-dimensional environments in the form of chains. Each
component of these environments is a quantum system with a small local Hilbert space;
for example a quantum spin or a qubit, which can only interact with its two nearest
neighbours. Due to the light-cone effect [125, 126] in quantum chains, the limit of an IM
corresponding to a semi-infinite chain with a fixed maximal evolution time is well defined.
The focus of this chapter will be on computing this thermodynamic IM. The key idea is
that the last component of a chain is itself a quantum system which is coupled to the
environment with the last component removed. Formalizing this idea leads to a recursion
relation which relates the IM of the environment with n components, to the IM of the
environment with n—1 components. In the case of a spatially homogeneous environment,
this recursion relation is also a self-consistency equation for the thermodynamic IM.

Contracting the tensor network corresponding to the time evolution of a quantum
chain in the transversal direction [97-99] can be understood as recursively comput-
ing the thermodynamic IM. We observe that during this transverse contraction algo-
rithm (TCA), intermediate IMs, which correspond to finite chains, generically have vol-
ume law TE. This holds even if the final, thermodynamic IM has low TE. We call this
phenomenon, which limits the efficiency of the TCA, the temporal entanglement bar-
rier (TEB). Utilizing the entanglement entropy formula by Calabrese and Cardy [69]
the origin of the TEB in integrable models can be traced back to the reflection of quasi-
particles. Those quasi-particles are reflected at the spatial boundary of finite chains.
This explains the dependence of the TEB on the spatial boundary conditions, as well
as the volume law nature and shape of the TEB. Numerical computation support the
assumption that this idea generalizes beyond integrable models Armed with this insight,
we formulate the Light-cone growth algorithm (LCGA) [6, 100], where the maximal evo-
lution time is increased with the environment size along the light-cone. This ensures
that the intermediate IMs in this algorithm are also thermodynamic IMs, only with a
shorter maximal evolution time then the final IM. In the translation invariant case, TE is
monotonously increasing with maximal evolution time for thermodynamic IMs. Hence
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3 Influence Matrix in 141 dimensions

b)

5

v(2+)) (4+D) 1 (6+3)

v (1+3) V(3+3) (5+D) (T+D)
1 (2+3) V(4+3) 1 (6+5)

y(1+) y(3+) v (5+3) V(T+D)
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y(143) y(3+3) y(5+3) V(T+3)
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G (T =3,L=5) T (T =3,L=06) T[T =3,L=T)

Figure 3.1: (a) Tensor network diagram of the IM .#(T = 3,L = 6) corresponding
to a one dimensional brickwork circuit as defined in Eq. (3.9). The two
component channels V are depicted by blue rounded rectangles, the initial
density matrices by orange circles and the final trace operation by purple
trapezoids. The IM (T = 3,L = 6) can be obtained recursively using
Eq. (3.12) by applying the (even layer) dual transfer matrix 7 (T = 3, L = 6),
which is defined in Eq. (3.10) and is shaded in grey, to the IM of the shorter
chain #(T = 3,L = 5) which is shaded in green. (b) Depiction of an odd
layer transfer matrix .7 (T = 3, L = 7) corresponding to Eq. (3.11).

for translationally invariant one dimensional environments with low TE, LCGA is an
efficient algorithm to compute local dynamics.

This chapter is structured as follows: In the first section we introduce brickwork
circuits and the TCA. In the next section we establish the TEB in this algorithm and
discuss its origin using the quasi-particle picture. Then we formulate the LCGA and show
that it avoids the TEB. Finally, we demonstrate that the LCGA approach is competitive
with other state of the art methods.

3.2 Transversal contraction of semi-infinite chains

In this section, we introduce the transverse contraction algorithm (TCA) which computes
the IM of a semi-infinite chain by iteratively computing the IM with fixed maximal
evolution time of chains with increasing length.

One dimensional systems with local interaction have a finite speed of information
propagation v, which is called the Lieb-Robinson velocity[125, 126]. Correlations outside
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3 Influence Matrix in 141 dimensions

of the light-cone are exponentially suppressed, i.e.
O(t = 0,2 = 2/)O(z = 0,t = t'))] < cye= 1@ —vat"), (3.1)

where ¢;, ¢, are some numerical constants. In particular this also means that the effects
of initial conditions and dynamics on the local evolution outside of the light-cone are
exponentially suppressed. Since IM have a finite maximal evolution time ¢_ .., up to
which it can be used to compute local observables, IMs (¢, .., L) of a large finite

environment of length L > wv,t,,. converge exponentially to the thermodynamic IM
j(tmaxﬁ m)’

I (taxes L > v,t

max’ g 'max

) = I (o, 00) + O(e™ 1)), (3.2)

This allows us to obtain the thermodynamic IM by considering the limit of a sequence
of IM corresponding to chains of increasing length L and constant maximal evolution
time ¢,

We consider a chain of L + 1 components with nearest neighbour interactions, where
the first L components form the environment acting on the subsystem consisting only of
the last component. To compute the IM corresponding to the environment of the first
L components, we start with a Hamiltonian for the entire chain with L + 1 components.
This Hamiltonian can be expressed as sum of nearest neighbour terms H(n + %) which
are only supported on the n-th and n + 1-th component,

H:ZL:H(nnL;) (3.3)

Next, we discretize time into equal steps of length dt and find the time evolution operator
U as well as the time evolution channel V over one time interval as

U=¢clt vV=UU. (3.4)

To make the following expressions more transparent, we assign vectorized indices a,
to the vectorized degree of freedom of component n. The channel V will hence be

defined by its components Vis Vo fq Bt With this time evolution channel, the initial

density matrix of the environment pfa 1o and the trace operation at the final time

B ntn=1
{Bitia
Eq. (2.6) and relabelling the index of the last component as it forms the subsystem

T — T. T —_ T.
arp . =ph B =vT

step 1" on the environment 1 , we can now find formally the IM by employing

T-1
_q1F E
Py, (T L) = T (Hl V{b;}ﬁlm;{aﬁl}ﬁlvﬂl) Plaryr (3.5)

In practice it is infeasible to evaluate this expression directly since the Hilbert space
dimension of the environment grows exponentially in L. This is especially problematic
since we are interested in the large L — oo limit. Instead we will compute the IM
corresponding to length L recursively from the IM corresponding to length L — 1.
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3 Influence Matrix in 141 dimensions

To set up such a recursion relation, we separate the interaction term of the last compo-
nent of the environment with the subsystem, i.e. the L-th component with the L 4+ 1-th
component of the chain. We can achieve this by approximating the time evolution chan-
nel V using the first order Suzuki-Trotter decomposition:

L/2 ( . L/2—1 ( 3)
o 2n+= 2n+3s 2
‘/{5 }£+117{0‘n}1‘+1 - ( VﬁQnﬁQi+1;a2na2n+l) ( H Vﬂ2n+1%2n+2;a2n+la2n+2> +O(6t )

n=1 n=1
(3.6)
Vntd) — pistH(ntY) g o-idtH(nt}) . (3.7)

This gives us a quantum circuit representation consisting of two component gates of
the many-body channel V. We call a circuit with this structure a brickwork circuit. It
is important to note that we could also start from a circuit with this structure, i.e. a
environment where the time evolution is given by channels of the structure described in
Eq. (3.6). In the following we will not require that the channels are unitary, close to
identity or that they are constant in time. This allows us for example to treat Floquet
systems within the same framework, use a second order Suzuki-Trotter decomposition
or describe intrinsically dissipative systems. To reflect this, we will refer from now on
primarily to the number of timesteps denoted by the Greek letter Tinstead of the physical
time ¢ = 70t of the underlying Hamiltonian. Capital T refers to the total number of time
steps corresponding to the maximal evolution time ¢, = T'0t.

We assume that the initial density matrix of the environment, p¥ is a product state,
ie.

L
p{an}n 1 Hl pgn (38)
n=

While this derivation can be generalized to entangled initial state, the details of how to
achieve this are out of the scope of this chapter. One possibility is adding additional
brickwork time evolution steps which evolve the entangled initial state from a product
initial state. Another possibility is, to take the density matrix of the entangled initial
state in MPO form and add an extra leg to the IM corresponding to the virtual bond of
this MPO.

Even if the underlying Hamiltonian was translationally invariant, the brickwork circuit
in Eq. (3.6) breaks the translational symmetry by distinguishing even and odd sites. Of
course, in the Suzuki-Trotter limit 6¢ — 0, any translational symmetry of the Hamilto-
nian model is restored. For concreteness, we will assume in the following two equations
that L is even, the formulas for odd values of L are analogous.

We now substitute the brickwork representation of V, as well as the factorized initial
state p¥ into the expression for the IM Eq. (3.5).

T-1
(2n+%) 2n—1 ,2n
j{ﬂ VT}T T 2N H ]lﬂ -1 an (H 52n 1B2n7a2n 1a2nVﬁ2nﬁ2n+1;a2na2n+1) pa%n—lpa%n

- (3.9)
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This equation represents the IM as a tensor network contraction, which is graphically
depicted in Fig. 3.1. We find that a subset of this tensor network contracts to the IM
F(T,L — 1) of the environment consisting of the first L — 1 components acting on the
L-th component (green shaded region in Fig. 3.1). The rest of the tensor network (grey
shaded area in Fig. 3.1) can be understood as a dual transfer matriz 7 (T, L) acting
on the space of IMs, which maps the IM . (7", L — 1) to the IM .#(T', L). This defines
an “evolution” in the space dimension instead of the conventional time evolution. Its
component are defined by

T
‘?{MTWT}I:D{KT,)J}Z“:l (T, 2N> == II-RTJrl (H VHT+1V7‘;AT“T> ,0£1 (310)
T=1

for even L (grey shaded region in Fig. 3.1(a)) and

T
Q{MT’VT}Z:I’{&T7AT}ZW:1 (T7 2N + 1) == ]]‘AT (H VK;TUT;ATIMT) pf\/() (3.11)
=1

for L odd (depicted in Fig. 3.1(b)). This leads us to a recursion relation for the IM
Hurwryr (T L) = Ty pnyr | g aryr (T D) I ey (T, L= 1), (3.12)

using the boundary IM as initial condition. For example, open boundary conditions are
encoded by the IM

T
FOBC o (1,0) = [[ 6,r0r (3.13)
=1

{pm v} I,

whereas perfect dephaser boundary conditions which correspond to boundary conditions
where a perfectly dephasing channel (see Sec. 1.2) is applied to the boundary at each
step, are encoded by the IM

T
FPD (T,0) =[] 6,r-1,m- (3.14)
=1

{NTaVT}Zzl

Based on this recursion relation the transverse contraction algorithm (TCA) [1, 8, 108]
to compute the MPS representation of the IM for one dimensional systems can be formu-
lated similar to conventional TEBD (see Sec.1.4): Start with expressing the boundary IM
defined by Eq. (3.13) as a product state. Use Eq. (3.12) by applying the transfer matrix
T is given by Egs. (3.10),(3.11) as matrix product operator to the MPS representation
of the IM. Since this step will increase the bond dimension of the MPS representation
of the IM by a factor of 4, this MPS is truncated using singular value decomposition.
After repeating these steps L times increasing the length of the environment each time,
a MPS representation of .# (7T, L) is obtained. Computing the IM using this algorithm
is closely related to the approach described in Refs. [97-99].
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Circuits with brickwork structure Eq. (3.9) have a strict light-cone with a speed of
information given by v; = 2 in units of time steps. All correlations outside of the
light-cone vanish exactly:

4

O(T =0,z =2")O(x =0,T =T"))| =0 for % > vy =2. (3.15)

This means that for exact contraction of Eq (3.12) for IM L > 2t the choice of boundary
condition does not matter. However, in practice the intermediate IMs have to be trun-
cated which makes this statement no longer true. This will be discussed in more detail
below. The strict light-cone property is additional to the Lieb-Robinson light-cone for
Hamiltonian systems. In the Trotter limit 6t — 0, the brickwork light speed in physi-
cal time units goes to infinity, making it consistent with the exponential Lieb-Robinson
light-cone.
Let us now focus on translational invariant systems,

T(T,2N) = 7 (T,even) T (T,2N +1) = 7(T,o0dd). (3.16)
where we can now define the even and odd thermodynamic IM for the semi-infinite chain

FJ(T,L =2N >2T) =9 (T,o0,even)and # (T, L = 2N +1 > 2T) = ¥ (T, 00, 0dd).
(3.17)

These thermodynamic IM can be obtained by using the algorithm above and stopping
after L > 2T. By applying the recursion relation Eq. (3.12) twice, the thermodynamic
IM can be found as the unique solution to a self-consistency equation,

I (T, 00,even) = 7 (T,even).7 (T,odd).# (T, 0o, even). (3.18)
This can be seen as the eigenvalue equation for the doubled transfer matrix
TA(T) = T (T,even) 7 (T,odd). (3.19)

The light-cone property implies that this matrix has a pseudo projection property with
a unique eigenvector to eigenvalue one. Finite size IM are encoded in the nil-potent
part. In principle one could directly find the IM by solving Eq. (3.18) directly, for
example by using the DMRG algorithm [2]. However, the non-Hermitian nature of this
eigenvalue problem makes this approach often more difficult in practice. The TCA can
be understood as a power method approach of computing this eigenvector.

3.3 Temporal Entanglement Barrier

In this section we study the TE of intermediate IM of the transversal contraction algo-
rithm and find that it can be volume-law even if the thermodynamic IM has area law
TE. Using a semi-classical quasi-particle picture, we elucidate the physical origin of this
temporal entanglement barrier.
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Figure 3.2: (a) TE of finite chains computed with TCA vs length for the non-integrable

15(5)

KIC defined by Eq. (3.20) with parameters J = 0.31,g = 0.638,h = 0.2 and
Open Boundary conditions (OBC, Eq. (3.13)) as well as Perfect dephaser
boundary conditions (PDBC, Eq. (3.14)). For comparison the thermody-
namic IM of different maximal evolution time T which form the intermediate
states of the LCGA. (b) TE of finite chains for the integrable KIC with pa-
rameters J = 0.67/4,9 = w/4, h = 0 computed as described in Ref. [5]. The
TEB scales according to a volume law with evolution time and its maximum
is at L/T = v, /4. Inset: The rescaled entanglement entropy computed di-
rectly (green) matches the results from the semi-classical formula (dashed)
in Eq. (3.21) using the empirically found w = 0.931log(2) = const.. Figure
adapted from Ref. [6].
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Figure 3.3: The TEB can be explained by quasi particle reflection at the spatial bound-

ary. The bottom panels show possible trajectories of the slowest (dashed)
and fastest (solid) quasi-particles for environments of different lengths which
contribute to TE. Figure adapted from Ref. [6].
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By combining the TCA described above with the computation of observables described
in Section 2.4, we have a complete algorithm to compute local observables of quantum
systems coupled to one-dimensional chains. The accuracy of this approach is controlled
by the mazimal bond dimension we can use during the iteration and for the final IM.
For fixed accuracy, the bond dimension for the final IM depends only on the physics of
the environment and can be estimated using the scaling of TE. In particular, it does not
depend on the algorithm used to compute the final IM. However, the intermediate IMs
encountered during the TCA iterations are truncated as well. Hence the performance of
the TCA also depends on the TE of those intermediate IMs.

To understand the TE of intermediate IMs, we consider the kicked Ising chain (KIC)
defined by the discrete unitary time evolution operator U acting on a chain of qubits

U — eZJZJ:1 ZJZJ+1+’LhZ]:1 Zjez‘qZ]:l X] (3‘20)

where Z;, X, are Pauli operators acting on the j-th qubit. This is non-integrable for
generic J, g, h, but can be solved in terms of non-interacting Majorana quasi particles
for h = 0. For the non-integrable parameters J = 0.31,9 = 0.638,h = 0.2, the TE
of the thermodynamic IM is observed to be low [5]. The TE of finite chains, which
correspond to the intermediate states of the TCA, is plotted vs the length of the chain
L for this model and different spatial boundary conditions in Fig. 3.2(a). We observe
that for both open boundary conditions defined by Eq. (3.13) (blue line) and perfect
dephaser boundary conditions defined by Eq. (3.14) (red line), TE increases rapidly with
environment size until it cannot be captured anymore due to the finite bond dimension
x = 128. On the other hand, the thermodynamic TE is area law, as depicted by the
green line. This phenomenon of highly entangled intermediate IMs, which we call the
temporal entanglement barrier (TEB), was also observed in Refs. [8, 108]. The TEB
can be lowered, by choosing a different boundary condition such as the perfect dephaser
boundary condition[8].

Curiously we observe in Fig. 3.2(a) that by continuing iterating despite the drastic
truncation, we recover the TE of the thermodynamic IM. This can be explained by the
pseudo-projection property of the dual transfer matrix. At every iteration step, the
truncation error gets partially projected out, until the full iteration step composed of
dual transfer matrix application and truncation is self consistent. However relying on
this effect potentially requires a large number of iterations and is hard to control. This
makes the TCA a viable option in situations where the light cone growth algorithm
discussed below is not applicable such as imaginary times variants of the MPS [9] or
tilted versions of the IM[117].

To study the exact shape of the TEB without truncation effects inherent in MPS
computations, we defer to the integrable case h = 0. For this model it is possible to
exactly compute the TE even for highly entangled IM and long times using Grassmann
path integral techniques [5]. From the TE for different times in the integrable case in
Fig. 3.2 b), we find that the maximum of the TEB at around L/T = =& scales linearly
in time, as a volume-law. For short times T, the slope is linear in L, and for long times
the TE saturates to a constant value independent of evolution time T and environment
size L.
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3 Influence Matrix in 141 dimensions

To understand the behavior of the temporal entanglement with respect to system size
and evolution time, we employ a variation of the picture employed by Calabrese and
Cardy in Ref. [69]: Consider the spatial entanglement of a time evolved excited product
state in a unitary model with stable quasi-particles. Each site emits highly entangled
pairs of quasi-particles which move ballistically. Quasi-particles emitted from different
sites are not entangled. We can compute the entanglement across a bipartition in the
time evolved state by counting the number of quasi-particle pairs where one partner
arrives in one partition and the other partner arrives in the other partition. This idea can
be applied directly if the model is dual-unitary[111, 112], which means that the spatial
"evolution“ employed in the TCA is also a unitary evolution. In the dual-unitary case,
all quasi-particles move with the light-cone speed v; = 2. We can view the IM & (L, T)
vector as the boundary conditions vector .#(0,7) time evolved under the dual unitary
evolution. The open boundary conditions corresponds to maximally entangled pairs
of quasi-particles travelling along the light-cone in opposite directions. The temporal
boundary corresponding to the trace operation at 7 = T absorbs quasi-particles. In case
of infinite temperature initial conditions, this is also true for the temporal boundary at
7 = 0. This model is sufficient to qualitatively explain the TEB: For short times, only
few quasi-particles are able to cross the bipartition cut, leading to an increase in TE.
Eventually all quasi-particles reach a boundary and get absorbed leaving us with zero
TE and a product state for the thermodynamic IM. This is indeed the correct result for
the thermodynamic IM of a dual-unitary model, as will be discussed in more detail in
Chap. 4.

To generalize this idea beyond dual-unitarity and make it more physically transparent,
we return to the usual direction of time evolution. The production of quasi particle pairs
at the spatial boundary can be understood as reflection. The production cross-section
in the Calabrese Cardy picture[69] relates to the reflection coefficient. We can estimate
the TE over a cut at time step 7, by computing the density of quasi-particles which can
be injected into the environment from the subsystem before time step 7,, get reflected
at the spatial boundary and returns to the subsystem before the final time step 7. This
idea is visualized in Fig. 3.3 for 7, = T'/2. For very short environments, only few quasi-
particles can be reflected in a way that they cross 7. and contribute to entanglement.
The fraction of such quasi-particles increases with the size of the environment, until
for environments around v/4 the fastest quasi-particles from any point before T'/2 will
return to the subsystem, leading to a maximum in the TE. For longer environments,
fewer and fewer particles reach the spatial boundaries and return before the final time
tax, until the only remaining contribution to TE stems from edge modes and short time
effects leading to area law TE.

We can formalize this variant of the Calabrese Cardy picture into a semi-classical
formula for the leading contribution for long maximal evolution time ¢ . to the TE
across a bipartition ¢, in continuous time:

o [l “max oL
S(t Lit,) = dt; dt — olt,—t,——— 3.21
( max>’ c) /0 z[ f/wvmin 27TU)<(A)) ( A f ’U(W)) ( )
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3 Influence Matrix in 141 dimensions

where v(w) = 92 is the group velocity bonded by the Lieb-Robinson velocity v(w) < v, ¢,
t; is the point in time before ¢, when the quasi-particle enters the environment, ¢, the
point in time after ¢, when the quasi-particle returns to the subsystem. The quasi-
particle weight w(w) corresponds to the entanglement contribution per quasi-particle
which can bounded by w(w) < 2log(2) by considering the dimension of the vectorized
Hilbert space. At dual unitarity the quasi-particle weight is given by w = log(2) exactly.
We will focus on the case ¢, = t,,,./2, since this cut will have maximal entanglement
and hence determines the complexity of the finite size IM.

We first consider the limit of long times and short environment sizes. In this case we
get from Eq. (3.21) that TE increases linearly with environment size L:

S(tpax >> L, Lyt /2) = vppL, (3.22)
wtnax dw w(w)

=2 — . 3.23

UTE / 27 v(w) ( )

w

min

The speed of TE vy is bounded by vy < 2log(2) due to the bond dimension y = 4% of
the exact IM of finite environments of length L. For finite times ¢ ,,, and environment

lengths L, the semi-classical formula Eq. (3.21) predicts that the TE at the central cut
t, = t,.x can be parametrized by & = % by

S(é‘) — S(tmax;lﬁ tmax/z) . (3.24)

max

For finite & some of the slower quasi-particles with velocity v(w) < 4€ get traced out at
the final time ¢, inside of the environment. We hence have the small £ behavior of

s(§) given by:

d
EZ‘g:o =Urpg; s(§) < vpgé. (3.25)

At £ > wvp/4, even some of the fastest quasi-particles get traced out, leading to a
maximum in s(§). For € > v /2, no quasi-particle can return to the system, and the
extensive part of the TE vanishes s(§ > v;-/2) = 0. This means that the TE has a
volume-law barrier. For the dual unitary case all quasi-particles move with the brickwork
light-speed v, = 2 and the formula becomes exact:

sal€) = log(2) min(€, 56) (3.26)

In Fig. 3.2 b), we can see that the shape of the TEB obtained using the semi-classical
formula Eq. (3.21) with constant quasi-particle weight w = 0.931og(2) (black dashed
line) is close to the exact TEB (green line) in the integrable model even away from
dual-unitarity at parameters J = 0.67/4,9 = /4.

