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2015





Acknowledgement

I would like to thank my supervisor Pavol Ševera for his valuable insights and advices in
both mathematics and physics as well as his friendship. In particular, I am thankful to him for
making me realize Socrates’ starting point of knowing about my ignorance.

My thanks also go to Prof. Anton Alekseev for allowing me to shift my PhD. studies from
Bratislava to Geneva.

I am indebted to my colleagues, with whom I had the privilege to share the office. A
particular thanks goes to Štefan Sakáloš who has a special gift of making people cheer up when
they are down.

This work would not be possible without the continuous support and patience of both my
family and friends. Finally and most importantly, I would like to thank my wife Mária sine qua
non.



Résumé

Dans cette thèse on étudie des extensions du troisième théorème de Lie pour les structures
de Lie supérieures appelées algébroïdes L∞.

Dans la première partie de la thèse on rappelle la théorie de Lie pour les algèbres de Lie (après
Cartan, Sullivan et Duistermaat–Kolk), pour les algébroïdes de Lie (après Crainic–Fernandes)
et pour les algèbres L∞ (après Getzler et Henriques). Entretemps on introduit le langage de
groupoïdes de Lie supérieurs qui généralisent les groupes de Lie. On introduit aussi la notion
d’algébroïde L∞. Jusqu’alors aucun résultat général concernant l’intégration de ces structures
supérieures n’existait dans la littérature.

La deuxième partie est une article de Ševera et l’auteur intitulé “Integration of differential
graded manifolds”, dont l’objectif est de fournir un tel résultat général.

On suit de près la méthode d’intégration suggérée par Sullivan pour les algèbres de Lie de
dimension finie. Il a montré que le groupe simplement connexe correspondant (sans sa structure
lisse) s’obtient comme le groupe fondamental simplicial de la réalisation spatialeKbig

• de l’algèbre
différentielle graduée commutative (adgc) de Chevalley–Eilenberg de l’algèbre de Lie g. Il y a
des analogues des adgc de Chevalley–Eilenberg pour les structures de Lie supérieures - on peut
les voir comme les adgcs des fonctions sur certaines variétés positivement graduées, équipées
par une différentielle Q (un champs de vecteurs de degré 1 et carré zéro). Leurs réalisations
spatiales correspondantes ont des homotopies supérieures intéressantes ; en particulier, leurs
types d’homotopie sont des groupoïdes L∞ locaux.

Le premier résultat de l’article dit que Kbig
• est en fait une variété de Fréchet simpliciale,

qui satisfait la version lisse de la condition de Kan (définie par A. Henriques). Cette intégration
est “grande” : les variétés des n-simplexes ainsi obtenues sont de dimension infini (déjà dans le
cas des algèbres de Lie). La construction de Kbig

• est fonctorielle.
Le deuxième résultat dit, que, en imposant une certaine condition de jauge (suivant l’idée

de E. Getzler de son travail sur le théorie de Lie pour les algèbres L∞ nilpotentes), on obtient
une sous-variété simpliciale Ks

• de Kbig
• , qui est un groupoïde L∞ local. De plus, il existe une

déformation par rétraction simpliciale de Kbig
• sur Ks

• .
Finalement, on montre, que la construction Ks

• est fonctorielle à une homotopie près. Si
on choisit un bon recouvrement de la base de l’algebroïde L∞ et applique Ks

• sur le nerf du
recouvrement, on obtient une intégration globale par un diagramme homotopiquement cohérent
dans la catégorie de variétés simpliciales locales.
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Introduction

The topic of this Thesis can be summed up in a single sentence as extending Lie’s third the-
orem to the case of L∞-algebroids. Here L∞-algebroids can be thought of as Lie algebroids with
higher homotopies. This has been a long-sought goal vividly yet minimalistically sketched in
Ševera [32] via the fundamental∞-groupoid based on ideas of Sullivan [35] from Rational Homo-
topy Theory. However the analytical details were not worked there. Up until now the problem of
Lie integration for the special case of Lie algebroids was solved by Crainic, Fernandes [7] and the
case of L∞-algebras was solved by Getzler [16] and Henriques [20] (by independent methods).
Apart from some partial cases (e.g. exact Courant algebroids which are Lie 2-algebroids with
additional structure) there was no general result on integration of higher homotopy analogues
of Lie algebroids. This problem was solved in Ševera, Širaň [34].

The first part of the Thesis is a survey of Lie integration techniques. The following Sections
will gradually recall Lie theory for Lie structures, starting from the easiest case of Lie algebras
building up all the way to the most general case of L∞-algebroids. Along the way we offer
reminders on the various higher geometrical and categorical structures involved. The survey
should not be considered exhaustive; sacrifices were made to enhance readability. There are
almost no proofs - the interested reader can find them in the references. The goal is to connect
the methods and results of Ševera, Širaň [34] to the larger web of Lie theory which preceeded it
and made it possible.

The second part of the Thesis is the article Ševera, Širaň [34]. The numbering of equations,
figures, propositions and theorems is independent between the first and the second part of the
Thesis.

Some remarks to notation follow. We will use abbreviations “gca” for graded commutative
algebra and “dgca” for differential graded commutative algebra. Categories are denoted using
C,D or in bold for concrete categories as Set,Man etc. Einstein summation convention is used
(sum over repeated indices).
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Part 1

A survey of Lie integration



1. Lie theory for Lie algebras

1.1. Modern approach. Let G be a (finite-dimensional) Lie group. Its tangent space at
the unit element is naturally a (finite-dimensional) Lie algebra with the Lie bracket induced from
the Lie algebra of left-invariant vector fields on G. This construction is functorial and we will
write it correspondingly as

(1) Lie : LGrp→ LAlg.

A natural question is if given a Lie algebra g there exists a Lie group G such that Lie(G) ∼= g,
i.e. whether the functor (1) is essentially surjective. It is a classic result of Lie theory under the
name Lie’s third theorem that this is indeed the case, although the first full proof was given by
Cartan (the ascription to Lie seems to be an influence of Serre’s book [31]). Restricting to the
category of connected, simply-connected Lie groups (1) becomes an equivalence of categories.

What Lie actually proved is a weaker result which can be expressed in modern language as
existence of a local Lie group G integrating g. Today both results have standard proofs using
high-powered techniques. For example, for local integration one can use the Baker-Campbell-
Hausdorff formula

(2) BCH(X,Y ) := log (exp(X)exp(Y ))

which can be famously written using only the Lie bracket. Since it converges in an open neigh-
borhood gBCH ⊂ g of the origin it makes gBCH into a local Lie group. It is then possible to
glue together such neighborhoods, see e.g. Serre’s book [31] (he calls these open neighborhoods
group chunks) to turn the method into global integration. The proof that the BCH formula
methods work also globally is involved but the description is quite simple. Define

GBCH :=
{

n∏
i=1

exp(Xi), n finite, Xi ∈ gBCH

}
,

where the products are formal. Then there is an equivalence relation ∼ on GBCH such that

G := GBCH/ ∼

is the simply-connected Lie group integrating g. The equivalence relation is given by the BCH
formula (2).

Another standard proof of the global version of Lie’s third theorem involves Ado’s Theorem, a
deep result which states that all finite-dimensional Lie algebras have faithful finite-dimensional
representations. Thus we can treat a finite-dimensional Lie algebra g as a Lie subalgebra of
gln(R) for some n. Since gln(R) integrates to the Lie group GLn(R) the integrating group of g
is generated by all exponentials of g in gln(R) and it is a Lie group by Frobenius theorem.

1.2. Cartan’s method and the Maurer-Cartan equation. The above techniques work
well for Lie algebras but they do not seem to have generalizations to higher Lie theory. It is
instructory to recall Cartan’s original method, which makes the Maurer-Cartan equation central.
We follow the expositions of van Est [36] and Ebert [14].

A transitive Maurer-Cartan g-structure on M is a choice of a subspace F ⊂ Γ(TM) such
that [F, F ] ⊂ F , F ∼= g, the evaluation map F ×M → TM is an isomorphism of vector bundles
and the group

GF := {f : M →M,f is a diffeomorphism, f∗X = X for all X ∈ F}

acts transitively. The definition is motivated by rewriting of the properties of the subspace of
left-invariant vector fields on a Lie group G. The key idea is that GF ∼= M then inherits a
smooth structure from M such that it becomes a Lie group.

The involution condition [F, F ] ⊂ F can be stated as a certain condition in the de Rham
dgca Ω(M). A differential form is called F -constant iff it defines a constant function on vector
fields in F . These F -constant forms form a graded subalgebra of Ω(M) which can be identified
with ∧F ∗. This subalgebra is closed w.r.t. the de Rham differential on Ω(M) iff F is involutive.
The de Rham differential reduces for α ∈ ∧F ∗ to

dα(X0, . . . , Xn) :=
∑
i<j

(−1)i+jα
(

[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn

)
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where X0, . . . , Xn ∈ F . This is precisely the form of the differential on the Chevalley-Eilenberg
dgca of g, denoted

(C(g), dCE) := (∧g∗, dCE) .
Its cohomology is the Lie algebra cohomology. Thus one can rephrase the definition of a transitive
Maurer-Cartan g-structure on M as a morphism of dg algebras
(3) Ag,M : (C(g), dCE)→ (Ω(M), d)
such that the evaluation map g∗×M → T ∗M is a vector bundle isomorphism. To integrate a Lie
algebra g it is thus neccesary to find a transitive Maurer-Cartan g-structure on some connected
manifold M . Since (3) as a morphism of graded algebras is determined by its restriction to
g∗ → Ω1(M) it can be encoded as A ∈ Ω1(M, g). The condition on (3) to be a morphism of
dgca is then the Maurer-Cartan equation

(4) dA+ 1
2[A,A] = 0.

These observations have generalizations in higher Lie theory where an analogue of (4) appears.
It is clear that a Lie algebra with trivial center is integrable, since it is faithfully represented

by the adjoint action.
Cartan developed a method to obtain a transitive Maurer-Cartan g-structure Ag,M×R on

M × R from a transitive Maurer-Cartan h-structure Ah,M on M with H2(M,R) = 0 where

0→ c ↪→ g
p−→ h→ 0

is a short exact sequence of Lie algebras and c is central in g and one-dimensional. Suppose
Ah,M is a transitive Maurer-Cartan h-structure on M . Pick a basis {e1, . . . , en} of g with dual
basis {e1, . . . , en} of g∗ such that {e2, . . . , en} are pullbacks via p of a basis {f2, . . . , fn} of h∗
and the restriction of e1 to c is non-zero. Then

de1 = −1
2c

1
ije

i ∧ ej

where i, j = 2, . . . n as c is central in g. Thus one can define a unique 2-cocycle a ∈ ∧2h∗ by the
equation

de1 = p∗a.

Applying the transitive Maurer-Cartan h-structure on M we get Ah,M (a) ∈ Ω2(M). By the
assumption H2(M,R) = 0 there exists b ∈ Ω1(M) such that a = db. Let π be the projection

π : M × R→M

and t the coordinate on R. Cartan proved that the map
Ag,M×R : g∗ → Ω1(M × R),

Ag,M×R(ei) :=
{
π∗b+ dt i = 1,
π∗(Ag,M (f i)) i > 1.

satisfies (4) and thus defines a transitive Maurer-Cartan g-structure on M × R.
Thus the global version of Lie’s Third Theorem follows from setting M := H where H is

the simply-connected Lie group integrating h := ad g and then proceeding by induction on the
dimension of the center. The crucial and non-trivial part here is that
(5) H2(H,R) = 0
since H is a simply-connected Lie group (a proof of this can be found e.g. in Duistermaat, Kolk
[10]). In fact the much more stronger π2(H) = 0 is also true.

1.3. A non-integrable Banach-Lie algebra. The failure of the condition (5) for Banach-
Lie groups is tied to non-integrability of Banach-Lie algebras. The following non-integrable
Banach-Lie algebra was found by van Est, Korthagen [37]. Let

h :=
{
α : I → su(2),

∫
I

α(t)dt = 0
}

be a Lie algebra with the pointwise Lie bracket. There is a skew-symmetric bilinear form on h

(6) 〈α, β〉 :=
∫
I

tr
(∫

[0,t]
α(s)ds ◦ β(t)

)
dt.
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The central extension of h by R
0→ R→ g→ h→ 0

w.r.t. the cocycle 〈·, ·〉 (6) is a Banach-Lie algebra but there is no integrating Banach-Lie group.

1.4. A reminder on simplicial sets. Before we proceed to Sullivan’s method [35] of
integration we need to recall the language of simplicial sets (a generalization of the notion of a
simplicial complex) as combinatorial models for the weak homotopy type of topological spaces.
We will also require them in higher Lie integration, since the higher Lie groupoids are defined
in terms of their nerves. Standard references to simplicial sets include May [26] and Goerss,
Jardine [17].

Let us recall that the small simplex category ∆ is the full subcategory of the category of
small categories Cat given by free categories of finite linear directed graphs. It is also possible
to think of ∆ as the category with finite totally ordered sets as objects and order-preserving
maps as morphisms. We will denote [n] as the object of ∆ given by the graph

[n] := {0→ 1→ . . .→ n}.
Morphisms of ∆ are generated by certain elementary maps, called the coface and codegeneracy
maps denoted δi : [n− 1]→ [n] and σi : [n+ 1]→ [n], 0 ≤ i ≤ n. These maps are defined as

δi(k) :=
{
k k < i,
k + 1 k ≥ i,

σi(k) :=
{
k k ≤ i,
k − 1 k > i.

These maps satisfy the cosimplicial identities which are dual to (7) below.
Let C be a category. A simplicial object K• in C is a presheaf on ∆ with values in C, i. e. a

functor
K• : ∆op → C.

In particular if C is the category of sets, K• is called a simplicial set. Unpacking this definition
we see that a simplicial set is a sequence of sets {Kn}n≥0 where Kn := K•([n]) together with a
collection of maps

di := K•(δi) : Kn → Kn−1

called the face maps and
sj := K•(σj) : Kn → Kn+1

called the degeneracy maps. These satisfy the simplicial identities

(7)

didj = dj−1di i < j,
sisj = sjsi−1 i ≤ j,

disj =

 sj−1di
id
sjdi−1

i < j,
i = j, j + 1,
i > j + 1.

The simplicial n-simplex or the standard n-simplex ∆[n] is the simplicial set defined as the
image of [n] via the Yoneda embedding

∆[n] := Hom∆(·, [n]).
For any simplicial set K• we have by the Yoneda lemma

Kn = HomsSet(∆[n],K•).
The geometric realization of ∆[n] is the geometric n-simplex ∆n defined as the topological
subspace ∆n ⊂ Rn+1

∆n :=
{

(t0, . . . , tn) ∈ Rn+1, 0 ≤ ti ≤ 1,
n∑
i=0

ti = 1
}
.

Often we will consider ∆n as a smooth manifold with corners.
The above construction extends to a functor

(8)
| · | : sSet→ Top

|K•| :=
(⊔

n≥0Kn ×∆n
)
/ ∼
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where ∼ is an equivalence relation (x, p) ∼ (y, q) iff
dix = y, δiq = p,

or
sjx = y, σjq = p.

Each Kn is given the discrete topology and |K•| is given the quotient topology. The functor (8)
is called the geometric realization. It is left adjoint to the singular complex functor

S• : Top→ sSet
which assigns to a topological space X its singular complex

S•(X) := HomTop(∆•, X).

1.5. Spatial realisation of a dgca. The geometric realization |K•| is in general (unlike
∆•) not a smooth manifold. However one can still work with forms defined on each simplex of
|K•| which are glued compatibly along the boundaries. There are several types of forms on ∆•
which can be used, in particular: polynomial forms (for rational homotopy theory) and smooth
forms (which is what we will use in Lie theory). We will denote Ω(∆•) the resulting simplicial
dgca. There are two properties we require from Ω(∆•). The first is a sort of Poincaré lemma
(vanishing of cohomology) and the second is the extension property (one can extend a form from
the boundary of a simplex). These properties are satisfied for both choices of forms (for the
extension property see Sullivan [35]). These properties are chosen so that there is an analogy of
the de Rham theorem.

In this way Sullivan constructed a functor

(9) Ω : sSet→ dgcaop

Ω(K•) := HomsSet(K•,Ω(∆•))
which assigns to a simplicial set K• a dgca Ω(K•) which can be thought of as its de Rham
algebra. This functor is left adjoin to the spatial realisation functor

(10) K• : dgcaop → sSet
K•(A) := Homdgca(A,Ω(∆•)).

1.6. Sullivan’s method of integration. In the 1970s a new method of integration was
suggested by Sullivan [35]. We need to stress that the result is the integrating simply-connected
group without its smooth structure (this can be then remedied via a method of Duistermaat,
Kolk [10], see below). The method makes use of the Maurer-Cartan equation (4), but does not
solve it; instead the technique could be loosely described as integration without integration.

Let g be a Lie algebra and (C(g), dCE) its Chevalley-Eilenberg dgca. Its (smooth) spatial
realisation is a simplicial set (in fact a simplicial manifold)
(11) Kbig

• := K•(g) = Homdgca(C(g),Ω(∆•)).

The n-simplices ofKbig
• can be identified with elements A ∈ Ω1(∆n, g) satisfying the Maurer-

Cartan equation (4). In terms of the integrating simply-connected Lie group G of g we can
consider Kbig

n as the space of flat connections on the trivial bundle ∆n ×G→ ∆n. Then by the
identification of the space of flat connections with the space of horizontal sections we see that
Kbig
n is the space of maps ∆n → G modulo translation

(12) Kbig
n := HomMan(∆n, G)/G.

