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Econometrica, Vol. 51, No. 4 (July, 1983)

COMPUTABLE QUALITATIVE COMPARATIVE STATIC
TECHNIQUES!

By GILBERT RITSCHARD?

This article is devoted to computable techniques for solving comparative static problems
when only the sign of the partial derivatives of the model is considered. We first show how
to extract unambiguously signed multipliers, or more generally qualitatively linked mul-
tipliers. This information then helps to reduce the size of the original system by means of a
qualitative aggregation principle which we establish. As to the computation of solutions, a
branch-and-bound algorithm is presented which considerably increases the efficiency of
the Samuelson-Lancaster elimination principle. Finally we derive an efficient algorithm to
check for signed determinants. The techniques are then applied to the analysis of an actual
20 equation model.

1. INTRODUCTION

BROADLY SPEAKING, comparative static analysis deals with the study of how, in a
given economic model, endogenous variables react to given changes in exogenous
variables or parameters. In the case of a fully quantified model, such an analysis
can be carried out numerically, for example, by examining a quantified impact
multiplier matrix. This does not allow, however, distinguishing between the
conclusions which stem from the particular empirical content of the model and
those which emerge from its theoretical background. The aim of qualitative
methods is to make this distinction. By dealing with the model in its general
formulation these methods take into account only a priori (i.e. theoretical)
information in order to determine its logical implications.

For marginal changes, one way to achieve a qualitative analysis is to formally
express the impact multipliers in terms of the derivatives of the equation. This
allows us to see where a priori information about these derivatives is sufficient to
determine the sign of some impact multipliers. However, as the size of the model,
i.e. the number of equations, increases, it rapidly becomes tedious or impossible,
even with the help of a computer, to formally express such impact multipliers.

An alternative way to solving comparative static problems is to make a
systematic study of the implications of some specific kind of a priori information.
This is the approach followed in this paper. The specific information we shall
consider consists of the signs of the partial derivatives of the equations of the
model. Retaining such information, one can then express the study of compara-

|
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IThis article reports some of the main results of the author’s Doctoral Thesis [15]. A previous
version of this article, prepared under the auspices of the LABREV while the author was guest
professor at the University of Quebec at Montreal, was presented at the 6th Annual Convention of
the Eastern Economic Association, Montreal, May, 1980.
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effort in trying to render the author’s English less eccentric.
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1146 GILBERT RITSCHARD

tive static problems in terms of the resolution of systems of qualitative linear
equations.

The relevance of this approach was first stressed by Samuelson in 1947 [21].
Then, between 1962 and 1970, following Lancaster’s work [7] quite a lot of
research on qualitative linear systems was done. See [1] for a survey. There has
been a recent renewal in this field [6; 11; 12; 13; 14; 18, Ch. 7 and §; and 19].

Most of these studies deal with necessary and sufficient conditions for obtain-
ing significant conclusions from sign assumptions. This includes results on the
stability of qualitative matrices (see [14] for a survey on this topic) and on the
solvability of qualitative linear systems, i.e. conditions for having a unique
solution [2, 5, 6, 7, 8, and 13]. Indeed, qualitative stability, as well as solvability
are powerful theoretical properties. However, conditions for them to hold are
very strict and unlikely to be fulfilled, except for very small systems.

The aim of this article is somewhat different. Its purpose is to provide practical
techniques for the qualitative analysis of existing models. This presupposes the
research of weaker properties than stability and solvability and the development
of efficient algorithms. In order to achieve this goal we reason in terms of
Samuelson’s elimination principle [21, pp. 23-28]. Another interesting approach,
not considered here, would be to use graph theory and to argue in terms of the
principle of transmission of influence [12; 17; 18, Ch. 7].

Along the line followed, the most significant contribution so far has been
Lancaster’s development [9, 10] of Samuelson’s qualitative calculus. Despite
these improvements, the applicability of the method remains very limited. In-
deed, it still requires a starting set which increases exponentially with the size of
the model. This article suggests then two complementary ways to overcome this
difficulty: a qualitative aggregation principle and a branch-and-bound proce-
dure. In addition the results are extended to check for signed determinants.

We should mention that as is usually the case in qualitative economics we only
consider deterministic models. This ensures, even in the presence of nonlinearity,
the (implicitly assumed) nonstochastic nature of the impact multipliers.