This image qualitatively explains the low TE of thermodynamic IM in integrable
systems. In the thermodynamic TE no quasi-particle with finite velocity can reach the
spatial boundary to be reflected, which is indicated by a vanishing of the extensive part
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3 Influence Matrix in 141 dimensions

of the TE quantified by s(§ > v;o/2) = 0. The only remaining contributions to TE
are non-extensive in ¢, .. and are hence not captured by Eq. (3.21). They stems from
localized edge modes as well as short-time effects relating to the overlap of departing
quasi-particles with the subsystem site. For a more general and rigorous analysis on the
thermodynamic limit of the TE in integrable systems including different initial states,
I refer to Refs. [5, 10, 119]. The low TE in integrable systems opens the door for the
IM approach to be used in quantum impurity problems as demonstrated in [3, 119, 127,
128] as well as in Chapter 6.

The TEB in the non-integrable model shown in Fig. 3.2(a) as well as previous observa-
tions of the TEB in generic systems [8, 108] are empirical evidence that the phenomenon
of the TEB generalizes beyond systems consisting of quasi-particles. Instead the back
flow of information from the environment to the subsystem, which is enhanced for fi-
nite environments is the fundamental reason for the increase in TE. We also observe
in Fig. 3.2 a) that the choice of boundary condition changes the maximum TE of the
TEB. In the quasi-particle picture the spatial boundary condition represent a reflection
coefficient and is encoded in w(w).

Superficially, the TEB is reminiscent of the real space entanglement barrier[129-131].
Starting from a low entangled state, reduced density matrices of a fixed interval of a
generic 141 dimensional quantum system become complex, before reaching a thermal
state with low entanglement. So far it is unclear how those two phenomena are related.
The non-monotonicity of entanglement during such contraction was also observed during
the contraction of random 2D tensor networks[132]

3.4 Light cone growth algorithm

We now formulate an algorithm, which can avoid the TEB discussed in the previous
section. Its accuracy is thus only bounded by the bond dimension and TE of the ther-
modynamic IM.

The fundamental reason for the intermediate states with high TE in the TCA are that
those IM correspond to finite environments. Hence, one solution to the TEB problem
is to formulate a recursive scheme where all intermediate states are thermodynamic IM.
This means, that instead of keeping the number of timesteps 7" fixed and increasing the
environment size L as was done in TCA, we stay in the thermodynamic limit L > 2T
and increase the number of time steps.

To find such a recursion relation, we consider the brickwork tensor network for the IM
(Fig. 3.4(a)). By applying the trace preservation property (Fig. 3.4(b)) and repeatedly
removing channels which are traced out on both outgoing legs from the full tensor
network, we obtain a reduced, light-cone tensor network (Fig. 3.4(c)). Physically this
corresponds to removing all channels which can not causally affect the local dynamics
of the subsystem. Upon exact contraction, the light-cone tensor network is equivalent
to the full tensor network. If we consider transverse contraction of this tensor network,
we find that the number of timesteps of the intermediate IMs grows. At each odd step,
the number of timesteps of the IM increases by one and on each even step the number
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Figure 3.4: Depiction of the light-cone growth algorithm (LCGA). (a) shows the full
tensor network corresponding to the IM (compare Fig. 3.1. The trace pre-
serving property of channels depicted in (b) allows erasure of channels outside
of the light-cone. This leaves us with the light cone tensor network in (¢).

Contracting this tensor network in the transversal direction corresponds to
the LCGA defined by Egs. (3.27),(3.28).

of timesteps stays the same. Since the strict light-cone velocity of a brickwork circuit
is given by v, = 2 this means that all the intermediate IMs are thermodynamic IMs
corresponding to infinite environment size. This immediately implies the absence of a
TEB, since the thermodynamic IMs for any shorter time can be recovered from the
IM for a longer time by simply attaching traces 1 to the last legs, c.f. Sec. 2.4. Since
this procedure does not increase bond dimension, we have that if the longer IM can be
represented efficiently with a given bond dimension, so can all IMs of shorter time which
form the intermediate states in the LCGA.

Now we can formulate the recursion relation as transverse contraction of the light cone
tensor network for even and odd values of L:

f(T + 1,00, Odd){u-r’yf}z"zl = <?(T + 1>{M77VT}Z:17{/€77)\T}2:1j(T’ 00, eVen){Nq—)\r}’f:l6KT+1’)\T+1,
(3.27)

F(T,00,even) s yryr = T (1) gz | e amyz F(T,00,0dd) (or yryr - (3.28)

where 7 are the dual transfer matrices defined in Eqgs.(3.10) and (3.11). Analogous
to the TCA, we can formulate the Light-cone growth algorithm (LCGA): Starting from
# (0, 00,even) = 1, we employ the recursion relations Egs.(3.27) and (3.28) and compress
the result. The last two steps are repeated until we reach the desired number of timesteps.

For the LCGA we used the strict brickwork light cone. It is possible to improve the
performance further for Hamiltonian systems by increasing T along the slower Lieb-
Robinson light-cone. This was pointed out in Ref. [100].
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Figure 3.5: Comparison between time evolution of observables computed with TEBD
(blue lines) and LCGA (red lines) for the kicked Ising chain defined in
Eq. (3.20) with the parameters J = 0.31,g = 0.638,h = 0.2. For both
algorithms, different lines correspond to different maximal bond dimension.
(a) Evolution of local polarization (X;) starting from a fully polarized ini-
tial state. (b) Autocorrelator (X (0)X (7)) for the infinite temperature state.
Figure adapted from Ref. [6]

Using the LCGA together with the algorithm for the observables described in Sec. 2.4,
we can compute dynamics of local observables. We compute the autocorrelator of the
x operator at infinite temperature (Fig. 3.5(a)) as well as the time evolution of the
expectation value for a state polarized in the x-direction (Fig. 3.5(b)) with LCGA and
conventional time-evolving block decimation (TEBD) in the Heisenberg-picture for the
KIC at the same parameters J = 0.31,9 = 0.638,h = 0.2, fixing the same maximum
bond dimension. We find that the data computed with TEBD is only converged for short
times, whereas LCGA gives access to the long time dynamics at least in this particular
model. For very long times, the chosen bond dimension is no longer sufficient to capture
the IM accurately, which ultimately also limits LCGA.
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4 Dual unitary circuits and Perfect
Dephasers

4.1 Introduction

Generically the ”evolution“ in the transverse direction as utilized for example in the
transverse contraction algorithm (TCA) described in Chapter 3 does not correspond
to any physical time evolution. Dual unitary circuits[111, 133] are quantum circuits
where the transverse evolution corresponds to a unitary time evolution. Despite being
generically non-integrable and belonging, depending on the parameters, to the ergodic
phase, the dual unitary property allows for analytical approaches. In particular, tempo-
ral correlations of local operators[112, 114, 134] and the spectral form factor[133] have
been computed for these models. In this chapter we study the influence matrix (IM) at
and near dual unitary points to gain insight into the structure of IMs corresponding to
thermalizing environments.
For concreteness we study the kicked Ising chain, defined by the Floquet operator

. L-1 gz gz . L P L T
U= ezJEk:1 SkskHJ”th:lS ezgzkzls (41)

where Si, Si; are the Pauli operators acting on site k. This model is dual unitary at J =
g = m/4 for any value of the longitudinal field ~A[111] and non-integrable if all parameters
are non-zero. We write the self-consistency equation for the IM corresponding to a semi-
infinite chain coupled to the remaining chain via a single interface spin as in Chap. 3.
For the dual unitary case, this equation can be solved exactly, yielding a product state
IM consisting of perfect dephasing channels[26], which we call Perfect Dephaser. This
means that the environment is a Markovian bath which measures the interface spin at
each period of time evolution, cancelling the off-diagonal elements of its density matrix.
This is surprising, since Markovianity is commonly an approximation arising from an
environment with faster dynamics then the system coupled to it. Here the environment
and the subsystem are homogeneous and there is no separation of time scales.

By solving the self-consistency equation, we further show that dual-unitary models
with diagonal, "Ising“ coupling and higher spins also yield Perfect Dephaser IMs. In
fact, by considering the tensor network representation, we show that for Ising chains,
dual-unitarity together with infinite-temperature initial conditions directly implies that
the IM is a perfect dephaser: Using the dual-unitary property on each gate, we can
successively erase every gate in the tensor network, leaving only a product state where
each leg is a trace operator. In the case of a diagonal coupling between the environment
and the subsystem, this corresponds to a perfect dephaser IM. Furthermore we show
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4 Dual unitary circuits and Perfect Dephasers

that Haar random circuits, averaged over spatio-temporal noise, also correspond to a
perfect dephaser IM.

To go beyond the fine-tuned dual-unitary points, we start by employing MPS repre-
sentation of the IM obtained using the transversal contraction algorithm described in
Chap. 3. Since Perfect Dephasers are product states in the MPS sense, TE is exactly
zero at the dual unitary point. When detuning from the dual unitary points, TE re-
mains parametrically low, making an MPS approach viable. This allows us to compute
the decay of local correlation functions. We find that in the vicinity of the dual unitary
point, TE scales as a volume law in time although with a small prefactor which increases
with the detuning from dual unitarity.

In Ising models, the argument of the Influence functional discussed in Sec. 2.5 cor-
responds to the S* projection of the interface spin. Matrix elements of the IM can be
interpreted as complex weights of interface spin trajectories on the Keldysh contour.
The interface spin effectively acts as a magnetic field on the last environment spin. This
allows us to interpret the IM matrix elements as overlap between the time evolved en-
vironment states subject to the magnetic fields defined by the forward and backward
contour. This view immediately gives us that all entries are bounded by one. Classical
trajectories, where forward and backward are the same are unity. Quantum trajectories
where forward and backward parts are different, correspond to the Lohschmidt echo[135,
136] and vanish at the dual unitary points. For thermalizing systems away from the dual
unitary points, the Loschmidt echo decay on average exponentially; this is verified nu-
merically for our model. We can study the IM structure using the tools laid out by
Legget et. al. in Ref. [122]: Classical time intervals of the trajectory where the forward
and backward spin are the same are called sojourn and quantum time intervals where
they are different are called blips. The influence matrix can be described in terms of an
influence action which encode the complex statistical weight for configurations of blip
and sojourn sequences. In this statistical mechanics theory, blips correspond to massive
quasi-particles. Without interactions, the influence action would be the product of the
single-blip influence actions. We define the interaction between neighbouring blips sepa-
rated by a sojourn as difference of the influence action from the non-interacting influence
action. Numerically it is shown that these interactions decay with distance, which can
be related to the decay of temporal correlations.

This statistical mechanics picture is applied to the problem of a slow impurity coupled
to a chain detuned from dual unitarity. The slow impurity introduces weights suppressing
blips, and effectively imposes a low density of blips. Together with the fast decay of
interactions, this justifies the Non-interacting blip approximation (NIBA). We show
that the decay rates predicted by the NIBA match the MPS computations closely to
dual-unitarity. In principle this theory can be extended to higher order by considering
clusters of blips and sojourns as quasi-particles.
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Recent experimental and theoretical works made much progress towards understanding non-
equilibrium phenomena in thermalizing systems, which act as thermal baths for their small sub-
systems, and many-body localized ones, which fail to do so. The description of time evolution in
many-body systems is generally challenging due to the dynamical generation of quantum entangle-
ment. In this work, we introduce an approach to study quantum many-body dynamics, inspired by
the Feynman-Vernon influence functional. Focusing on a family of interacting, Floquet spin chains,
we consider a Keldysh path-integral description of the dynamics. The central object in our approach
is the influence matriz (IM), which describes the effect of the system on the dynamics of a local
subsystem. For translationally invariant models, we formulate a self-consistency equation for the
influence matrix. For certain special values of the model parameters, we obtain an exact solution
which represents a perfect dephaser (PD). Physically, a PD corresponds to a many-body system
that acts as a perfectly Markovian bath on itself: at each period, it measures every spin. For the
models considered here, we establish that PD points include dual-unitary circuits investigated in
recent works. In the vicinity of PD points, the system is not perfectly Markovian, but rather acts
as a bath with a short memory time. In this case, we demonstrate that the self-consistency equa-
tion can be solved using matrix-product states (MPS) methods, as the IM temporal entanglement
is low. A combination of analytical insights and MPS computations allows us to characterize the
structure of the influence matrix in terms of an effective “statistical-mechanics” description. We
finally illustrate the predictive power of this description by analytically computing how quickly an
embedded impurity spin thermalizes. The influence matrix approach formulated here provides an
intuitive view of the quantum many-body dynamics problem, opening a path to constructing models
of thermalizing dynamics that are solvable or can be efficiently treated by MPS-based methods, and
to further characterizing quantum ergodicity or lack thereof.

I. INTRODUCTION

Describing non-equilibrium quantum matter and har-
nessing it for quantum technology is one of the central
challenges in modern physics. The problem of highly
non-equilibrium dynamics of many-body systems, both
isolated and open, has been attracting intense experi-
mental and theoretical interest over the past years [1-3].
Ergodic isolated systems are believed to thermalize as a
result of their quantum evolution; qualitatively, such a
system can act as an efficient thermal bath for its suffi-
ciently small subsystems. Recent breakthroughs identi-
fied classes of systems that do not reach thermal equilib-
rium [4-7] and therefore may exhibit new phenomena not
envisioned within the framework of statistical mechanics.

Floquet systems, where the Hamiltonian is periodi-
cally varied in time, play a special role in the family
of non-equilibrium systems, thanks to their natural ex-
perimental realizations. Although periodic driving se-
quences have been utilized in nuclear magnetic resonance
for decades [8], recent works revealed a range of new sur-
prising phenomena in Floquet systems. In particular, it
was shown that many-body Floquet systems may exhibit
new topological properties [9]. Many-body localization in
Floquet systems can protect them from heating [10-12],

* These two authors contributed equally to this work

enabling new non-equilibrium states of matter with re-
markable properties not attainable in thermal equilib-
rium [13-17].

The central difficulty in describing dynamics of many-
body systems that do thermalize stems from the rapid
generation of quantum entanglement. Initially simple,
non-entangled states, quickly develop non-local correla-
tions; faithfully describing a time-evolved state requires,
in general, a number of parameters which grows expo-
nentially with the evolution time. Various efficient nu-
merical methods based on tensor networks have been in-
troduced [18-21]. Examples of tractable interacting Flo-
quet models, both integrable and thermalizing, have been
found and are being actively investigated [22—-26].

The goal of this paper is to formulate what we call the
influence matriz approach to quantum many-body Flo-
quet dynamics. This approach can be viewed as an ex-
tension of the celebrated Feynman-Vernon influence func-
tional approach [27] to interacting Floquet systems. In
the original formulation, Feynman and Vernon developed
a path-integral description of a quantum-mechanical sys-
tem coupled to a bath. Typically, the bath consists of
physical degrees of freedom that are of different nature
than those composing the system itself, such as in the
case of two-level systems coupled to a bath of harmonic
oscillators [28, 29] or particle reservoirs [30]. In our case,
in contrast, the bath and the system will be composed of
the same physical constituents.

We will consider quantum systems on a lattice, and
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Figure 1. a) Cartoon illustration of the influence matrix approach to many-body Floquet dynamics. The many-body quantum
state of a spin system becomes increasingly entangled due to periodic local interactions and kicks. The influence matrix Z,
defined in Eq. (15) below, describes the dynamical effects of all spins k < p on a spin p, in terms of a path integral weight
affecting the trajectories {o, 5} of spin p forward and backward in time. b) In translationally-invariant one-dimensional systems,
the influence matrix is the same for all p, which, as illustrated, leads to a self-consistency equation for it.

will be interested in the dynamics of a finite subsystem,
treating its complement as a bath. The effect of this
bath on the subsystem can be described by the influence
functional. Although here we focus on Floquet systems,
generalizations to Hamiltonian systems appear possible.
More specifically, we will study a class of kicked Floquet
systems, which can be viewed as many-body extensions of
the celebrated quantum rotor model [31]. In this case, the
influence functional becomes discrete and we will there-
fore refer to it as the influence matrix (IM).

The setup and the key idea of the approach are sum-
marized in Fig. 1. We consider a one-dimensional system
of quantum spins, or qudits, oy (with local Hilbert space
dimension ¢). We choose spin p, and treat all degrees of
freedom to the left as a bath, as illustrated in Fig. la.
The starting point of our analysis is the Keldysh path-
integral formulation of time evolution. In this formalism,
forward and backward trajectories of spins arise; for spin
k they are denoted by 07,57, 7 =0,1,2,.... To capture
the effect of the bath on spin p, we trace out the bath
degrees of freedom, which gives rise to the influence ma-
trix Z({o},5,}). It enters as an additional weight into
the path integral describing the evolution of the reduced
density matrix of spin p. In general, this influence matrix
is non-local in time.

For translationally invariant systems, spin p, subject to
the IM Z({0}, 5, }), should produce exactly the same IM
for its right neighbor. Using this observation, we will for-
mulate a self-consistency equation for the IM, pictorially
illustrated in Fig. 1b. This equation is a key ingredient
of our approach.

The knowledge of the IM allows to determine the local
dynamical properties of the system, including all tempo-
ral correlation functions. The IM naturally incorporates
the initial state, and allows averaging over ensembles of
initial states. The self-consistent IM describes how a sys-
tem acts as a bath on itself. This approach thus gives
access to detailed information regarding thermalization
time scales and memory time of the bath. As discussed

below, it also allows one to analyze the effect of the bath
on an impurity spin. In this sense, the self-consistent IM
provides a more complete characterization of a many-
body system as a bath, compared to spectral properties
(such as presence or absence of level repulsion [7]), and
the statistics of matrix elements studied both in the con-
text of the eigenstate thermalization [3] and many-body
localization [32].

While in general the self-consistency equation for the
IM is complicated, it admits exact solutions in special
cases. For kicked Ising models (see, e.g., Ref. [24] and
references therein) with certain parameter values, we find
that the infinite-temperature IM can be obtained exactly.
This solution describes a bath that is a perfect dephaser
(PD), that is, its effect on a spin at each step of the
Floquet evolution is to exactly cancel off-diagonal ma-
trix elements of its reduced density matrix. Phrased dif-
ferently, the bath measures every spin of the system at
each time step. Interestingly, for the case of kicked Ising
models, the perfect dephaser class coincides with mod-
els that can be recast as dual-unitary circuits introduced
recently [24, 25]. In addition, as discussed below, the
PD form of the IM arises upon ensemble-averaging over
random realizations of the model.

Perfect dephaser systems serve as remarkably simple
quantum baths: when coupled to an impurity spin, the
system would act on it as an exactly Markovian bath,
with a relaxation rate that depends on the coupling
strength. This is remarkable, as Markovianity is usually
an approximation which requires the internal dynamics
of the bath to be much faster than the quantum system
that it measures. Thus, the IM approach allows one to
identify quantum systems which act as Markovian baths.

At the mathematical level, the IM approach bears
a similarity to a tensor-network numerical method in-
troduced by Batiuls et al. [19] for modelling dynam-
ics of Hamiltonian systems. Building on the previous
insights [19], we apply a matrix-product state (MPS)
ansatz to construct the IM away from the PD points.



This tool allows us to shed light on the more general
structure of the IM in ergodic Floquet systems.

At the PD points, the IM, viewed as a “wave function”
in the space of single-spin trajectories, is effectively non-
entangled. We further find that away from PD points,
the IM “wave function” exhibits slow growth of tempo-
ral entanglement, which allows us to analyze the sys-
tem’s dynamics at longer times than those accessible via
exact diagonalization. This observation provides a tool
for identifying regimes of thermalizing Floquet dynamics
that are amenable to efficient MPS-based methods.

To characterize the structure of IMs in ergodic systems
detuned away from PD points, we adopt a statistical-
mechanics-like description, viewing “quantum” intervals
of a spin trajectory (i.e., the intervals where the forward
and the backward path differ, o # &) as “particles”. We
study the weights of these particles and their interac-
tions, demonstrating that in thermalizing systems they
decay with their temporal distance. We further use this
insight to predict how the system thermalizes a slower
impurity spin, finding a good agreement with numerical
simulations.

The influence matrix approach has several additional
attractive features. Perhaps most importantly, it pro-
vides a direct, physically intuitive way to describe a
many-body system as a quantum bath for its constituent
parts, giving access to relevant time scales and various
correlation functions, including the Loschmidt echo (see
below). Furthermore, it allows one to describe dynamics
for different ensembles of initial states and in the ther-
modynamic limit. As mentioned above, the IM approach
admits certain exact solutions that are likely not limited
to PDs which will be our focus here.

The rest of the paper is organized as follows. In Sec-
tion I we introduce the IM approach, and formulate the
self-consistency equation for the IM. In Section III we
will discuss the cases where the IM can be found exactly,
and has a perfect dephaser form. Further, Section IV is
dedicated to dynamics away from PD points; we intro-
duce and justify the use of MPS-based methods, develop
an analytical characterization of the IM structure, and
discuss implications for dynamics. Finally, in Section V
we will summarize our results, and provide an outlook.

II. INFLUENCE MATRIX FORMULATION

We will start by introducing the models to be consid-
ered. We then describe a path integral representation of
the dynamics. The correlation functions are expressed
in terms of a transfer matrix which acts on the space of
single-spin trajectories. We discuss general properties of
such transfer matrices, arguing in particular that they
have a pseudoprojection property. The eigenvector of the
transfer matrix encodes the dynamical properties in the
thermodynamic limit, and allows one to find all tempo-
ral correlation functions. We interpret the eigenvector
as an influence matrix, and formulate a self-consistency

equation for it.

A. Model

We consider a class of kicked one-dimensional Floquet
systems. At each site of a periodic chain of length L, we
place a spin, or qudit, with ¢ basis states, denoted by |o).
During each driving period, a two-spin operator ISj_H/Q
acts on all neighboring pairs j, 7 + 1. This operator
represents an Ising-type coupling: it is diagonal in the
loj,0541) = |0j) ® |oj41) basis, and symmetric under
exchange j < 7+ 1:

Pii1yaloj,0501) = 901200700 |05 0500) (1)
with ¢(o,0’) = ¢(¢’,0). This is followed by unitary
single-spin operators W; (“kicks”). The combination of
the two steps gives the following Floquet operator (evo-
lution operator over one driving period):

F:WP:HWJHPj+1/2' (2)

J J

A graphical representation of the corresponding Floquet
evolution is provided in Fig. 2. Here we choose to focus
on this class of models for clarity of presentation. The
following discussion, however, can be extended to more
general Floquet systems, where a shallow quantum cir-
cuit is applied periodically in time. For ¢ = 2, this model
reduces to the kicked Ising model (KIM), which we will
frequently use for illustration purposes.