Let us describe the simplicial fundamental group of Kbig
• which is the integrating simply-

connected group of g. Its elements are 1-simplices of Kbig
• which are (automatically flat) con-

nections A ∈ Ω1(∆1, g) modulo the equivalence relation A ∼ A′ iff there exists a flat connection
A on a bigon which restricts on the boundary semicircles to A resp. A′ as can be seen on the
left side of Figure 1.

Let us denote the equivalence class of A as gA. Multiplication is given by gA1gA2 = gA3 iff
there exists a flat connection A4 which restricts on the boundary as illustrated on right side of
Figure 1.

The reason we put the description big inKbig
• is thatKbig

n are infinite-dimensional manifolds.
For any g ∈ G there are infinitely many representing flat connections A on ∆1. The same is true
of the flat connections A4 filling the right side of Figure 1.
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A

A′

∃ flat A

A1 A2

A3

∃ flat A4

Figure 1. Left - two connections give the same group element. Right - group
multiplication illustrated.

1.7. Global integration by Duistermaat, Kolk. Duistermaat, Kolk [10] worked out a
way how to obtain the integrating simply-connected Lie group (with its smooth structure) using
the path method. Let P (1, G) be the based path space of a Lie group G and P (g) the path
space of its corresponding Lie algebra g. The map

(13)
D : P (1, G) ∩ C1 → P (g)
Dγ(t) := γ(t)−1

(
dγ
dt (t)

)
is a homeomorphism and it satisfies

D(γ.γ′)(t) = Dγ(t) + (Ad γ(t))(γ′(t)).
This can be used to define a product on P (g). Now the adjoint action is defined in terms of G,
but it can be reformulated (for adjoint action of γ(t)) purely in terms of the Lie algebra g. In
particular

ADγ(t) := Ad γ(t)
is a C1 solution ADγ(t) : I → GL(g) of the following ODE

(14)
{

d
dtA(t) = ad Dγ(t) ◦A(t)
A(0) = id

Since D is a homeomorphism one can use this to define Adγ(t) using the corresponding path
Dγ(t) without any reference to the Lie group G. It is straightforward to verify associativity of
the product
(15) δ.δ′(t) = δ(t) +Aδ(t)(δ′(t))
defined for any δ, δ′ ∈ P (g). Furthermore the constant path at 0 ∈ g and the inverse

γ−1(t) = −(Aγ(t))−1(γ(t))
define a group structure on P (g). Unless g is trivial P (g) is an infinite-dimensional Banach
space. By linearity of ad and Equation 14 it follows that the map

A : P (g)→ C1(I,GL(g))
A(δ) := Aδ(t)

is an analytic map so that P (g) is a Banach-Lie group. Remarkably there is a closed normal
Banach-Lie subgroup P (g)0 such that P (g)/P (g)0 is the integrating 1-connected Lie group of g.
This requires some care to show and we will be only sketchy. There are several ways to describe
P (g)0. The obvious way is to consider the image of D for paths in G which all the paths are
actually loops (based at 1) that is

P (g)0 := D(Ω(1, G) ∩ C1).
Again it is necessary to write this intrinsically in terms of g. It can be shown that δ ∈ P (g)0 iff
there is a smooth path δs in P (g) from the constant path 0 to δ with the integral condition∫ 1

0
Aδs

(t)−1 ∂

∂s
δs(t)dt = 0

for all s ∈ I. That P (g)0 is a normal subgroup is easy to verify. The difficult part is that it is a
closed Banach-Lie subgroup of P (g) and this is a consequence of the non-trivial result that the
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second homotopy group of a 1-connected Lie group vanishes. To verify that the Lie algebra of
P (g)/P (g)0 is g it is useful to write down the Lie bracket of the Lie algebra P (g) as

[X,Y ](t) = d

dt
[avtX, avtY ]

where avt : P (g)→ g, t ∈ I is the averaging map

avt(X) :=
∫ t

0
X(s)ds.

The Lie algebra of P (g)0 is then the kernel of av1. Since av1 is surjective (taking constant paths
at the desired X ∈ g) this proves that P (g)/P (g)0 is the sought Lie group.
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2. Lie theory for Lie algebroids

2.1. A reminder on Lie groupoids. A group can be viewed as a category with a single
object with the group elements being the morphisms of this category. A groupoid is a general-
ization of this notion - a small category with all morphisms being invertible. A Lie groupoid is
a groupoid internal to the category of smooth manifolds.

Unpacking this definition a Lie groupoid G ⇒ M is given by two smooth manifolds G (the
possibly non-Hausdorff manifold of morphisms) and M (the manifold of objects) with surjective
submersions s, t : G → M (the source and target maps), a smooth map u : M → G (the unit
map), a smooth map i : G → G (the inversion map) and a smooth map m : Gs ×t G → G
(the multiplication map). These have to satisfy the usual categorical axioms. Note that s, t are
submersion so that the pullback Gs×tG is a smooth manifold. FurthermoreM is often treated as
an embedded submanifold of G via the unit map. A Lie groupoid is said to be s-simply-connected
(source simply-connected) iff the source fibers s−1(x) are simply-connected for all x ∈M .

The isotropy group at x ∈M of a Lie groupoid G ⇒M is the Lie group

(16) Gx := s−1(x) ∩ t−1(x).

Lie groupoids were first studied by Ehresmann [15]. A good reference for the theory of Lie
groupoids is Mackenzie [25].

2.2. A reminder on Lie algebroids. The corresponding infinitesimal notion to a Lie
groupoid is a Lie algebroid which was introduced by Pradines [28]. The relationship between
Lie groupoids and Lie algebroids mimicks the relationship between Lie groups and Lie algebras.

Recall that a Lie algebroid A is a vector bundle A→M together with a Lie bracket on Γ(A)
and a morphism of vector bundles ρ : A→ TM called the anchor satisfying the Leibniz rule

(17) [α, fβ] = f [α, β] +
(
Lρ(α)f

)
β

for any α, β ∈ Γ(A) and any f ∈ C∞(M). The anchor ρ induces a Lie algebra morphism
Γ(A)→ Γ(TM) which is by abuse of notation also denoted ρ.

Any Lie groupoid can be linearized to a Lie algebroid following the idea from the Lie group
case. Let G ⇒M be a Lie groupoid and denote by T sG the source tangent bundle T sG := ker ds.
As usual we consider M embedded in in G using the unit map. The vector bundle A := T sG|M
can be given the structure of a Lie algebroid as follows. There is an isomorphism between the
vector space Γ(A) and the vector space of right-invariant source-tangent vector fields on G since
any α ∈ Γ(A) can be extended to a vector field α ∈ Γ(T sG) by the formula

αf := Rf (αt(f))

(this is analogous to the Lie group case). This allows to define the Lie bracket on Γ(A) using
the corresponding Lie bracket of the Lie subalgebra of right-invariant vector fields in Γ(T sG).
The anchor for A is given by ρ := dt|A.

The isotropy Lie algebra at x ∈M of a Lie algebroid A→M is the Lie algebra gx := ker ρx.
If G ⇒ M is a s-simply-connected Lie groupoid with the Lie algebroid A → M then the Lie
algebra of the isotropy Lie group at x ∈M given by (16) is isomorphic to gx.

The Chevalley-Eilenberg dgca of a Lie algebroid A→M is the dgca

(C(A), dCE) := (Γ(∧A∗), dCE)

where the tensor product and dualization is w.r.t. C∞(M). The differential is given by a formula
analogous to the Lie algebra case

dCEα(X0, . . . , Xn) :=
∑
i

(−1)iρ(Xi)
(
α(X0, . . . , X̂i, . . . , Xn)

)
+
∑
i<j

(−1)i+j+1α
(

[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn

)
for X0, . . . , Xn ∈ Γ(A). Note that (C(A), dCE) is an analogue of the de Rham dgca which is just
the Chevalley-Eilenberg dgca of the standard Lie algebroid TM .

To define the category of Lie algebroids we need to define morphisms of Lie algebroids. Let
A1 → M1 and A2 → M2 be two Lie algebroids then a Lie algebroid morphisms should be a



2. LIE THEORY FOR LIE ALGEBROIDS 17

vector bundle morphism

(18)
A1 A2

M1 M2

F

f

compatible with the Lie brackets and anchors. The anchor compatibility is just the commut-
ativity of the diagram

A1 A2

TM1 TM2

F

ρ1 ρ2

Tf

The compatibility for the Lie brackets is not difficult to write down, but we will instead describe
it using two alternative approaches more suited for Lie theory. First, we can demand that
the morphism (18) induces a dgca morphism of the Chevalley-Eilenberg dgcas. The second,
equivalent, possibility is via connections on Lie algebroids. Let ∇ be a bilinear map

∇ : Γ(A2)× Γ(A2)→ Γ(A2),
∇(α, β) =: ∇αβ

which is C∞(M2)-linear in the first argument and satisfies the Leibniz rule

∇α(gβ) = g∇αβ + Lρ(α)gβ

where g ∈ C∞(M2). This is a straightforward generalization of the notion of a connection to the
setting of Lie algebroids. Now one can define via pullback a connection on f∗A2 also denoted
∇. We can then calculate the curvature

R ∈ Γ
(
∧2A∗1 ⊗ f∗A2

)
RF (α, β) := ∇α(F (β))−∇β(F (α))− F ([α, β])− T∇(F (α), F (β))

where T∇ is the torsion. Then (18) is a Lie algebroid morphism iff RF = 0 which can in turn be
written as a Maurer-Cartan equation

d∇(F ) + 1
2 [F, F ]∇ = 0.

In particular this reduces to the usual Maurer-Cartan equation if A1 := TM and A2 := g. More
details can be found in Crainic, Fernandes [8].

The special case of a Lie algebroid morphism TI → A is called an A-path. It is a pair (a, γ),
where a : I → A is a path over γ : I →M such that

ρ(a(t)) = dγ

dt
(t)

for all t ∈ I. The image of the anchor defines a (possibly singular) distribution

Dx := Im ρx ⊂ TxM

where x ∈M . This in turn leads to a (possibly singular) foliation ofM . The leaf of this foliation
contating x ∈ M is called the orbit of x and is denoted Ox. The orbit of x can be also defined
as the immersed submanifold consisting of all points y ∈ M such that there exists an A-path
covering a path I →M connecting x and y.

If A→M is a Lie algebroid and Ox is the orbit of x ∈M , there is a Lie algebroid gOx
→ Ox

given by
gOx := ker ρ|Ox

with the Lie bracket given fibrewise by the isotropy Lie algebras and trivial anchor. This is a
particular type of a Lie algebroid called a bundle of Lie algebras.
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2.3. Integration of Lie algebroids after Sullivan and Ševera. In Ševera [32], Sulli-
van’s method of integration of Lie algebras was proposed to extend to the case of Lie algebroids
(noting that the result might fail to be smooth). Let A → M be a Lie algebroid. Consider
the spatial realisation of its Chevalley-Eilenberg dgca, the simplicial set (actually a Kan Fréchet
manifold as will be shown later in higher Lie theory)

Kbig
• := Homdgca ((C(A), dCE), (Ω(∆•), d)) .

Now instead of constructing the simplicial fundamental group we need to construct the simplicial
fundamental groupoid as its integrating groupoid (again without its smooth structure). Let us
phrase this in a more pedestrian terms. Suppose that the Lie algebroid A→M is associated with
a Lie groupoid G ⇒ M . We have seen that A can be though of as the manifold of infinitesimal
morphisms of G. Thus to integrate A to G one needs to compose these infinitesimal morphisms
along curves, which amounts to taking the set of all Lie algebroid morphisms TI → A. This
coincides with Sullivan’s approach if A = g for some finite dimensional Lie algebra g as g-paths
TI → g are g-connections on I. Taking the lead from this special case, for general A one
introduces the equivalence relation γ1 ∼ γ2 between two A-paths a1, a2 : TI → A iff there exists
an A-homotopy between them (a morphism of Lie algebroids a : T → A, where is a bigon,
which restricts on the semicircles to γ1 and γ2, here we are glossing over regularity issues). This
can again be illustrated nicely by pictures, see left side of Figure 2.

exists a4

a3

a

a′ a1
a2

exists aO

Figure 2. Left - two A-paths give the same groupoid element. Right - groupoid
multiplication illustrated.

The groupoid multiplication is defined by concatenation of paths (again there are regularity
issues, this is discussed below in the method of Crainic, Fernandes [7]) modulo the A-homotopy,
i.e. the concatenation of two A-paths a1, a2 : TI → A will give the same groupoid element as
the A-path a3 : TI → A iff there exists a Lie algebroid morphism a4 : T4→ A which restricts
in on the boundary to the respective A-paths, see right side of Figure 2.

The integrating groupoid G might fail to be a smooth manifold. This is because the equi-
valence classes of ∼ might fail to be closed (this happens if the A-homotopies connecting close
paths fail to be small). This is a phenomenon specific to Lie algebroids and also their higher
homotopy analogues; the global version of Lie’s third theorem is false for these Lie structures.

2.4. A non-integrable Lie algebroid. Pradines [29] incorrectly claimed that the global
version of Lie’s third theorem is valid for Lie algebroids. The first example of a non-integrable
Lie algebroid is due to Almeida, Molino [1].

An easy example comes from geometric quantization. Let ω ∈ Ω2(M) be a closed 2-form
and let TM ⊕ R be the Lie algebroid with anchor the projection TM → R → TM and the Lie
bracket defined by

[(X, f), (Y, g)] := ([X,Y ],LXg − LY f + ω(X,Y )

for X,Y ∈ Γ(TM) and f, g ∈ C∞(M). If{∫
α

ω, α ∈ π2(M)
}
⊂ R

is not a discrete subgroup, TM ⊕ R is not integrable.
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2.5. Crainic, Fernandes integration of Lie algebroids. While very intuitive, Ševera’s
approach to integration of Lie algebroids did not give precise conditions on integrability of Lie
algebroids and it lacked a proof of smoothness of the integrating groupoid in the integrable case.
Both of these problems were fully resolved by Crainic, Fernandes [7] following the Duistermaat,
Kolk [10] method of integrating Lie algebras.

Let G ⇒M be a Lie groupoid and define the path space of G as

P (G) := {g : I → G, g is C2, g(0) = ids(g(0)), s(g(t)) = s(g(0))}

with the C2-topology. Furthermore let π : A→M be the Lie algebroid corresponding to G ⇒M
and let P (A) be the space of A-paths with the C1-topology. There is an analogue of the map
(13)

(19)
D : P (G) ∩ C2 → P (A)

(Dγ)(t) := Tγ(t)R(γ(t))−1
(
dγ
dt (t)

)
.

Here the higher regularity will be necessary to define a proper analogue (from the case of Lie
groups) of the multiplication in P (G) as the pointwise multiplication of G-paths does not make
sense for general Lie groupoids. However one replaces the pointwise multiplication from the case
of Lie groups by a homotopically equivalent formula

g1.g2(t) =
{
g2(2t) 0 ≤ t ≤ 1

2 ,
g1(2t− 1)g2(1) 1

2 < t ≤ 1,

which works also for G-paths. The differentiation map (19) is a homeomorphism which enables
us once again to transport the multiplication structure from the global object to the infinitesimal
one. Thus a partial multiplication of two A-paths a1, a2 can be given by the concatenation

(20) a1.a2(t) :=
{

2a1(2t) 0 ≤ t ≤ 1
2 ,

2a2(2t− 1) 1
2 < t ≤ 1.

Here the multiplication is to be defined only if π(a1(1)) = π(a2(0)). This is essentially a re-
placement of the formula (15) which was obtained from the linearization of the (pointwise)
multiplication of paths in the integrating Lie group.

There is a caveat, a1.a2 defined by (20) is only a piecewise smooth path. However this
can be regulated by changing the composition formula with a use of a cutoff function in a way
so that the multiplication is well defined on A-homotopy classes. Full details can be found in
Crainic, Fernandes [7]. Passing to A-homotopy classes defines the Weinstein groupoid G(A) of
a Lie algebroid A

(21) G(A) := P (A)/ ∼ .

The Weinstein groupoid G(A) is an s-simply connected topological groupoid and if A is integrable
it is the unique s-simply connected Lie groupoid integrating A.

Crainic, Fernandes [7] described obstructions to integrability of a Lie algebroid A in terms
of monodromy groups at each point of the body of A. Let us sketch their geometric origin using
the exponential map for Lie algebroids. Given a connection ∇ on A there is a map exp∇ which
is defined locally on a neighborhood U of the zero section of A

exp∇ : U → G(A)

such that if A is integrable then exp∇ is a local diffeomorphism which coincides with the ex-
ponential map defined using the pullback (along the t-maps) connections on each s-fiber. A
simple construction of exp∇ for a (possibly non-integrable) Lie algebroid A is by the means of
the geodesic equation

(22)
{
∇aa = 0
a(0) = X,

which has a solution aX ∈ P (A) if X ∈ Ax is sufficiently close to 0 (a solution exists always for a
small time interval). The exponential map is then the A-homotopy class of the solution of (22),
exp∇(X) := [aX ]. The monodromy group of A at the point x ∈M is defined as

Nx(A) := {X ∈ Z(gx), v ∼ 0x}
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where the relation ∼ is the A-homotopy of A-paths. The monodromy group of A at x is related
to the second homotopy group of the orbit of x. In particular Crainic, Fernandes [7] constructed
an exact sequence for a Lie algebroid A

(23) . . .→ π2(Ox) ∂−→ Gx → G(A)x → π1(Ox)
where Gx is the unique simply-connected Lie group integrating the isotropy Lie algebra gx and
G(A)x is the isotropy group at x of the Weinstein groupoid G(A) (this is not a Lie group in
general). The exact sequence (23) is an associated homotopy exact sequence to the short exact
sequence of Lie algebroids induced by the anchor

0→ gOx
→ A|Ox

ρ−→ TOx → 0.
The intersection of Im ∂ from (23) with the connected component of the center of Gx is iso-
morphic to Nx(A).