The problem to be studied is formalized in Section 2, together with a short
discussion on the necessity of a previous causal ordering of the model. Section 3
introduces the concept of “qualitative link” and presents an efficient algorithm to
determine such links. Section 4 discusses the improvement of the Samuelson—
Lancaster elimination method by means of a branch-and-bound procedure. In
Section 5, we establish an algorithm used to check for signed determinants.
Finally, for illustrative purposes a qualitative analysis of the Quebec Econometric
Model [20] is presented.

2. CAUSAL ANALYSIS AND QUALITATIVE CALCULUS

Let us consider an economic model formally represented by a system of n
equations:

M h(y,2) =0,
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which relates the equilibrium level of the n endogenous variables y to the state of
the environment represented by the m exogenous variables z.

DEerINITION 1: By giving the sign (positive, negative, or zero) of each element
of the matrix

dh  dh
(2) |: a yr a Z, :I,
we completely characterize the qualitative structure of the model.

Comparative statics is mainly concerned with the study of the impact multi-
plier matrix, which can be written in terms of the two matrices in (2):

dy _ [an]'an
(3) 'zg_ l:ay/:l azr'

Thus the problem considered is that of providing information about the content
of the matrix (3) when only the knowledge of the qualitative structure is taken
into account. Obviously, this information can only concern the sign pattern of
the matrix dy/9z’.

DEFINITION 2: A multiplier dy,/9z; is qualitatively determined when its sign
(positive, negative, or zero) is unambiguously determined from the qualitative
structure.

DEFINITION 3: A multiplier 9y,/9z; is said to be a (weak) qualitative zero if and
only if in the model (1) y; is determined independently from the exogenous
variable z;, i.e. if and only if z; has no causal effect on y,.

A causal analysis of the model, for which efficient tools related to graph theory
have recently been developed (see, for instance, [3, 4, and 16] for a computer
program), enables the extraction of qualitative zeros. Practically such an analysis
consists in determining the block recursive decomposition of the model. This
decomposition is characterized by the block triangular form into which the
matrix 94 /9y’ can be transformed through independent permutations of its rows
and columns. Let

D, 0
©) D= . . y
Dpl Dpp

where the diagonal submatrices D, are square and irreducible, be this block
triangular matrix. The equations A%( »,2z) =0 corresponding to the rows of a
block D,, are the smallest subset of equations which determines the endogenous
variables y* corresponding to the columns of D, . Indeed all variables y/, j < k,
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can be considered as exogenous in the interdependent block h*(y,z)=0,
whereas the variables y/, j > k, do not appear in the equations of this block.
Thus

a)’k__ o amk S, Ay
R Dkk[“sz'"“E,Dkfa—zs

s

from which we deduce, without further proofs, the following theorem.

THEOREM 1: Assume the model has been partitioned according to the decomposi-
tion (4). Then the multipliers dy* /9z, are qualitative zeros if and only if: (i)
0h*/9z,=0 and (ii) 0h//0z,=0 for all j for which a sequence of nonzero
matrices: Dy, , D ., D, ;, can be found.

rry? e nj?

The application of this theorem to determine the qualitative zeros of dy/9z’
only requires the knowledge of the zero entries of matrix (2). Qualitative zeros are
therefore more general properties of a model than those studied in the remainder
of the article.

For a generic exogenous variable a = z_, the corresponding multiplier vector
dy/da is a solution of the following linear system:

dh 9y _ _ 9h

© 9y’ da da

From Theorem 1, if 3y'/da is the subvector of all qualitative zeros in dy/da,
then (6) can be written, through suitable permutations, as follows:

o ! 0
ay" da

™ 2 2 2 2
am amt || 7| _an?
ayll 8};2’ aa 301

where 9y?/da contains no qualitative zeros. Thus in order to study the other
multipliers dy?/da, one only needs to consider a subsystem which has no
qualitative zeros, i.e.,

o vt aw
® 3y? da  da

Henceforth we shall, with no loss of generality, make the following assumption.

AssuMPTION 1: The multiplier vector dy/da studied contains no qualitative
ZeTOos.

DErINITION 4: Given a p X r matrix B =[b;], the p X r matrix H = [h;], with
h,.j = + if b,-j >0, h,-j = — if b,-j <0, hij =0 if b,-jE 0, is said to be a gualitative
matrix associated to B.
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Let us consider the n X n qualitative matrix 4 associated to 94 /3y’, the n X 1
qualitative vector b associated to d4/da, and the following obvious qualitative
operations:

sum product
+ {+ — 0 r + — 0 r
©) + |+ r + r + + - 0 r
- {r = = r -~ -+ 0 r
O+ - 0 r 0 0 0 0O
r|lr r r r r r r 0 r

where an r stands for indetermination. We then have to face the problem of
solving a qualitative system of the form: '

(10)  Ax= —b.
By setting
an H=[b 4], v=[+ x]

we can, in an equivalent way, study the more convenient homogenous system:
Hv = 0, which can be considered as the qualitative system associated to:

0h 93k || da | _
o (8 BlE
with da > 0 and d,y = (3y/da)da.