B. Dual transfer matrix

Next, we use a discrete path-integral representation
of the dynamics of the system. An amplitude for the
evolution over ¢ periods, from an initial product state
{o9}) = ®,]07) at 7 = 0 to a state [{o}}) at time 7 =,
is given by

A0y oty = T HE Hod)).

This amplitude can be expressed by a path integral:

t—1
A{a?}%{aﬁ} = Z H Hemjﬂ/z(a;’a;'l)[Wj]ofhaf
{of}7=0 4
(3)

where we have defined [Wj]a;“g; = <U;+1‘Wj|a]7). The
sum runs over all possible trajectories of L spins, with
fixed initial and final configurations.

To describe the evolution of the density matrix, we will
employ a Keldysh-type formalism. To that end, let us in-
troduce a superoperator R which describes the evolution
of the system’s density matrix (DM). It is the tensor
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Figure 2. a) Graphical circuit representation of the Floquet dynamics of the model in Eq. (2). The periodic unitary time
evolution of the initial unentangled density matrix p° is pictured by a Keldysh closed-time contour made up of a forward and
a backward branch. The red-ellipse and blue-square tensors represent P and W unitary operators, respectively. The black
tensors denote the initial density matrices of individual spins. For later convenience, we have separated possible phases due to
on-site magnetic fields, e*"”, denoted by green-diamond tensors; the four-index Kroenecker delta tensor dap~s, denoted by a
cross, allows to “slide” a green diamond leftward/rightward or upward/downward, indicating that the field A can be thought
of as being part of either W or P. The dual transfer matrix 7' defined in Eq. (8) is highlighted by a blue shaded region. b)
In the spirit of the Keldysh formalism, the folded picture is obtained by constructing the composite, g>-dimensional Hilbert
spaces of the forward and backward spins at equal times, spanned by the states {|o7,57)}. The local operators acting on this
folded space are given by the tensor product of each forward-branch operator O = Wj, ]5j+1 s2 and its conjugate O acting
on the backward branch, as illustrated in the left panel. Accordingly, the initial density matrices [pg]a?ﬁ? are reshaped into

vectors [p?](go 50, and the final-time contractions (traces) d,: 5+ are reshaped into vectors §(,¢ 1), denoted by black and white
i’ [N} 3

single-leg tensors, respectively; in either case, summation over 0’?, '? or O’;, &t is implied by tensor contraction.

J

product of A and its conjugate A*, so that its matrix

of the system [po] 2050 5050 the DM at time ¢ is ob-
. 11" LY L
elements are given by

tained by contracting R with p°. In particular, R gives

the probability of the system’s transition from an initial
st ot classical state to a final classical state, if we put 09 = &9
Ra‘i’&%..uﬁ&é = A{U?}—>{0§}A{a;?}a{a§}~ (4) and O’§ = 6; for all j.

Further, following Ref. [19], we introduce a dual trans-

fer matriz T}, which will provide a convenient alternative

Note that {o} and {7} denote two independent “paths”
or “trajectories”, which are conventionally referred to as
forward and backward in time. For a given initial DM

t—1

<U]1'+1 5]1'+1 e 5;1“ T3]
T7=0

representation of the reduced density matrix evolution,
with time and space interchanged (see Fig. 2). Its matrix
elements are given by

J

—t—1 i T+1’ ’_+1 i —7+1’77—+1
.. 5} )= Held’ﬂrl/Z(UJ ol )—igj12(67 0 [Wj]%mﬂ [W?‘]&;HE;. (5)

J

We treat initial and final spin configurations as parameters. The matrix acts on the ¢2(!~D-dimensional space of
single-spin forward and backward trajectories at times 1 <7 <t — 1.
Then, for a periodic system, Eq. (4) can be expressed via the dual transfer matrices at different sites as follows [33]:

t =t =
Ra'lal...
050
Ulo'l...O'L

R (e A (6)
L 11 LY L
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Figure 3. a) Graphical illustration of the pseudoprojection property in Eq. (10). The Keldysh path integral can be represented
by a folded circuit and hence evaluated sequentially in the space direction, yielding the iteration T* of the dual transfer matrix
(blue shaded tensor) as in Eq. (9) (cf. Fig. 2). Unitarity of time-evolution allows the contraction of the network using the
rules in the framed box on the left. Performing all possible contractions, one finds that for £ > ¢ the input (left) and output
(right) legs belong to disconnected networks, bounded by the upper and lower light cones. These two networks define vectors
(v] and |u), respectively. Hence, the result can be interpreted as the decomposition in Eq. (10). b) Graphical illustration of
the eigenvector equation of the dual transfer matrix, which gives the self-consistency equation for the influence matrix of the
system (see below).

In the tensor-network language, this representation corresponds to contracting the network in the space direction, as
discussed in Ref. [19] which introduced a new numerical method for Hamiltonian systems based on this idea.

As we will see below, this representation has several advantages. It is particularly suited for describing ensembles
of initial product states (or, more generally, weakly entangled states). For product states, the initial DM is a tensor
product of individual spins DMs [p9] 050

JJ

("] 0969..0959 H [Pg‘)]gggg : (7)
J

In this case, to obtain p’ we can conveniently contract T; with the corresponding initial DM of spin j. Moreover, if
we are interested in the evolution of a given spin p, we should contract the final indices for all other spins, by putting
U§ = &} and summing over them. This new dual transfer matrix, illustrated graphically in Fig. 2, can be expressed

using Einstein notation for tensor contraction as

75 = [5] 0 [T bt ®

J

Then, the evolution of spin p’s DM is generated by the superoperator

T .. .TL> . (9)

ag

T-T - - T
R gf’g =Tr <T1 Ty [Tp]jg,

T
P

UPO'

It is straightforward to adapt this formalism to different boundary conditions. R 5
Furthermore, for translationally invariant systems and initial states, all dual transfer matrices are the same, T; = T..
To further simplify Eq. (9), we first discuss properties of T'.

Dual transfer matrices constructed as above share the following pseudoprojection property. Unitarity of time
evolution implies that Tr(7%) = 1 for all integer powers L. Thus, T has a single non-vanishing eigenvalue A = 1. We
denote by |u) the corresponding right eigenvector, with components u, 53. All other eigenvalues are zero. As a result,
iterations of T eventually produce a projection onto |u). The system size dependence is encoded in the Jordan blocks
of T. Indeed, the strictly linear light-cone effect in such Floquet models graphically illustrated in Fig. 3, implies that



the dimensions of Jordan blocks are upper bounded by ¢* = 2¢ in general (and ¢* = ¢ for infinite-temperature initial
ensembles, as in the Figure). In fact, points located at distance r > ¢ from the considered site p cannot affect the
dynamics of spin p before time ¢, which thus becomes size-independent for sufficiently long chains. Hence, for ¢ > £*,

we have
T = |u) (v, (10)

where the normalization is such that (v|u) = 1. From Fig. 3a, it is apparent that the left eigenvector (v| differs from
the right eigenvector by a multiplication by one vertical layer of the circuit, precisely the kick part of the dual transfer
matrix in Eq. (5):

t—1

V{o,5} = U{o,5} [PO] o050 50"’,6f H[W]GTJrlUT [W*]ETJrl&T .

7=0

(11)

The evolution superoperator R of the density matrix of spin p in an infinite homogeneous system [34], Eq. (9), can
be conveniently expressed via the eigenvector |u) as
opoh _

WL = 3 (12

{op,5p}

t—1
2
u{"’pﬁp} H [WP]U;+IU; [W;]5;+16; ’
=0

050 —
UpD'p

Knowledge of R allows us to compute all temporal correlation functions of a single spin. Thus, the problem of
describing the dynamics of subsystems reduces to characterizing the properties of the eigenvector of the transfer
matrix 7. We remind the readers that this transfer matrix depends on the ensemble of initial states, see Eq. (8).

C. Self-consistency equation for the influence matrix

Let us take a closer look at the eigenvalue equation for T', and give it a transparent physical interpretation. We will
assume translational invariance. We now denote the components of the eigenvector |u) (in the space of trajectories
of a spin on the Keldysh contour) via

ju)y =" I({o,5})|0%"...0c' 15" ), (13)

{o.5}

where {0,5} denotes a trajectory of a spin, i.e., o
eigenvalue equation as

0 =0

t—1 =t—1
L0, ... .

,ot= bl o Then, using Eq. (5), we can rewrite the

t—1
i T 6T )—id(5T .57 gTtlgT+1
I({0,5}) = Z Z({s,5}) 5St}5t<Hez¢(s SR RLICLON V1 i (14)
T7=0

{s,5}

) ("] so50

where W is the “folded” kick operator, which is the tensor product of w acting along the forward path {s}, and W
acting along the backward path {s}.

Next, note that Eq. (14) has a simple physical origin.
We can think of the r.-h.s. as describing the propagation
in time of a spin {s, §}, which experiences on-site kicks
W, and which is coupled to a neighboring spin {o,5}.
Finally, the term Z({s,5}) describes the effect of all the
degrees of freedom to the left of our spin on its evolution.
Viewing it now as a functional of the trajectory, rather

({0, 7)) = i

{or.o8} k<p =0

k<p,0<7<t

This expression describes the effect of the environment,

Z H [Pg]ggag 5"2-,‘_72 He

than a vector, we can interpret it as the Feynman-Vernon
influence functional (see Ref. [27] and Appendix A), or,
rather, influence matriz, given the discreteness of time.
In fact, the influence functional is obtained by tracing
out the degrees of freedom to the left of a given spin p
(see Fig. 3):

) . _ _ T4+1_74+1
10k 11/2(0%:0541)—1Prr1/2(0k .05y 1) [Wk]alf— _ Ok
%%k

(15)

composed of all spins & < p, on the time evolution of



spin p. Thus, Eq. (14) states that a spin, subject to an
influence matrix Z created by a bath to its left, creates
an equal influence matrix for its neighboring spin to its
right. This self-consistency equation for Z is pictorially
illustrated in Fig. 1b.

In more abstract terms, the influence matrix
Z({op,0p}) can be regarded as the overlap between the
forward and the backward propagations of the environ-
ment formed by the spins k < p, subject to the trajecto-
ries {op}, {dp} of the spin p, respectively:

I({oy,ay}) = T (Unepl{op Y] oy Ul [{7 1) (16)

By unitarity of quantum evolution, one has
|Z({o,5})] <1. We will call trajectories where the
forward and backward paths are identical o, = o
classical trajectories since they are the equivalent of
classical field configurations in the Keldysh formal-
ism. For classical trajectories, one has Z({o,0}) = 1.
Other general properties of the influence matrix can
be obtained by extending the analysis of Ref. [27] to a
discrete-time evolution, and are reported in Appendix A.

Although the self-consistency equation (14) encodes
much of the complexity of a many-body system’s dynam-
ics, we will show below that there are cases when it can
be solved analytically. Furthermore, we will show that
the local relaxation dynamics can be naturally linked to
a statistical-mechanics interpretation of the influence ma-
trix elements Z({c,5}).

Below we will be interested in averaging over
the infinite-temperature ensemble. Thus we put
(P9 4050 = 05050/q . Other initial product states will lead

J h

to different transfer matrices. It is also possible to con-
sider entangled initial states, at the expense of increasing
the dimensionality of the transfer matrix.

IIT. PERFECT DEPHASERS

The process of thermalization starting from an initial
product state is accompanied by the growth of entan-
glement between a spin and the rest of the system. In
the language of the influence matrix, this corresponds to
the suppression of non-classical paths, |Z({o # 7})| < 1.
The exact form of this suppression encodes the dynamics
of thermalization and the decay of correlation functions
in a many-body system. In general, we may expect the
IM to be a complicated functional that depends on the
precise nature of the path {o,d}; parametrizing such a
functional requires a number of parameters which is ex-
ponential in evolution time.

Surprisingly, there is a class of models for which the
exact form of the IM is extremely simple: it vanishes ex-
actly for all non-classical trajectories. This solution of
the self-consistency equation (14) has a direct physical
interpretation: The environment cancels out all the in-
terference terms. Phrased differently, the environment

completely dephases a spin at each evolution step, eras-
ing the off-diagonal elements of its density matrix. Thus,
we call such models perfect dephasers (PD).

Below we discuss examples of such solvable points for
q = 2 (kicked Ising model of spins 1/2), and general-
izations of KIMs to higher spins, ¢ > 2. We find that
for this family of models, the perfect dephaser points co-
incide with the self-dual points introduced by Akila et
al. [24], and subsequently studied in Refs. [25, 35, 36].
Indeed, it is possible to show that dual-unitarity implies
PD property, see Refs. [25, 37] and Subsection C below.
There, we further show how this property is reproduced
by ensemble-averaging over fully random kicks and in-
teractions. Throughout this Section, we will consider
infinite-temperature initial ensembles.

A. Kicked spin-1/2 Ising model

First, we will consider the case of spin-1/2, ¢ = 2. We
will choose the basis |o) to be the eigenbasis of the z spin
projection operator, such that o = +1. We will also em-
ploy the conventional Pauli matrix notations, 6,,6,,6..

As the single-spin kick operator W, we will choose a
combination of a rotation around the z axis followed by
a rotation around the z axis,

W = eie&z eih&; . (17)

Further, the two-spin term that depends on phases
¢(o,0"), reduces to the Ising interaction with a coupling
strength J:

¢(o,0") = Joo'. (18)

Thus, for the ¢ = 2 case, our model is equivalent to
the much studied kicked Ising model (KIM), which is
known to display a variety of dynamical regimes, depend-
ing on the values of parameters h, J, e. In particular, for
h = 0 this model becomes solvable by mapping onto free
fermions via Jordan-Wigner transformation. In general,
when all three parameters are non-zero, the model is non-
integrable, and obeys the eigenstate thermalization hy-
pothesis (ETH), and exhibits thermalizing dynamics [38].

Next, we assume that the influence matrix has a per-
fect dephaser (PD) form,

Tpp({s,5}) = 1:[ Sorsr (19)

Let us plug this PD influence matrix (IM) into the self-
consistency equation (14). We will see that for some
special choices of the system’s parameters ¢, J, this IM
indeed solves the equation. With this form of Z, the
summation in the r.-h.s. of Eq. (14) is performed only
over classical trajectories, so one has to keep track just
of s7 (since 57 = s7). Then, the r.-h.s. can be rewritten
using a one-dimensional transfer-matrix, composed from
the matrix elements of W and e*/s"7". The field h



drops out and its value can be arbitrary. Then the self-
consistency equation takes the following form:

1?[05(,W :%(1 1)(1?[()3(07,07),4) (}) (20)

where

iJ(oT—57)
e 0 ) (21>

B(UT: 67) = ( 0 efiJ(anﬁT)

cos?e sin’e
A == ( 2 2 5 (22)

sin“ € cos® e

and the arrow over the matrix product in Eq. (20) de-
notes time-ordering. The boundary vector in the r.-h.s.
corresponds to the infinite-temperature averaging. For
e = +w/4, J = £x/4, this equation is satisfied. To
see this, note that the A matrix projects onto the vec-

tor %(1 1)T, while the expectation value of the matrix

B on this vector equals cos(2J(c™ — 7)) = dpr5-. For
any non-classical configuration, at least one of the factors
will be zero. For classical configurations this expression
gives 1, and therefore the self-consistency equation (20)
is satisfied.

B. Higher spins

We now turn to the case ¢ > 2, and show that ex-
tensions of the kicked Ising model also become perfect
dephasers for a suitable choice of parameters. We iden-
tify PD points using a generalization of the approach
outlined in the previous Subsection. As a result, we ob-
tain examples of PDs with ¢ > 2 which coincide with
a family of dual-unitary models recently introduced by
Gutkin et al. [36]. We emphasize that here our goal is
to demonstrate that the IM approach allows one to con-
struct examples of perfect dephasers, rather than to pro-
vide a complete classification of such solvable cases; this
is left for future work.

Instead of a spin-1/2, we consider a clock variable
o =1,2,...,q, and an Ising-like spin-spin interaction,
¢(o,8) = Jos. Let us assume the PD solution of the
IM, and derive the suitable model parameters from the
self-consistency equation. To that end, we can introduce
the generalizations of the transfer matrices A, B from the
previous Subsection, Eq. (21), which now become ¢ x ¢
matrices. The self-consistency equation will be satisfied
by the PD IM, provided these transfer matrices satisfy
the following properties:

1
EZBM(JTJT) =0y 57 (23)
Aaﬁ :Aa',ﬁ’ VCY,B,CKI,ﬂ/: L....q (24)

These conditions indeed hold if we fix the parameter J =
7/2q, and specify the single-qudit kick W to be of the
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Figure 4. a) At the dual-unitary points of the Floquet model
in Eq. (2), the depicted contractions in the space direction
are allowed. b) In this case, the network contraction proceeds
within the light-cone, and the influence matrix reduces to a
perfect dephaser form, i.e., a projection on classical paths.
The effect on the spins on the right is that of a Markovian
bath, such that coherences are cancelled at each evolution
step. ¢) The influence matrix acting on an impurity spin cou-
pled to a perfect dephaser generates strictly Markovian dy-
namics with a dephasing strength that is tunable by changing
the coupling to the spin (see Sec. IIID).

following form, (o’ |W,|o) = %eie‘”/ e with € = 7/2q
and arbitrary h. Then, exactly the same mechanism as
for the KIM with ¢ = 2 is effective at ¢ > 2, yielding the
PD influence matrix Z({o,}) = [['_} 6o o

C. Relation to dual-unitary and random circuits

The above examples of perfect dephasers fall into the
wider class of dual-unitary circuits, as recently high-
lighted in Akila et al. [24] and further characterized in
Refs. [25, 37, 39-41]. In fact, it is possible to show that
the eigenvector of the dual transfer matrix has the per-
fect dephaser form in Eq. (19) whenever a circuit can be
written in terms of alternating two-body unitary gates
U,s,0 such that they maintain unitarity when reshaped

to dual gates U propagating along space direction, i.e.,
Uss,ay = Uys,ap [25].

The proof of this statement can be graphically car-
ried out by tensor contractions, as shown in Fig. 4 with
tensor notations adapted to our setting. The parame-
ter values of the perfect dephaser points found in pre-
vious Section allow the “horizontal” contractions shown
in panel a), which express the dual-unitary property of
the gates. The result of these iterative contractions is
then shown in panel b), and is nothing but the graphical
representation of the PD influence matrix in Eq. (19).

Interestingly, the above examples of perfect dephaser



circuits may be viewed as unitarily evolving systems
which, in a certain sense, imitate the ensemble behav-
ior of random unitary circuits, recently introduced as
toy models to capture structural properties of quantum
dynamics generated by local interactions [42]. In fact,
perfect dephasing can be enforced by ensemble averaging
over spatial or spatiotemporal randomness in the inter-
actions and kicks. Similarly to the ensemble of initial
states considered above, the influence matrix approach
is naturally suited to incorporate averaging over ran-
domness in the circuit elements, provided correlations
between distinct spatial points are absent; furthermore,
a self-consistency equation like Eq. (14) still holds pro-
vided the distribution of randomness is translationally
invariant. In particular, the non-trivial eigenvector of

9

the ensemble-averaged dual transfer matrix E(T) repre-
sents the average influence of the random system on its
local subsystem, and correctly generates the ensemble-
averaged local observables and their temporal correla-
tions [cf. Eq. (A7) in Appendix A].

To illustrate this, we show how the PD property ap-
pears in random circuit ensembles. We consider the fully
random version of our model in Eq. (2), with random

interactions @7, 5(07,07,1) € [0,27) and random kicks

W].T € U(q), independently distributed in space and time,
uniformly with respect to the Haar measures. We de-
_ de71/2(0:8)
note by E() = Hj;r fdMHaar(W]T) f Ha,s J+12/7f ( : )
the expectation value over this distribution. The self-
consistency equation (14), which takes the form

t—1
I({o,5}) = Z T({s,5}) Ogtst E( H R Ve R | 1 e W ) 355050, (25)

{s,5} =0

is satisfied by the perfect dephaser influence matrix
Ipp({s,5}) = Ht;:o ds-57. Since randomness is assumed
uncorrelated in time, the expectation factorizes for dif-
ferent time steps. Hence, the equations

T T7%* 1
E([Wj ]s,a[Wj ]§,5> = 558755075 (26)
and
E(ei¢;+1/2(37”)*1"75;‘“/2(5’6)) = 55 550,6 (27)

lead to the solution Zpp, as claimed. We note that these
equations produce contractions analogous to those satis-
fied by dual-unitary circuit elements as in Fig. 4a of the
manuscript, although the circuit elements themselves are
(almost surely in the ensemble distribution) not dual-
unitary. In this sense, dual-unitary perfect dephasers re-
produce the noise of fully random models, i.e., classical
white noise.

We further show that the perfect dephaser property
also holds for a random Floquet version of the circuit,
with interactions and kicks uncorrelated in space but con-
stant in time, provided the local Hilbert space is large,
q — 00. We note that this model is similar to one previ-
ously considered in Ref. [43], where random-matrix spec-
tral correlations have been shown. The proof of perfect
dephasing follows from the mathematical properties of
integration over the Haar measure of the unitary group
(the so-called Weingarten calculus) in the large-¢ limit.
Let us consider again the self-consistency equation (25),
but now we eliminate the 7-dependence of W and ¢, such
that the same two random objects appear multiple times
in the equation. We want to show that the solution is
again Zpp. To verify that, let us substitute Zpp into the
r.-h.s. of Eq. (25). We note that in the limit ¢ — oo the

leading contribution in 1/q arises from trajectories where
all the s™’s are distinct. Upon averaging, the product of
the kick operators yields 1/q" (see, e.g., Ref. [44]). The
remaining phase term exactly equals 1 if all 67 = 7.
For trajectories such that o™ # &7 for some 7’s, instead,
the average over the random phases gives zero, unless the
values of the corresponding s™’s happen to be equal, pro-
ducing the necessary phase cancellation; thus, the result
is suppressed as 1/¢. In other words, we have proven that

To.5] = [ e + O@ (28)

7=0

which is what we wanted to show. We finally remark that
it can be shown that in both the random circuit and in
the random Floquet circuit model, ensemble fluctuations
around perfect dephaser average behavior are suppressed
as ¢ — o0, i.e., a random realization of the circuit is
almost surely a perfect dephaser in this limit. This can
be shown by evaluating E(T' ® T') using similar ideas as
above (see also Ref. [43]).