A necessary condition for integrability of A is that for any x ∈ M there is an open neigh-
borhood U of 0 ∈ Ax in A such that there exist an open neighborhood V of x with the property

Ny(A) ∩ U = {0}
for all y in V . Otherwise exp∇ fails to be injective on any neighborhood of the origin and
therefore A is not integrable. If the above condition holds one says that the monodromy groups
Nx(A) are uniformly locally discrete. Crainic, Fernandes [7] further proved that this is also a
sufficient condition for the integrability of A.
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3. Lie theory for L∞-algebras

3.1. A reminder on nerves. We first discuss the global objects corresponding to L∞-
algebras (which can be thought of as Lie algebras satisfying the Jacobi identity up to a system
of coherent homotopies). As the name suggests the global objects should be called L∞-groups.
A standard way to define these (Getzler [16] and Henriques [20]) is via the nerve construction.
The notion of a nerve of a category is an important link between category theory and homotopy
theory. In particular together with the realization functor the nerve forms a pair of adjoint
functors mimicking the singular homology theory. It furthermore provides us with a clue to
higher category theory, specifically to models of (∞, 1)-categories and (∞, 1)-functors.

Let C be a locally small category (locally small means that all Homs are sets). To determine
a realization of the standard n-simplices in C is to give a cosimplicial object S : ∆ → C. Then
for any object X of the category C we have a simplicial set

N•(X) : ∆op → Set
N•(X) := HomC(S([•]), X)

called the nerve of X. If S is a dense functor then the nerve functor is fully faithful.
Since the category of all small categories Cat is a locally small category the cosimplicial

object i : ∆ ↪→ Cat specifies a functor

(24) N• : Cat→ sSet
N•(C) := HomCat([•], C).

Unpacking this definition we get the following description of N•(C). The set of zero simplices
N0(C) is the set of objects of C. The set of n-simplices Nn(C) for n > 0 is the set of all composable
chains of morphisms of the category C of length n i.e. an n-simplex

σ = (f0, . . . , fn−1) ∈ Nn(C)

is a string
X0

f0−→ X1
f1−→ . . .

fn−1−−−→ Xn.

The face maps
di : Nn(C)→ Nn−1(C)

are defined as
d0(σ) := X1

f1−→ . . .
fn−1−−−→ Xn,

di(σ) := X0
f0−→ . . .

fi◦fi−1−−−−−→ Xi+1
fi+1−−−→ . . .

fn−1−−−→ Xn,

where 0 < i < n and finally

dn(σ) := X0
f0−→ . . .

fn−1−−−→ Xn−2
fn−2−−−→ Xn−1.

The degeneracy maps
si : Nn(C)→ Nn+1(C)

are defined for 0 ≤ i ≤ n as

si(σ) := X0
f0−→ . . .

fi−1−−−→ Xi

idXi−−−→ Xi
fi−→ Xi+1

fi+1−−−→ . . .
fn−→ Xn.

In this case N• is a fully faithful functor. It enables us to work with simplicial sets instead
of categories (this approach is due to Grothendieck [18]). The nerve functor is not essentially
surjective, simplicial sets isomorphic to a nerve of a category have to satisfy the Segal condition
[30]. The nerve of a groupoid has similar characterization. Recall that the k-th horn of ∆n is
defined as the simplicial subset ∆[n, k] ⊂ ∆[n] given by the union of all faces of ∆[n] except the
k-th face. If 0 < k < n then ∆[n, k] is called an inner horn.

Proposition 3.1. A simplicial set is isomorphic to a nerve of a category iff all inner horns
have unique fillers, that is the natural maps induced by the inclusion ∆[n, k] ⊂ ∆[n]

(25) Kn
∼= Hom(∆[n],K)→ Hom(∆[n, k],K) =: Kn,k

are bijections for n > 1 and 0 < k < n. It is isomorphic to a nerve of a groupoid iff (25) are
bijections also for k = 0, n.



22

Let us illustrate the geometric meaning of this Proposition by studying the horns ∧[2, ·].
The condition (25) for filling the inner horn ∧[2, 1] gives us composition as illustrated in Figure
3.

yx

filler f ∈ K2

yxfill horn

∧[2, 1]
0 220

1 1

∂1f =: yx

Figure 3. Composition in the nerve of a groupoid.

For the horns ∧[2, 0] and ∧[2, 2] the condition (25) gives inverses as illustrated in Figure 4.
for ∧[2, 0].

x

filler f ∈ K2

xfill horn

0 220

1 1

∧[2, 0]

z z

∂0f =: zx−1

Figure 4. Inverse in the nerve of a groupoid.

Associativity is ensured by condition (25) on 3-horns. The higher horns follow automatically
and do not give any additional information.

3.2. L∞-groups. As we mentioned the nerve construction provides natural models of
higher categories. Loosely speaking an `-category should be a generalization of the notion
of a category involving n-morphisms, which are morphisms between (n − 1)-morphisms for n
up to `. The category of small categories itself is a 2-category with natural transformations as
2-morphisms. For Lie theory we will furthermore restrict to higher groupoids or `-groupoids
(where all n-morphisms are invertible). These were defined by Duskin [12] (by the name of
hypergroupoids).

Definition 3.1. A (weak) `-groupoid is a simplicial set K• such that the maps (25) are
surjective for n ≤ ` and 0 ≤ k ≤ n and bijections for n > ` and 0 ≤ k ≤ n. A (weak) `-group is
a (weak) `-groupoid such that K0 = {∗}.

Thus in a (weak) `-groupoid the composition of n-morphisms for n < ` is not uniquely
defined, and the same is true for inverses. This is why the word “weak” is used in the definition.
However the existence of fillers in higher dimensions controls the non-uniqueness, e.g. it gives
associativity of composition of 1-morphisms up to a (non-unique) homotopy. This is illustrated
on Figure 5.

By setting ` = ∞ the definition of a (weak) ∞-groupoid coincides with the definition of a
Kan complex.

Lie n-groups are smooth analogues of n-groups. We follow the definitions of Henriques
[20]. A simplicial manifold K• : ∆op → Man is a Kan simplicial manifold iff the maps (25)
are surjective submersions. Note that for this definition one needs to first prove that Kn,k are
smooth manifolds. This is done inductively (in n) in Henriques [20].

Definition 3.2. A Lie `-group is a Kan simplicial manifold K• with K0 = {∗} such that
the maps (25) are diffeomorphisms for all n > ` and all 0 ≤ k ≤ n.
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fill horn

x

y
x id

(yx)2 (yx)2

id

(yx)1

(yx)1

Figure 5. Associativity in an `-groupoid. Here (yx)1 and (yx)2 denote two
different compositions of x, y obtained as in Figure 3.

Thus Lie 1-groups are just (nerves) of Lie groups. Henriques’s notion of a Lie 2-group is
related to the Lie 2-group of Baez, Lauda [2] obtained via categorification. By setting ` = ∞
we get that an L∞-group is the same as a reduced Kan simplicial manifold (reduced means
K0 = {∗}).

3.3. L∞-algebras. We already mentioned that a L∞-algebra is a notion similar to a Lie
algebra except that the Jacobi identity holds only up to a series of coherent homotopies (given
by higher brackets). For this reason L∞-algebras are sometimes called strongly homotopy Lie
algebras (or sh Lie algebras). Thus an L∞-algebra is a graded vector space with a series of
n-ary brackets satisfying some identites. There are various possible restrictions on the grading.
Depending on the applications the definitions are sometimes restricted to only non-positively
graded (this is common in Lie theory and we will follow this convention) or to only positively
graded vector spaces (this is common in derived algebraic geometry). In some cases one needs
both sides (as in the Batalin-Vilkovisky formalism, or more generally when working with derived
stacks). Loosely speaking the non-negative part is tied to homotopy theory, while the non-
positively graded part is tied to derived geometry.

From the point of view of Lie theory L∞-algebras arise as the infinitesimal objects cor-
responding to L∞-groups. The procedure will be recalled in the more general setting of L∞-
groupoids in the next Section following Ševera [33]. L∞-algebras are ubiquitous to modern
mathematics. From the homotopical viewpoint L∞-algebras arise from dg Lie algebras via the
homotopy transfer. L∞-algebras also appear in closed string field theory (a second quantized
version of closed string theory) of Zwiebach [42]. References for L∞-algebras are Lada, Stasheff
[23] and Lada, Markl [24].

Let us give a formal definition of an L∞-algebra with the above grading restriction. We will
write formulas for homogeneous elements of a non-positively graded vector space

g :=
⊕
i≤0

gi

and then extend them linearly. If σ is a permutation of n elements x1, . . . , xn of g, the Koszul
sign χ(σ, x1, . . . , xn) is defined as

χ(σ, x1, . . . , xn) := (−1)σε(x1, . . . , xn)

where ε(x1, . . . , xn) is defined by

xσ(1) ∧ . . . ∧ xσ(n) =: ε(x1, . . . , xn)x1 ∧ . . . ∧ xn.

Finally πun
(i,n−i) denotes the set of (i, n− i)-unshuffles.

Definition 3.3. An L∞-algebra g is a graded vector space g together with n-ary bracket ln
for each n ≥ 1

ln : ⊗ng→ g

of degree n− 2 such that each ln is graded antisymmetric

ln(xσ(1), . . . , xσ(n)) = χ(σ, x1, . . . , xn)ln(x1, . . . , xn)
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where χ is the Koszul sign and the generalized Jacobi identity holds

(26)
∑

i+j=n+1

∑
σ∈πun

(i,n−i)

(−1)i(j−1)χ(σ, x1, . . . , xn)lj
(
li(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)

)
= 0.

Note that (−1)i(j−1) = (−1)(n+1)i.
If ln are trivial for n > 2 we recover the notion of a dg Lie algebra with the differential l1

and the Lie bracket l2. An L∞-algebra concentrated in degrees > −` is called a Lie `-algebra.
Thus a Lie 1-algebra is just a Lie algebra. Lie `-algebras are the infinitesimal counterparts to
Lie `-groups.

The generalized Jacobi identity (26) has a simple form if we treat the sequence of brackets ln
as a differential on certain graded coalgebra. This was described in Lada, Stasheff [23]. Consider
the free graded cocommutative coalgebra on g denoted ∨g. The underlying graded vector space
of ∨g is Sg and the coproduct is given by

∆(x1 ∨ . . . ∨ xn) :=
∑

1≤j≤n−1

∑
σ∈πun

(i,n−i)

ε(σ)(xσ(1) ∨ . . . ∨ xσ(i))⊗ (xσ(i+1) ∨ . . . ∨ xσ(n)).

Since this coalgebra is (nilpotent) free, a differential d on ∨g is given by its projections of the
cogenerators g of ∨g. Therefore we can write

d =
∑
n≥1

dn

where dn is the extension of ln to ∨g.
The Chevalley-Eilenberg dgca of an L∞-algebra is the gca C(g) := S((g[1])∗) with the

differential dCE defined as follows. First take the duals of the maps ln and assemble them to
a degree 1 map (g[1])∗ → C(g). The differential dCE is the unique extension of this map to a
derivation on C(g).

3.4. Integration of L∞-algebras. Lie integration of L∞-algebras was done by Getzler
[16] and Henriques [20] by different techniques.

Getzler [16], following Sullivan [35] starts from the spatial realisation of the Chevalley-
Eilenberg dgca of a nilpotent L∞-algebra

(27) Kbig
• := Homdgca

(
(C(g), dCE), (Ω(∆•), d)

)
(he calls it the spectrum of C(g), since it generalizes the usual spectrum of a commutative
algebra). He uses polynomial forms on ∆•.

If g is a nilpotent Lie algebra the simplicial set (27) is not the nerve of the integrating simply-
connected group G, but it is simplicially homotopy equivalent. In particular, the algebraic path
space P (1, G) can be identified with Kbig

1 via pullbacks of the (left invariant) Maurer-Cartan
1-form on G. P (1, G) is foliated with the fibres of the evaluation map at the endpoint of a path
and its leaf space is G. For nilpotent g each leaf of the corresponding foliation of Kbig

1 contains
a unique constant 1-form and we have the inclusion N1G ↪→ Kbig

1 . For higher simplices Getzler
proposed using Dupont’s [11] simplicial chain homotopy (from the proof of simplicial de Rham
theorem)

s• : Ω(∆•)→ Ω(∆•)
retracting Ω(∆•) to define the simplicial set

(28) Ks
• := {A ∈ Kbig

• , s•A = 0}.

He showed that Ks
• is a Kan complex and indeed Ks

•
∼= N•G.

The proofs work when one replaces the nilpotent Lie algebra g with a nilpotent L∞-algebra.
In that case Ks

• is a (weak)∞-group (in fact the integration procedure gives fillers for the horns).
We will discuss s• in the next Section on integrating L∞-algebroids, where we follow Getzler’s

ideas to construct a local L∞-groupoid integrating an L∞-algebroid.
Henriques [20] also starts from the spatial realisation (27) of g. Unlike Getzler, he does

not restrict to nilpotent L∞-algebras. He models forms on ∆• using Cr-forms with Cr exterior
derivative to make use of Banach space techniques. His main result is that Kbig

• is a Kan
simplicial Banach manifold. This is done by splitting g into an acyclic and minimal part, followed
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by a construction of Postnikov towers with inverse limit being the minimal part. The pieces of
the associated graded of this filtration are certain simpler L∞-algebras, namely

(1) h := h−n+1 with trivial brackets. Here Kbig
• = Ωnclosed(∆•, h−n+1).

(2) h := h−n ⊕ h−n+1 with the l1 : h−n → h−n+1 an isomorphism. Here Kbig
• =

Ωn(∆•, h−n).
(3) h := h0 a Lie algebra. Here Kbig

• is as in (12).
All of the above Kbig

• are Kan Banach manifolds. One then integrates g step by step via the
filtration, showing that the integrals form a Kan fibration.
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4. Lie theory for L∞-algebroids

4.1. A reminder on supergeometry. It turns out that all of the Lie structures discussed
so far belong to the same class of geometric objects called differential non-negatively graded
manifolds, or NQ-manifolds. Since the underlying geometric structures of these objects are
supermanifolds we include a brief overview of the basics of supergeometry. A good reference is
Varadarajan [38] and the lectures of Deligne, Freed, Morgan [9].

Serre and Grothendieck pioneered the locally ringed space approach to algebraic varieties
and schemes (see e.g. Hartshorne [19]). In supergeometry we replace commutative rings by
supercommutative rings, which are Z/2Z-graded rings such that the multiplication is graded
commutative. To be more precise we will only need supercommutative algebras of a certain type
since we are not interested in the more general theory of superschemes. A supercommutative
ring R is called local iff it has a unique maximal homogeneous ideal m ⊂ R. This implies that
the even part R0 is a local ring with the unique maximal ideal R0 ∩ m. A pair (X,OX) where
X is a topological space and OX is a sheaf of supercommutative rings on X such that at each
point x ∈ X the stalk

OX,x := lim−→
x∈U
OX(U)

is a local supercommutative ring is called a superringed space. The sheaf OX is often called
the structure sheaf or the sheaf of functions of the superringed space (X,OX). The definition
of a supermanifold can be given by replicating the definition of a smooth manifold in terms of
its sheaf of smooth functions. One first defines for p, q ≥ 0 a superdomain Up|q of dimension
(p|q) to be a superringed space (U,OU ) where U ⊂ Rp is an open set and OU is a sheaf of
supercommutative algebras given for any V ⊂ U open

OU (V ) := C∞(V )[θ1, . . . , θq]

with the obvious restriction maps. Here θi have odd degree.

Definition 4.1. A superringed space (X,OX) is called a supermanifold of dimension (p|q)
iff it is locally isomorphic (in the category of superringed spaces) to a superdomain of dimension
(p|q). A morphism of supermanifolds

f : (X,OX)→ (Y,OY )

is a morphism of superringed spaces. The category of supermanifolds and morphisms of super-
manifolds is denoted supMan.

In fact the underlying topological space X of a supermanifold (X,OX) is automatically a
smooth manifold and is called the body of (X,OX). Taking global sections of the structure
sheaves there is a natural bijection

(29) HomsupMan
(
(X,OX), (Y,OY )

) ∼= HomsupAlg
(
OY (Y ),OX(X)

)
.

This is analogous to the smooth manifold case. Since OX(X) should be considered as the
superalgebra of global functions on (X,OX) we will from now on write Z := (X,OX) for a
supermanifold and C∞(Z) := OX(X). We will furthermore speak of local coordinates zi etc.
just like in the smooth manifold case. By this we mean that we take a neighborhood in the body
such that (U,OX |U ) is isomorphic to some superdomain so that

C∞(Z)|U ∼= C∞(U)[θ1, . . . , θq]

and the local coordinates are then zi = (xa, θb), where xa are local coordinates in U . The body
can be thus thought of as the ordinary smooth manifold part of a supermanifold (with ordinary
even local coordinates xa).

Any vector bundle E →M defines a supermanifold

(30) ΠE := (M,O∧E∗).

Here O∧E∗ is the sheaf of sections of the exterior bundle ∧E∗. One can also understand ΠE as
a vector bundle with shifted parity of the fibers (thus the local fiber coordinates are odd). The
construction of Π extends from (30) to a functor

Π : VBund→ supMan.
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By definition a supermanifold is locally isomorphic to ΠE for some vector bundle E. Batchelor
[3] proved that this is true globally so that the functor Π is essentially surjective. However
the identification of a supermanifold Z with ΠE for some vector bundle E is non-canonical.
Furthemore supMan has a lot more morphisms since they do not need to preserve the fiber
structure, so Π fails to be fully faithful. The categories supMan and VBund are not equivalent.