DEFINITION 5: Assume H is p X r. Then an r X 1 sign vector s is a qualitative
solution of Hv = 0, if and only if:

(13) Zh,.jsj=00rr forall i=1,...,p.
=1

According to (11) we shall in general only consider solutions, s, normalized such
that s, = +. Let us denote by S the set of all such acceptable solutions for the
qualitative system associated to (12). It then follows that a multiplier 9y, /0« is
qualitatively determined if and only if its corresponding element s;,, has the
same sign in each vector s of S. Without confusion we shall also state, in this
case, that the variable v, is qualitatively determined.

DEerFINITION 6: Let S be the set of qualitative solutions s of Hv = 0. Then two
variables v; and v; are qualitatively linked (v;-£’v)) if and only if s5; and s; are
always of the same sign, or always of opposite signs in all s of S. In the first case,
v and v, are said to be positively linked (v;-Z* v;) and in the second case
negatively linked (v,.2" ~ v)).

This definition generalizes the concept of qualitatively determined variables.
From (11), qualitatively determined variables are then those variables which are
qualitatively linked with v,.
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Qualitatively linked variables can easily be determined by examining the set S.
However the difficulty remains in obtaining this set. Before studying this prob-
lem in Section 4 we show in Section 3 how qualitatively linked variables can be
set up directly. Incidentally a qualitative aggregation procedure is suggested,
which allows reduction of the size of the qualitative system being analyzed.

3. QUALITATIVELY LINKED VARIABLES AND QUALITATIVE AGGREGATION

Relation .7 being an equivalence relation (i.e. reflexive, symmetrical, and
transitive) allows us to partition the set of p variables v of a qualitative system
Hv =0 into equivalence classes. This section provides a practical method of
determining this partition.

DEFINITION 7: Assume o' is a subset of p, qualitatively linked variables. We
then characterize the qualitative link between the variables in o' by a sign vector
q' of the same size as v', defined by setting ¢, = ¢; if v, * v, and ¢, = —4 if
v; f v With respect to the set S of solutlons w1thout Zeros of Hv=0, q', or

— g, is the subvector s' corresponding to o' of any vector s of S.

DEFINITION 8: Assume there is a qualitative link ¢' between the variables in
v'. Then v} = ¢'v' is said to be a qualitative aggregate of the variables in ov'.

The knowledge of the qualitative link ¢' for a class v', and of the sign s; of
only one component v, of v', is sufficient to determine the signs s' of all variables
in v'. Assuming ¢, = +, we then have: s' = 5,q'. The procedure is then to reduce
the size of the system Hv = 0 by considering only one variable instead of the
whole vector v'. Since all variables do not appear in all equations, one way to
preserve the full qualitative information on v! is to replace the subvector v', of
order p,, by the qualitative aggregate vf. Assuming without loss of generality
that o’ =[o" ©?], we replace the vector v by

1
a4 o =[‘1 o } = Mo,
o2
where the (p — p; + 1) X p qualitative aggregation matrix M is defined as
1 ’
a5 M= [.2_1.0_- ,
‘ 07,

I, being the qualitative matrix associated to the identity matrix /. Since the
ordering of the columns of matrix H corresponds to that of the variables v, one
can consider aggregating H into the following r X (p — p, + 1) matrix:

(16) HM'=[H1 gHz]M'=[H,q' ;Hz].
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For some rows h = [h": 7] of H, the product 4'q" might, however, be qualita-
tively undetermined. According to Definition 5, the corresponding relations
h/v = 0 admit as a solution any sign vector s compatible with the qualitative link
q', ie. all s for which s' = +q'. These rows A/ do not provide any further
information and therefore can be eliminated.

DEFINITION 9: Let H** be the matrix obtained after eliminating the rows A’
for which h'q' is undetermined. We then define H*, the qualitative matrix
aggregated according to ¢', by

(A7) H*=H*M".