D. A many-body system that is a Markovian bath

The knowledge of the influence matrix provides a com-
plete characterization of a quantum bath and, in partic-
ular, gives a tool for describing its effect on dynamics
of another quantum system coupled to it. In particular,
one can analyze not just the dynamics of a translationally
invariant system, but also the dynamics of an impurity
immersed in the system. To illustrate this, we now study
how a coupling to a perfect dephaser bath affects the
evolution of a single spin.



We consider an impurity spin placed at site p, and cou-
pled to its neighbors via a generic Ising coupling. We will
see that the system acts on the impurity spin as a mem-
oryless, Markovian bath. While the Markovian approxi-
mation is commonly employed in a range of problems, it
normally relies on the separation of time scales between
the system and the bath; in contrast, here it is exact, as
a consequence of the PD property.

For simplicity, we focus on the kicked Ising model of
spins 1/2, with an impurity spin at the edge, site p. We
choose all couplings except those involving spin p to be
e = J = w/4, while spin p is coupled to spin p — 1 by
an Ising coupling with possibly different strength J. The
kick operator W, may also be different from the /2 ro-
tation of the other spins. Then, using the PD property,
we can derive the influence matrix for the impurity spin:

Z({o,0}) = 1:[ cos (j(aT -a7)). (29)
=0

This equation is most easily obtained graphically, noting
that the last contraction on the right in Fig. 4b has
now non-dual-unitary gates, producing a nontrivial but
factorized IM. The latter is represented in Fig. 4c, where
red tensors have a parameter J that differs from that of
the orange tensors.

The IM in Eq. (29) gives rise to a time-independent su-
peroperator (“quantum map” or “channel”) that evolves
the local reduced single-spin density matrix,

pptt =W, D(pp) Wy, (30)

where the dephasing superoperator D damps the off-
diagonal entries by a factor cos(2.J):

D] =,

['D(p;)] | = cos(2J) [o7] ey

o,—0 o,—0 "
Unless the coupling J equals 0 mod /2, the damping
is present.

The corresponding thermalization time is dictated by
the leading nontrivial eigenvalue of the superoperator in
Eq. (30), which depends on both the spin’s autonomous
dynamics Wp and on the coupling J. For instance, let us
consider a kick operator W, = exp(iéd,). We define the
temporal correlation function

C..(t) = <F’t o2 F! a—;>0 : (32)
where F is the Floquet operator of the “chain + im-
purity” and (-)o denotes infinite-temperature averaging.
The polarization decay rate 7.g of the impurity spin p,
defined by the asymptotics

—log [C..(t)] ~ Yest, (33)
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depends on both ¢ and J. In particular, if J = /4, we
have e~ 7 = cos(2€), while if € = 7/4, we have e 7 =
cos(2.J).

The above discussion shows that the effects of perfectly
dephasing baths can be computed for arbitrary times,
and naturally raises the question about the structural
properties of more general quantum ergodic baths pos-
sessing nontrivial temporal correlations. We tackle this
intriguing question below.

IV. THERMALIZATION AWAY FROM
PERFECT DEPHASER POINTS

The discussion above shows that certain fine-tuned
Floquet systems can act as perfect dephasing baths for
themselves. In other words, these systems can induce
complete decoherence of the local degrees of freedom at
each time step. The resulting thermalization dynam-
ics is memoryless: i.e., it can be exactly described by
a (discrete-time) Lindblad equation [45, 46].

This property is surprising, as the Born-Markov ap-
proach to open system dynamics typically requires ne-
glecting the bath temporal correlations [47]. This ap-
proximation usually relies on a separation of timescales
between the system and the bath. While this is suit-
able in many physical situations involving the interac-
tion of a “slow” particle with distinct, “fast” degrees of
freedom (phonons, electromagnetic fields, ...), it is gen-
erally inadequate for the local dynamics of homogeneous
extended quantum many-body systems.

The factorized form of the influence matrix in Eq. (19)
of perfect dephasers, remarkably, makes their local dy-
namics exactly Markovian. Such property is tied with a
complete absence of temporal entanglement in the influ-
ence matrix. It is thus natural to investigate the struc-
ture of the influence matrix in systems detuned from
perfect dephaser points. One may expect that such sys-
tems would provide more generic examples of thermaliz-
ing quantum systems. In this Section, we shall focus on
this problem.

In Sec. IVA we will introduce the matrix-product
state (MPS) approach, which we adopt as a computa-
tional tool throughout this Section. In Sec. IVB we
unveil the underlying structure of the influence matrix
of generic thermalizing systems away from PD points.
We motivate and validate a description of the IM, rem-
iniscent of the statistical mechanics of massive, weakly
interacting particles in one dimension, where the role of
particles is played by intervals of a Keldysh trajectory
with ¢ # &. Finally, in Sec. IV C, we show that this
approach can be successfully applied to compute the po-
larization decay rate of a slow impurity spin coupled to
an ergodic chain. For the sake of definiteness, through-
out this Section we will focus on the case of the spin-1/2
kicked Ising model described by Eq. (2) with the choice
of operators (17) and (18).



Figure 5. Growth of the maximal (half-time) bipartite tempo-
ral entanglement entropy S(t) of the influence matrix viewed
as a wave function in the folded space. It is plotted as a
function of time, for a small detuning 6J = de = 0.06 from
the PD point, and A = 0.3. Entropy growth is approximately
linear in time but slow enough for the influence matrix with
t < 20 to be accurately captured by an MPS with a bond di-
mensions x < 256. Inset: Slope of entanglement entropy %
as a function of detuning 6J = de. As the system approaches
the PD point, this slope goes to zero. We note that the slope
remains small in a broad range of detuning, enabling efficient
MPS description.

A. Low temporal entanglement and
matrix-product operator approach

It is convenient to “fold” the backwards and forwards
contour, grouping together each spin ¢” on the forward
time branch and its equal-time counterpart &7 on the
backward branch, to form a composite four-dimensional
local Hilbert space (cf. Fig. 2). The influence matrix can
be interpreted as a “wavefunction” living on a chain of
those four-dimensional qudits. In this picture, the influ-
ence matrix of perfect dephasers [Eq. (19)] is represented
by an exact product state. It is natural to assume that for
sufficiently small detuning 6J = 7/4 — J, de = /4 — ¢
from the PD point and arbitrary h, the influence ma-
trix can be described in the folded picture by a matrix-
product state (MPS) with a moderate bond dimension .

We set up a code based on the TeNPy library [48] which
applies the dual transfer matrix T repeatedly, starting
from a product state. Due to the pseudoprojection prop-
erty discussed in Sec. IIB, it is sufficient to apply the
dual transfer matrix ¢ times in order to obtain the in-
fluence matrix in the thermodynamic limit. The dual
transfer matrix can be expressed as a matrix-product op-
erator (MPO) with bond dimension 4. After each step,
the influence matrix MPS is compressed using conven-
tional SVD truncation sweeps. Up to time ¢ = 2log, x
the compression yields no truncation and the results from
MPS match exact diagonalization to machine precision.

We take the convergence of the entanglement entropy S
of this wavefunction upon increasing the bond dimension
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as a witness of the quality of our MPS representation. As
shown in Fig. 5, the MPS approach allows us to explore
the properties of the IMs for larger times ¢ than those
accessible via exact diagonalization, as S(t) converges for
generic values of the parameters at reasonably low bond
dimensions. The results indicate that the initial growth
of S(t) is approximately linear in ¢ with a slope decreasing
to zero as the PD point is approached. Accordingly, in
the following, we will use the MPS approach described
here as a computational tool, with y = 256.

The occurrence of low entanglement entropy in the
folded picture is supported by an intuitive argument sim-
ilar to that in Ref. [49]: In the absence of a longitudinal
field h = 0, the system can be described by quasiparti-
cles which move to the left on the forward and to the
right on the backward branch. In the unfolded picture,
this leads to a strong entanglement between sites on the
two branches. At the self dual point, those quasiparti-
cles can only propagate along the light cone edges [25],
which means that in the folded picture correlations can
only exist between a forward site and its corresponding
backward site. Thus, the entanglement entropy of the
folded MPS is zero. Detuning from the self dual point
introduces a small density of slower quasiparticles, which
gives rise to a parametrically slow growth of entangle-
ment between different folded lattice sites.

B. Statistical-mechanics description of the
influence matrix

The influence matrix is expected to develop a complex
structure in generic systems away from perfect dephaser
points, corresponding to the appearance of memory ef-
fects, intricate decoherence dynamics and temporal en-
tanglement. To analyze this, it is convenient to introduce
some additional formalism. Within the previously intro-
duced folding map (cf. Fig. 2), we perform a discrete
Keldysh rotation: We denote the “classical” configura-

tions as
_ IT1) = ler)
lo767) = { , (34)
N4 = ley)
and the “quantum” configurations as
_ ) = lar)
lo76™) = { . (35)
N = lay)
We further introduce the states

lg) = lar) £ lqy) - (36)

Note that these four basis states may be seen as the
vectorization (via the folding map) of the four basis op-
erators i,&z,ﬁw,i&y, respectively. With this notation,
the initial infinite-temperature density matrices are rep-
resented as

lex) = lep) £ey),

1 1
1= gles) (37)
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and the perfect dephaser influence matrix assumes the
following simple form:

Zop) = Rles) = leves c). (39)

General properties of the influence matrix (see Ap-
pendix A for details) dictate that |Z({o,5})| < 1, and
Z({o,0}) =1 for all classical trajectories, i.e.,

I(CTmLCTvl .. 'CT#) =1 or I({O’ = 5’}) =1. (39)

More generally, as discussed in the Appendix [see in
particular Eq. (A5)], the value of Z on mixed classi-
cal/quantum trajectories depends only on the configu-
ration extending between the first and the last quantum
site [50]

I(CThﬂ e CT7~L(an e ‘Iaf/)CTyi e CT&) = I(an e an,).

(40)
This property motivates us to view classical Keldysh
paths as “vacuum”, and to interpret the quantum ex-
cursions (6767) = ¢qp,y = (1)) or (J1) of a path {o,5}
as “particles”. In this description, the influence matrix
is regarded as a complex statistical weight for a particle
configuration,

I({o,5}) = e=SUmoD (41)
where we refer to S as the influence action. Note that
PReS > 0. In the limit of vanishing coupling to the bath,
one trivially obtains S({o,5}) = 0 for all trajectories,
irrespective of their particle content. In the opposite
limit of a perfect dephaser, one has Z({o,5}) = 0 [i.e.,
MReS({0,5}) = oo] whenever a trajectory has some par-
ticles [see Eq. (19)]. In the generic case, a particle con-
figuration will be penalized by a non-zero value of the
action, with ReS({o,5}) > 0. Since the influence ma-
trix contains all possible information on the dynamical
effects of a part of the spin chain on the spins coupled to
it, it is clear that the “interactions” encoded in the action
S characterize the ergodicity of the quantum dynamics,
or lack thereof.

Nlustration of the “sojourn-blip” parametrization in Eq. (42) of a generic spin trajectory on the Keldysh contour.

Our goal in the following is to characterize the influence
matrix of generic ergodic quantum systems. To this end,
we describe Keldysh trajectories in terms of alternating
classical and quantum intervals. Following the seminal
work by Leggett et al. [28], we refer to classical intervals
(where {0,6} = {0,0}) as “sojourns” and to quantum
intervals (for which {0,5} = {o,—0}) as “blips”. We
can parametrize a trajectory as an alternating sequence
of n + 1 sojourns and n blips,

{Uaa'}(_) (007(311701»---,(1n7Cn), (42)
with
cj=(crpsnery )y Qi=(ap0,-5010 ), (43)
At; times AT; times

and whose durations sum up to the total trajectory time:

Atg+ A+ Aty + -+ Ay + At =t + 1. (44)
This parameterization is illustrated in Fig. 6. (Here we
assumed for simplicity that the initial density matrix is
diagonal.)

In the following, we will use a combination of analyti-
cal insights and numerical computations to show that in
quantum ergodic many-body systems, blips behave as a
“gas” of massive, short-range interacting particles.

1. Blip weights

Paths without blips, n = 0, are entirely classical, and
correspond to the influence matrix Z = 1. The simplest
nontrivial configurations have n = 1, i.e., a single blip.
Their influence matrix elements, hereby called influence
weights, only depend on the internal blip structure, and
not on the external sojourns.

To develop some intuition regarding the blip weights,
let us first consider a constant blip,

{o.0} ={o,—0} = (@rqr-.- @) (45)
——

AT times



Figure 7. Absolute value of the Loschmidt echo L(AT), equiv-
alent to a weight of a single blip, plotted as a function of blip
duration, A7, near the PD point §J = de = 0.06 for dif-
ferent values of h reported in the legend. A constant blip
that consists of ¢4 spin configurations is considered. The de-
cay is approximately exponential, with a rate that is nearly
independent of h, and exhibits pronounced time-dependent
fluctuations around an exponential envelope.

(a blip with constant ¢, can be described in an anal-
ogous manner). In this case, it follows from the defini-
tion (16) [or, more generally, (A5)] that the influence ma-
trix Z reduces to the discrete-time, infinite-temperature
version of the so-called Loschmidt echo, i.e., the overlap
between two wavefunctions evolved from the same initial
state with two slightly different Hamiltonians (see, e.g.
Refs. [51, 52] for reviews). Denoting by a subscript E the
“environment” spins at positions 0 < k < p, we have

Z(q...qp )="Tr {(UE)ATQ% (UET)AT}
A7—1 times

= L(AT). (46)

The two evolution operators U and Uy differ by a clas-
sical “field” e*®(op—1.%1) = /o1 gcting on the bound-
ary spin of the environment, due to the spin o, being 1
in the forward and | in the backward evolution.

In the limit of weak coupling J — 0 between spins
p—1 and p, the two time evolutions in Eq. (46) differ only
slightly, and it makes sense to consider L as a measure
of the sensitivity of the time-evolution to small pertur-
bations in the Floquet operator. In fact, the continuous-
time Loschmidt echo has been introduced as a quantifier
of chaotic behavior in quantum systems [53, 54]. It has
been found that Loschmidt echoes generically exhibit an
exponential decay in ergodic systems [55], while in MBL
systems it displays a power-law behavior [56].

We are generally interested in the case of a finite,
rather than weak, coupling strength J. Nevertheless, it
is natural to expect that in ergodic systems weights of
constant blips should decay exponentially upon increas-
ing the blip size, similar to the Loschmidt echo. In Fig. 7
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we report the results of numerical computations of the
influence weight of individual blips with constant ¢ in
the kicked Ising chain, for a range of parameters in a
neighborhood of the perfect-dephaser point. In all cases,
a clear exponential decay is evident, consistent with our
expectations.

Furthermore, the influence weight of non-constant
blips may be viewed as a generalized time-dependent
Loschmidt echo of the environment, formed by the over-
lap of two time-evolutions subject to a classical boundary
field that differs at all times. It is natural to expect the
influence weight of all blips to decay exponentially as a
function of the blip duration in generic ergodic models.
To show that this exponential decay is a generic feature
of long blips, we next prove that the average weight I(q)
of all blips of duration A7 also decays exponentially as
(cos(2J))A7. We start with the self-consistency equation
(14) for the IM, summing over all internal configurations
of a blip of length A7, which yields:

1
9AT Z I(cr,q,01) =
a:lq|=AT
t—1 1ol to+AT
Y Ioa) [TWIo" T cos(J(e"+5"))
{0,5} 7=0 k=to+1

(47)

The W transition amplitudes are antisymmetric with re-
spect to the change of sign of the first sojourn. Since
such a change does not affect the value of the influence
matrix, the contributions of configurations with at least
one blip cancel out in the average. This leaves just the
contributions from purely classical trajectories, without
blips (as in Sec. IIID). For those trajectories, the influ-
ence matrix is always Z({o,0}) = 1. Further, note that
for all classical trajectories of o the J dependent term in
Eq. (47) is the same and equal (cos(2.J))27. Thus, the W
transition amplitudes can be summed separately, which
yields one. As a result, we get

o Y Tlenaed) = s>, ()

q:lq|=AT

We have numerically verified this relation for various val-
ues of the model parameters, confirming that average
weight of a single blip decays exponentially with its dura-
tion. Interestingly, as is evident in Fig. 7, the weight of a
blip with a fixed internal structure, exhibits fluctuations
around the approximate exponential decay.

2. Blip interactions

Within the above suggestive analogy between an IM
and a statistical-mechanical complex “action” for blips,
a long blip q may be pictured as a structured aggregate
of particles, the “mass” S(q) of which increases approx-
imately proportionally to its length.
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Figure 8. Illustration of the decomposition of the influence
weight of a multiple-blip configuration into cluster contribu-
tions, cf. Eq. (50). Left-hand side: graphical representation
of the influence matrix element Z(q1, c1, g2, c2, ¢3) of a config-
uration with n = 3 blips of duration AT = 1, averaged over
the intermediate sojourns ci,c2. We insert spectral resolu-
tions of the identity on each tensor leg connecting a blip with
the rest of the network, as indicated by the arrows, obtain-
ing O(4™) contributions. Each of them consists of the prod-
uct of n disconnected networks including individual blips and
the exterior network including all sojourns. Right-hand side:
The disconnected-blip contribution is isolated by choosing the
identity state 3 |c4) (c4| in the resolution of the identity on
every leg, and is highlighted by the red shading. In this case
the exterior network equals 1, as it can be completely con-
tracted via the rules in Fig. 3a. In contrast, for all the other
contributions, the exterior network is equivalent to a temporal
correlation function of traceless local operators, correspond-
ing to states |c_), |q+), |¢—), denoted O; here. In ergodic
dynamics, these correlations generically decay as the tempo-
ral separation At; or Aty increase.

While the weight of long blips is strongly suppressed,
this need not be the case for configurations with multiple
blips separated by long sojourns. It is natural to define
the interaction influence weight of a multiple-blip config-
uration as the excess influence weight compared to the
product of the influence weights of the individual blips:

e~ Sint(Q1,€1,02,€25.,Qn) —

e—S(f«ll,Cl,qz,Cm--»,Qn)-‘r i1 S(ai) (49)
Note that Sy, depends on the specific configuration of
the sojourns c; between the blips. The question of the
range of the blip interactions is intimately related to the
memory time of the system. It is expected that a weak
non-Markovianity of the reduced dynamics can be trans-
lated into a fast decay of interactions.

In fact, the decay of the blip interactions may be pre-
cisely related to the temporal decay of the correlations of
certain local operators, via the following argument. Let
us consider a spin trajectory with n blips, {|q;) }i=1,...n,
and let us evaluate its IM element by contracting the
corresponding tensor network, as shown in the example
in Fig. 8 for n = 3 and blips of duration Ar; = 1. (In
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Figure 9. Decay of the polarization autocorrelation C..(t)
defined in Eq. (32) vs time close to the PD point (6J = de =
0.06) for different values of h. The drop is exponential with a
decay rate that depends on h.

the Figure we average over the configurations of the in-
termediate sojourns, although this is not necessary for
the argument that follows.) To isolate the disconnected
blip contributions, we insert a spectral resolution of the
identity formed by the states |ci), |c_), |q+), |g—) de-
fined in Eqgs. (34), (35), on each four-dimensional tensor
leg connecting a blip with the rest of the network, as in-
dicated by the arrows in the Figure. In this way, we have
formally decomposed the IM element as a sum of O(4™)
contributions, each given by the product of n + 1 discon-
nected network contractions: that is, n “small” single-
blip networks including |qi1), ..., |gn) respectively, and
the remaining “large” exterior network comprising all so-
journs. In this sum, the term where we choose % |c;) (c|
on every leg (which is explicitly represented in the Figure)
yields exactly the product of the individual blip weights
(red shaded), because the exterior network is equivalent
to the influence weight of a classical trajectory and thus
evaluates to 1 (using the contraction rules in Fig. 3a).
For all the other contributions, the large exterior network
may be viewed as a (possibly complicated) temporal cor-
relation function of local operators Oy, ..., O,, all with
spatial support near the boundary of the chain, and with
temporal support near the respective blips. In quantum
ergodic systems, such temporal correlations are expected
to decay rapidly upon increasing the time separations
Aty, ..., At,_1 between the operators (i.e., the dura-
tion of the intermediate sojourns). Thus, in general, one
expects the interaction strength between clusters of blips
to vanish for sufficiently long sojourns in between: i.e., if
At,, — 00,

e~ S(aic1,a2,62,...,an)

~ e~Sancrnam) o o=S(Am+1,Cmt1sAn) (50)

This scenario is supported by our numerical computa-
tions. First, we verify that temporal correlations of local
operators decay upon increasing the time separation. For
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Figure 10. Influence matrix elements of two blips. Left (Right): Blips of length one (two) separated by sojourns of duration
At. Detuning from the PD points, §J = de = 0.06,0.15,0.3, increasing from bottom to top. Different values of h are
reported in the legend. In both cases, Z(qi,c,q2) decays to the product Z(qi)Z(qz2) of the values of individual blips, with
Z(qr) = Z(qy) = cos(2J) and Z(grqy) = Z(quqr) = cos*(2J) + sin*(2J) cos(2e¢).

the sake of illustration, we report in Fig. 9 the dynam-
ics of the spin polarization autocorrelation C.,, defined
in Eq. (32). The decay occurs for all values of the pa-
rameters, as expected in generic ergodic systems. By the
above arguments, the generic decay of temporal corre-
lations such as the ones we reported in Fig. 9 justifies
the cluster approximation of the blip action. We further
verify this directly by inspecting the IM elements. In
Fig. 10 we report the influence weight of a pair of blips
for the kicked Ising chain, averaged over the configura-
tions of the intermediate sojourns, as a function of their
temporal separation, for two examples of blip structures,
and for a range of parameters in a neighborhood of the
perfect-dephaser point. As the plots clearly show, in all
cases the IM approaches a constant plateau equal to the
product of the disconnected blip weights.

C. Decay rate of a slow impurity

In the previous Subsection, we analyzed the influence
action, finding that blips have a finite range of interac-
tions, which is related to the relaxation time of the sys-
tem. Next, we analyze the effect of a many-body bath
on a “probe” spin embedded a spin chain, whose own

t—1

>

{o'=t4, .., o' =11} T=0
{ol=td o=t}

Pr(t) =

[ (e lexp(ies,)|o7) (67 | exp(—iéb,)|67) €™ =77 x I({o,5}).

dynamics is slower than that of the environment. In
this case, thanks to the separation of time scales, the
blip “gas” is effectively dilute and can be treated as non-
interacting. This will enable us to predict the relaxation
rate of the impurity spin.