Many geometric constructions have direct analogues in the supergeometry case. In particular
we will need the concept of a vector field, which can be defined as a derivation of the superalgebra
C∞(Z). Note that the space of vector fields is also Z/2Z-graded. Again we can work in local
coordinates and write vector fields using ∂i := ∂zi defined in the obvious way.

4.2. NQ-manifolds, L∞-algebroids. A graded manifold is a further generalization of a
smooth manifold obtained by including coordinates of various degrees. There are several ways
how to phrase a definition of a non-negatively graded manifold, also called as N -manifold.

Definition 4.2. A non-negatively graded manifold (an N -manifold) is a supermanifold Z
with an action of the semigroup (R,×) such that −1 ∈ R acts as the parity operator P (changes
the sign of the odd coordinates). Morphisms of N -manifolds are morphisms of the underlying
supermanifolds compatible with the semigroup actions.

This definition says that both the even and odd coordinates have additional non-negative
degree with compatible parity. It is useful to write the additional grading in terms of the Euler
vector field, expressed in local coordinates zi as
(31) E := w(zi)zi∂i.
Here w(zi) is the degree (eigenvalue, sometimes called the weight) of the local coordinate zi.
The highest degree of a local coordinate is called the degree of Z. Using the Euler vector field
we can rephrase the condition on compatibility of the gradings as P = (−1)E . The Euler vector
field decomposes the cga of functions as

C∞(Z) =
⊕
k≥0

C∞(Z)k

where k is the degree.
Similarily to supermanifolds the most basic examples of N -manifolds arise from negatively

graded vector bundles. Suppose E → M is a negatively graded vector bundle and consider
OS(E∗) the sheaf of sections of the bundle S(E∗) → M . Working in a local trivializing neigh-
borhood U one can choose a basis θI of sections such that (U,OS(E∗)(U)) is isomorphic to a
superdomain Up|q with an additional grading. This shows that any negatively graded vector
bundle defines an N -manifold and any N -manifold is locally isomorphic to a negatively graded
vector bundle. The same remarks apply as in the case of supermanifolds - there is a generaliza-
tion of Batchelor’s theorem [3] that any N -manifold is (non-canonically) globally isomorphic to
an N -manifold arising from a negatively graded vector bundle and the category of N -manifolds
and the category of negatively graded vector bundles are not equivalent.

Vector fields on an N -manifold are defined analogously to vector fields on supermanifolds.
They form a graded Lie algebra.

Definition 4.3. An NQ-manifold (a differential non-negatively graded manifold) is an N -
manifold equipped with a vector field Q of degree 1 such that Q2 = 0. NQ-manifolds form a
category NQMan with morphisms being morphisms of N -manifolds compatible with the differ-
entials.

An important example of an NQ-manifold is the shifted tangent bundle T [1]M of a smooth
manifold M . Here C∞(T [1]M) = Ω(M) and the differential is the de Rham differential. The
construction extends to a functor

T [1] : Man→ NQMan
which is fully faithful.

Let us now consider Lie structures in the language of NQ-manifolds. We have seen that a
Lie algebra can be thought of in terms of its Chevalley-Eilenberg dgca. Its underlying graded
vector space is

∧g∗ = S((g[1])∗).
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This is the gca of functions on g[1]. Furthermore the Chevalley-Eilenberg differential can be
written in coordinates ξa, deg ξa = 1 dual to coordinates xa of g[1] as

(32) Q := 1
2f

a
bcξ

bξc
∂

∂ξa
.

Thus the Chevalley-Eilenberg dgca (∧g∗, dCE) is the dgca of functions on a NQ-manifold cor-
responding to the negatively graded vector bundle (over a point) g[1] with the differential Q
given by (32). The condition Q2 = 0 is equivalent to the Jacobi identity for the coefficients
fabc. Thus the correspondence works also the other way - a NQ-manifold of type V [1] for some
finite-dimensional vector space V defines a Lie algebra structure on V .

The case of L∞-algebras is a natural generalisation of the above in one direction. If g is a
non-positively graded vector space consider g[1] as a N -manifold. Then a differential Q on g[1]
is equivalent to a L∞-algebra structure on g. Thus we can view NQ-manifolds with trivial base
(but possibly non-trivial body) as L∞-algebras. Again one can think of this correspondence as
the identification of the Chevalley-Eilenberg dgca of the L∞-algebra with the dgca of functions
on the corresponding NQ-manifold.

Lie algebroids are also NQ-manifolds. Let A → M be a Lie algebroid. The underlying
graded vector space of its Chevalley-Eilenberg dgca is

Γ(∧A∗) := Γ(S((A[1])∗)).
This suggests viewing the graded vector bundle A[1] as a NQ-manifold with the differential
Q being the Chevalley-Eilenberg differential which in local coordinates (xi, ξa), deg xi = 0,
deg ξa = 1 is

(33) Q := 1
2f

a
bc(x)ξbξc ∂

∂ξa
+ aia(x)ξa ∂

∂xi
.

Here the NQ-manifolds come from (shifted) vector bundles, thus from non-trivial bases (and
equivalently non-trivial bodies since we have only coordinates of degree 0 and 1). Again the
condition that the differential (33) squares to zero is equivalent to the Lie algebroid axioms for
the Lie bracket defined by fabc and the anchor defined by aia.

A general NQ-manifold can thus be seen as a simultaneous generalization of both Lie al-
gebroids and L∞-agebras and has thus a natural interpretation as an L∞-algebroid. This name
is not agreed on in the community. This is a reflection of the various grading conventions for
L∞-algebras. Again, in derived algebraic geometry one needs also negatively graded coordinates
(a Z-graded manifold). Since our interest lies in the homotopy side of the picture, we will adopt
NQ-manifolds as L∞-algebroids as was done by Ševera [32]. We can also define Lie `-algebroids
as NQ-manifolds of degree `.

4.3. Local L∞-groupoids and their jets. We saw in the previous Section that the higher
homotopy analogues of Lie algebroids are L∞-algebroids which are in turn NQ-manifolds. Even
if a Lie algebroid is not integrable we can still think of it as the Lie algebroid corresponding
to a certain local Lie groupoid. Similarily we expect L∞-algebroids to be infinitesimal objects
corresponding to local L∞-groupoids.

A definition of these objects can be given in terms of a nerve of an n-groupoid together
with certain smoothness properties. This is a straightforward generalization of a Lie `-group.
Again we follow the definitions of Getzler [16], Henriques [20]. The local version is from Zhu
[41] and is obtained by eliminating surjectivity conditions (so that the `-groupoid compositions
and inverses are defined locally).

Definition 4.4. A simplicial manifold K• is a Kan simplicial manifold iff the maps (25)
Kn → Kn,k are surjective submersions for any 0 ≤ k ≤ n. A (weak) Lie `-groupoid is a
finite-dimensional Kan simplicial manifold K• such that the maps (25) Kn → Kn,k are diffeo-
morphisms for all n ≥ ` and all 0 ≤ k ≤ n. A (weak) local Lie `-groupoid is a finite-dimensional
simplicial manifold K• such that the maps (25) are submersions for all n ≥ 1, 0 ≤ k ≤ n and
open embeddings for all n > ` and all 0 ≤ k ≤ n.

Setting ` =∞ we obtain the definition of a (local) L∞-groupoid.
The construction of an L∞-algebroid associated to a local L∞-groupoid is done via Ševera’s

[33] 1-jet functor. To describe this functor we need a construction of the de Rham complex due
to Kontsevich [21].
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The category supMan is monoidal with the obvious product. Thus it makes sense to speak
of the internal hom for any pair (X,Y ) of supermanifolds such that the presheaf

HomsupMan(X,Y ) : supManop → Set
defined by
(34) HomsupMan(X,Y )(W ) := HomsupMan(X ×W,Y )

is representable. As usual we will abuse notation and write HomsupMan(X,Y ) for both the
presheaf (34) and the representing supermanifold.

If Z is a supermanifold then the internal hom HomsupMan(R0|1, Z) is a representable functor
in the category of supermanifolds and is isomorphic to the odd tangent bundle ΠTZ

HomsupMan(R0|1, Z)(X) = HomsupMan(R0|1 ×X,Z) ∼= HomsupMan(ΠTZ,X).
The proof follows easily by working in local coordinates and checking the transformation rules
on overlaps. A more geometric way of seeing the above isomorphism is to view the morphisms
R0|1 → Z as 1-jets of curves in Z (this is sometimes called an odd point of Z) since the data of
the map consists of a point in Z and a tangent vector at that point. The right action of the super-
semigroup HomsupMan(R0|1,R0|1) on HomsupMan(R0|1, Z) turns the functions of ΠTZ into the
de Rham complex Ω(Z). More precisely the infinitesimal generators of HomsupMan(R0|1,R0|1)
are the de Rham differential and the Euler vector field (31).

Let subm be the category with objects surjective submersions Y → Z of supermanifolds
with morphisms being commutative squares. Given a simplicial manifold K• Ševera defined a
presheaf on subm

(35) 1− JetK• : submop → sSet
1− JetK•(Y → Z) := HomssupMan(N•(Y ×Z Y ⇒ Y ),K•)

If K• is a Kan simplicial manifold the functor 1− JetK• is representable. Since

Homsubm(R0|1×Z1 → Z1,R0|1×Z2 → Z2) ∼= HomsupMan(Z1, Z2)×HomsupMan(R0|1,R0|1)(Z1),

restricting to the full subcategory of subm given by objects R0|1×N → N the functor 1−JetK•
gives a supermanifold Z with a right action of HomsupMan(R0|1,R0|1), which is an NQ-manifold
or an L∞-algebroid.

4.4. Integration of L∞-algebroids. In this Section we present a brief overview of the
article Ševera, Širaň [34] which is also reproduced in this Thesis.

Let Z be a NQ-manifold with the differential Q. We can non-canonically identify Z with a
negatively graded vector bundle V with a differential Q on the gca
(36) AV := Γ(S(V ∗)).
Following Sullivan [35] the first major problem is to show that the spatial realisation simplicial
set
(37) Kbig

• := Homdgca
(
(AV , Q), (Ω(∆•), d)

)
is a Kan simplicial Fréchet manifold. The name Kbig

• is chosen to reflect the fact that this
integral is too big compared to what we expect (as we saw it is already infinite dimensional for
Lie algebras). This is in a certain sense a matter of taste, as from the homotopical point of
view Kbig

• has the correct simplicial homotopy type, independent of the choice of identification
with (AV , Q). This global integration is more flexible in the sense that any NQ-manifold can
be integrated in this way. However Kbig

• lacks the usual interpretation in terms of the nerve
construction. Equivalently we can write (37) as

Kbig
• = HomNQMan(T [1]∆•, Z)

which is due to a natural bijection analogous to that of (29). The integration procedure is
essentially a construction of a fundamental∞-groupoid. Analogous to the Lie algebroid case we
consider NQ-manifold morphisms T [1]I → Z to be Z-paths, 2-morphisms are Z-discs connecting
the paths, i.e. NQ-manifold morphisms T [1]O → Z, see Figure 6 (for technical reasons it is more
convenient to use simplices instead of balls). If Z is a Lie `-algebroid one needs to construct the
fundamental `-groupoid.
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α : a⇒ a′ α′ : a⇒ a′

a′a

a

a′

α : a⇒ a′

Figure 6. Construction of the fundamental ∞-groupoid. Left: 2-morphisms
are homotopies T [1]O → Z, right: 3-morphisms are homotopies between homo-
topies.

It is instructory to work first with the case of a trivial negatively graded bundle such as a
restriction of V to a local trivializing neighborhood. Consider thus a trivial negatively graded
vector bundle
(38) W := W<0 ×W 0 →W 0

over a vector space W 0. We have
AW := C∞(W 0)⊗ S

(
(W<0)∗

)
.

Since W ∗ ⊂ AW we can see a morphism of gca A : AW → Ω(∆•) as an element of

(39) Ω(∆•,W )0 :=
⊕
k≥0

Ωk(∆•)⊗W−k.

Now suppose a diffential Q is given turning (AW , Q) into a dgca. Q is equivalent to FQ ∈
AW ⊗W defined by its action on ξ ∈W ∗ by

〈FQ, ξ〉 := Qξ.

One can also work in local coordinates - a choice of a homogeneous basis ξi of W ∗ allows us to
specify Q by

F iQ := Qξi ∈ AW .
The equation Q2 = 0 becomes

F iQ
∂F jQ
∂ξi

= 0.

The condition on A to be a dgca morphism
A : (AW , Q)→ (Ω(∆•), d)

is a generalized Maurer-Cartan equation
(40) dA = FQ(A)
where A ∈ Ω(∆•,W )0.

We thus need to show that solutions of (40) form a Kan simplicial Fréchet manifold. The
Fréchet manifold structure is obtained via an integral transform which maps solutions of (40) to
solutions of another generalized Maurer-Cartan equation
(41) dB = 0
with B ∈ Ω(∆•,W )0. Thus the transformation kills the differential Q. Since the solutions of
(41) form a simplicial Fréchet space one can transport the Fréchet manifold structure to Kbig

•
provided the transformation has certain properties.

The integral transform taking solutions of (40) to solutions of (41) uses the de Rham ho-
motopy h : Ω(∆•)→ Ω(∆•) operator (of degree −1) associated to the deformation retraction of
∆• ⊂ R• to the vertex at the origin. The integral transform is then defined as

κ(A) := A− h(FQ(A)).
We call this the Kuranishi map to acknowledge similarity with a certain mapping appearing in
Kuranishi [22]. It has the property that A ∈ Ω(∆•,W ) satisfies (40) iff B := κ(A) satisfies (41).
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Imposing certain regularity constraints (it is necessary to pass to Banach manifolds to use stable
manifold techniques) κ is a smooth open embedding of Banach manifolds.

Kbig
• is a Fréchet Kan simplicial manifold. This can be seen as follows. Let Ahorn ∈

Ω(∆[n, k],W )MC . The Kuranishi map applied on the faces of ∆[n, k] ⊂ Rn takes Ahorn to
Bhorn ∈ Ω(∆[n, k],W )0,cl. Since Ω(∆[n, k],W )0,cl is a simplicial vector space, it is a Kan com-
plex; we can thus fill the horn Bhorn to B ∈ Ω(∆n,W )0,cl. However this B may fail to be in the
image of κ; to remedy this one actually considers κ constructed on a suitable open neighborhood
N of ∆[n, k] in ∆n so that κ−1(B) exists. The situation is illustrated on Figure 7.

Ahorn κ

Bhorn ∈ Ω(∆[n, k],W )0,cl

B ∈ Ω(∆n,W )0,cl

κ−1(B) ∈ Ω(N,W )MC

Figure 7. Filling horns in Kbig
• .

Let φ be a smooth bump function φ ∈ C∞(∆n), φ|∆[n,k] = 1 and φ|∆n−N = 0 and let
f : ∆n → N be given by f(x) = φ(x)x. Then A := f∗κ−1(B) is a filler of Ahorn.

Thus the map Kbig
n → Kbig

n,k is surjective. To show that it is a submersion, notice first that
the linear map Ω(∆n,W )0,cl → Ω(∆[n, k],W )0,cl is a submersion. Indeed, it is a surjective linear
map, admitting a (continuous) right inverse. The fact that Kbig

n → Kbig
n,k is a submersion now

follows by use of the Kuranishi map: we have the commutative diagram

Kbig
n Ω(∆n,W )0,cl

Kbig
n,k Ω(∆[n, k],W )0,cl

κ

κ

where the horizontal arrows are open embeddings.
Furthermore there is a way to extend this integration method from the above trivial neg-

atively graded bundle case (38) to arbitrary (AV , Q), that is, to arbitrary NQ-manifolds. The
construction of Kbig

• is functorial and is referred to as the big integration.

4.5. Gauge integration to local Lie `-groupoids. There is a local integration result if
one puts constraints on Kbig

• , such that the simplicial homotopy type of Kbig
• does not change.

To express the result we will need the following definition.

Definition 4.5. A local morphism of simplicial manifolds X• → Y• is a smooth simplicial
map U• → Y•, where U• ⊂ X• is an open simplicial submanifold containing all fully degenerate
simplices. We identify local morphisms if they coincide on some U•.

Following Getzler’s [16] construction (28), we restrict solutions of (40) by imposing a certain
gauge condition to obtain a finite-dimensional Kan manifold Ks

• . This should be considered the
correct analogy to usual Lie theory as Ks

• has the interpretation of (the nerve of) a local L∞-
groupoid integrating the L∞-algebroid given by the NQ-manifold defined by (AW , Q). Here the
letter s in Ks

• stands for small (compared to Kbig
• ) as well as for the choice of a gauge s•. A

gauge is a simplicial chain homotopy retracting the de Rham complex Ω(∆•) to the subcomplex
of elementary Whitney forms [40] E(∆•) with the additional condition that s2

• = 0. The space
of elementary Whitney k-forms on ∆n is given as the linear span of the differential forms

ωi0,...,ik := k!
k∑
j=0

(−1)jtijdti0 . . . d̂tij . . . dtik
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where we used the standard coordinates (t0, . . . , tn,
∑
k tk = 1) on ∆n ⊂ Rn. These forms are

widely used in numerical mathematics.
The definition of a gauge is motivated from Dupont’s [11] proof of the simplicial de Rham

theorem where he constructed an explicit gauge in terms of Whitney’s elementary forms and de
Rham homotopy operators. Dupont’s gauge is

sn :=
n−1∑
k=0

∑
i0<...<ik

ωi0...ikhik . . . hi0

where n ≥ 0 and hi is the de Rham homotopy operator associated to the retraction of ∆• to the
i-th vertex.