THEOREM 2: Assume there is a qualitative link q' among the variables of v' in
Hv =0, and consider the aggregated system H*v* = 0. Let S and S* respectively
be the set of qualitative solutions without zeros of Hv = 0 and H*v* = 0. There is
then the following one to one relationship between S and S*:

(18) S*={s*s*=Ms,s€ES}=S={s;5=M's* s* € S*}.

ProOF: Let R be the set of qualitative vectors s, with s’ =[s"" s?] and s' =
+ ¢'. Because of the qualitative link ¢' among the variables in v!, the subset of
vectors of R solutions of H**v = 0 is identically equal to S. Thus, to prove the
theorem, one has to establish that s* is a solution of H*v* =0, if and only if
s = M’s* is a solution of H**p = 0. But this is obvious since H*s* = H**M's*
= H**s.

We can generalize the procedure to the case of several groups of qualitatively
linked variables. Let qi, i=1,...,k, be the qualitative links for subsets of
variables v'. To generalize the aggregation rules (14) and (17) we simply have to
define the new aggregation matrix:

=
o

(199 M=

The matrix H** in (17) is obtained by eliminating from H the rows A/ for which
one of the products #/¢/, j=1,2, . . ., k, is qualitatively undetermined.

We should mention that the elimination of rows from H can lead to a matrix
H** with columns of zeros. In the case where all columns of H** corresponding
to a class v’ of qualitatively linked variables are null, the column of H*
corresponding to the aggregate v* = v’q’ will also be null (see (17)).
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DEerFINITION 10: An aggregate o* corresponding to a column of zeros in H*
can be “+” or “—” regardless of the sign of the other components of v*. v} is
then called an independent variable or aggregate, and the class v, represented by
v, an independent class.

Let v* =[v® ©%], where ©* is a subvector of k independent variables. The
set S* of solutions of the aggregated system H*v* =0 can easily be obtained
from the set S of solutions of H%? = 0, where H” results from the elimination
of the columns corresponding to ©* in H*. Since the k elements of #* are
independent variables, the 2* possible sign patterns of length k are admissible for
5 and thus each solution s2 gives rise to 2 solutions of the form s* = [s* 5.

Let us now turn to the extraction of the qualitatively linked variables which
have to be known before proceeding to a qualitative aggregation.

The method suggested is iterative and uses the qualitative aggregation princi-
ple. First a pair of qualitatively linked variables is sought. If found, the system is
aggregated with respect to this pair. Next, the procedure is repeated for the
aggregated system and so on until a system without qualitatively linked variables
is reached.

"In order to determine a couple of linked variables at each step, one can use the
following sufficient condition:3

THEOREM 3: Assume hy; and hy; are the only two nonzero entries in a row hj of
H. Then the variables v; and v; are qualitatively linked in Ho = 0. The qualitative
link in o' =[v, v]is given by q" =[h; Ryl

Proor: The argument is straightforward since, when #;; and A; are the only
nonzero elements of 4, hzv = 0 can be written v; = — (hy;/ y;)v;.

DerFiNITION 11: An ' X p qualitative matrix G is said to be gqualitatively
equivalent to the r X p matrix H, if Gvo =0 and Hv =0 have the same set of
solutions without zeros.

When Theorem 3 cannot be used directly, one may attempt to apply it to a
transformation of H equivalent to H. This transformation can be obtained, for
instance, by means of the following conditions:

LEMMA 1: Assume hy is a nonzero entry of a row h] of H. Let h” ' be the row
obtained by reversing the sign of h;.. Then the set S of solutions without zeros of
Hv = 0 remains the same when h;_ is replaced by a zero in H if and only if each

3For example, if we consider

ne[t 1 7]

we have v,.2° ~ v,, even if the condition of Theorem 3 is not satisfied.
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sign pattern which is incompatible with h ‘v = 0 is also incompatible with at least
one equation of Hv = 0.

THEOREM 4: If two rows h and h] of H can be written in the following form by
Jjoint permutations of their elements:

=[],

(20
K = [ hY hy 0’]
with
0
h!=h' and hy =1 or
—hy
or
0
h!=—h! and h, ={or,
hi

then hy, can be replaced by a zero without affecting the set S of solutions without
zeros of Hv = 0.