To make this intuition quantitative, we compute the
polarization decay rate of an impurity spin at the edge of
a kicked Ising spin chain defined by Egs. (2), (17), (18),
with parameters ¢ = w/4 — de, J = w/4 — §J detuned
from a perfect dephaser point. This impurity spin differs
from the other spins of the chain by the smaller strength
€ of its kicks,

€] < €. (51)
Our aim is to compute the persistence of the impurity
spin polarization,

1+C,.(t)

6

PG-OZT*}o-t:T = PTT(t) =
where the autocorrelation function C,,(¢) has been pre-
viously defined in Eq. (32).

We can express this transition probability as a sum
over Keldysh trajectories of the impurity spin. Denot-
ing the path variables by 0,5, we can write the above
equation as follows,

(53)



16

Switching to the sojourn-blip parameterization in Eq. (42), see Fig. 6, we can rewrite Eq. (53) as follows:

Prr(t) = D (=)"(cosésiné)™ x

> > <'nOV~V[Ca‘]> <ﬁw[qi]€2iw[q”> X Ilqi,c1,. - Cno1,qn) . (54)

0<tp<:--<Tp <t €0,91,C1,---,Cn—1,9n,Cn J

Now the sum over paths is arranged as a summation over
the number of blips, over their positions in time, and
over the internal configurations of individual sojourns
and blips. In this equation, we have combined the intra-
sojourn and intra-blip kick transition amplitudes into the
terms

Wic] = (cos? &)At-1-Klel (_gin? e)Klel  (55)

Wlq] = (cos? &)A—1-Kldl (—gin2g)Kld  (56)

where K|c] (K[q]) is the number of domain walls in the
sojourn or blip configuration, and we have defined the
total magnetization a blip,

AT
Mia] = S i), with mlgr] = +1, mig,] = —1.

(57)

The above equations show that for weak kicks |é] < 1
of the impurity spin, the sum over trajectories will be
dominated by terms with a low density of blips. In fact,
the kick strength € acts as a ‘“chemical potential” for
blips. Thus, in most of the relevant blip configurations,
we may treat the blips as noninteracting, i.e., substitute

Ilan] .
(58)
The success of this non-interacting blip approximation
(NIBA), discussed at length by Leggett et al. in the
context of a two-level system coupled to a bath of in-
dependent harmonic oscillators [28], relies on the typical
interblip distance being larger than the blip interaction
range.
The factorized form of the IM in Eq. (58) allows us to
analytically compute the polarization decay rate of the
impurity. After this simplification, the influence matrix

Zld1,€1,92,€2, - - -, Cn—1,9n] =~ Z[qi]Z[qo] ..

i=1

in Eq. (54) does not depend on the sojourns’ internal
structure. The summation over all configurations of one
sojourn yields

> Wie] = 2(cos(26))> " (59)

ci|c|=At

Note that the first and last spin are restricted to being
% = o' =1, which gives an extra overall factor of 1/4;
moreover, the term n = 0 has both ends fixed and gives
[14cos’(2€)]. For blips, instead, we define the “dressed”

single-blip weight

I(Ar)= > Wqe*Mialz]q]. (60)
a:la|=AT
This quantity depends on how the environment sup-
presses individual blips, and should be considered as an
input for the computation of the polarization decay. Note
that the identities M[—q] = —M]|q], Z[-q] = Z]q]* im-
ply that Z(A7) is real.
Since we are interested in the asymptotic decay rate of
Py4(t), it is convenient to compute its generating function
(or a discrete Laplace transform),

[ee]

Py(A) =Y e MPu(1). (61)

t=0

We split ¢ into intervals according to Eq. (44), and, for
each n, we perform the sums over the durations of blips
and sojourns. For the blips, we define

i e MTT(AT) = I(N). (62)

AT=1

Putting everything together, we find

_ 1 1
Py (A) = 2{1—e>‘ +

The long-time behavior of the polarization is governed
by the asymptotics of Py (\) for small argument. In par-
ticular, an exponential decay of the correlation function

1 } (63)
1 — e~ cos(2€) — 2 cos?(€) sin®(€) Z(A)]

\
C..(t) in Eq. (32) with a rate e gives:

Py 1
A=0 A 1 — e et

Pry(N)

+ O(A), (64)
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Figure 11. Left panel: dynamics of the polarization autocorrelation C..(t) defined in Eq. (32) of a slow spin, for h = 0.29;¢ =
0.17 and a range of values of € = J, in units of /4 (reported in the legend). Right panel: comparison between the numerical
(blue) and the theoretically predicted (orange) decay rates vs detuning from the PD point. The former is extracted by fitting
the decay curves such as those in the left panel, while the latter is described by Eq. (66).

with
Pay = lim Py (t) = » (65)
av = A0 i) =5
Comparing with the result in Eq. (63), we find

e~ = cos(2€) — 2 cos? (&) sin?(é) <Zf(m)> . (66)

AT

For small €, this reduces, in the lowest non-vanishing or-
der in €, to

et~ 2 & [1 + Zf(m)]. (67)
AT

This equation expresses the decay rate of a slow impu-
rity spin coupled to a spin chain detuned from the PD
point, which is a non-Markovian bath. In the limit of
a perfect dephasing bath with |e| = |J| = 7/4, where
the blips are completely suppressed, the above equation
reduces to the Markovian dynamics, as in Eq. (33). In
fact, the first term in Eq. (67) represents the decay rate
in this limit. This contribution is purely classical, as the
environment completely suppresses interference between
all pairs of quantum trajectories. The second term repre-
sents instead the noninteracting-blip contribution. This
correction can be of either sign, due to the complex blip
weights.

Blip interactions generate higher-order corrections
to Vet Leaving their detailed analysis for future work,
we note that such corrections can be systematically
taken into account via a renormalization procedure, in
which one progressively includes connected contributions
of clusters of two, three, etc blips into Z(A7). Such a
scheme can be truncated as long as the series (54) is
dominated by terms with a low density n/¢ of blips. For
small €, this holds, since the blip density scales as O(&?).
The first correction arising from blip interactions is sup-
pressed as ré?, where r is an effective parameter describ-
ing the range of two-blip interactions. Note that the value

of r may depend on the structure of the blips involved
and model parameters, see e.g. Fig. 10. This will lead to
a correction of the order O(ré?) to the relaxation rate yog
in Eq. (67). For fixed €, this correction becomes increas-
ingly important as one detunes the system from a perfect
dephaser point, effectively enhancing the blip interaction
range r.

We tested the predictions of Eq. (67) against our nu-
merical computations, finding a good agreement in a
broad range of model parameters. The comparison is
shown in Fig. 11. In the left panel, the dynamics of the
probe spin polarization autocorrelation C,,(t) is plotted
for increasing detuning de = §J of the chain from the
perfect dephaser point, where the behavior is exactly ex-
ponential, C,.(t) = cos’(2¢). As shown, the decay of
C..(t) remains approximately exponential even for size-
able detunings. In the right panel, we compare the mea-
sured decay rate y with the prediction of the NIBA in
Eq. (66). For small detunings the approximation is ex-
cellent. A small discrepancy appears for larger detunings,
which we attribute to the neglected contribution of blip
interactions. The latter could be accounted for via the
renormalization procedure briefly sketched above. We
note that we found the range of quantitative validity of
the NIBA to be sensitive to the value of the integrability-
breaking parameter h. This can be attributed to the fact
that, as we saw in the previous subsection, changing h
tunes the range of blip interactions.

We conclude this section with some remarks. First,
the blip gas approach presented above can be straight-
forwardly applied to more general systems than discussed
here; for example, we expect that it works similarly for
the class of random models introduced in Sec. III C upon
detuning from the perfect dephaser limit, e.g., by de-
creasing the amount of randomness or the local Hilbert
space dimension q.

Second, it is instructive to contrast this approach to
the perturbation theory scheme set up in Ref. [57]. The



latter work expresses space-time correlators perturba-
tively in the detuning from the dual-unitary points of
brickwork quantum circuits, and relies on a small space-
time density of perturbed gates. In contrast, the influ-
ence matrix approach discussed here is non-perturbative
at its core. While we found it convenient to focus here
on a neighborhood of a dual-unitary point for concep-
tual clarity and clear numerical advantage, this is not
at all a crucial ingredient; for instance, an MPS repre-
sentation of the IM can also be efficient in very differ-
ent regimes, e.g., when either parameter value J, € or h
is small [58], or in the presence of strong disorder [59].
Similarly, the blip gas analysis presented above is pertur-
bative in the impurity’s internal frequency scale, but not
necessarily in the detuning from PD points, which enters
non-perturbatively via the blip weights and interactions.
The latter can be computed analytically or extracted nu-
merically for general ergodic quantum circuits.

We finally briefly comment on the difference between
the discrete spin dynamics studied above, and continu-
ous evolution of a two-level system coupled to a bath
of harmonic oscillators [28]. In the“strong decoherence
limit”, when blips are completely suppressed, the dy-
namics in the two cases is qualitatively different. In the
continuous setting, a complete suppression of quantum
interference resulting from strong interaction with the
environment freezes the spin state and it cannot relax to
equilibrium. This phenomenon is known as the quantum
Zeno effect [60]. In the discrete case, blips are suppressed
for € = /4. Then, in contrast, the spin thermalizes over
just one time step, as discussed in Sec. IIID.

V. SUMMARY AND OUTLOOK

We have developed an approach to analyzing highly
non-equilibrium dynamics of isolated many-body sys-
tems, inspired by the Feynman-Vernon influence func-
tional formalism [27]. Focusing on a class of interacting
Floquet models, we formulated the self-consistency equa-
tion for the influence matrix, and demonstrated that it
can be analyzed using complementary analytical and nu-
merical considerations in a whole range of model param-
eters. Therefore, both “solvable” perfect dephaser baths
that are Markovian, and more generic non-Markovian
models can be characterized within the IM approach. As
an example, we analyzed the effect of a generic many-
body system on an impurity spin coupled to it.

The influence matrix provides a novel probe for char-
acterizing quantum chaos and its absence in many-body
systems. Compared to spectral probes, such as level
statistics, the advantage of the IM is that it provides de-
tailed information regarding the memory time scales and
temporal correlation functions. IMs also contain the in-
formation expressed by other previously studied dynami-
cal probes, such as the Loschmidt echo, and the statistics
of matrix elements of local operators. In future work, it
will be interesting to develop a connection between the
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properties of the IM and the eigenstate thermalization
hypothesis.

We have found a family of ergodic models (in par-
ticular, in the vicinity of the perfect dephaser points),
where MPS-based methods are efficient for computing
the IM. This stems from viewing the IM as a “wavefunc-
tion”, whose “temporal entanglement” scales slowly with
the evolution time. Interestingly, conventional methods
relying on the smallness of spatial entanglement would
not recognize such models as “easy”. As a matter of
fact, this represents the key distinction from conventional
time-evolution methods based on tensor contractions se-
quentially in time. While these rely on truncating long-
distance spatial correlations built up in the course of evo-
lution, the IM approach relies instead on long-range cor-
relations in time remaining low. This scheme could be
expected to be suited to strongly chaotic quantum sys-
tems, which induce a rapid thermalization of subsystems
initially out of equilibrium, thus quickly erasing local
memory of the past. Presumably, this different princi-
ple of efficiency leads to a new “corner of solvability” in
quantum many-body systems out of equilibrium, as we il-
lustrated with the perfect dephaser family, where tempo-
ral entanglement is low and spatial entanglement is high.
This insight complements previous works on Hamiltonian
systems [19, 49, 61]. Interestingly, better compression
schemes than conventional singular value truncations are
conceivable, which could make the influence matrix ap-
proach even more numerically efficient and broaden its
range of applicability. A possible idea draws on mem-
ory kernel approximations inspired by the theory of open
quantum systems [62].

Our work also suggests several promising future direc-
tions. First, it appears that PD circuits can be found
in higher dimensions. Second, it would be interesting
to analyze the precise relation between PD and dual-
unitary circuits. As we discussed (see also Refs. [25, 37]),
dual-unitarity implies that a system is a PD, but we do
not know whether the converse generally holds. Other
promising generalizations of our approach include Hamil-
tonian systems and their dynamics at a finite, rather than
infinite, temperature.

In future work, we plan to further analyze the inter-
acting blip gas, and the effects of blip interactions on the
impurity spin dynamics, as briefly discussed in the last
Section. We envision that, detuning from PD points,
the self-consistency equation for the IM may be solved
perturbatively in the detuning. This, along with apply-
ing the IM approach to non-ergodic systems [59], will
likely lead to a more complete characterization of non-
equilibrium quantum matter.
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Appendix A:
General properties of influence matrices

In this Appendix we review the basic properties of
Feynman-Vernon’s influence functional, adapted from
Ref. [27] to our discrete-time dynamics. For simplicity,
we focus on two-level systems (¢ = 2); the generalization
to the case of ¢ > 2 is straightforward.

We consider a quantum spin (S) interacting with an
environment (F). In the main text discussion, S is a
spin at position p in a spin chain, and F is formed by all
spins on previous positions k < p; here, however, for the
sake of generality we keep the discussion more abstract.
We assume the spin-environment interaction to be of the

Poo oy =
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form Vim = VS ® VE Without loss of generality, we take
Vs = J&#, such that

Ui = /07767, (A1)
The global Floquet operator has thus the form
F = eiJ&z@)VE US ® UE, (A2)

where US, Ug are the parts of the Floquet operator act-
ing on the spin and environment separately. We further
assume that in the initial state
pP=psXpE, (A3)
such that the spin and environment are uncorrelated.
According to the standard laws of quantum mechanics,
the transition probability Pyo_,,+ for the spin S can be
expressed as a discrete path integral [63]:

t—1

[ (o7 0slem) @+ 110sla™)” x T({orah),  (A4)

{ol=tl, o, ot 1=t} (G =1, o, G110} T=0

where we have collected the partial trace over the environment degrees of freedom into the influence matriz

I({0,}) = Tr <UE[{0}] P Ug[{on)

:TIE<(££E, UE) (eii‘WE UE) PE (U;f; e:FiJVE) ((A])LE ejFiJVE)).
ol=+

ot—1=+

In this expression, the modified environment evolution
operator takes the form

— —

Usl{c}] = ]:[ Uglo™ = 4] = 1:[ Ve Uy (A6)

where the arrow denotes time-ordering of the matrix
product and now the c-numbers {¢7 = £1} are given
by the considered trajectory of the spin S. Inserting this
expression into Eq. (A4) we reconstruct the full summa-
tion over Feynman histories of the composite system.

From expression (A5) for the influence matrix, it fol-
lows that |Z| < 1. In particular, it is evident that the
absolute value of the influence matrix may be smaller
than 1 if the forward and backward trajectories differ.
Indeed, when o7 = &7 for all 7’s, the resulting “stan-
dard” time-evolution of the density matrix preserves its
trace, giving Z({o,0}) = 1.

More generally, if 07 = &7 for all 7 > 7, the for-
ward and backward evolution after 74 cancel out. For
this reason, we may always think of the Keldysh contour
as extending up to time 4oco. Similarly, when the initial
state is the infinite-temperature density matrix, the evo-

(A5)

ol=+ ot—1=+4

lution up to 7; cancels out if ¢ = &7 for all 7 < 75, and
the Keldysh contour can be thought as extended from
time —oo.

The influence matrix is generally a complicated, non-
local functional of the spin trajectory. As explained in
Sec. IV B, we can parametrize a trajectory in terms of
alternating classical (¢7 = ¢7) and quantum (o7 # ¢7)
intervals, referred to as “sojourns” and “blips”, see Fig. 6.

We finally recall two simple and useful properties of
influence functionals [27]. First, if the environment con-
tains some degree of randomness, either in its Hamil-
tonian parameters (e.g., disorder or noisy couplings) or
in its initial state (statistical mixture), the ensemble-
averaged influence functional correctly describes the
ensemble-averaged time-dependent observables:

E(Z({0,5})) ~ E(Os(r)0s(1")), (A7)

where E( . ) denotes the ensemble-averaging over ran-
domness. Second, if the system is coupled to multiple
uncorrelated environments, the composite functional de-
scribing the simultaneous influence of all of them is the



product of the individual influence functionals:

N
SUEIU---UE, = I({0,6})=]]Ze.({0.7}).

(A8)
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5 Exact disorder averaging and Many-Body
localization

5.1 Introduction

Many-Body Localized (MBL) systems are interacting quantum systems which fail to
thermalize due to strong disorder. Those quantum systems can stay coherent and are
protected from heating, even in the presence of driving and in the absence of fine-tuning.
This enables the realization of novel physical phases [137] such as time-crystals [19-22].
The lack of thermalization can be understood as the failure of MBL systems to act
as thermal environments for their subsystems. For more details on thermalization and
localization, I refer to Sec. 1.3 of this thesis. In this chapter we explore the structure
of the IM across the MBL transition and leverage these results to provide an efficient
numerical method to simulate disorder-averaged dynamics in MBL systems.

In the MBL phase, spatial entanglement entropy grows logarithmically in time [68],
allowing in principle the use of MPS time evolution methods like TEBD to simulate
dynamics for each disorder configuration [138]. However, the averaging of observables
over disorder configurations can be challenging: Rare rare regions [139-142] can be
impactful. Furthermore the effect of finite system sizes can be difficult to estimate [143].

Computing observables from the IM, using Eq. (2.5) is linear in the IM. We can
therefore obtain the dynamics of the disorder-averaged observable by simply using the
disorder-averaged IM. This is analogous of how the Keldysh path integral allows for
disorder averaging [144, 145]. In one dimensional systems, if the disorder on the coupling
is chosen independently for each site, we can use the algorithms described in Chap. 3
together with the disorder averaged transfer matrix to obtain the disorder-averaged IM.
It should be noted that for discrete disorder, there are alternative methods to compute
exactly disorder averaged observables using ancillary qubits[146].

Here we study the kicked Ising chain (KIC) with disordered longitudinal field [7, 147],
which can be tuned from a fully localized MBL phase to the maximally chaotic dual
unitary point [112] as well as Chap. 4. In this model, we find that the TE is low in both
the strongly localized as well as in the strongly delocalized phase, which is due to the
proximity to the dual unitary point and has been discussed in the previous chapter. Close
to the MBL transition on the other hand TE increases rapidly, rendering MPS techniques
inefficient. For those points in phase space, we defer to ezact diagonalization computation
which are accelerated by the use of the Fast Walsh-Hadamard transformation[148]. We
use these IM to compute the remanent magnetization which can be seen as a dynamical
order parameter for MBL [149], as well as study the IM structure.

Apart from being an efficient numerical tool, the IM formalism can serve as a starting
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point for analytical studies of the MBL transition. We find that the MBL transition is
reflected in a symmetry breaking on the space of trajectories. This is analogous to the
symmetry breaking observed in the spectral form factor [150].

The MBL transition can further also be observed in the entanglement structure of
the IM. While TE is low on both far ends of the transition in the KIC model, it is
low due to different reasons. In localized phase, TE is low since the environment is
effectively small, where as near the dual unitary point TE is low since information is
dissipated quickly. This difference is reflected in the in the ”"unfolded” entanglement
entropy, the entanglement entropy of the IM if the legs are ordered along the Keldysh
contour as opposed to the ”folded” entanglement entropy which we call TE, where the
corresponding legs of the forward and backward contour are paired up [97-99]. The
unfolded entanglement entropy in the localized phase is low, while it becomes volume
law at the dual unitary point.
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Many-body localized (MBL) phases of disordered quantum many-particle systems have a number
of unique properties, including failure to act as a thermal bath and protection of quantum coherence.
Studying MBL is complicated by the effects of rare ergodic regions, necessitating large system sizes
and averaging over many disorder configurations. Here, building on the Feynman-Vernon theory
of quantum baths, we characterize the quantum noise that a disordered spin system exerts on its
parts via an influence matrix (IM). In this approach, disorder averaging is implemented exactly, and
the thermodynamic-limit IM obeys a self-consistency equation. Viewed as a wavefunction in the
space of trajectories of an individual spin, the IM exhibits slow scaling of temporal entanglement
in the MBL phase. This enables efficient matrix-product-states computations to obtain temporal
correlations, providing a benchmark for quantum simulations of non-equilibrium matter. The IM
quantum noise formulation provides an alternative starting point for novel rigorous studies of MBL.

Introduction — Many-body localization (MBL)
in strongly disordered interacting quantum systems
represents one of the rare known examples of a genu-
inely non-ergodic phase of quantum matter [1-3].
The phenomenology of the MBL phase [4-7], its per-
sistence in periodically driven systems [8-10], and
new phases of matter enabled by MBL [11] are be-
ing intensely investigated.

Unlike in conventional phase transitions, thermal
ensembles bear no signatures of the MBL trans-
ition. Localization effects instead manifest them-
selves in the properties of individual highly-excited
energy eigenstates, as well as in the coherent, far-
from-equilibrium dynamics, which differ drastically
from those in the thermalizing phase. In particu-
lar, MBL eigenstates exhibit boundary-law entan-
glement scaling [4, 12], similar to ground states of
gapped systems [13]. Local memory of the initial
state is preserved, owing to the emergence of local
integrals of motion [4-7] — a signature that has been
widely used to diagnose MBL in quantum quench
experiments with ultracold atoms [14-16], trapped
ions [17], and superconducting qubits [18].

The simultaneous presence of disorder and inter-
actions, combined with a necessity to describe highly
excited eigenstates, poses a major challenge for the
theoretical description of MBL. Rigorous perturbat-
ive approaches are difficult, as they require treat-
ing disorder probabilistically [7] and incorporating
the effects of rare regions [19]. Exact diagonaliza-
tion (ED) studies [20-23] give access to excited ei-
genstates, but are limited in system size. Tensor-
network approaches to MBL, relying on low real-
space entanglement of MBL states, have been used
to approximately construct eigenstates [24-27] and

simulate non-equilibrium dynamics [28] beyond the
reach of ED. While such investigations gave insights
into MBL physics, their power is limited by finite-
size and/or -time effects, and by the practical cost
of sampling disorder configurations.

In this Article, we introduce a method for de-
scribing disorder-averaged dynamical properties of
many-body systems, and apply it to a periodically
driven (Floquet) spin model of MBL. We charac-
terize the system’s dynamics by its influence matriz
(IM) [29], inspired by the Feynman-Vernon theory of
a quantum particle interacting with a bath of har-
monic oscillators [30, 31]. We use the IM to char-
acterize how a quantum many-body system affects
the time evolution of its local subsystems, i.e., how
it acts as a “bath” on itself. An IM contains full in-
formation on temporal correlations of local operat-
ors, and can be viewed as a kind of generating func-
tional of the system’s self-induced quantum noise.
This formalism is advantageous for MBL, as it nat-
urally accommodates the thermodynamic limit and
ezact disorder averaging.