Ks
• is now defined in an analogous way to (28) as

Ks
• := {A ∈ Kbig

• , A small, s•A = 0}.
There is a smallness condition on the forms in the sense that they are in some neighborhood
of the constant dg morphisms. Ks

• is a local Lie `-groupoid with ` being the degree of the
NQ-manifold.

Different choices of a gauge yield non-canonically isomorphic local L∞-groupoids. Further-
more there is a local simplicial deformation retraction of Kbig

• to Ks
• on any local coordinate

neighborhood. Thus the two integrals are locally equivalent as local L∞-groupoids. We call the
technique of constructing Ks

• the gauge integration.

4.6. Gauge integration to quasi-functors. The gauge integration is not globalizable
(since it uses local coordinates) and this seems to be related to higher analogues of the obstruc-
tion theory for Lie algebroids. However, there is a global integration result if one loosens the
requirement for the integrating object to be a local L∞-groupoid.

We noted above that the big integration Kbig
• is functorial. This is not true for the gauge

integration Ks
• , since this construction uses local coordinates. However, since there is a local

simplicial deformation retraction of Kbig
• to Ks

• the functoriality of the big integration gives
functoriality up to homotopy of Ks

• . More precisely Ks
• is a quasi-functor between appropriately

chosen simplicially enriched categories. These notions will be explained below.
Let us recall that a simplicially enriched category (sometimes confusingly called a simplicial

category) is a small category enriched over sSet. Functors of simplicially enriched categories are
defined in the obvious manner. The corresponding category is denoted sSetCat.

There is a natural generalization of the nerve functor for simplicially enriched categories.
Given a choice of a cosimplicial object in a simplicially enriched category

S : ∆→ sSetCat
the homotopy coherent nerve (simplicial nerve) is a functor

N• : sSetCat→ sSet,
N•(C) := HomsSetCat(S[•], C).

This is a generalization of the construction (24). We will use the same notation N• for the nerve
and the homotopy coherent nerve functor (this will be clear from context).

There is a natural choice of S as follows. For [n] ∈ ∆ S[n] is a simplicially enriched category
with objects {0, . . . , n} and the simplicial sets

HomS[n](i, j) := N•(Pij)
where Pij is the poset of paths in the category [n] from i to j with the partial order given by the
natural inclusion. This simplicial set is isomorphic to the cube Ij−i−1. Finally the composition
in S[n] is given by concatenation of the paths.

This definition was given by Cordier [5] building on Vogt [39]. It was shown by Cordier,
Porter [6] that if C is a locally Kan simplicially enriched category then N•(C) is a quasi-category
(introduced by Boardman, Vogt [4]). Here a quasi-category is just a weak Kan complex. This
means that the natural maps

Nn(C)→ Nn,k(C)
are surjective for n > 1 and 0 < k < n. This corresponds to (non-unique) filling of inner horns.
Thus quasi-categories are similar to ∞-groupoids except that `-morphisms are not required to
be (weakly) invertible.
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A homotopy coherent diagram in D of a shape of a small category C can be thought of as a
diagram of shape C in D which is not commutative - instead homotopies are assigned to the faces
of the diagram in a coherent manner. Let us illustrate this on the case C = [3] and D = sSet
using Figure (8).

K(23)

K(13)

K(1)

K(123)

K(013)

K(03) K(2)

K(0) K(01)

K(12)

K(3)

Figure 8. Homotopy coherent diagram of shape [3] in sSet.

Here K(0), . . . ,K(3) are simplicial sets and K(01), . . . ,K(23) are simplicial maps. These
form homotopy commutative diagram with K(012), . . . ,K(123) as simplicial homotopies and
K(0123) as a simplicial homotopy of simplicial homotopies. For example

K(012) : ∆[1]×K(0)→ K(2)
is a simplicial homotopy between K(02) and K(12)K(01). Coherence is achieved by

K(0123) : ∆[1]2 ×K(0)→ K(3)
which is a simplicial homotopy between the two compositions

K(03) K(23)K(02)

K(13)K(01) K(23)K(12)K(01).

K(023)

K(013) K(23)K(012)

K(123)K(01)

A simplicially enriched functor F : S([n]) → sSet is equivalent to a homotopy coherent
diagram of shape [n] in sSet. Cordier [5] proved in fact a more general result that a homotopy
coherent diagram in a simplicially enriched category D of shape C is a simplicially enriched
functor S(C)→ D, where S(C) is the simplicially enriched category defined as the free simplicial
resolution of C, introduced by Dwyer, Kan [13]. This free simplicial resolution is a generalization
of the construction of S([n]).

We are now ready to describe the gauge integration as a homotopy coherent diagram. Let
locNQMan be a category of NQ-manifolds associated to dgcas of type

(AW |U , Q) := (C∞(U)⊗ S((W<0)∗), Q)
for some W non-positively graded vector space and U ⊂ W 0 (this is a generalization of NQ-
manifolds of type (38) resp. (39)). We treat it as a simplicially enriched category with the trivial
enrichment. Let locsMan be the category of local simplicial manifolds. It has objects simplicial
manifolds and morphisms are local morphisms of simplicial manifolds. We will use the following
simplicial enrichment

HomlocsMan(K•, L•)n := HomlocsMan(K• ×∆[n], L•).
For any NQ-manifold in locNQMan applying Ks

• gives a local L∞-groupoid. If φ is a
morphism of two such NQ-manifolds we can construct (using the local simplicial deformation
retraction) a local morphism of local L∞-groupoids. Ks

• is not functorial. Instead Ks
• is a

homotopy coherent diagram in locsMan of shape locNQMan.
Let V → M be a negatively graded vector bundle with a differential on AV (36) and let U

be a good cover of M . We can now apply the quasi-functor Ks
• on the nerve N•(U) to obtain a

sort of global integral. The homomorphisms Ks
•(φ) on overlaps of the covering sets (induced by

isomorphisms φ of NQ-manifolds) are isomorphisms of local Lie `-groupoids.
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U U ′

φ

W ′|U ′
`-groupoid Ks

•(W ′|U ′)
W |U

`-groupoid Ks
•(W |U )

Figure 9. The quasi-functor Ks
• applied to N•(U).
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INTEGRATION OF DIFFERENTIAL GRADED MANIFOLDS

PAVOL ŠEVERA AND MICHAL ŠIRAŇ

Abstract. We consider the problem of integration of L∞-algebroids (differential graded

manifolds) to L∞-groupoids. We first construct a “big” Kan simplicial manifold (Fréchet

or Banach) whose points are solutions of a (generalized) Maurer-Cartan equation. The main
analytic trick in our work is an integral transformation sending the solutions of the Maurer-

Cartan equation to closed differential forms.

Following ideas of Ezra Getzler we then impose a gauge condition which cuts out a finite-
dimensional simplicial submanifold. This “smaller” simplicial manifold is (the nerve of) a

local Lie `-groupoid. The gauge condition can be imposed only locally in the base of the

L∞-algebroid; the resulting local `-groupoids glue up to a coherent homotopy, i.e. we get a
homotopy coherent diagram from the nerve of a good cover of the base to the (simplicial)

category of local `-groupoids.
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1. Introduction

Let us recall that a Lie bracket on a finite-dimensional vector space g is equivalent to a
differential Q on the graded-commutative algebra

∧
g∗ = S((g[1])∗). One possible approach to

the construction of the integrating simply-connected group G is due to Dennis Sullivan [14].
Consider the simplicial set of morphisms of differential graded commutative algebras

Kbig
• = Homdgca

(
(
∧

g∗, Q), (Ω(∆•), d)
)

where ∆• is the Euclidean simplex and d is the de Rham differential. It can be shown that Kbig
•

is in fact a simplicial manifold and that its simplicial fundamental group is πsimpl
1 (Kbig

• ) ∼= G.
This can be geometrically explained as follows. Let ξi be a basis of g∗ and cijk the structure

constants of g in this basis, so that Qξi = cijkξ
jξk/2. An n-simplex µ ∈ Kbig

n is determined by

Ai := µ(ξi), i = 1, . . . ,dim g,

which is a collection of 1−forms on ∆n. Since µ respects the differentials we get

(1) dAi =
1

2
cijkA

jAk.

Supported in part by the grant MODFLAT of the European Research Council and the NCCR SwissMAP of

the Swiss National Science Foundation.
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2 PAVOL ŠEVERA AND MICHAL ŠIRAŇ

This is the Maurer-Cartan equation so A is a flat g-connection on ∆n. In other words, we can
identify the elements of Kbig

n with flat g-connections on ∆n.
The integration of g to G can be described as follows. A connection A on an interval (au-

tomatically flat) will give rise to an element gA of the integrating group (the holonomy of the
connection along the interval). Two such elements gA, gA′ are equal iff there exists a flat con-
nection A on a bigon which restricts on the boundary arcs to A and A′ as on the left side of
Figure 1. The group multiplication is given as gA1

gA2
= gA3

iff there exists a flat connection
A4 on a triangle which restricts on the boundary in the manner of right side of Figure 1.

A

A′

∃ flat A

A1 A2

A3

∃ flat A4

Figure 1. Left - two connections give the same group element. Right - group
multiplication illustrated.

Let us note that the manifolds Kbig
n are infinite dimensional. For any g ∈ G there are infinitely

many A’s on the interval such that g = gA. Likewise, if gA1gA2 = gA3 , there are infinitely many

A4’s proving this relation. However, Kbig
• can be reduced by gauge-fixing to a “smaller” (finite

dimensional) simplicial submanifold Ks
• , which is a (local) simplicial deformation retract of Kbig

•
and which is (locally) isomorphic to the nerve of G (which means a unique A such that g = gA,
and also a unique A4 restricting to A1, A2, A3 on the boundary). Ks

• is the nerve of the local
Lie group integrating g.

This paper generalizes this procedure to cases where (
∧

g∗, Q) is replaced by a more general
differential graded-commutative algebra. More precisely, we consider generalizations involving
the introduction of generators in degrees i ≥ 0 and allowing smooth functions of the degree-0
generators rather than just polynomials.

Let us thus consider non-negatively graded commutative algebras of the form

AV = Γ(S(V ∗)),

where V → M is a negatively graded vector bundle. Suppose that Q is a differential on the
algebra AV . We can say that AV is the algebra of functions on the graded manifold V .

If the manifold M is a point then the differential Q is equivalent to an L∞-algebra structure on
the non-positively graded vector space V [−1]. In the case of a general M and of V concentrated
in degree −1, a differential Q is equivalent to a Lie algebroid structure on V [−1]. In the general
case, the differential Q is loosely called a L∞-algebroid structure on the vector bundle V [−1], or
more precisely a Lie `-algebroid, where −` is the lowest degree in the negatively graded bundle
V (so that ` ≥ 1). In this paper we will integrate these Lie `-algebroids to Lie `-groupoids.

Following Sullivan as above we shall study morphisms of differential graded algebras

(2) (AV , Q)→ (Ω(∆n), d),

or equivalently, morphisms of differential graded manifolds

T [1]∆n → V.

We can view L∞-algebroids as Lie algebroids with higher homotopies and the integration pro-
cedure as recovering the fundamental ∞−groupoid. This integration procedure was suggested
in [13]. The motivation comes primarily from the problem of integration of Courant algebroids.
Poisson manifolds are integrated to (local) symplectic groupoids and Courant algebroids should
be integrated to symplectic 2-groupoids.

While these ideas are well known, in this work we finally overcome the long-standing analytic
difficulties. Our first result (Theorem 6.2) says that the morphisms (2) form naturally a (infinite-

dimensional Fréchet) Kan simplicial manifold Kbig
• . This result is obtained via an integral
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transformation (similar to a transformation appearing in the work of Masatake Kuranishi [7])
taking morphisms (2) to morphisms

(AV , 0)→ (Ω(∆n), d)

which is interesting on its own.
In more detail, in the simplest case when M is an open subset of Rn and V → M is a

trivial graded vector bundle, we choose generators ξi of the algebra AV (ξi’s of degree 0 are
the coordinates of M ⊂ Rn and ξi’s of positive degree come from a basis of the fibre of V )

then a morphism of dgcas (2) is equivalent to a collection of differential forms Ai ∈ Ωdeg ξi(∆•)
satisfying a generalized Maurer-Cartan equation

(3) dAi = F iQ(A)

where F iQ := Qξi. The integral transformation is Ai 7→ κ(A)i := Ai − hF iQ(A), where h is the

de Rham homotopy operator, and is transforms the equation (3) to

dκ(A)i = 0.

We prove that κ is an open embedding (of Banach or Fréchet spaces), and thus show the regularity
properties of the space of the solutions of (3).

As noted in the Lie algebra case, the integration can be reduced by gauge-fixing. Following
ideas of Ezra Getzler [5] we define (locally in M) a finite-dimensional locally Kan simplicial

manifold Ks
• ⊂ Kbig

• by imposing a certain gauge condition s• on differential forms (see Theorem
7.1)

Ks
• = {(Ai ∈ Ωdeg ξi(∆•)); dAi = F iQ(A) and s•A

i = 0}.
The simplicial manifold Ks

• can be seen as (the nerve of) a local Lie `-groupoid (Definition 7.3)
integrating the Lie `-algebroid structure on V (−` is the lowest degree in V ). While Ks

• depends
on the choice of a gauge condition s• (in particular, on a choice of local coordinates and of

a local trivialization of V ), we construct a (local) simplicial deformation retraction of Kbig
• to

Ks
• , i.e. show that Kbig

• and Ks
• are equivalent as Lie ∞-groupoids. The deformation retraction

also implies that Ks
• is unique up to (non-unique) isomorphisms and that the local Ks

• ’s form a
homotopy coherent diagram.

Let us relate our approach with the papers of Henriques [6] and Getzler [5], who solve closely
related problems. André Henriques deals in [6] with the case when the base manifold M is a
point. He defined Kan simplicial manifolds and Lie `-groupoids, which are central definitions in
our work. His constructions are based on Postnikov towers: in his case it is enough to integrate
a Lie algebra to a Lie group and then to deal with Lie algebra cocycles. This approach cannot
be used for non-trivial M , so there is little overlap between his and our methods.

The present paper is closer to the work of Ezra Getzler [5] who deals with nilpotent L∞-
algebras (or, from the point of view of Rational homotopy theory [14], with finitely-generated
Sullivan algebras). In particular, the idea of gauge fixing is simply taken from [5] and translated
from formal power series to the language of Banach manifolds.

Our paper is also closely related to the work of Crainic and Fernandes [2] on integration of
Lie algebroids (corresponding to ` = 1). Unlike in op. cit. we do not consider the truncation of

Kbig
• at dimension ` (keeping all simplices of dimension < ` intact, replacing those of dimension

` with their homotopy classes rel boundary, and adding higher simplices formally), as it leads,
for ` ≥ 2, to infinite-dimensional spaces. Nonetheless our analytic results should be sufficient
also for this kind of approach.

The plan of our paper is as follows. In Section 2 we recall some basic definitions concerning
dg manifolds. In Section 3 we prove a technical result about homotopies of maps between dg
manifolds, which is the basis for our analytic theorems. In Section 4 we define the Kuranishi
map κ and show that it transforms the Maurer-Cartan equations (3) to linear equations. In this
way we then prove that the spaces of solutions are manifolds. In Section 5 we prove that the
spaces of the solutions of the generalized Maurer-Cartan (3) on simplices form a Kan simplicial
manifold (i.e. a Lie ∞-grooupoid) and in Section 6 we globalize the results of Sections 4 and
5. (Sections 5 and 6 are not needed for the rest of the paper, but they complete the picture.)
In Section 7 we show that gauge fixing produces a finite-dimensional local Lie `-groupoid. In
section 8 we establish a deformation retraction from the big integration to the gauge integration,
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which is then used in Section 9 to show that the gauge integration is functorial up to coherent
homotopies.

Acknowledgment. We would like to thank to Ezra Getzler for useful discussion.

2. dg morphisms and dg manifolds

Let M be a manifold and V →M a negatively-graded vector bundle. Throughout the paper
all vector bundles are finite dimensional. Let AV be the graded commutative algebra

AV = Γ(S(V ∗)).

In particular Ω(M) = AT [1]M . We can describe morphisms of graded-commutative algebras

AV → Ω(N)

(where N is another manifold) in the following way.
If W is a non-positively graded vector space and N a manifold, let

(4) Ω(N,W )m =
⊕

k≥0Ωm+k(N)⊗W−k.
Abusing the notation, if V →M is a negatively graded vector bundle, let

Ω(N,V )0 = {(f, α); f : N →M,α ∈⊕k>0Ωk(N, f∗V −k)}.
The two notations are compatible if we understand W as a trivial vector bundle over W 0, with
the fiber W<0.

A morphism of graded algebras
µ : AV → Ω(N)

is equivalent to an element (f, α) ∈ Ω(N,V )0 via

µ|C∞(M) = f∗, µ(s) = 〈α, f∗s〉, ∀s ∈ Γ(V ∗).

If W is a non-positively graded vector space and U ⊂ W 0 is an open subset, let W |U be the
trivial vector bundle W<0 × U → U , i.e.

Ω(N,W |U )0 ⊂ Ω(N,W )0

is the set of those forms A ∈ Ω(N,W )0 whose function part (a W 0-valued function on N) is a
map N → U ⊂W 0. Notice that

(5) AW |U = C∞(U)⊗ S
(
(W<0)∗

)
.

In this special case of V = W |U a morphism µ : AW |U → Ω(N) corresponds to A ∈ Ω(N,W |U )0

via
µ(ξ) = 〈A, ξ〉, ∀ξ ∈W ∗.