Proors: Let E, be the set of sign vectors s for which /s = + orh/s = —. E, is
thus the set of sign patterns for v which have to be eliminated from the equation
hjo=0. Let E be the union of the E;, j # i, associated to the rows h/ of H.
Designate by 4 the row obtained by setting h; = 0 in row A/. Then if E and
E? are the set of sign patterns incompatible respectively with h”’ and h°’ we
have E®=E, U E;”. The set of sign patterns incompatible with Hv =0 (the
complementary of S) is E, U E. Then, obviously, the equality E;U E= E°’U E
is equivalent to E;,~ C E, which proves the Lemma. By construction of row 4/ in
Theorem 4 we have E;~ C E;, which corresponds to a special (i.e. sufficient) case
of Lemma 1.

The following particular cases of Theorem 4 can be mentioned: (i) If 4, =0 in
(20), all elements of h? can be replaced by zeros. Since the transformed row will
thus provide the same qualitative information as 4/, it can simply be deleted from
H. (ii) If h? = 0, the two rows differ in only one nonzero element or in all but
one. In this case both h,; and hy can be replaced by zeros and the two
transformed rows will provide the same qualitative information. The two rows in
(20) are then replaced by the equivalent single row [A' 0] in H.

DEFINITION 12: A qualitative matrix in which no element can be replaced by a
zero using Theorem 4 is said to be quasi-minimal.
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Contrary to the general formulation of Lemma 1, Theorem 4 is easily applica-
ble as it requires only the comparison of rows of H. As an illustration the reader
may check that in

- 0

oo

Q) H=

I+ + +
oo+ |

-+
+ 0

the elements Ay, hss, My, has, by, and hys can successively be set to zero. Thus
the row [+ — 0 O 0] is quasi-minimal and equivalent to (21). From
Theorem 3 and Definition 10, it follows that in this example v can be partitioned
into four independent classes: {v,,0,}, {v3}, {v4}, {vs}.

Using the easily checkable conditions given in Theorems 3 and 4 we build the
iterative qualitative aggregation procedure illustrated by Figure 1.* In this proce-
dure, the qualitative link ¢' for each class of qualitatively linked variables v' is
built step by step. Without loss of generality suppose that a qualitative link
between two aggregates v and v* has been found at the kth step. Assume ¢’ and
q/ are respectively the links between the variables v ', represented by v, and
v/, represented by vF. The link q for the vector o' =[v” ¢/] is then q"
[¢" ¢liforL "o org" =[q" —g/lif 0*L " v},

Theorems 3 and 4 provide only sufficient conditions. Nevertheless the algo-
rithm given in Figure 1 should allow us to find almost all qualitative links.
Moreover qualitative links which cannot be detected by means of these condi-
tions correspond to particular sign configurations in H which can be considered
as singular cases.

Such a singular configuration is obtained, for example, by setting 4,, equal to
zero in (21). Indeed this modification does not affect the positive link between v,
and v,, though this link would not be detected by the procedure in Figure 1. The
specificity of the configuration considered follows from the fact that, as the
reader can check, the method would apply when changing to zero any other
element of (21). Furthermore, replacing any zero by a nonzero term would break
the linkage between v, and v,.

The singularity of the configurations giving rise to nondetected linkages has
been confirmed by our experiments. Among all the qualitative systems for which
we were able to obtain the set S of solutions (some of them having more than 40
equations after the qualitative aggregation) we have never encountered such
singular cases except, of course, for the counterexample we have built.

Since it would be excessively time consuming to check for the absence of such
singular cases, it is preferable, in order to preserve efficiency, to neglect these and
limit oneself to the heuristic algorithm given in Figure 1. This algorithm always
works, for instance, on systems which can be put in the Lancaster [7] or more

“The algorithm has been successfully tested. The qualitative aggregation of systems of up to 200
equations required less than 10 seconds CPU time.
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Does one
row in H contain
only two non-zero
entries

by by 7

Reduce H to a quasi-
minimal equivalent

matrix H"

Does one
row in H" contain
only two non-zero
entries

p VN

q' =[hy, -hkj] is the
qualitative link between

v, and v,
1 J

According to q
aggregate Hv = Q

— H** =0

STOP

H*
vk

?
t
o]
('}

F1GURE 1—The iterative qualitative aggregation procedure.

general Gorman-Lancaster [5, 8] form, i.e. when all the variables form a unique
class of qualitatively linked variables.

4. IMPROVEMENT OF THE SAMUELSON-LANCASTER ELIMINATION
PRINCIPLE

This section discusses the computation of the set S of qualitative solutions for
a qualitative system: Hov = 0, with r equations and p variables. We shall assume
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only that no variable v; is a qualitative zero, so that S contains at least one
solution s without zeros.