In one-dimensional homogeneous systems, the IM
can be found from a linear self-consistency equa-
tion [29, 32]. While individual realizations of dis-
ordered systems have IMs that depend on position,
averaging over a translationally invariant disorder
distribution leads to a translationally invariant IM.
Disorder-averaging, however, leads to terms which
are non-local in time in the self-consistency equation.
Below we argue that, in spite of this nonlocality, the
disorder-averaged IM of a MBL system is charac-
terized by low temporal entanglement. This opens
the door to efficient matrix-product states (MPS)
methods for computing disorder-averaged dynam-
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a) Circuit representation of a local temporal correlation function in the Keldysh path integral represent-

ation, Eq. (2), with circuit elements for model (1) defined in panel b). The two layers reflect forward and backward
propagation of the system. Panel a) pictures Eq. (3). The blue shaded tensor represents the transfer matrix, defined
in Eq. (4). Panel c) illustrates Eq. (5) (self-consistency equation). The green shaded tensor corresponds to non-local
in time “interactions” arising from exact disorder averaging. d) Scaling of temporal entanglement of the IM for
J =g =0.04,0.08,0.16,0.20,0.27 (DMRG) and J = g = 0.35,0.51 (ED), bottom to top. e¢) Expectation value of the
transfer matrix applied to the MPS with bond dimension x = 128 obtained from DMRG.

ical properties. As a first application of the method,
we compute the dynamical correlation functions of
a MBL system up to long times.

The IM undergoes a drastic change when the sys-
tem transitions from the ergodic to the MBL phase;
MBL IMs are characterized by persistent quantum-
interference effects, which express the fact that MBL
systems are not efficient thermal baths. This can be
viewed as the emergence of temporal long-range or-
der in the statistical ensemble of local trajectories
governed by the IM. Below, we will use an MPS ap-
proach to demonstrate this phenomenon [33].

Model — For concreteness, in this Article we will
focus on the disordered kicked Ising chain (KIC),
which provides a Floquet model of MBL [34, 35].
Time evolution of this system is governed by re-
peated applications of the Floquet operator,

F =exp (iZg&f) exp <’LZ J6367 1+ hﬁrj-),
J J

(1)
where &;?‘, o = x,y, 2, are Pauli matrices acting on

site j € Z of a linear chain. The phases h; are in-
J

dependently drawn from a uniform distribution in
[-m, 7). The Hamiltonian version of this model,
obtained by substituting J,g,h; — 7J,7g,7h; in
Eq. (1) and taking the continuous-time limit 7 — 0,
is similar to the model where MBL was rigorously es-
tablished in the regime g <« 1 [7]. MBL behavior is
known to persist in the same regime for finite driving
period 7 > 0 [8, 9, 34, 36, 37]. Setting J = g in Eq.
(1), ED studies indicate that the MBL phase extends
to |g| < g« = 0.4 [35]. For weaker disorder strength
|[J| = |g| > g« the disordered KIC is ergodic. In
particular, at the self dual points |J| = |g| = /4
signatures of chaotic behavior in spectral correla-
tions have been obtained [38]. We note that other
kicked Floquet models of MBL have been investig-
ated [8, 37, 39].

Disorder-averaged influence matric — The influ-
ence matrix encodes the full set of temporal cor-
relations of local operators [29, 30]. To illustrate
this, we consider the dynamical structure factor
(0,(1)0,(0)) = Tr(F~t0,F*0,p°) of a local observ-
able 0, =1®---®1®0®1®---®1 acting on
spin p, using Keldysh path integral representation,
graphically illustrated in Fig. 1(a,b),

t—1

0 * iJ(ol ol 1—5‘}'6; 1 )+ih; U]T—E'}'
[OP]{Frt},{at} [Opp ]{0’0},{5’0} H 1_[0 WGJT'HUJT [/[/6;+16; e ( Jvi+ + ) ( )
j T=

(2)



where W/, = (07|€*97" |0). We say that configura-
tions o} associated with the operator F* are on the
forward time path and those &7 associated with Pt
on the backward path. The summation is over all
spin trajectories {07 = +1},{6] = +1} extending
|

(Op(1)0,(0)) =
(7).}

where we have denoted the result of the summation
over spins on the left (right) as the left (right) in-
fluence matriz IRy, acting on the forward and
backward trajectories {oc"},{7}, 0 <7 <t —1 of
spin p only. These objects, graphically represented
in Fig. 1(a), capture the influence the rest of the
system has on the dynamics of spin p. Clearly, ex-
pression (3) can be straightforwardly generalized to
arbitrary time-ordered temporal correlations of local

t—1
Z Irpl{o7. 7} ( [O5¢ 4t H WUT“U*W;T+157€ihp(07767) [Opg]
T7=0

from time 7 = 0 to 7 = t. Assuming that the initial
density matrix p° = ®;p9 is a product operator, we
formally perform the summation over trajectories of
all spins on the left {o7_,},{57_,} and on the right
{o7-,}:{07=,} of spin p in Eq. (2), obtaining

)fR,p[{U%T}]
3)

0950

operators (O]S,n)(tn) e OZ(,l)(tl)>.

In a chain (or, more generally, in loop-free geomet-
ries), an influence matrix can be recursively com-
puted from influence matrices of smaller subsys-
tems, as illustrated from in Fig. 1(a,c). For a fi-
nite system of N spins, this can be concisely ex-
pressed by introducing transfer matrices Tj acting

along the space direction, i.e., S, , = (Hf;i TJ) B
and g, = (H?Ll\, Tj) A, with

t—1 t—1
[T’j}{o‘,o"},{s,.é} = <H eZJ(U ST )> elhj Lr=o(sT=FT) <6stst H WST+ISTW;T+1§T [P% 5050>a (4)
7=0

and open boundary condition #[{s, 5}] = 1.

We are interested in disorder-averaged temporal
correlations such as ((O,(t)O,(0))). Since the ran-
dom field h; is uncorrelated and equally distributed
at each lattice site, the averaged transfer matrices
(T;) = T are translationally invariant, provided the
initial density matrices p? are the same. Unitarity of
time evolution for a periodic chain of arbitrary size
N gives Tr(TN) = ((1)) = 1; hence, 7 has a single
non-vanishing and non-degenerate eigenvalue equal
to 1. The “bulk” disorder-averaged influence matrix
(F) = Tt A, with £ > t, is thus real [40], and can
be identified with the single eigenvector of 7, i.e.,
by the characteristic self-consistency equation

T(I) =(I). ()

Due to the absence of correlations in the initial state
and the strictly linear light-cone effect in this Flo-
quet model, finite-size effects are present only at a
distance ¢ < t from the boundaries [41].

Disorder averaging in model (1) can be carried
out explicitly [38]: since disorder is random in space
but uniform in time, averaging introduces non-local

7=0

in time “interactions”. Indeed, integrating over h;
in Eq. (4) transforms the corresponding phase term
into a constraint & ( Zi_:lo(sT -357) = 67 37> Which
couples the configurations of the considered spin
between all times. Such a term cancels interference
between forward and backward trajectories with dif-
ferent total magnetization M # M, and is respons-
ible for the development of long-range temporal cor-
relations in the MBL phase.

MPS approach and temporal entanglement — To
gain an insight into the structure of the IM in the
MBL phase, we approximate the solution of the self-
consistency equation (5) by an MPS ansatz with a
maximal bond dimension y. The reliability of this
approximation depends on the amount of “bipartite
entanglement” in the IM interpreted as a many-body
“wavefunction” in the 4!-dimensional space of for-
ward /backward spin trajectories. This temporal en-
tanglement (TE) may be considered as a quantifier
of the system’s dynamics computational complexity.

Previously, we have shown [29] that the max-
imal (half-chain) von Neumann entanglement en-
tropy S(t/2) of the infinite-temperature folded IM —



obtained by considering ¢7,57 as a single 4-dit, cf.
Fig. 1(a-c) — is exactly zero when |J| = |g| = 7/4
for any h; [42] thanks to the fact that the system
acts as a perfectly dephasing (PD) Markovian bath.
However, detuning away from these PD points, the
entanglement S(¢/2) acquires “volume-law” scaling
with ¢, albeit with a prefactor that vanishes as those
points are approached. This scaling is expected to
be a generic feature of thermalizing phases, and gen-
erally prevents MPS description from being efficient
at long times, except near “special” points [29].

In contrast, we find that MPS methods remain ef-
ficient in the MBL phase up to long times, thanks
to the slow scaling of TE. To implement MPS al-
gorithms, we work in the folded picture |29, 32, 43].
The disorder-averaged transfer matrix 7 is repres-
ented as a matrix product operator (MPO), which
consists of the diagonal two-site matrices W, the
global projection operator d,, 37 originating from av-
eraging over the random phése h, and the factor-
ized operator dependent on the interaction strength
J [see Eq. (4)]. The first and last operators can
be expressed as MPOs with bond dimension 4 and
1, respectively. The projection operator can be ex-
pressed as a MPO with maximal bond dimension
t [44]. Thus, the maximal bond dimension of 7 is 4¢.

To find the IM one can iteratively apply the trans-
fer matrix to the boundary vector .#,. This ap-
proach was used to obtain the ED results, but it
does not yield a good approximation of the optimal
MPS at a fixed bond dimension, mainly due to the
relatively large bond dimension of the MPO. To mit-
igate this problem we refine the MPS afterwards
by using the density matrix renormalization group
(DMRG) algorithm [45]. We estimated the quality
of the MPS representation using several metrics [44],
including the proximity of the eigenvalue obtained
from DMRG to the exact value 1 (see Fig. 1(e)).

We have used a combination of the MPS method
and ED to analyze the infinite-temperature IM’s
TE across the MBL transition in model (1), see
Fig. 1(d). In the ergodic phase, TE increases fast
with ¢, similarly to generic non-disordered thermal
systems [29], which restricts us to the ED approach
and thus limited time. However, this behavior
drastically changes in the MBL phase, where TE ex-
hibits an initial rise followed by a crossover to a very
slow growth. Interestingly, the crossover occurs at
longer times at smaller values of g. We remark that
the TE patterns in the MBL phase and near PD
points are qualitatively different: in [44], we show
that TE of unfolded IM remains low in the former
case, and is high in the latter case.

MBL and temporal long-range order — The
IM contains information about the full disorder-
averaged quantum noise spectrum of a system, allow-
ing for a computation of time-dependent correlation
functions. Here we consider the infinite temperature
correlator of the local magnetization, ({7 ()55 (0))),
whose long-time behavior provides a direct probe
of ergodicity breakdown in the MBL phase, widely
used in experiments [14]; in this case, this correlator
does not decay to zero as t — oo, indicating reman-
ent magnetization. From a theory standpoint, the
time-averaged remanent magnetization is of key im-
portance, since it reflects the emergence of LIOMs,
providing a dynamical order parameter of MBL [46].
Analysis of this quantity [47] is challenging due to
inevitable presence of rare resonances, which have
to be treated non-perturbatively [7]. In contrast,
disorder-averaged IM contains the contribution of
all resonances that are effective up to time ¢. Us-
ing formula (3) and the MPS representation of the
IM obtained by DMRG, we calculate the disorder-
averaged correlator ((6%(t)6%(0))) [Fig. 2(a)]. We
observe that at strong disorder the magnetization
saturates to a finite value, signalling MBL, while in
the critical region it continues decaying at accessible
time scales. Note that increasing bond dimension
from y = 128 to xy = 256 gives rise to a slower decay
of magnetization. This indicates that y = 128 is not
sufficient to faithfully capture the IM in the critical
region, where, as seen in Fig. 1(d), TE is relatively
high.

Next, we inquire into the difference of the IM
between the MBL and the ergodic phase. The gen-
eral structure of the IM of a thermalizing bath has
been studied for an ensemble of non-interacting har-
monic oscillators [30, 31], and more recently for
quantum spin chains [29]. In this case the IM
strongly suppresses “quantum” trajectories where
o7 # &7, behaving similarly to a source of clas-
sical noise. This causes the system to damp local
quantum-interference effects and dephase its spins,
thus erasing local memory after a finite correlation
time. An MBL system, in contrast, does not act
as an efficient bath upon itself, producing quantum
noise that does not fully erase local memory of initial
states. We find that here the quantum trajectories
are only weakly suppressed, reflecting the key role
of persistent interference processes.

The onset of remanent magnetization can be
linked to the appearance of temporal long-range
order in the IM. To that end, we write ({Z)) =
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Figure 2. (a) Remanent magnetization ((6°(0)6*(t))) for different disorder strength equally spaced along the line
J =g =0.04...0.35 (top to bottom curves). These computations were performed at bond dimensions x = 256
(solid) and xy = 128 (dashed). Note that the computations are well-converged at stronger disorder, while in the
critical regime (¢ = 0.35) increasing bond dimension slows down the magnetization decay, indicating that there
x = 128 is not sufficient to faithfully approximate IM. (b-d) Probability density p(m) of time-averaged magnetization
sectors in the ensemble of local spin trajectories defined by the IM: in the MBL phase (J = g = 0.27) (b), in the
transition region (J = g = 0.47)(c), and in the ergodic phase (J = g = 0.71) (d). Different curves correspond to

different evolution times, specified in the legend.
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[cf. Eq. (3)] where we took into account that left and
right IM are equal to (.#). Next, we represent the r.-

J

P(M) = lim 1 >

t—o00
{o=}.{o° s

is a positive “weight” representing the sum
over trajectories in the sector with magnetiza-
tion M. If the influence matrix is given as
MPS, P(M) can be expressed as a contraction
with another MPS that implements the constraint
§(>°,0°—M)6(>.,0°—M). Unitarity dictates
that > ,, P(M) = 1, and therefore P(M) may be
viewed as a probability. For convenience, we switch
to the magnetization density m = M/t in time and
rescaled the probability density p(m) =t P(M).

Expression (7) gives a necessary and sufficient cri-
terion for MBL: ergodicity is broken, and local in-
tegrals of motion exist, if the probability distribu-
tion p(m) for the time-averaged magnetization of
individual-spin trajectories has a finite width in the
infinite-time limit. In the ergodic phase, the width
of p(m) shrinks around its average m = 0 as 1/,

h.s. of Eq. (6) as a sum over sets of trajectories with
fixed magnetization M =3 0® =3 &° [48]. That
enables us to take the sum over 7,7/, which, within
a given magnetization sector, yields M?2. Thus,

(7)

where

b <Z 7° — M) ) (Z o° — M> I Woesr o0 Wieis 5o (220,53, (8)
} S s

(

satisfying central limit theorem scaling. We con-
firmed this by an exact computation at the self-
dual points, which gives a binomial distribution
P(M) = 2_t((t+1}£/[)/2). However, as the MBL phase
is approached, p(m) develops two symmetric peaks
at finite values +=m™*. This highlights that the MBL
phase dynamically breaks the Zs-symmetry of the
disorder-averaged chain: Selecting “up” or “down”
boundary conditions for the trajectory (i.e., initial
and final state of spin p) produces a finite bias in
the average magnetization towards the positive or
negative side, respectively.

In Fig. 2(b-d) we report the results for the distri-
bution p(m) obtained with MPS for the MBL phase,
and by ED at the transition and in the ergodic phase.
It is apparent that p(m) follows the above expect-
ations, developing increasingly sharp peaks close to



m = £1 in the MBL phase as the observation time
window ¢ is enlarged [panel (b)]; in contrast, in the
ergodic phase [panel (d)], the distribution is single-
peaked at m = 0 and narrows as t is increased.
In the critical region between them [panel (c)|, a
peak at m = 0 is observed which slowly develops
upon increasing ¢, reflecting the tendency to restor-
ing thermal behavior at long times.

Summary and outlook — We have characterized
a many-body, disordered system via its influence
matrix, which fully describes its properties as a
quantum bath. This approach allows for exact dis-
order averaging, therefore incorporating effects of
rare regions on MBL. The slow increase of temporal
entanglement in the MBL phase reflects that the sys-
tem fails to act as a thermal bath on itself, and opens
the door to efficient tensor-network approaches.
We have implemented a proof-of-principle MPS al-
gorithm and used it to extract time-dependent cor-
relation functions that provide a benchmark for cur-
rent quantum simulation experiments.

Looking forward, the slow entanglement scaling of
IM in the MBL phase paves the way to constructing
variational, and possibly exact, solutions for the self-
consistency equation (5) in the limit ¢ — co. Such a
solution, and its breakdown at weaker disorder due
to proliferating resonances, will shed new light on
MBL and the MBL-thermal transition. Finally, fur-
ther applications of the IM approach may include
other form of ergodicity breaking such as quantum
scars, time crystals as well as circuits that combine
unitary evolution with measurements or dissipation.
Preliminary results [49] indicate that the temporal
entanglement decreases when dissipation is added,
broadening the applicability of our method.
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In this Supplemental Material, we provide additional details on the numerical calculations used in the main text.

EXACT DIAGONALIZATION

As a benchmark for MPS calculations and to explore the ergodic side of the MBL transition, we employ an exact
diagonalization (ED) code. To this end, we interpret the influence matrix (IM) #[{c,5}] as a “wavefunction” in the
22t_dimensional vector space spanned by the basis {|og = +,...,04 1 = +,6;_1 = +,...,50 = +)}. Accordingly, we
express the transfer matrix [7T](s,5} {s,53 in Eq. (5) of the main text [obtained by taking the average of Eq. (4) of the
main text over the random phase h;| as a product of three operators,

T=VPW, (S1a)
t—1
V(o.61,1s,5) = H exp (iJoTs™) Hexp —iJa7s") (S1b)
7=0
[(Plioo}.(s,5) = H O s H dg75m (523 2 gr 3702 osT) , (Slc)
=2
Wio.o1.15,51 = H Ogrsr H py—— ( s | Werrro Wininge pgoso> , (S1d)
7=0

where W/, = (0/]€"97"|0) = c08 g Jyr 5 +isingdyr _,. This representation is illustrated in Fig. S1-(a,b). We note that
the last kick has been erased compared to Fig. 1-(c) of the main text, exploiting its unitarity; a further simplification
can be done to the first longitudinal field when p° = 1/2 (infinite-temperature ensemble), imposing s° = 5° in P.
The combination of these two operations decreases the total dimensionality of the input and output vector space by
a factor 4. A .

The matrices W and P are diagonal in the computational basis, which we can interpret as the 6° product basis
for our chain of 2¢ spins-1/2. Within this interpretation, the operator V is diagonal in the 6% product basis. We
exploit this fact for an efficient implementation of the applications of 7 via the Fast Walsh Hadamard transformation
(FWHT)S!, which can be used to convert between these two bases with O(t22~!) basic operations. Note that the
FWHT is an involution. The algorithm to apply T to an arbitrary vector thus reads:

1. multiply its components by the diagonal components of P and W;

2. apply FWHT;

3. multiply the vector’s components by the (now diagonal) components of V;
4. apply FWTH again.

To find the thermodynamic-limit IM we simply use this procedure ¢ times starting from the boundary vector
Ho[{s,5}] = 1. For the infinite-temperature initial ensemble, ¢/2 iterations suffice. This algorithm spares us from

constructing and diagonalizing 7", thus allowing us to push our ED results up to ¢ = 12 with modest resources.

MATRIX PRODUCT STATES

For the matrix product state (MPS) method, we choose to work in the folded picture where each spin on the
forward trajectory is paired up with its corresponding spin on the backward trajectory such that they form a 4-
dimensional local spaceS2. This gives an open chain geometry, thus avoiding complications arising from periodic
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FIG. S1. Panels a), b): Graphical representation of Egs. (S1). Panel c¢): Graphical illustration of the MPO representation of
P in Bq. (S4)

boundary conditions of the closed Keldysh contour, present in the unfolded representation. We label and order the
basis vectors of this local space by S = (s,3) = (1, 1), (L), (T,4), I, 1). It is straightforward to write the factors V
and W in the transfer matrix decomposition in Eq. (S1) as matrix product operators (MPOs) of bond dimensions 1
and 4, respectively:

. 1 1 2 p2iJ
- 1 1 o2 o—2iJ
[V]{ST}.,{Z*} = 1_[0 e—2i  2iJ 1 1 (SQ)
T= 2iJ  ,—2iJ
e e 1 1 o
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— .2 2 .. ..
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sy = 1a: . L . dar g7 0gr 57
Wlis7y.a57) e A 110 isingcosg —isingcosg cos? g sin? g AT,S7 087,87 Pao
Ay a —isingcosg isingcosg sin29 cos? g AT+l A

(S3)

In the second equation, the labels {A™ = (a™,a”)} of virtual bonds run over the bases of four-dimensional ancillary
spaces isomorphic to the local folded spin spaces. The projection operator P which arises from disorder averaging
can be represented as a MPO with maximum bond dimension ¢. Here the virtual index BT on each bond (T, 7T + 1)
represents the difference in magnetization ZZ:O s — 57 between the portions of forward and backward paths to the
left of this bond. In other words, the local matrices

STxT
PBT,BT+1 = 5ST7Z7’53T+377§T’BT+1 (84)

composing the MPO, read the incoming virtual index B” and add the local magnetization difference s™ — 87 to it to
produce the outgoing virtual index B™+!. The value of the virtual index B can thus remain unchanged, increase by
one or decrease by one when proceeding to B!, making the local bond dimension y, = 27 + 1. Since P globally
projects onto the zero magnetization sector ) _(s™—57) = 0, we only need to carry virtual indices which are consistent
with this sector. Thus the maximal bond dimension is ¢ at the central bond(s) of the chain. This MPO is represented
in Fig. S1-(c).

Due to the large bond dimension it is not possible to iteratively apply the transfer matrix MPO for 7 to an MPS at
once and compress the result. Instead the MPS needs to be compressed during the application of the MPO, using the
zip-up method®3. We can improve the iterative MPS by feeding it into a two-site DMRG code where we target the
eigenvector with largest absolute eigenvalue. As this method is variational, it avoids compounding errors in contrast
to the iterative methodS?.

Different metrics of the quality of the MPS are displayed in Fig. S2. The role of energy in conventional DMRG is
taken by the eigenvalue of the transfer matrix MPO in the last DMRG step. Due to the pseudo-projection property
of T (see the main text), the exact eigenvalue is 1. We can also inspect the discrepancy of the IM entry on classical
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FIG. S3. Comparison between the evolution of the dynamical structure factor ((6*(t)6*(0))) computed with ED and MPS
methods, for J =g = 0.12.

trajectories {o = g} from the exact value 1 (see Ref. S2). Last, we can compute the full path-integral of Fig. 1-(a) of
the main text, with all observables of spin p set to identity, using the DMRG IMs. The exact value of this quantity
is 1. We observe consistent deviations of the three metrics from their exact values for intermediate coupling strength
(i.e., towards the MBL transition) and large times beyond the reach of ED, the last metric being the most sensitive.
Furthermore, Fig. S3 shows the agreement between converged MPS data and ED data for the dynamical structure
factor ((6*(t)5%(0))).