Let now Q be a differential on the graded algebra AW |U . If ξi is a (homogeneous) basis of
W ∗, let

F iQ := Qξi ∈ AW |U .
The identity Q2 = 0 is equivalent to

(6) F iQ
∂F kQ
∂ξi

= 0.

A morphism of graded algebras µ : AW |U → Ω(N) is a differential graded (dg) morphism iff

(7) dAi = F iQ(A)

where Ai := µ(ξi) = 〈A, ξi〉 and F iQ(A) is obtained from F iQ by substituting Ak’s for ξk’s.

This equation generalizes the Maurer-Cartan equations of the Lie algebra case (1) where F iQ is

quadratic. We can rewrite (7) as

(8) dA = FQ(A)

where FQ ∈ AW |U ⊗W is given by

〈FQ, ξ〉 = Qξ ∀ξ ∈W ∗.
The set of solutions A of (8) will be denoted by

Ω(N,W |U )MC ⊂ Ω(N,W |U )0.
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More generally, if Q is a differential on the algebra AV , the set of dg morphisms

AV → Ω(N)

will be denoted by

Ω(N,V )MC ⊂ Ω(N,V )0.

If V →M is a negatively-graded vector bundle, it is convenient to see the algebra AV as the
algebra of functions on the graded manifold (corresponding to) V .

Definition 2.1 (e.g. Ševera [13]). An N-manifold (shorthand for non-negatively graded mani-
fold) is a supermanifold Z with an action of the semigroup (R,×) such that −1 ∈ R acts as the
parity operator (i.e. just changes the sign of the odd coordinates).

Let C∞(Z)k be the vector space of smooth functions of degree k, where the degree is the
weight with respect to the action of (R,×), and let C∞(Z) =

⊕
k≥0 C

∞(Z)k. It is a graded-
commutative algebra.

Any negatively-graded vector bundle V →M gives rise to a N-manifold via

C∞(Z) = Γ(S(V ∗)),

such that 0 · Z = M . Any N-manifold (in the C∞-category) is of this type. By abuse of
notation we shall denote the N-manifold corresponding to V also by V . A morphism of graded
algebras AV → AV ′ is thus equivalent to a morphism of N-manifolds V ′  V . We shall indicate
morphisms of graded manifolds with wiggly arrows ( ). This is to prevent confusion since the
category of N-manifolds contains more morphisms then the category of negatively-graded vector
bundles. In particular, the following are equivalent: a morphism of graded algebras

AV → Ω(N),

an element of Ω(N,V )0, and a morphism of N-manifolds

T [1]N  V.

A differential Q on the graded algebra AV then corresponds to the following notion.

Definition 2.2. An NQ-manifold (a differential non-negatively graded manifold) is an N -
manifold equipped with a vector field Q of degree 1 satisfying Q2 = 0.

In particular, a morphism of dg-algebras AV → Ω(N) is equivalent to a morphism of NQ-
manifolds T [1]N  V .

3. A homotopy lemma

Let us suppose, as above, that W is a non-positively graded finite-dimensional vector space,
U ⊂W 0 is an open subset and Q a differential on the algebra AW |U defined by (5). A morphism
of graded algebras AW |U → Ω(N) (or a map of N-manifolds T [1]N  W |U ) is thus equivalent

to a choice of a differential form A ∈ Ω(N,W |U )0, and it is a dg morphism iff dA = FQ(A), i.e.
iff A ∈ Ω(N,W |U )MC (see Section 2).

In this section we shall study “homotopies”, i.e. solutions of the MC equation dA = FQ(A)
on N × I, where I is the unit interval.

If α ∈ Ω(N × I), let α|t=0 ∈ Ω(N) (where t is the coordinate on I = [0, 1]) be the restriction
of α to N = N × {0} ⊂ N × I. Any differential form α ∈ Ω(N × I) can be split uniquely into a
horizontal and vertical part as

α = αh + dt αv

i∂tαh = i∂tαv = 0.

The components αh and αv are given by

αv = i∂tα, αh = α− dt αv.
We can view αh and αv as forms on N parametrized by I. For any α we set

dhα = (dα)h.
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Proposition 3.1 (“Homotopy Lemma”). Let N be a manifold (possibly with corners) and let
A ∈ Ω(N × I,W |U )0, where I is the unit interval. If

(9a) A|t=0 ∈ Ω(N,W |U )MC

and if

(9b) i∂t(dA− FQ(A)) = 0,

then

A ∈ Ω(N × I,W |U )MC

N × {t = 0}

N × I

N × {t = 1}

A|t=0 ∈ Ω(N,W )MC

i∂t(dA− FQ(A)) = 0

⇒ A ∈ Ω(N × I,W )MC

Figure 2. Homotopy Lemma.

Proof. Writing A = Ah + dtAv we get

(10) dA− FQ(A) = (dhAh − FQ(Ah)) + dt
( d
dt
Ah − dhAv −Aiv

∂FQ
∂ξi

(Ah)
)

and since i∂t(dA− FQ(A)) = 0, we get from here

(11)
d

dt
Ah = dhAv +Aiv

∂FQ
∂ξi

(Ah).

We can now compute

d

dt
(dhAh − FQ(Ah))

using (11). We get

d

dt
(dhAh − FQ(Ah)) = (−1)deg ξi−1Aiv dhA

k
h

∂2FQ
∂ξk∂ξi

(Ah)−Aiv
∂F kQ
∂ξi

(Ah)
∂FQ
∂ξk

(Ah).

Since Equation (6) implies

0 =
∂

∂ξi

(
F kQ(Ah)

∂FQ
∂ξk

(Ah)
)

=
∂F kQ
∂ξi

(Ah)
∂FQ
∂ξk

(Ah)− (−1)deg ξiF kQ(Ah)
∂2FQ
∂ξk∂ξi

(Ah),

we get

d

dt
(dhAh − FQ(Ah)) = (−1)deg ξi−1Aiv(dhA

k
h − F kQ(Ah))

∂2FQ
∂ξk∂ξi

(Ah).

This is a linear differential equation for dhAh−FQ(Ah), which together with the initial condition
(9a) implies that

dhAh − FQ(Ah) = 0

and thus, in view of (9b), also

dA− FQ(A) = 0.

This completes the proof. �
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Theorem 3.1. Let N be a compact manifold (possibly with corners), let A0 ∈ Ω(N,W |U )MC ,
and let H ∈ Ω(N × I,W )−1 be a horizonal form (i.e. i∂tH = 0). Then there is 0 < ε ≤ 1
and a unique A ∈ Ω(N × [0, ε],W |U )MC such that A|t=0 = A0 and Av = H. It is given by
A = Ah + dtH, where Ah is the solution of the differential equation

(12)
d

dt
Ah = dhH +Hi ∂FQ

∂ξi
(Ah)

with the initial condition Ah|t=0 = A0. We can choose ε = 1 if the C0-norm of H(0) is small
enough, where H(0) : N × I →W−1 is the 0-form part of H.

Proof. By Proposition 3.1 and Equation (10) we see that A ∈ Ω(N×I,W |U )MC iff the condition
(11) holds with Av = H, i.e. if the ODE (12) holds. To see that an estimate of the C0-norm of
H(0) implies that (12) has a solution for t ∈ [0, 1], let us split Ah to its homogeneous parts

Ah =
∑

k

A
(k)
h , A

(k)
h ∈ Ωk(N × I,W−k).

In degree 0 Equation (12) is

(13)
d

dt
A

(0)
h = (H(0))i

∂FQ
∂ξi

(A
(0)
h )

with i running only over the indices with deg ξi = 1, which has a solution under our hypothesis.

Supposing that A
(m)
h ’s are known for m < k, Equation (12) in degree k is an inhomogeneous

linear ODE for A
(k)
h , and thus always has a solution. We can thus find Ah by solving (12)

successively for A
(0)
h , A

(1)
h , . . . , A

(dimN)
h . �

Remark. The hypothesis on the C0-norm of H(0) was used to make sure that a solution A
(0)
h

of Equation (13) exists for t ∈ I. If W 0 = 0, no hypothesis is needed, since A
(0)
h = 0. When

W 0 6= 0 then Q : C∞(U)→ C∞(U)⊗(W−1)∗ can be seen as a linear map from W−1 to the space
of vector fields on C∞(U), and defines an integrable distribution on U . If A0 ∈ Ω(N,W |U )MC

then the image of A
(0)
0 : N → U is contained in a leaf of this distribution. If the leaf if compact,

again no hypothesis of the C0-norm of H(0) is needed, since (13) is given by vector fields tangent
to the leaf. The hypothesis is needed only if the closure of the leaf is non-compact.

Theorem 3.1 can be used to solve the generalized Maurer-Cartan equation dA = FQ(A) on
cubes. We shall describe another method in the following section.

4. Solving the generalized Maurer-Cartan equation

Suppose now that N ⊂ Rn is a star-shaped n-dimensional submanifold with corners (typically
we would take for N a n-simplex with a vertex at the origin, or a ball centered at the origin).
Let

h : Ω•(N)→ Ω•−1(N)

be the de Rham homotopy operator given by the deformation retraction

R : N × I → N, R(x, t) = tx.

Let, as above, U ⊂W 0 be an open subset and Q a differential on the algebra AW |U .

Theorem 4.1. A form A ∈ Ω(N,W |U )0 satisfies

(14) dA = FQ(A)

if and only if the form

B = A− h(FQ(A)) ∈ Ω(N,W )0

satisfies

(15) dB = 0.
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Proof. If dA = FQ(A) then dhFQ(A) = dhdA = dA, hence B is closed.
Suppose now that dB = 0. Let E be the Euler vector field on N ⊂ Rn. By construction of h

we have iEh = 0, hence iEdh = iE , and thus

iE(dA− FQ(A)) = iE(dA− dhFQ(A)) = iEdB = 0.

Since the vector field E on N and the vector field t∂t on N × I are R-related, we get

i∂t(dR
∗A− FQ(R∗A)) = 0.

As (R∗A)|t=0 is a constant we have (R∗A)|t=0 ∈ Ω(N,W |U )MC . Proposition 3.1 now implies
that dR∗A− FQ(R∗A) = 0, and therefore (by setting t = 1) dA = FQ(A). �

Let us show that the map A 7→ B = A − h(FQ(A)) is injective by describing explicitly its
inverse.

Proposition 4.1. Let B ∈ Ω(N,W )0 be such that the 0-form part of B (a map N →W 0) sends
0 ∈ N ⊂ Rn to an element of U ⊂W 0. The equation

(16) LEa = FQ(B + iEa)

(LE is Lie derivative along E) has a solution a ∈ Ω(N ′,W )1 on N ′ ⊂ N where N ′ is some
star-shaped open neighborhood of 0 and the solution is unique if we demand N ′ to be maximal.

A form A ∈ Ω(N,W |U )0 such that

B = A− h(FQ(A))

exists iff N ′ = N , and in that case A is unique, A = B + iEa.

Proof. We shall define a vector field Ê on the total space of

N̂ := (
∧
T ∗N ⊗W )1

with the following properties:

(1) A (partial) section a : N ′ → N̂ (N ′ ⊂ N) of the bundle N̂ → N is a solution of (16) iff

the vector field Ê is tangent to the image of a.
(2) Ê projects to the Euler vector field E on N .

(3) Ê has a unique fixed point P ∈ N̂ (lying over 0 ∈ N). The fixed point is hyperbolic:

the stable subspace of TP N̂ is the vertical subspace, and the unstable subspace projects
bijectively onto T0N .

N̂

0
N

P

Figure 3. The section a is the unstable manifold of Ê

Once Ê is defined, the proposition can be proven as follows. A partial section a : N ′ → N̂ ,
where N ′ ⊂ N is a star-shaped neighbourhood of 0 ∈ N , is a solution of (16) iff the image of

a is a local unstable manifold of Ê. Since Ê projects onto E, the (full) unstable manifold of Ê
is the image of some section amax, which is the unique maximal solution of (16) we wanted to
find.

The existence and uniqueness of A can then be proven as follows. If N ′ = N then A = B+iEa
satisfies B = A − h(FQ(A)). To get uniqueness, notice that the operator LE is invertible on

Ω>0(N) (its inverse can be written explicitly as an integral), and h = iEL−1
E . If A satisfying
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B = A−h(FQ(A)) exists, let us set a = L−1
E FQ(A). As A = B+hLEa = B+ iEa, a is a solution

of (16) with N ′ = N , and A is thus unique.

The vector field Ê on N̂ is constructed as follows. Consider the natural lift Elift of E to N̂ .
In coordinates it is of the form

Elift = xi
∂

∂xi
−
∑

J

kJy
J ∂

∂yJ

where xi’s are the coordinates on N and yJ are the additional coordinates on N̂ (corresponding
to dxj1 . . . dxjl). Notice that kJ > 0 for every J (all kJ ’s are integers).

Let us define the vector field Ê on N̂ by

Ê = Elift + FQ(B + iE ·),
where

FQ(B + iE ·) : (
∧
T ∗N ⊗W )1 → (

∧
T ∗N ⊗W )1

is understood as a vertical vector field. The vector field Ê has the needed properties; to see
the hyperbolicity of the fixed point P ∈ N̂ of N notice that the stable subspace of TP N̂ is
the vertical subspace, with eigenvalues −kJ , and the unstable subspace projects bijectively onto
T0N , with all eigenvalues equal to 1. �

Let us suppose that N is compact. For r ≥ 1 let Ωr(N) denote the Banach space of Cr-forms.
The previous two results (Theorem 4.1 and Proposition 4.1) remain valid when A, B and a are
Cr-forms.

Proposition 4.2. The map

κ : Ωr(N,W |U )0 → Ωr(N,W )0

(17) κ(A) = A− h(FQ(A))

is a smooth open embedding of Banach manifolds.

Proof. The map κ is smooth. By Proposition 4.1 it is injective and its image is open. The inverse
map (constructed in the proof of Proposition 4.1 via the unstable manifold of a vector field),
defined on the image of κ, is at least Cr, by differentiable dependence of unstable manifold on
parameters (Robbin [12, Theorem 4.1]). This implies that κ is a smooth open embedding. �

A map similar to (17) appears in the work of Kuranishi [7] and we will refer to it as the
Kuranishi map.

Theorem 4.2. The subset

{A ∈ Ωr(N,W |U )0; dA− FQ(A) = 0} =: Ωr(N,W |U )MC ⊂ Ωr(N,W |U )0,

is a (smooth) Banach submanifold and it is closed in the C0-topology. The subset

Ω(N,W |U )MC ⊂ Ω(N,W |U )0

is a Fréchet submanifold closed in the C0-topology.

Proof. By Theorem 4.1 we have

Ωr(N,W |U )MC = κ−1
(
Ωr(N,W )0,cl

)
.

Since κ is an open embedding, the theorem follows from the fact that the space of closed forms

Ωr(N,W )0,cl ⊂ Ωr(N,W )0

is a C0-closed subspace and from C0-continuity of κ. Since the result is true for every r ≥ 1, it
also holds for C∞-forms. �

The rest of this section is a preparation for the gauge-fixing procedure of Section 7.
It is somewhat inconvenient that Ωr(N) is not a complex (i.e. that d is not an everywhere-

defined operator Ωr(N)→ Ωr(N)). Following A. Henriques [6] let us consider the complex

Ωr+(N) := {α ∈ Ωr(N); dα ∈ Ωr(N)}
which is a Banach space with the norm

‖α‖r+ := ‖α‖Cr + ‖dα‖Cr .
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We can identify Ωr+(N) with the closed subspace

Γ := {(α, β); dα = β} ⊂ Ωr(N)⊕ Ωr(N),

i.e. with the graph of the unbounded operator d : Ωr(N) → Ωr(N). The isomorphism Γ →
Ωr+(N) is given by the projection (α, β) 7→ α.

We have

Ωr(N,W |U )MC ⊂ Ωr+(N,W )0

as for A ∈ Ωr(N,W |U )MC we have dA = FQ(A) ∈ Ωr(N,W ).

Proposition 4.3. Ωr(N,W |U )MC ⊂ Ωr+(N,W )0 is a Banach submanifold.

Proof. Let us consider the embedding

e : Ωr(N,W )0 → Ωr(N,W )0 ⊕ Ωr(N,W )1, e(A) = (A,FQ(A)).

For A ∈ Ωr(N,W |U )MC we have e(A) = (A, dA), hence e embeds Ωr(N,W |U )MC to Γ ⊗W .
The isomorphism Γ ⊗W ∼= Ωr+(N,W ) then implies that Ωr(N,W |U )MC ⊂ Ωr+(N,W )0 is a
submanifold. �

If Ac ∈ Ω(N,W |U )0 is a constant (i.e. if the 0-form component of Ac is a constant map N → U
and the higher-form components of Ac vanish) then Ac ∈ Ω(N,W |U )MC and κ(Ac) = Ac. We
shall identify constant Ac’s with elements of U , i.e. we have an inclusion U ⊂ Ω(N,W |U )MC

and κ|U = idU .
Let us notice that the map

A 7→ A− hdA
is a projection

Ωr+(N,W )0 → Ωr+(N,W )0,cl = Ωr(N,W )0,cl

which coincides with κ on Ωr(N,W |U )MC . Let us now consider more general projections (equiv-
alently, let us replace h with another homotopy operator).

Proposition 4.4. Let C ⊂ Ωr+(N) be a graded Banach subspace such that Ωr+(N) = Ωr(N)cl⊕
C. Then there is an neighbourhood U ⊂ U ⊂ Ωr(N,W |U )MC such that the projection w.r.t.
(C ⊗W )0

π : Ωr+(N,W )0 → Ωr(N,W )0,cl

restricts to an open embedding U → Ωr(N,W )0,cl and to the indentity on U .