Lastly, we elucidate the differences in entanglement patterns between the MBL phase and the vicinity of PD
points. Since both regions show low temporal entanglement (albeit scaling differently with the evolution time), it
is legitimate to question the nature of this apparent similarity. The latter, however, disappears upon unfolding the
IM wavefunction, as illustrated in Fig. S4. Here, we have the possibility to consider a bipartition separating forward
and backward spins. The entanglement entropy Sy,,(t) associated with such a bipartition is only low in the MBL
phase, whereas it is large in the ergodic phase. At the self-dual point, in particular, we have Sy, (t) = (t + 1) log 2,
because the IM wavefunction is a product state of ¢ + 1 maximally entangled Bell pairs between each spin on the
forward branch and its equal-time partner on the backward branch. This occurrence is interpreted as follows. In the
MBL phase, there exist as much correlations between spins on the same time branch as between spins on opposite
time branches. Conversely, ergodicity produces strong correlations between forward and backward trajectories: a
manifestation of the suppression of quantum interference.

* These two authors contributed equally to this work
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bipartitioning the chain into forward and backward spins; this quantity is only low in the MBL phase, but is very large in the
ergodic phase.
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6 Influence matrices of fermionic baths and
Quantum Impurity problems

6.1 Introduction

Quantum impurity models (QIM) are models where an interacting impurity is coupled
to environments consisting of non-interacting fermions. Even though only a small part
of such systems is interacting, they still exhibit a wide variety of phenomena[151-154].
Experimentally such models can be realized on different platforms such as mesoscopic
systems consisting of quantum dots coupled to leads [152, 155, 156], or more recently,
ultra-cold atom experiments [157-159].

Apart from having rich physics their own, quantum impurity problems are also cen-
tral to various numerical approaches to correlated matter. In dynamical mean field
theory (DMFT)[160] and its non-equilibrium extensions [161], the local environment of
an interacting site is approximated as being non-interacting. The hybridization function
which characterizes these local environments is calculated self-consistently by solving
the local QIM.

Given the ubiquity and importance of QIM, numerous approaches to solve them nu-
merically have been proposed over the years. In equilibrium, various quantum monte-
carlo methods (QMC) [162-164] and numerical renormalization group (NRG)[165, 166]
have been shown to to be efficient in finding the imaginary time green’s function of the
impurity. Both methods are routinely used in state of the art DMFT codes[167-169].

Describing out-of-equilibrium systems like quenched systems or stationary currents
remains a major challenge. While QMC approaches are widely successful for the equi-
librium problem, in out-of-equilibrium problems, these approaches often suffer from the
dynamical fermionic sign problem, fundamentally due to the complex phases in the time
evolution operator. However, there is remarkable progress in mitigating this issue in
QMC approaches [170-176]. Another common class of approaches works by mapping
the fermionic environment to a chain via Wilson’s NRG method[165, 177-181] or or-
thogonal polynomials[182, 183] and using conventional MPS methods to compute time
evolution. NRG approaches have been extended to real-time problems as well[184, 185].

The IM formalism is particularly well suited to study out-of-equilibrium problems
involving environments consisting of non-interacting fermions, since those environments
have low TE[5, 6, 10, 119]. A qualitative argument for low TE in free fermion systems
is given in Sec. 3.3 of this thesis.

In principle, one could map any fermionic bath to a fermionic chain using methods
like Wilson’s NRG approach[165] or orthogonal polynomials[182, 186]. This chain could
then be discretized in time and the IM can be computed using the light-cone growth
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6 Influence matrices of fermionic baths and Quantum Impurity problems

algorithm laid out in Chap. 3.4 to contract the resulting tensor network. Since chain
mappings generically are non-homogeneous, the guarantee that no intermediate IM has
high TE do not apply. Furthermore, the amount of individual tensor contractions and
compressions scales with the square of the number of time steps making this approach
relatively expensive.

Instead, we start with the Keldysh path integral representation of the IM described
in Sec.2.5. For non-interacting environments, the IM can be written as a Gaussian state
using the spectral density. The Gaussian state corresponding to the IM is generically not
particle number conserving, independently of the physical particle number conservation
of the environment itself. We can hence write it as a Bardeen-Cooper-Schrieffer (BCS)-
like [187] wavefunction in the time domain. This BCS wavefunction is then converted into
a matrix product state using an algorithm developed by Fishmann and White [188] which
we extended to support Gaussian states without particle number conservation. Following
this algorithm, we first construct a quantum circuit which results in the target state if
applied to the vacuum state. The quantum circuit is constructed by identifying modes
which are up to a given cutoff localized within a subsystem. The size of the subsystem
necessary to find such a mode is the window size. The Fishmann-White quantum circuit
is then applied to a MPS representation of the vacuum state, keeping the bond dimension
constant by using SVD compression. This results in an approximate MPS representation
of the IM. The number of expensive SVD compressions is determined by the product of
evolution time and window size. The errors compared to the exact IM stem from time
discretization, the Fishmann-White cutoff and the SVD-truncation.

It was shown[119], that the window size for a given cutoff scales logarithmically in
the evolution time. This results in a polynomial bound on the IM bond dimension,
guaranteeing polynomial-time algorithm to solve any QIM. The numerical experiments
below demonstrate that this bound is in fact pessimistic and that SVD compression
during the application of the Fishmann-White circuit to the MPS representation of the
vacuum allows for significantly lower bond dimension.

Once the IM representation of the non-interacting environment has been obtained,
QIMs with arbitrary local impurity time evolution can be solved using the contraction
algorithm laid out in Sec. 2.4. In this work, we focus on the Anderson Impurity model
[189], where a single impurity site with a local Hubbard interaction is coupled to a
non-interacting bath of free, spin—% fermions. In the high U limit at half-filling and at
low temperatures this model is governed by the Kondo effect[190]. In this regime, the
effective impurity spin forms a singlet with the itinerant fermions in the environment.
Dynamically this regime is characterized by a fast charge dynamics and a slow relaxation
of the spin degree of freedom.

We start by computing the time evolution of the impurity density matrix after a
quantum quench. The impurity is initialized in a spin polarized state and coupled to a
non-interacting environment defined by a smoothened wide-band spectral density with
the same parameters as Ref. [176]. Compared to Ref. [176], the time evolution of the
population of the four impurity states stays accurate for longer times. Remarkably the
trace and positivity of the impurity matrix are well preserved, even though this is not
imposed by the method. Together with convergence with respect to bond dimension and
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time-step this indicates accuracy for long times.

Stationary currents between reservoirs with a voltage bias are another important ex-
ample of out-of-equilibrium systems. Here we compute currents between two leads repre-
sented by two semi-infinite homogeneous chain. By counting the charge on the impurity
after each half-step of the discretized time evolution (c.f. Sec. 2.4) we can compute the
instantaneous current between the leads and the impurity. The result compare well to
Ref. [191], which used different environments, hence deviates for larger biases. Since the
current becomes stationary on short time scales, the computation is accurate even for
very low bond dimensions.

Finally we estimate the dependence of the error on bond dimension and time. By
considering equal error lines we find that a moderate increase in bond dimension with
evolution time is sufficient.

6.2 Reprint
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We introduce an efficient method to simulate dynamics of an interacting quantum impurity
coupled to non-interacting fermionic reservoirs. Viewing the impurity as an open quantum sys-
tem, we describe the reservoirs by their Feynman-Vernon influence functionals (IF). The IF are
represented as matrix-product states in the temporal domain, which enables an efficient compu-
tation of dynamics for arbitrary interactions. We apply our method to study quantum quenches
and transport in an Anderson impurity model, including highly non-equilibrium setups, and find
favorable performance compared to state-of-the-art methods. The computational resources required
for an accurate computation of dynamics scale polynomially with evolution time, indicating that a
broad class of out-of-equilibrium quantum impurity problems are efficiently solvable. This approach
will provide new insights into dynamical properties of mesoscopic devices and correlated materials.

Introduction. Non-equilibrium many-body dynam-
ics is actively investigated in condensed matter and syn-
thetic quantum systems such as ultracold atoms [1]. The
aim of the ongoing quest is to find regimes where a non-
equilibrium system exhibits desired physical properties,
which may be qualitatively different compared to equilib-
rium. Theoretically, out-of-equilibrium many-body prob-
lems are extremely challenging, both for analytical and
numerical methods (2, 3].

Quantum impurity models (QIM), where a small
quantum system such as a quantum dot is coupled to
reservoir(s) of itinerant electrons, naturally arise in a
variety of systems, including mesoscopic conductors [4]
and ultracold atoms [5, 6]. Even relatively simple
QIM such as the celebrated Anderson impurity model
(AIM) [7], exhibit rich many-body physics including the
Kondo effect whereby the impurity spin is screened by
itinerant electrons [8]. Fermionic QIM, including the An-
derson models, also play a central role in state-of-the-art
methods for strongly correlated materials such as dynam-
ical mean-field theory (DMFT), where the material prop-
erties are expressed via a self-consistent QIM |[3, 9.

A large number of methods for non-equilibrium QIM,
and in particular for the AIM, have been developed in
recent years. These include iterative path-integral ap-
proximations [10-12], non-Markovian [13, 14] or auxiliary
master equations (AME) [15, 16], hierarchical equations
of motion (HEOM) [17-19], time-dependent numerical
renormalization group (NRG) [20-22] and density matrix
renormalization group (tDMRG) [23-28]|, various vari-
ants of Quantum Monte Carlo (QMC) [29-34], as well as
variational [35, 36] techniques. Recent advances includ-
ing inchworm algorithm [37] and increasingly sophistic-
ated high-order diagrammatic calculations [38, 39] ameli-
orated the sign problem of QMC, thereby giving access to

* These authors contributed equally to this work.
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Figure 1. Top: Illustration of single impurity Anderson
model [Eq. (1)] with an impurity (red) tunnel-coupled to two
reservoirs (gray). Bottom: Tensor-network representation of
a time-dependent observable (O(t)). The dynamical influence
of the environment is encoded in a single IF per orbital de-
gree of freedom (here, two gray tensors for o =1, |, left) which
can be efficiently represented as MPS in the temporal domain
(right) and hence contracted with the local impurity evolu-
tion (product of red tensors). Foreground [background| layer
represents forward [backward| branch of the Keldysh contour.

longer evolution times. However, despite recent develop-
ments, the current methods cannot provide guarantees
of computational efficiency for out-of-equilibrium QIM,
which remain a subject of active research.

In this Article, we present a conceptually simple and
efficient method for fermionic QIM, building on recent
developments in describing interacting [40-50] and non-
interacting [51-53] quantum baths using temporal tensor
networks. The starting point of our approach is to treat
the impurity as an open quantum system coupled to the



“bath” that consists of fermionic leads (Fig. 1). The effect
of the leads is then represented by the fermionic extension
of the Feynman-Vernon influence functional (IF) [54],
which can be obtained in closed form for arbitrary non-
interacting reservoirs [3, 14, 52]. As a key ingredient of
our approach, the IF can be efficiently represented as
a matrix-product state (MPS) in the temporal domain
with controlled bond dimension, thanks to the favorable
scaling of temporal entanglement of the IF [43, 52]. This
enables an efficient computation of time-dependent ob-
servables at the impurity location (e.g. charge, spin, cur-
rents) via straightforward tensor contraction.

We demonstrate the efficiency of our method for
paradigmatic non-equilibrium QIM setups, including (i)
a quantum quench, where impurity site is connected to
equilibrium leads at time ¢ = 0 and (ii) a biased AIM
with two imbalanced leads. In all cases, our method is
capable of reproducing and going beyond the state-of-
the-art results obtained by inchworm and diagrammatic

QMC.

Besides conceptual simplicity, the method presented
here has a number of advantages. First and foremost, re-
quired resources grow polynomially in evolution time. In
terms of computational complexity [55, 56], this implies
that QIM are efficiently solvable even far away from equi-
librium. Furthermore, the method is non-perturbative,
in contrast e.g. to QMC, which involves perturbative ex-
pansions either in the impurity-reservoirs hybridization
or in the on-site Coulomb interaction. In addition, from a
practical viewpoint, once an efficient MPS representation
of the reservoirs’ IF is found, dynamics of impurities with
an arbitrary choice of time-dependent local Hamiltonian
can be subsequently computed with modest effort.

Description of the method. We consider the single-
impurity Anderson model, described by the Hamiltonian

H = Z [(tkd:.rrck,a’g + h.c.) + Ekcltﬁmgck,a,a + Himp,
o :kﬂi
a=L,R
- L (1)
with Hyp = (e — U/2) 3, didy + Udldrdld,. The im-
purity level described by fermions d, is coupled to two
baths (o« = L, R) of free fermions ¢y, with identical
dispersion ¢, and tunnel couplings ¢, initially in thermal
equilibrium (see top illustration in Fig. 1). Coulomb in-
teraction U # 0 in Himp gives rise to strong correlations
in and out of equilibrium.

We are primarily interested in the real-time evolution
of an impurity observable (O(t)) starting from a factor-
ized initial state p(0) = pr ® Pimp ® pr, With pr r equi-
librium states at inverse temperatures 8 r and chem-
ical potentials pr, . While conventional tensor-network
approaches attempt to compactly represent p(t) [2], we
instead express (O(t)) as a Keldysh path integral over
Grassmann trajectories of impurity and baths. Gaussian

integration over the bath trajectories gives

©0) [ (TLd1nrdier )0t

o, T

X exp { /C dT[Z No,r0rNo,r — “Himp (7, "77—)} }
X Pimp 705 M0) H exp </Cd7 /c dr' e+ A(T, T’)an/).

o=t
(2)

Here 7, = (y.rsisr) and 1, = (r,7y.+) paramet-
rize the impurity trajectory. The IF is the last expo-
nential in Eq. (2), defined by the hybridization function
A(r, 7)) =3, A%(7,7’), where A® fully encodes the dy-
namical influence of the bath «,

8% = [ 5ET @) @) Q
The latter is determined by the bath’s spectral density
I(w) =27 Y, |tx|*6(w — €x) and non-interacting Green’s
function g2, (w) = (ng(w) — Oc(T, 7"))6_14“’(7_7/)7 where
ng is the Fermi distribution at inverse temperature S,
and chemical potential p, and O¢ is the Heaviside step
function on the Keldysh contour C (see e.g. Ref. [3]).
Equation (2) is the starting point of advanced techniques
for impurity dynamics such as AME, HEOM or QMC.

The difficulty in evaluating the path integral arises
from the combination of non-Gaussianity (in Hipyp) and
time-non-locality (in A(7,7’)). The key idea of our
method is to interpret Eq. (2) as a scalar product of fic-
titious states and operators defined in a fermionic Fock
space on a temporal lattice. To that end, we note that
the textbook expression in Eq. (2) is defined as the limit
M — oo of a discrete-time expression, obtained by di-
viding the full time evolution window [0, 7] into M steps
of size 6t = T/M; we fix a sufficiently large M. For our
purpose, it is convenient to use a Trotter scheme that
further splits the Trotter step into impurity and hybriza-
tion, leading to 8 M trajectory variables per spin species
along the discretized Keldysh contour, see Supplemental
Material (SM) for details. We arrange these in two ar-
rays, 1o = (770',0+ yNo,0=5 s Mo, (2M —1)+> 77(7,(2M—1)_) and
analogously 7),, with degrees of freedom alternating on
the forward (+) and backward (—) branch of the Keldysh
contour. A series of manipulations with the discrete-time
path integral, including partial “particle-hole transform-
ations” n < 7, allows us to rewrite Eq. (2) in a scalar
product form (see SM for details):

o) ~ | <1:[dﬁadna)

x Inyle ™™ Do 4[Ay, m] e "™ (7]
(IDg, IT) . (4)

Here, the kernel Do 4[7,,m+], which is non-Gaussian,
describes impurity’s own dynamics, and has a simple



product form due to time locality. This gives rise to
a product operator Dy, = D1 ® -+ ® Dy, where each

D,, is a 16 x 16 matrix (except the first and last: see
superimposed red tensors in Fig. 1) and D,,«—/5 con-

tains O. The discrete-time IF has a Gaussian form,
Z[n,) = exp (nX Bn,), where the antisymmetric mat-
rix B is related to the time-discretization of A(r,7’) (see
SM). The Gaussian many-body wave function |I) asso-
ciated with Z (gray tensors in Fig. 1 bottom left) is ob-
tained by replacing Grassmann variables by correspond-
ing crea;tion]L operators acting on the Fock space vacuum,
ch =

T i
CotCo—r+ 1 Clanr—1)+ Clani—1)- )

|I) = exp (chB CT) |0) . (5)

Such a state formally has a Bardeen-Cooper-Schrieffer
form, regardless of the fermion-number conservation of
the original problem, cf. Eq. (2); this is related to
the “particle-hole transformations” performed to arrive
at Eq. (4). We note that particle number conservation
shows up as a sublattice symmetry in Eq. (5).

Next, we aim to represent the state |I) as a MPS. Cor-
relations of this state, described by the function A(r,7'),
reflect non-Markovianity of the bath. The possibility of
a compact MPS representation is determined by the en-
tanglement properties of a wave function; we previously
showed [52] that Gaussian IF wave functions arising in
QIM exhibit at most logarithmic scaling of temporal en-
tanglement with evolution time for both equilibrium and
certain non-equilibrium initial states of the reservoirs.
This suggests that such wave functions can be described
by a polynomial-in-7" number of parameters.

Previous works [57, 58] proposed algorithms for rep-
resenting a fermionic Gaussian wave function as a MPS.
Here we apply the Fishman-White (FW) algorithm [57],
extended to BCS-like wave functions [52]. We first
approximately represent the Gaussian state determined
by B [Eq. (5)] as a quantum circuit of nearest-neighbor
Gaussian unitary gates applied to the vacuum (a product
state in a temporal chain of 4M spins). The approxim-
ation is controlled by a threshold parameter € of the al-
gorithm [52, 57], which determines the maximum number
D of gates acting on a given site in this circuit (which
we refer to as “local depth” below). Second, we compress
the circuit with standard singular-value truncations to
produce a MPS approximation of |I) with bond dimen-
sion x < 2P. Once the MPS is obtained (gray tensors
in Fig. 1 bottom right), the impurity’s reduced density
matrix time evolved with an arbitrary (possibly time-
dependent) impurity Hamiltonian Hijy,, can be efficiently
computed by tensor contraction in the time direction.
This method is straightforwardly applicable to the com-
putation of multi-time observables, e.g. the impurity
Green’s function, as well as currents (see below).

A quantum quench. As a first application of our
method, we study a local quantum quench, where tun-
neling between impurity and the bath — initially in equi-
librium at equal # and p — is turned on at time t = 0. We
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Figure 2. Real-time evolution of the impurity density matrix
after a quench. The plot reports diagonal entries paq, with
a = 0,1,1,1 as a function of time. The environment is
modelled as in Ref. [37] (see main text), with 8 = 50/T" and
© = 0. Simulation parameters: Bond dimension y = 256
per spin species, FW threshold ¢ = 5 - 107!2, Trotter step
ot =0.02/T.

monitor the real-time evolution of the impurity level pop-
ulation at ¢t > 0. In the Kondo regime (strong interaction
and low temperature), strong correlations develop in real
time between the impurity and the bath, corresponding
to the formation of a local screening cloud over a non-
perturbatively long timescale — a real-time manifestation
of the Kondo effect, which was previously investigated
with other methods [20, 21, 24, 35, 59].

Here we benchmark the state-of-the-art results of inch-
worm QMC in Ref. [37]: We consider a bath defined
by a flat band with smooth edges, T'(w) = T'/[(1 +
eV(wW=we))(1 4 ev(@Hwe))] with w, = 10" and v = 10/T.
Moreover, we set 8 = 50/, u = 0. We prepare the
impurity in a singly occupied state pimp = |1) (1|, with
€g = 0 and U = 8I', and couple it to the bath at time
t = 0. In Fig. 2 we report our results for the evolution of
the diagonal components of the impurity’s reduced dens-
ity matrix. Data are converged with respect to all simu-
lation parameters (see caption), demonstrating accuracy
beyond the data of Ref. [37]. These results showcase
the ability of our method to capture the slow dynamical
formation of a spin singlet in the Kondo regime, which
will be further investigated elsewhere.

Non-equilibrium transport. The system described
by Eq. (1) with a temperature or chemical potential bias
between L and R reservoirs models paradigmatic non-
equilibrium setups with correlated nanodevices. Cap-
turing the full transient charge and spin dynamics after
a quench (either of tunnel-couplings or of interactions)
toward the non-equilibrium stationary state is a recur-
rent challenging test for novel advanced numerical tech-
niques [22, 38, 60-62].

Here we benchmark the state-of-the-art computation of
the system’s current-voltage characteristics in Ref. [3§].
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Figure 3. Current-voltage characteristics of an AIM. Reser-
voirs L and R are tight-binding chains as in Refs. [24, 38] (see
main text), of L = 600 sites each, at zero temperature and
chemical potentials +£V/2. Simulation parameters: Bond di-
mension x = 32 per reservoir per spin species, FW threshold
e =1-107'2 Trotter step 6t = 0.007/T. For all values of V
and U we evolve until time 7' = 4.2/T" and verify that at this
time stationary state is reached. Inset: At fixed V/T' = 14.8
and U/I" = 2, we demonstrate convergence in bond dimension
for all four components of the transient current, (I o (t)) with
a=L,Rand o =1,/.

We model the reservoirs as two homogenous tight-binding
chains with nearest-neighbor hopping ¢y, = 1, coupled
to the impurity with tunneling amplitude t{wp = 0.3162,
corresponding to a resonance width I'(e; = 0) = 0.1 (cf.
Ref. [24]). We initialize the two reservoirs at zero tem-
perature and chemical potentials £V/2, and monitor the
time-dependent current flowing through the impurity for
several values of U, until the stationary state is reached.

Unlike the contraction illustrated in Fig. 1 and used
above for the quench simulation, computing the current
into either reservoir requires one to keep track of the sep-
arate influence of reservoirs L and R. A suitable Trot-
ter decomposition (see Ref. [52] and SM) allows us to
couple the two reservoirs with the impurity alternatively
in discrete time steps 6t. The current of spin o elec-
trons flowing into reservoir «, can then be computed as
<Ia,o(t)> = é [<d:r7(t+5t)do(t+5t)> - <d:r7(t)d0(t)>] , where
the impurity interacts only with reservoir @ during the
time step from ¢ to ¢ + Jt.