Proof. Let πres := π|Ωr(N,W |U )MC . To show that there exists U with the desired property it
is enough to show that the tangent map TAc

πres is a linear isomorphism for each Ac ∈ U , or
equivalently, that the composition

(18) Ωr(N,W )0,cl κ−1
lin−−→ TAc

Ωr(N,W |U )MC ⊂ Ωr+(N,W )0 π−→ Ωr(N,W )0,cl

is a linear isomorphism, where κlin = TAcκ is the linearization of κ at Ac. Explicitly,

κlin(A) = A− hFQ,lin(A),

where

F iQ,lin(A) =
∂F iQ
∂ξj

(Ac)A
j

is the linearization of FQ at Ac.
Let us introduce a filtration F of the space Ωr+(N,W )0 with

F i =
⊕

k≤i
Ωkr+(N,W−k).

Then hFQ,lin : F i → F i−1 and thus κlin, κ
−1
lin : F i → F i.

To show that TAc
πres is a linear isomorphism it is enough to verify that the filtered linear

map (18) induces the identity map on the associated graded. Let B ∈ Ωr(N,W )0,cl and B ∈ F i.
Then

κ−1
lin (B) = B + hFQ,lin(κ−1

lin (B)).

Since hFQ,lin(κ−1
lin (B)) ∈ F i−1 and B is closed, we see that the associated graded is indeed the

identity. �
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5. Filling horns

Let ∆n be the n-dimensional simplex. By Theorem 4.2, the sets

Kbig
n (AW |U , Q) := Ω(∆n,W |U )MC

are naturally Fréchet manifolds. The affine maps between simplices then make the collection of
Kbig
n ’s to a simplicial Fréchet manifold.
For any simplicial set S• and any 0 ≤ k ≤ n let Sn,k denote the corresponding horn. The

k-th horn of the geometric n-simplex ∆n will be denoted ∆n
k .

Definition 5.1 (A. Henriques). A simplicial manifold K• is Kan if the map Kn → Kn,k is a
surjective submersion for any 0 ≤ k ≤ n.

To make the definition meaningful, one needs to check (inductively in n) that Kn,k are man-
ifolds. This was done by Henriques [6].

Any simplicial topological vector space X• is automatically a Kan simplicial manifold. Indeed,
there is an explicit continuous linear map Xn,k → Xn due to Moore [10] (in the proof of his
theorem stating that any simplicial group is Kan) which is right-inverse to the horn map Xn →
Xn,k. Namely, supposing without loss of generality that k = n, if (y0, . . . , yn−1) ∈ Xn,n (yi ∈
Xn−1), one defines w0, . . . , wn−1 ∈ Xn via

(19) w0 = s0y0, wi = wi−1 − sidiwi−1 + siyi

(i = 1, . . . , n−1, di and si are the face and degeneracy maps respectively), and then diwn−1 = yi
for all 0 ≤ i ≤ n− 1, i.e. wn−1 fills the horn (y0, . . . , yn−1) ∈ Xn,n.

Here is the principal result of this section (it is valid also for Cr-forms, when we get Kan
simplicial Banach manifolds).

Theorem 5.1. Kbig
• (AW |U , Q) is a Kan simplicial Fréchet manifold.

Proof. Let K• := Kbig
• (AW |U , Q) and let X• := Ω(∆•,W )0,cl. As X• is a simplicial Fréchet

vector space, it is a Kan simplicial manifold.
Let us first prove that the horn maps Kn → Kn,k are submersion. Let us place ∆n to Rn so

that the k’th vertex is at 0 ∈ Rn. By applying the Kuranishi map κ we get the commutative
square

Kn Xn

Kn,k Xn,k

κ

κ

As the horizontal arrows are open embeddings and the vertical arrow Xn → Xn,k is a submersion,
Kn → Kn,k is also a submersion.

It remains to prove that Kn → Kn,k is surjective. Let Ahorn ∈ Kn,k, let Bhorn := κ(A) ∈ Xn,k.
We choose B ∈ Xn extending Bhorn.

By Proposition 4.1, Equation (16) has a solution a on an open subset N ′ ⊂ ∆n such that
∆n
k ⊂ N ′. The form

A′ = B + iEa

thus satisfies

A′ ∈ Ω
(
N ′,W |U

)MC
, A′|∆n

k
= Ahorn.

Let now φ ∈ C∞(∆n) satisfy 0 ≤ φ ≤ 1, φ|∆n
k

= 1, and φ|∆n\N ′ = 0. Let h : ∆n → N ′ be
given by x 7→ φ(x)x. Then

A := h∗A′

satisfies

A ∈ Ω
(
∆n,W |U

)MC
= Kn, A|∆n

k
= Ahorn.

This proves surjectivity of Kn → Kn,k, as the map sends A ∈ Kn to Ahorn ∈ Kn,k. �
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Ahorn ∈ Ω(∆n
k ,W )MC κ

Bhorn ∈ Ω(∆n
k ,W )0,cl

B ∈ Ω(∆n,W )0,cl

A′ = B + iEa ∈ Ω(N ′,W )MC

Figure 4. Filling horns in Kbig
• .

6. Globalization

So far we considered dg algebras of the form AW |U . Let now V →M be a negatively-graded
vector bundle, and let us consider the algebra AV with a chosen differential Q. In this section
we shall prove that Theorems 4.2 and 5.1 hold also in this more general setting.

To prove these results we need to consider the following relative situation. Let N ⊂ Rn
be a compact star-shaped n-dimensional submanifold with corners. The restriction AT [1]Rn =

Ω(Rn)→ Ω(N) is a morphism of dgcas. The corresponding element A0 ∈ Ω(N,T [1]Rn)MC is

A0 =
∑

k

Ekx
k + ekdx

k

where xk are the coordinates on N ⊂ Rn and Ek and ek is the standard basis of Rn and of Rn[1]
respectively. Application of κ gives

B0 := κ(A0) =
∑

k

ekdx
k ∈ Ω(N,T [1]Rn)0,cl.

Suppose now that W is a non-positively graded vector space and p : W → T [1]Rn a surjective
graded linear map. Let U ⊂W 0 be open, Q be a differential on AW |U , and let us suppose that
the pullback p∗ : AT [1]Rn = Ω(Rn)→ AW |U is a morphism of dgcas (i.e. that p : W |U → T [1]Rn
is a morphism of NQ manifolds). Let

Ω(N,W |U )0,A0 := {A ∈ Ω(N,W |U )0; p(A) = A0}
and similarly

Ω(N,W )0,B0 := {B ∈ Ω(N,W )0; p(B) = B0}.
The elements of

Ω(N,W |U )MC,A0 := Ω(N,W |U )MC ∩ Ω(N,W |U )0,A0

correspond to those dgca morphisms AW |U → Ω(N) for which the diagram

Ω(N) AW |U

Ω(Rn)

p∗

is commutative, i.e. of those morphisms T [1]N  W |U of NQ manifolds for which

T [1]N W |U

T [1]Rn

p

is commutative.

Proposition 6.1.
Ω(N,W |U )MC,A0 = κ−1

(
Ω(N,W )0,cl,B0

)
.

In particular, Ω(N,W |U )MC,A0 ⊂ Ω(N,W |U )0,A0 is a Fréchet submanifold closed in the C0

topology.
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Proof. The equality follows from Theorem 4.1 and from B0 = κ(A0). The fact that

Ω(N,W |U )MC,A0 ⊂ Ω(N,W |U )0,A0

is a Fréchet submanifold closed in the C0 topology then follows from the fact that κ is an
open embedding and C0-continuous, and from the fact that Ω(N,W )0,cl,B0 is a C0-closed affine
subspace of Ω(N,W )0. �

We can now prove our first globalized result.

Theorem 6.1. Let N ⊂ Rn be a star-shaped compact n-dimensional submanifold with corners,
V →M a negatively graded vector bundle, and Q a differential on the gca AV . Then the subset

{dg-morphisms AV → Ω(N)} ⊂ {graded algebra morphisms AV → Ω(N)},
i.e.

Ω(N,V )MC ⊂ Ω(N,V )0,

is a smooth Fréchet submanifold closed in the C0-topology.

Proof. For any smooth map f : N → M we can find an open subset U ′ ⊂ Rn ×M containing
the graph of f such that

(1) there is an open subset U ⊂ Rn × Rm and a diffeomorphism g : U ′ → U such that g
is trivial over Rn (i.e. such that ∀(x, y) ∈ U ′ ⊂ Rn ×M , g(x, y) = (x, ỹ(x, y)) for some
ỹ(x, y) ∈ Rm)

(2) the graded vector bundle (p∗MV )|U ′ is trivial (where pM : Rn×M →M is the projection).

As a result, there is a non-positively graded vector space W̃ with W̃ 0 = Rm (a local model

of V → M), an open subset U ⊂ W 0 where W = T [1]Rn ⊕ W̃ (so that W 0 = Rn+m) and an
isomorphism of graded vector bundles

t : (T [1]Rn × V )|U ′ →W |U
such that the triangle

(20)

(T [1]Rn × V )|U ′ W |U

T [1]Rn

t

p′ p

commutes, where p and p′ are the projections. Under the resulting isomorphism of gcas

t∗ : AW |U ∼= A(T [1]Rn×V )|U′

the differential d+Q on A(T [1]Rn×V )|U′ is sent to a differential Q̃ on AW |U such that

p∗ : Ω(Rn)→ AW |U
is a dg morphism, as follows from the commutativity of (20).

By Proposition 6.1 we know that Ω(N,W |U )MC,A0 ⊂ Ω(N,W |U )0,A0 is a C0-closed sub-
manifold. Let Ω(N,V )0|U ′ ⊂ Ω(N,V )0 be the subset of those elements for which the graphs
of their function parts N → M lie in U ′. By construction t∗ restricts to a diffeomorphism
Ω(N,W |U )0,A0 ∼= Ω(N,V )0|U ′ and the image of Ω(N,W |U )MC,A0 is Ω(N,V )MC ∩Ω(N,V )0|U ′ .
As a result Ω(N,V )MC ∩ Ω(N,V )0|U ′ ⊂ Ω(N,V )0|U ′ is a C0-closed submanifold, and thus also
Ω(N,V )MC ⊂ Ω(N,V )0 is a C0-closed submanifold, as the subsets Ω(N,V )0|U ′ ⊂ Ω(N,V )0

form a C0-open cover of Ω(N,V )0. �
Remark. Another proof of Theorem 6.1, avoiding Proposition 6.1, is as follows. If Ω(N,V )MC |U ′
is non-empty, one can prove that (after possibly decreasing U ′) there is a NQ manifold W̃ |Ũ and
an open embedding of NQ manifolds

(T [1]Rn × V )|U ′  T [1]Rn × W̃ |Ũ
commuting with the projections to T [1]Rn. As a result we can identify Ω(N,V )MC |U ′ ⊂
Ω(N,V )0|U ′ with Ω(N, W̃ |Ũ )MC ⊂ Ω(N, W̃ |Ũ )0, which is a submanifold by Theorem 4.2.

Our second globalized result will be proved by similar methods.

Theorem 6.2. The Fréchet simplicial manifold Ω(∆•, V )MC is Kan.
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Proof. Let us use the notation K• := Ω(∆•, V )MC . Let us first prove that the map Kn → Kn,k

is surjective. Any element of Kn,k gives us, in particular, a map fhorn : ∆n
k →M . Let us extend

fhorn to a map f : ∆n → M . As in the proof of Theorem 6.1, let U ′ ⊂ Rn ×M be an open
subset such that U ′ contains the graph of f , and such that

(1) U ′ is diffeomorphic over Rn to an open subset U ′ of Rn × Rm (m = dimM)
(2) the graded vector bundle p∗MV |U ′ → U ′ is trivial.

This ensures the existence of an isomorphism

t : (T [1]Rn × V )|U ′ ∼= (T [1]Rn × W̃ )|U
for some non-positively graded vector space W̃ with W̃ 0 = Rm and some open subset U ⊂W 0,
where W := T [1]Rn ⊕ W̃ .

Let us choose an element Ahorn ∈ Kn,k, i.e.1

Ahorn ∈ Ω
(
∆n
k ,W |U )MC,A0 .

After we apply the map κ to Ahorn, we get a closed form

Bhorn ∈ Ω(∆n
k ,W )0,cl.

and extend Bhorn to a closed form

B ∈ Ω
(
∆n,W

)0,cl
.

By Proposition 4.1, Equation (16) has a solution a on an open subset N ′ ⊂ ∆n such that
∆n
k ⊂ N ′. The form

A′ = B + iEa

thus satisfies

A′ ∈ Ω
(
N ′,W |U

)MC
, A′|∆n

k
= Ahorn.

Let now φ ∈ C∞(∆n) satisfy 0 ≤ φ ≤ 1, φ|∆n
k

= 1, and φ|∆n\N ′ = 0. Let h : ∆n → N ′ be
given by x 7→ φ(x)x. Then

A := h∗A′

satisfies

A ∈ Ω
(
∆n,W |U

)MC
, A|∆n

k
= Ahorn.

The isomorphism t then allows us to see A as an element of Ω
(
∆n, (T [1]Rn × V )|U ′

)MC
. We

project it to get an element of Ω(∆n, V )MC = Kn, which finally shows that the horn map
Kn → Kn,k is surjective.

Let us now prove that Kn → Kn,k is a submersion. For an open U ′ ⊂ Rn ×M satisfying the
conditions (1) and (2) above, let K ′n := Ω(∆n, V )MC |U ′ ⊂ Ω(∆n, V )MC = Kn be the subset of
those elements for which the graph of their function part lies in U ′. The isomorphism of graded
vector bundles gives us a diffeomorphism

idΩ(∆n)⊗t : K ′n = Ω(∆n, V )MC |U ′ ∼= Ω(∆n,W |U )MC,A0

and so we have a commutative square

K ′n Ω(∆n,W )0,cl,B0

K ′n,k Ω(∆n
k ,W )0,cl,B0

κ◦(idΩ(∆n)⊗t)

κ◦(idΩ(∆n)⊗t)

where the horizontal arrows are open embeddings and the right vertical arrow is a submersion,
hence also the left vertical arrow is a submersion. Thus Kn → Kn,k is a submersion. �

1By a differential form on the horn ∆n
k we mean a differential form on each of its faces which agree on the

overlaps.
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7. Gauge fixing

The simplicial manifold Kbig
• is infinite-dimensional. We follow Getzler’s [5] approach and

define a finite-dimensional simplicial submanifold Ks
• ⊂ Kbig

• . In the case of a Lie algebra (or
algebroid) Ks

• is the nerve of the corresponding local Lie group (or groupoid). In general Ks
• is

a local Lie `-groupoid (Definition 7.3). Ks
• depends on a choice of a gauge condition; different

gauges lead to isomorphic (by non-canonical isomorphisms) local (weak) Lie `-groupoids. This
construction is local in nature. In particular, we will not need the results of Sections 5 and 6.

Let us fix an integer r ≥ 1. Consider the cochain complex of elementary Whitney forms in
Ωr+(∆n) on the geometric n−simplex

E(∆n) =
⊕

k≥0

Ek(∆n) ⊂ Ωr+(∆n).

It is given in each degree by the linear span of differential forms defined using standard coordi-
nates (t0, . . . , tn,

∑
k tk = 1) on ∆n by the formulas

ωi0...ik = k!
k∑

j=0

(−1)jtijdti0 . . . d̂tij . . . dtik

where d̂tij means the omission of dtij . The k! factor is prescribed so that the integral over the
k−dimensional sub-simplex given by the sequence of k + 1 vertices (ei0 , . . . , eik) of ∆n is

∫

(ei0 ,...,eik )

ωi0...ik = 1

(the integral of ωi0...ik over any other sub-simplex vanishes).
E(∆n) is a sub-complex of Ωr+(∆n), as

dωi0...ik =
n∑

i=0

ωii0...ik .

There is an explicit projection p• given by Whitney [15]

pn : Ωr+(∆n)→ E(∆n)

pnα =
n∑

k=0

∑

i0<···<ik
ωi0...ik

∫

(ei0 ,...,eik )

α

compatible with the simplicial (cochain complex) structures of Ωr+(∆•) and E(∆•). E(∆•)
is furthermore isomorphic (with the isomorphism respecting the simplicial structures) to the
complex of simplicial cochains on ∆•.

Following Getzler [5] let us make the following Definition.

Definition 7.1. A gauge on Ωr+(∆•) is a continuous simplicial linear map

s• : Ωr+(∆•)→ Ωr+(∆•)

of degree −1 satisfying

idΩr+(∆•) − p• = [d, s•]

and

s•
2 = 0, p•s• = s•p• = 0,

which is furthermore invariant under the action of the symmetric group S•+1 on ∆• (by permut-
ing the vertices).

Restricting to ker s• can be thought of as gauge fixing. An important example of a a gauge
is given by Dupont [3] in the proof of the simplicial de Rham theorem. Its construction is as
follows. Let us denote hi the de Rham homotopy operator associated to the retraction of ∆• to
the i-th vertex. Then the operators

sn =

n−1∑

k=0

∑

i0<...<ik

ωi0...ikhik . . . hi0

where n ≥ 0 form a gauge s• (it is ‖ · ‖r+-continuous for every r).
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Notation. We shall set

Ωr+(∆•)s := ker s• ⊂ Ωr+(∆•),

Ωr+(∆•)p := ker p• ⊂ Ωr+(∆•),

Ωr+(∆•)s,p := ker s• ∩ ker p• ⊂ Ωr+(∆•).

More generally, if W is a graded vector space, we let

Ωr+(∆•,W )s := ker(s• ⊗ idW ) ⊂ Ωr+(∆•,W )

etc.

The meaning of a gauge is summed-up by the following proposition.

Proposition 7.1. A gauge is equivalent to a choice of a closed and S•+1-invariant simplicial
subspace

M (∆•) ⊂ Ωr+(∆•)p

such that

d : M (∆•)→ Ωr(∆
•)p,cl

is a bijection, i.e. such that Ωr+(∆•)p = Ωr(∆
•)p,cl ⊕M (∆•). If s• is given then

M (∆•) = Ωr+(∆•)s,p.

If M (∆•) is given then s• is

(21) 0 E(∆•) ⊕ M (∆•) ⊕ Ωr(∆
•)p,cl.

s•

s•

s• = d−1

Proof. The map s• defined by (21) clearly satisfies

s•p• = 0, p•s• = 0, idΩr+(∆•)−p• = [d, s•], s
2
• = 0

so it is a gauge, and M (∆•) = Ωr+(∆•)s,p.
Conversely given a gauge s• we set M (∆•) = Ωr+(∆•)s,p and we easily see that d : M (∆•)→

Ωr(∆
•)p,cl is an isomorphism, and that the gauge defined by (21) coincides with the original

s•. �

We can use s• to specify the closed graded subspace C ⊂ Ωr+(∆•) of Proposition 4.4. Let

D(∆•) := h0

(
E(∆•)

)
⊂ E(∆•),

(where h0 is the de Rham homotopy operator given by the contraction to the vertex 0), so that
E(∆•) = E(∆•)cl ⊕D(∆•). We set C = D(∆•)⊕M (∆•) and consider the projection

π• : Ωr+(∆•)→ Ωr(∆
•)cl

w.r.t. C.
Notice that D(∆•) ⊂ E(∆•) is not a simplicial subspace, but it is compatible with the maps

between simplices that preserve the vertex 0. Likewise, π• is not a simplicial map, but it is
0-simplicial in the following sense:

Definition 7.2. If X• and Y• are simplicial sets then a sequence of maps f• : X• → Y• is a
0-simplicial map if it is functorial under the order-preserving maps {0, 1, . . . , n} → {0, 1, . . . ,m}
sending 0 to 0.

As before let W be a finite-dimensional non-positively graded vector space, U ⊂ W 0 be an
open subset, and let Q be a differential on the algebra AW |U and κ be the corresponding Kuran-

ishi map given by (17). Furthermore let U• be the open neighborhood U ⊂ U• ⊂ Ωr(∆
•,W |U )MC

from Proposition 4.4, where C = D(∆•) ⊕M (∆•). We can demand U• to be a simplicial sub-
manifold such that Un is invariant under the action of the symmetric group Sn+1 for every
n.

We will denote the simplicial set of gauge-fixed dg-morphisms in U• by

Ks
•(AW |U , Q) := Ωr(∆

•,W |U )MC,s := U• ∩ Ωr+(∆•,W )0,s.
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Its elements are (sufficiently small) forms A ∈ Ωr(∆
•,W |U )0 satisfying the equations

dA = FQ(A), s•A = 0.

Let us now recall the definition of higher Lie groupoids. As is usual we actually define higher
groupoids as nerves.

Definition 7.3. (Getzler [5], Henriques [6], Zhu [17]) A Kan simplicial manifold K• is called a
Lie `-groupoid if the maps Kn → Kn,k are diffeomorphisms for all n > ` and all 0 ≤ k ≤ n. A
finite dimensional simplicial manifold K• is called a local Lie `-groupoid if the maps Kn → Kn,k

are submersions for all n ≥ 1, 0 ≤ k ≤ n and open embeddings for all n > `, 0 ≤ k ≤ n.

Theorem 7.1. The simplicial set Ks
•(AW |U , Q) is a finite-dimensional local Lie `-groupoid with

−` being the lowest degree of W .

Proof. Let

π• : Ωr+(∆•,W )0 → Ωr(∆
•,W )0,cl

be the projection w.r.t. (C ⊗W )0 (where C = D(∆•)⊕M (∆•)) and let

πres• : U• → Ωr(∆
•,W )0,cl

be the restriction of π• to U•. By Proposition 4.4, πres• is an open embedding. Let us recall that
πres• is a 0-simplicial map.

Let Ks
• := Ks

•(AW |U , Q). We have

Ks
• = U• ∩ Ωr+(∆•,W )0,s

= (πres• )−1
(
Ωr(∆

•,W )0,cl ∩ Ωr+(∆•,W )0,s
)

= (πres• )−1
(
E(∆•,W )0,cl

)

as Ωr(∆
•,W )0,cl∩Ωr+(∆•,W )0,s = E(∆•,W )0,cl. This implies that each degree of the simplicial

set Ks
• is a finite-dimensional smooth manifold and that

(22) πres• : Ks
• → E(∆•,W )0,cl

is an open embedding.
It remains to prove that it is a local Lie `-groupoid. Since E(∆•,W )0,cl is a Lie `-groupoid

and πres• a 0-simplicial map, Ks
• satisfies the required conditions for the projections Ks

n → Ks
n,0.

The action of the symmetric group Sn+1 on Ks
n then ensures that the conditions are satisfied

for all horn projections Ks
n → Ks

n,k, i.e. that Ks
• is a local Lie `-groupoid. �

The simplicial manifold Ks
•(AW |U , Q) = Ωr(∆

•,W |U )MC,s was constructed using infinite-
dimensional techniques. We can now see it as a simplicial submanifold of a finite-dimensional
simplicial vector space:

Theorem 7.2. The projection

E(∆•,W )0 ⊕M (∆•,W )0 → E(∆•,W )0

restricts to an emdedding of simplicial manifolds

Ks
•(AW |U , Q)→ E(∆•,W )0.

Proof. The projection is a simplicial map. It restricts to an embedding since (22) is an (open)
embedding. �

We can thus identify Ks
•(AW |U , Q) with

{A ∈ E(∆•,W )0; (∃A′ ∈M (∆•,W )0) d(A+A′) = FQ(A+A′)}

intersected with a suitable open subset of E(∆•,W )0.
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8. Deformation retraction

In this section we shall prove that Ks
• and Kbig

• are equivalent as local Lie ∞-groupoids,

namely we shall construct a local simplicial deformation retraction of Kbig
• onto Ks

• .
If A0 ∈ Ωr(∆

•,W |U )MC and G ∈ Ωr(∆
•,W )0,cl,p so that d(s•G) = G, and if the C0-norm of

s•G is small enough, then Theorem 3.1 gives us a form

Ã ∈ Ωr(∆
• × I,W |U )MC

such that Ã|0 = A0 and Ãv := i∂tÃ = q∗s•G, where q : ∆• × I → ∆• is the projection. It is
given by Equation (12) with H = q∗s•G, i.e. by

d

dt
Ãh = G+ (s•G

i)
∂FQ
∂ξi

(Ãh).

Let us use the notation Ã(A0, G) for the form Ã constructed in this way.

Proposition 8.1. There is an open neighbourhood V• of U × {0} in

Ωr(∆
•,W |U )MC,s × Ωr(∆

•,W )0,cl,p

such that the map (A0, G) 7→ Ã(A0, G)|t=1 is an open embedding ψ : V• → Ωr(∆
•,W |U )MC .

Proof. Since ψ restricts to the identity on U × {0}, it’s enough to show that for each Ac ∈ U
the tangent map ψlin := T(Ac,0)ψ is invertible. We have

ψlin(A0, G) = A0 +G+ (s•G
i)
∂FQ
∂ξi

(Ac)

(for A0 tangent to Ωr(∆
•,W |U )MC,s at Ac and G ∈ Ωr(∆

•,W )0,cl,p).
Let us recall that the projection π• w.r.t. (C ⊗W )0 (where C = D(∆•) ⊕M (∆•)) gives us

isomorphisms
TAc

Ωr(∆
•,W |U )MC,s ∼= E(∆•,W )0,cl

and
TAcΩr(∆

•,W |U )MC ∼= Ωr(∆
•,W )0,cl = E(∆•,W )0,cl ⊕ Ωr(∆

•,W )0,cl,p.

Since the term (s•Gi)
∂FQ

∂ξi (Ac) ∈M (∆•,W )0 is removed by this projection, we see that ψlin is

indeed an isomorphism. �
Theorem 8.1. There is an open neighbourhood W• of U in

Ωr(∆
•,W |U )MC

which is a simplicial submanifold, and a (smooth) simplicial map

Ψs
• :W• → Ωr(∆

• × I,W |U )MC

with these properties:

(1) Ψs
•(A)|t=1 = A (for every A ∈ W•)

(2) Ψs
•(A)|t=0 ∈ Ωr(∆

•,W |U )MC,s

(3) if A ∈ Ωr(∆
•,W |U )MC,s then Ψs

•(A) = q∗A where q : ∆• × I → ∆• is the projection.

∆n × {t = 0}

∆n × I

∆n × {t = 1}

Ψs
n(A)|t=0 ∈ Ω(∆n,W )MC,s

Ψs
n(A) ∈ Ω(∆n × I,W )MC

A = Ψs
n(A)|t=1 ∈ Ω(∆n,W )MC

Figure 5. Deformation retraction
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Proof. We set W• := ψ(V•) (we might then have to decrease W• to ensure that it is a simplicial

submanifold), and Ψs
•(A) := Ã(ψ−1(A)). �

Let us recall that a simplicial homotopy is a simplicial map X•× I• → Y• where the simplicial
set I• (the simplicial interval) is the set of non-decreasing maps f : {0, . . . , •} → {0, 1}. We can
now formulate the main result of this section.

Theorem 8.2. There is a local simplicial deformation retraction

Rs• : Ωr(∆
•,W |U )MC × I• → Ωr(∆

•,W |U )MC

of Ωr(∆
•,W |U )MC to Ωr(∆

•,W |U )MC,s ⊂ Ωr(∆
•,W |U )MC , where “local” means that it is

defined on an open neighbourhood of U in Ωr(∆
•,W |U )MC .

Proof. If f ∈ I•, f : {0, . . . , •} → {0, 1}, let g : ∆• → ∆• × I be the affine map given on
the vertices by g(vi) = (vi, 1 − f(i)) (i = 0, . . . , •). Given A ∈ W• ⊂ Ω(∆•,W |U )MC we set
Rs•(A, f) := g∗Ψs

•(A). �

9. Functoriality and naturality

If φ : V  V ′ is a morphism of NQ manifolds, i.e. if we have a morphism of dg algebras
φ∗ : AV ′ → AV , by composition we get a morphism of Banach simplicial manifolds

(φ∗)• : Ωr(∆
•, V )MC → Ωr(∆

•, V ′)MC

(or of Fréchet simplicial manifolds if we remove the subscript r). In this way V 7→ Ωr(∆
•, V )MC

is a functor from the category of NQ manifolds to the category of Banach simplicial manifolds.
The situation is more complicated when we consider the finite-dimensional simplicial mani-

folds Ks
•(W |U ) := Ωr(∆

•,W |U )MC,s. To avoid mentioning new and new open subsets, let us
make the following definition.

Definition 9.1. If X• and Y• are simplicial manifold, a local homomorphism X• → Y• is a
smooth simplicial map U• → Y•, where U• ⊂ X• is an open simplicial submanifold containing
all fully degenerate simplices. Two local homomorphisms are declared equal if they coincide on
some U•.

Let

is• : Ωr(∆
•,W |U )MC,s → Ωr(∆

•,W |U )MC

be the inclusion, and

ps• : Ωr(∆
•,W |U )MC → Ωr(∆

•,W |U )MC,s

the projection given by ps•(A) = Ψs
•(A)|t=0 (ps• is a local homorphism).

If φ : W |U  W ′|U ′ is a map of dg manifolds, i.e. if we have a morphism φ∗ : AW ′|U′ → AW |U
of dg algebras, we get a local morphism

Ks
•(φ) : Ωr(∆

•,W |U )MC,s → Ωr(∆
•,W ′|U ′)MC,s

of local Lie `-groupoids, defined as the composition

Ωr(∆
•,W |U )MC,s is−→ Ωr(∆

•,W |U )MC (φ∗)•−−−→ Ωr(∆
•,W ′|U ′)MC ps−→ Ωr(∆

•,W ′|U ′)MC,s.

Let us observe that

Ks
•(φ ◦ φ′) 6= Ks

•(φ) ◦Ks
•(φ
′)

in general, i.e. Ks
• is not a functor. It is, however, a “functor up to homotopy”, i.e. a homotopy

coherent diagram in the sense of Vogt [16], or, using a more recent terminology, a quasi-functor.
Let us describe this quasi-functor in pedestrian terms. An n-simplex f in the nerve of the
category of dg manifolds of the type W |U is a chain of composable morphisms

f :=
(
W0|U0

φ0
W1|U1

φ1
. . .

φn−1
Wn|Un

)
.

Combining the maps (φi∗)•, i = 0, . . . , n−1 with the local simplicial deformation retractions Rs•
we obtain simplicial maps

Ks
•(f) : Ks

•(W0|U0
)× In−1

• → Ks
•(Wn|Un

)
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defined (in the case of n = 3, as an illustration) as the composition

Ks
•(W0|U0

)× (I•)2 Kbig
• (W1|U1

)× (I•)2 Kbig
• (W2|U2

)× I• Kbig
• (W3|U3

)

Kbig
• (W0|U0

)× (I•)2 Kbig
• (W1|U1

)× I• Kbig
• (W2|U2

) Ks
•(W3|U3

)

is•×id Rs
•×id Rs

• ps•(φ0∗)•×id (φ1∗)•×id (φ2∗)•

By construction, they define a homotopy coherent diagram. To explain what it means, let us
use Vogt’s notation for Ks

•(f)

Ks
•(φ0, t1, φ1, t2, . . . , tn−1, φn−1) : Ks

•(W0|U0)→ Ks
•(Wn|Un)

where ti ∈ I•, i.e. ti’s are non-decreasing maps {0, . . . , •} → {0, 1}. Then

Ks
•(φ0, t1, . . . , tn−1, φn−1) =

=





Ks
•(φ1, t2, . . . , tn−1, φn−1) if φ0 = id

Ks
•(φ0, t1, . . . ,max(ti, ti+1), . . . , tn−1, φn−1) if φi = id, 0 < i < n− 1

Ks
•(φ0, t1, . . . , tn−2, φn−2) if φn−1 = id

Ks
•(φ0, t1, . . . , φi ◦ φi−1, . . . , tn−1, φn−1) if ti = 0 identically

Ks
•(φi, ti+1, . . . , φn−1) ◦Ks

•(φ0, t1, . . . , φi−1) if ti = 1 identically

More compactly, a homotopy coherent diagram can be described as follows (an introduction
to the subject can be found in Porter [11]). If C is a category (in our case the category of NQ
manifolds of the form W |U ) and if D is a simplicially enriched category (in our case the category
of simplicial manifolds with local morphisms) then a homotopy coherent diagram from C to D
is a simplicially enriched functor S(C) → D, where S(C) is the simplicially enriched category
defined as the free simplicial resolution of C, introduced by Dwyer and Kan [4].

We thus have the following result.

Theorem 9.1. Ks
• is a homotopy coherent diagram from the category of dg manifolds of type

W |U to the simplicially enriched category of local simplicial manifolds with the simplicial enrich-
ment given by

Hom(L,M)n := Hom(L×∆[n],M)

where ∆[n] is the simplicial set representing the n-simplex. Here “local” means that morphisms
are defined to be local homorphisms of simplicial manifolds.

For a general dg manifold given by a negatively graded vector bundle V → M (not of the
form W |U ) one can apply the quasi-functor Ks

• on the nerve N•(U) of a good cover U of M .
We can say a bit more in this situation: the homomorphisms Ks

•(φ) on overlaps are actually
isomorphisms.

Indeed, for any dg-map φ : W |U  W ′|U ′ the linearization (φ∗)•,lin of (φ∗)• commutes with
s•, p•. Therefore the linearization (φ∗)s•,lin of (φ∗)s• is functorial, i.e. if φ′ : W ′|U ′  W ′′|U ′′ is

another map of dg manifolds then (φ′∗ ◦ φ∗)s•,lin = (φ′∗)
s
•,lin ◦ (φ∗)s•,lin. For id : W |U  W |U

we have (id∗)s• = idΩr(∆•,W |U )MC,s . Together with functoriality this implies that if φ is an
isomorphism of dg manifolds then Ks

•(φ) is an isomorphism of local Lie `-groupoids.

10. Concluding remarks

Let us conclude with two open problems.
For a general NQ manifold one cannot expect to globalize the gauge-integration to obtain

Lie `-groupoids. Lie’s third theorem fails already in the case of Lie algebroids; the integrability
condition was discovered by Crainic and Fernandes [2]. Their obstructions are formulated in
terms of the monodromy groups. There seems to be a generalization of this result in terms
of a sequence of higher monodromy groups at each point of the body of the higher degree dg
manifolds. It would we interesting to make it precise, and to find a better relation with the
gauge integration procedure.

The second problem concerns dg manifolds with additional structure. An important case is a
symplectic structure ω of degree `. This is a Poisson manifold resp. Courant algebroid for ` = 1

resp. ` = 2. How is this structure reflected in Kbig
• and Ks

•? It is well known that for ` = 1
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we get a symplectic groupoid and for general ` the result should be a symplectic Lie `-groupoid.
This is sketched in Ševera [13] and proven for exact Courant algebroids by Li-Bland, Ševera [8]
and Mehta, Tang [9]. This question is related to the AKSZ construction [1] (with boundary)
if we consider a field theory with T [1]∆• as the worldvolume and the target manifold (Z, ω) a
dg symplectic manifold of degree • − 1. Then the formal graded manifold Hom(T [1]∆•, Z) is a
formal dg symplectic manifold of degree −1.
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