Keeping track of L and R separately results in a tensor
contraction with four IF MPS. This considerably limits
the bond dimension we can afford for each IF, as the
final impurity evolution entails storing matrices acting
on a 16x*-dimensional space (while it was 16x? before).
Nonetheless, we found that the value of the current is
converged over the full transient to the stationary state
for bond dimension as low as x = 32 (see inset of Fig. 3).

Figure 3 shows the results of our computations, as well
as the corresponding data from Fig. 15 of Ref. [38]. We
find a fairly good agreement throughout the wide ex-
plored parameter regime. The unit slope of the dot-
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Figure 4. Error e(t,x) of the time-evolved impurity density
matrix as a function of bond dimension and evolution time
(see main text for a precise definition), for an impurity start-
ing from pimp(0) = |1) (1] and coupled with tunneling amp-
litude ty,,, = 0.3162 to a single tight-binding chain of L = 400
sites with homogeneous nearest-neighbor hopping thop, = 1,
initially at zero temperature and half filling (cf. Ref. [24]).
The constant-error e = 10> dashed line indicates that the
required bond dimension grows slowly with simulation time.
Here we fixed T = 4, 6t = 0.01, e = 10712,

ted line represents the universal Landauer linear-response
conductance, I = (e2/h)V (recall e = h = 1 in our units).
We note that small discrepancies are to be expected at
large biases V' > I' due to non-universal effects of fi-
nite bath bandwidth (tnep = 10I" here). We further re-
mark that for small bias and large interaction the non-
equilibrium Kondo regime is approached, characterized
by slow relaxation. Accordingly, in the computation with
smallest bias V' = 0.36I" and largest interaction U = 8T’
in Fig. 3, the time-dependent current has not yet fully
reached its stationary value at time T

Computational efficiency. Finally, we report on the
computational efficiency of our method. Previous works
found that for Gaussian ground states [57] and IFs [52]
(including states with algebraic correlations), the FW
algorithm produces a quantum circuit of “local depth”
D = D(T) that scales at most logarithmically with evol-
ution time 7. We note that the FW control parameter
e affects the prefactor of logT scaling of D. In turn, D
puts an exact upper bound on the bond dimension of the
corresponding MPS as y < 2P [52, 57|, indicating that
computational complexity of the algorithm scales at most
polynomially with evolution time.

We found that compression of the FW circuit using
conventional singular-value truncation typically leads to
a further significant reduction of the required computa-
tional resources. For example, for the data shown in
Fig. 2, we find a maximum “local depth” D = 28 which
sets the hard upper bound x < 228. However, this circuit
could be accurately approximated by a MPS with a much
smaller bond dimension y = 256 = 28.



We finally investigated how this MPS compression af-
fects the a posteriori error of observables. To this end,
we considered an environment that consists of a single
tight-binding chain [63]. Having fixed an extremely low
FW threshold € (which makes this source of error negli-
gible), we estimated the residual error of time-dependent
observablesin ¢ € [0, T] due to the truncated bond dimen-

sion, as the trace distance e(t, x) = || pl(ffl)p pl(;op) ®)]l,
between the reduced density matrix computed with a
cutoff x on the IF MPS and the fully converged result

(computed using a much higher y = 512).

The behavior of the error e as a function of t and x is
illustrated in Fig. 4. We observe that the bond dimen-
sion x = x(t) required to achieve a fixed error e grows
approximately linearly with ¢, indicating the efficiency of
the approach. We similarly found in other examples we
studied, that representing IF with an MPS with a mod-
erate bond dimension is sufficient to accurately compute
impurity observables. Thus, we conclude that our ap-
proach indeed has a polynomial complexity [43, 52|, al-
lowing one to access long-time impurity dynamics using
resources available in present-day computers.

Summary and outlook. To summarize, we intro-
duced a method for studying dynamics of QIM, based on
a tensor-network representation of reservoir’s IF. We ap-
plied this approach to paradigmatic quantum quenches
in AIM, demonstrating that it compares favorably to
state-of-the art QMC computations. The approach is
non-perturbative and offers several other advantages: in
particular, it applies to both equilibrium and highly non-

equilibrium QIM setups. Moreover, once a MPS form of
the IF is obtained, arbitrary choices of impurity interac-
tions can be analyzed with modest extra effort.

We showed that the required computational resources
scale polynomially with the evolution time. Combined
with previous results on temporal entanglement scal-
ing [52], this demonstrates that a broad range of non-
equilibrium QIM problems are efficiently solvable using
our approach. While here we focused on quenches of the
impurity-reservoir tunnel-coupling in the single-impurity
Anderson model, the approach can be extended to a num-
ber of other setups, including multi-orbital impurities
and initial states where entanglement between impurity
and reservoirs is present. Another promising application
is to DMFT, which will require imaginary-time extension
of the technique introduced here. We expect the compu-
tational efficiency of the approach to enable long-time
simulations of dynamics in such setups as well, opening
the door to analyzing non-equilibrium behavior of meso-
scopic devices and quantum materials.
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Appendix A: Derivation of Eq. (4)

We start by recalling the standard derivation of the
path integral in Eq. (2). Defining the evolution operator
U = exp(i ot H) for a time step 6t = T/M (M > 1) and
the Hamiltonian H from Eq. (1), the expectation value
of an impurity observable can be expressed as

(O(tm* )>

= Trimp .

Trpatn ( UM O U™ (pimp@ppatn) (UM )

(A1)

Here, t,,» = m* - dt denotes a point on the discrete-time
lattice and m* € {0,1,...,M}. This expression is cast
into path integral form by inserting Grassmann resolu-
tions of identity 1, = ®,1,, -, where

1, = /d(ﬁa,nUa,f)d(fo,r,ﬁm)

e_’f]a,'r”]a,‘r_ea,‘rga,ﬂ' |na,-ra &a,r> <7_]U,T7 Ea,‘r|7 (A2)

between every multiplication of operators. Here,
No,rsNo,r  are  impurity  variables with  index
T = 0%,...,M* on the (discretized) Keldysh con-
tour, while ga,r = (gj:La,T, ce 7£j:L,a,‘r)T7 ga,‘r =
(&j=1,0,77--- ,szLyg,T)T are the degrees of freedom of the
environment (made of L fermionic modes). In total, we
thus insert 2(M + 1) identity resolutions per fermionic
mode. In the limit 0t — 0, Eq. (2) is retrieved following
standard textbook passages.

To define a clean prescription for our temporal wave
functions overlap, however, it is more convenient to fur-
ther split the evolution operator U into a local impur-
ity and environment+tunneling evolution operators, i.e.
U & Uimp * Unyp (with the same error O(6t?) as before).
Here, we defined Uyyp, = exp (i 6t Hyyp,) with

thb =H - Himp =
= Z [(tkdic;ﬁa,g + h.c.) + ekcl7a7ack,a7g],

k
o=1,4
a=L,R
(A3)
and, for later convenience, we choose
U — et OtHimp  for evolution up to time ¢,,-
e Linp for evolution in range [t,,«, T].

(A4)

Figure S1. After inserting Grassmann resolutions of identity
into Eq. (Al), each leg of the IF and impurity tensor gets
associated with a Grassmann variable [red (blue) color refers
to the forward (backward) Keldysh branch]. Here, we show
the density matrix of the impurity after two time steps. It
is obtained from an IM containing M = 4 time steps. The
impurity gates at time steps later than m™ are replaced by
the identity operator.

[While this choice is convenient for the conceptual de-
rivation within the Grassmann formalism, we found
that a slightly modified prescription, where we replace
Limp in Eq. (A4) by the perfectly depolarizing chan-
nel, is numerically more efficient, see App. B.] In total,
with this modified Trotter decomposition, we insert 4M
Grassmann identity resolutions per spatial site and 7 =
0%,...,(2M —1)*. In Fig. S1, we illustrate how the res-
ulting 8 M Grassmann variables are associated with the
legs of the IF and impurity tensors, respectively.

In order to arrive at the overlap form of Eq. (4), we
manipulate the path integral in a way that results in
the following structure: All variables associated with the
kernel of the spin-up (down) IF should be conjugate (non-
conjugate) and opposite for the impurity kernel. This is
achieved by making appropriate variable substitutions in
the system-variables of the identity resolution, Eq. (A2).
We define these modified identity resolutions as

1,  with substitution 7jo.r = 7o, Nlo,r — —Tlo,r,

]1{;,7 with substitution 7, = —%s.7, No,r = o7

With this, Grassmann identities are inserted between the
hybridization- and impurity evolution operators on the



forward branch in the following way:

Uimp : ]l(Zerl)+ : Uhyb : ]l(2m)+7 (A5)

with
Loma1)+ Z]IT @em+1)+ @ ]ll (2m+1)+> (A6)
Liomy+ =15 2m)+ ® Ly 2m+- (A7)

On the backward branch, we insert identities as follows:

]1(27”)7 ’ U}]:yb ’ ]l(Qerl) Ulmp’ (AS)

with
Liam)- =14, 2m)- ® L) (2)- (A9)
Leam1)- :IL/T/,(2m+1)* O Ty (2m+1)-- (A10)

With these insertions, one arrives at Eq. (4). Note that
these variable substitutions alter the signs of some com-
ponents of the impurity kernel, while they amount to a
simple renaming of variables for the IF.

The resulting discrete-time IF has Gaussian form,

I[na] = exp ( Z nszmm'no,m’)v

m,m’

(A11)

with

Nom = (7707(2m)+ y No,(2m) =5 No,(2m+1)+>5 No,(2m41)— )T'

The matrix B that appears here is the exact Gaus-
sian influence action of the trotterized (Floquet) environ-
ment [52]. To understand its relation to the continuous-
time result, it is convenient to express it in terms of a
discrete-time hybridization matrix A,

E nimAmm’no,m 677(;,0-*— o0~

m>m’

I[no] = eXp

X eXm=0 (’70,<2m+1>+"m<2m>++’7m<2mr"v,(2m+1r), (A12)
where the terms in the second and third exponential in
Eq. (A12) stem from the overlap of Grassmann coherent
states.

For a general discrete-time (Floquet) unitary evolu-
tion of the environment, the matrix A has a complicated
structure, which we evaluated exactly e.g. for setups with
chain-environments [52]. However, the structure greatly
simplifies in the Trotter limit §¢ — 0, where A can be
written in the form

A = 6t>2[2/r< )G () +0(57)].

(A13)
Here, G%, . (w) is a matrix of non-interacting Green’s
functions of the environment. For fermion-number-
conserving Hamiltonians as considered in this work, this

yields (omitting w-dependence for simplicity)

0 Ghm Som O
« — _gmm/ 0 0 gmm/ A14
m>m/ _g%; 0 ) 0 _gzimi ) ( )
0 gfin?f im0
1 _ga,> 0 0 —g% >
« —— mm mm
G =3\ =g 00— |0 B
e
with
G (@) = —m ) e im0 (A16)
g (@) = (1= nf(w)) e (A1)

These equations make the connection between A,,,,,» and
the standard textbook hybridization function A(r,7’)
[Eq. (2) of the main text] manifest. Equation (A13)
allows to use our formalism to compute impurity dynam-
ics with an environment defined by an arbitrary spectral
density I'(w).

We emphasize that Eq. (A1l) here represents the ex-
act discrete-time IF of a trotterized system, computed
from its unitary Floquet dynamics. Thus, in contrast to
a brute-force discretization of the textbook expression in
Eq. (2) of the main text, Eq. (A11) produces a physically
meaningful evolution of the impurity [completely positive
and trace preserving (CPTP)] — close by O(6t) to the ex-
act continuous-time Hamiltonian dynamics. Conversely,
plugging a spectral density I'(w) in Eq. (A13) and neg-
lecting the O(dt) corrections generally (slightly) breaks
CPTP. X

The impurity tensors D,, appearing in the overlap
form are obtained directly from the Grassmann kernels
corresponding to the impurity evolution: We convert
each time-local impurity kernel at time step m to an op-
erator D,, that acts between a “1” two-fermion space
(originally corresponding to the tensor product of input
and output Hilbert spaces of the 1 impurity fermion) and
a “]” two-fermion space (originally corresponding to the
tensor product of input and output Hilbert spaces of the
J impurity fermion), see e.g. superlmposed red squares in
Fig. S1. Their tensor product, Do .= =D1®...9Dy (see

main text), defines the product operator which we con-
tract with the IF-MPS as shown in Fig. S1 and described
in App. B.

Appendix B: Details on MPS computations

Obtaining the MPS representation of the IF. To ob-
tain a MPS representation of the IF wave function |I),
introduced in Eq. (5) of the main text, we apply a gener-
alization of the Fishman-White (FW) algorithm that we
adapted to BCS-like wave functions [52,57]. Its input is
the two-point correlation matrix A whose subblocks are
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Figure S2. Top: Illustration of the IF-MPS contraction pro-
cedure for a single environment and two spin species. Pairs of
impurity-legs on the forward and backward branch are com-
bined and labelled by Latin letters, while virtual MPS in-
dices are labelled by Greek letters. Each tensor A of the IF-
MPS can be viewed as a linear operator connecting two phys-
ical and two virtual spaces. The augmented density matrix
Pab,ap(1) for the first half time step is highlighted by dashed
lines. The vectors vy (M — 1) and vy (M — 2), necessary
to extract the impurity density matrix from the augmented
density matrices, are shaded blue. The whole tensor network
corresponds to the vectorized impurity density matrix pey(3)
(after the action of IF—impurity— IF ). Bottom: To com-
pute non-equilibrium observables like the current—here for a
two-terminal setup—we time evolve pimp(m) by contracting it
successively with the IF-MPS of the right (light gray) and left
(dark gray) environment before applying the impurity gate.
In this example, we show the density matrix of the impurity
after two full time steps.

given by
(I\c,.cf,|1> (Ilerepr|I)
L (IT1) (I11)
A=\ etelin apetepn |+ B
I (I11)

where 7,7’ are points on the discretized Keldysh con-
tour. The FW algorithm encodes A as a quantum circuit

consisting of unitary gates. The accuracy of the circuit
representation of |I) is set by an external parameter e
that is chosen beforehand. For ¢ — 0, the circuit rep-
resentation becomes exact. Applying the circuit to the
vacuum (product) state of 4M spins yields the MPS rep-
resentation of |I).

The “local depth” D of the circuit scales logarithmic-
ally in evolution time [42,49,52|, with a prefactor that
increases as € is decreased. For numerical stability, it is
advantageous to fix a very small € and continuously re-
duce the bond dimension x of the MPS during the circuit
contraction. For this, we use conventional singular value
decomposition (SVD) where we fix the maximal bond
dimension Xmax-

In practice, we group all four tensor legs at equal time
index m into a single, larger physical Hilbert space of
dimension d = 2%; the bond dimension Y refers to these
enlarged tensors as depicted in Fig. S2 (top). This pro-
cedure yields a MPS that is proportional to the IF wave
function, up to errors through finite ¢ and SVD trunca-
tion errors. To get the overall normalization (I|I), we are
in principle free to insert arbitrary impurity evolution op-
erators Uynp, imposing that the Keldysh partition func-
tion equals 1. For environments defined by a continuous
spectral density I'(w), however, different choices of Uiy
lead to slightly different normalizations, as time discret-
ization slightly violates the CPTP property of the im-
purity evolution, as remarked in App. A. For the sake of
efficiency, we choose to apply perfectly depolarizing chan-
nels on the impurity, which has the effect of connecting
the forward and backward legs at a given variable index
7 [65] (see upper half of top panel in Fig. S2). This allows
us to minimize the cost of normalizing each IF separately.

Once the properly normalized IF-MPS have been ob-
tained, we proceed as follows: The individual tensors of
the IF-MPS {A,(m)}M_, (gray bricks in Fig. S2) can
formally be viewed as “superoperators” acting on the im-
purity with its physical legs and on the (compressed)
environment with its virtual legs [66]. To obtain the
full time evolution of the density matrix, we apply these
“superoperators” alternately with the local superoperator
associated with the impurity Hamiltonian (red bricks in
Fig. S2).

Contracting with a single environment. First, let us
consider the evolution of an impurity coupled to a single
environment which is encoded by two IF-MPS (one for
each spin species). This setup is depicted in Fig. S2 (top)
and corresponds to the calculations in Fig. 2 and Fig. 4
of the main text.

In the following notation, we use Latin letters to denote
combined indices of the forward and backward branch of
the Keldysh contour. These indices correspond to phys-
ical legs of the IF-MPS. Furthermore, we use Greek let-
ters to label the virtual legs of the MPS. These represent
a fictitious state of the compressed environment associ-
ated with the MPS virtual bond space as depicted in
Fig. S2 (top).

Our starting point is the vectorized initial density mat-



rix pgp of the impurity, where the indices a, b correspond
to the spin up- and down- fermion respectively. We then
add two additional indices, one for each IF, to obtain an
augmented density matrix p(0)4p,08. Each time step con-
sists of i) the combined evolution of the impurity with the
environment and ii) the evolution of the impurity only.
The former is formally expressed as:

Pab o (2m + 1) = AT (m) ATy (m)parsy o (2m),
(B2)
where Agfl/a/(m) is the IF-MPS tensor at time step m.
For step ii), we apply the local impurity evolution rep-
resented by the superoperator D<¢(m) (cf. Eq. (4) in
main text):

ﬁab,aﬁ (2m + 2) = Dgg)b’(m)ﬁa’b’,aﬁ(Qm + 1)- (BB)

To obtain the density matrix of the impurity from the
augmented density matrices at arbitrary intermediate
times p(m), we recursively compute a set of vectors
Vo,a(m) for each of the two IF (corresponding to o =1
and o =], respectively):

! ].
Voot (M —1) = A‘;Za, (m)vg,a(m)iﬂuﬂa/, (B4)

with v o (M) =1 and 1, being vectorized identities, see
upper panel of Fig. S2. These vectors allow to “trace
out the environment” at intermediate times: The density
matrix of the impurity p(m) can then be obtained from

the augmented density matrices as

Pab(2m) = v o (m)vy,5(M)Pab,ap(2m), (B5)
pab(2m — 1) = v o(m)vs 5(M)pab,ap(2m —1).  (B6)

Physically, this is equivalent to completing the Keldysh
contour to the final time T" by evolving the impurity with
the perfectly depolarizing channel for each timestep later
then m. Numerically, this is slightly more convenient
than using identities as in Eq. (A4), as the matrices to
be multiplied in Eq. (B4) are smaller.

Computation of the current. To compute the current
as in Fig. 3 of the main text, it is necessary to com-
pute the IF of the left and right environment separately,
such that we can access the impurity density matrix be-
fore and after the individual interaction with the left and
with the right environments, as depicted in the bottom
panel of Fig. S2. This leads to a modified prescription
for time evolution including four independent IF: The
augmented density matrix has now four environment in-
dices corresponding to the virtual bond of each of the
four IF. For each timestep, we perform the operation in
Eq. (B2) twice, once for the left and once for the right
environment [F. To extract the impurity density matrix
from the augmented density matrix at each substep, all
of the additional indices have to be contracted with the
corresponding vector vy /g 1/« This vector is obtained
individually for each IF according to Eq. (B4). The re-
quired computer memory of the contraction algorithm
scales thus as O(16x*), where y is the maximal bond di-
mension of each IF. While this requirement of memory
resources imposes a bound on manageable bond dimen-
sions in practice, we demonstrate in Fig. 3 that even bond
dimensions as low as xy = 32 yield converged results that
are competitive with state-of-the-art methods for non-
equilibrium dynamics.



7 Conclusion

In this thesis, I introduced a novel ansatz to study the dynamics of local observables
in quantum many-body systems. In this approach, the quantum many-body system is
treated as a quantum environment and the influence it exerts on its local subsystem is
captured in the influence matrix (IM). Analogous to how the knowledge of the density
matrix of a quantum state is sufficient to predict the probability distribution of results
of all possible quantum measurements, the knowledge of the IM of a quantum environ-
ment is sufficient to predict dynamics for arbitrary quantum systems coupled to this
environment. The IM is a tensor in the temporal domain, with legs corresponding to
different points in time. By treating the IM as a ”wave function”, we introduced the
notion of temporal entanglement (TE). Low TE indicates the existence of an efficient
matrix product state (MPS) representation of the IM. Such a parametrization in turn
allows the numerical computation of local observables even in very large quantum sys-
tems. In this thesis I demonstrated, that for several important classes of systems, such
as in many-body localized systems, integrable systems or in circuits close to dual uni-
tarity TE remains low. Together with algorithms to obtain the MPS representation for
1D models and free fermion models, this yields an efficient algorithm for local quantum
many-body dynamics.

Dynamical properties like ergodicity, integrability or localization of a quantum system
are reflected in the structure of the IM. While TE is low for both integrable [5, 10, 119]
and many-body localized systems[2], the entanglement of the “unfolded” IM was shown
to be high in the integrable case[6, 97] and low in the localized case [2]. Curiously,
for generic thermalizing models, TE appears to scale as volume law [114, 117]. This is
surprising, since the defining feature of ergodic systems is that they don’t have memory
of the initial state. Trying to resolve this apparent contradiction seems to be a relevant
part of the wider thermalization puzzle. Furthermore, understanding which temporal
correlations contribute to high TE, but potentially are not necessary to compute physical
observables, could allow us to expand the scope of the IF approach even further. The
entanglement structure of the IM can be used to identify and classify dynamical phases.

The influence matrix approach is also of interest from the point of computational com-
plexity. If an environment can be represented by a IM with polynomial bond dimension,
this proves easiness the associated impurity problem of constant size arbitrary quantum
system coupled to a constant number of such environments. While it is clear from the
definitions that hardness of such a quantum impurity problem implies super-polynomial
scaling of the bond dimension of at least one of the IM involved, it is unclear if and to
which extent the converse is true.

The fact that TE is low for large baths of free fermions make this method an ideal
candidate for studying out-of-equilibrium phenomena in correlated materials. Studying
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7 Conclusion

the single impurity Anderson model, it was shown in Chap. 6 and Refs. [119, 127, 128]
that IM techniques can compete with or even outperform other state-of-the-art methods
for non-equilibrium dynamics. Preliminary results for multiple independent reservoirs
and impurity orbitals to appear in Ref. [192] show that this performance extends to
more complicated setups. This allows usage of these approaches in the context of non-
equilibrium dynamic mean field theory and other quantum embedding approaches. Fur-
thermore non-equilibrium effects in mesoscopic systems like quantum dots and quantum
point contacts can likely be studied using these techniques.
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