Here one may use Samuelson’s elimination principle [21, pp. 23-29]. The
technique consists in eliminating from the set of all sign patterns s of length p
those for which (13) does not hold. This leads us to compare 27 a priori possible
sign vectors s with each row of H.> In order to improve this procedure, Lancaster
[10] suggested representing sign vectors by binary numbers, according to which
the comparison reduces simply to that of integer numbers. Under this form the
efficiency of the elimination principle remains limited, however, due to the size 27
of the reference set, i.e. the set of all a priori sign patterns, which increases
exponentially with p, the number of variables. For example, one would have to
test more than 10° possibilities for p = 20, and more than 10** for p = 50.%

With respect to this limitation a gain in efficiency will be achieved if, before
computing S, we can reduce the number p of variables by qualitative aggrega-
tion. From Theorem 2, this can be done without loss of generality. Nevertheless,
the method will fail when the number of classes of qualitatively linked variables
remains too large.

In order to overcome this difficulty, we now present a branch-and-bound
algorithm which renders the elimination principle operational even for a large
number, p, of variables.

THEOREM 5: Assume Hv = 0 can be written in the form:

H, 0 ][o! _
@2 [H21 szHUZ}_O

where the partition of v is compatible with that of the columns of H (H,, and H,,
need not be square.) Then for any solution s' =[s' s*] of Ho =0, s' has to be a
solution of H, 0" = 0.

Proor: By Definition 5, if s is a solution of Hv = 0, then it is also a solution
of [H,, 0]o=0. In this subsystem, variables in v* are independent. Thus s' has
to be a solution of H;v' =0.

In order to write H in the form (22), it is sufficient that this matrix has some
zero entries. It is thus almost always possible to compute the set S sequentially.
First, using the elimination principle, compute S' the set of solutions for
H, 0" = 0. Then, search for the solutions of [H,, H,Jv=0 among the set of
all possible sign vectors s for which s' belongs to S'. From Theorem 5, the
solutions thus obtained are all the acceptable solutions of Hv = 0. The advantage

5Note that there are 27 a priori possibilities if only sign vectors without zero are considered.
Otherwise this number would be 37.

SExamples of analyses of simple macromodels with Lancaster’s algorithm can be found in [10, and
22, Ch. 5].
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of such a decomposition is that it enables us to compute the set S without having
to test all 27 a priori sign sequences.

The above two-step method can easily be generalized to a more efficient / step
procedure by writing Ho = 0 in the form:

H,, 0 || o!
H, H 0?

23) o =0
H), H, v

where / is assumed to be as large as possible. This implies, for instance, that the
last column of each r;, X p; submatrix H;; contains only nonzero elements.

The solutions of Hv = 0 are sought recursively by seeking at each kth step the
solution of

@)  [Hy ... Hy]|l :|=0,

among the sign vectors [s' ... sV s¥] where [s" ... s*7']is one

of the solutions obtained at the previous step.
Practically this recursive procedure leads to a branch-and-bound construction
of the set S. This is shown in the following example:

U
- + —10i0
0 + +10bo|l>
25) |-t T_ Loog—x. v3 | =0
S e PO |
0 — 0!+ 1%
! o

for which the determination of the solutions is described in Figure 2. The number
alongside each neglected branch is that of the equation with which it is incompat-
ible.

It must be noted here that the efficiency of the procedure is not independent of
the ordering of the variables. Efficiency is optimized if, when writing the system
in the form (23), the number p, of columns of the matrices H;, i=1,...,1 is
minimized.

To illustrate the gain in efficiency of the proposed recursive procedure over the
basic Samuelson—Lancaster elimination principle, we mention that, for the five
20 equation systems studied in Section 6, the computation time without previous
qualitative aggregation was reduced from 30 minutes to 10 seconds CPU time on
a UNIVAC 1108 computer. This gain in efficiency of the recursive procedure
(the same being true for the aggregation algorithm) is due to a systematic
accounting for the knowledge of the zero entries. For this reason the gain over
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FIGURE 2.

the basic elimination principle increases with the proportion of zero entries in the
matrix, which itself generally increases with the size of the system to be analyzed.
Moreover, this renders a more systematic accounting of the causal outline of the
system useless.

5. SIGNED DETERMINANTS

From Samuelson’s correspondence principle it is legitimate, in a comparative
static analysis, to impose that the determinant of the Jacobian be qualitatively
defined (i.e. stability conditions require a given sign for [d/2/9y’|). The purpose of
this section is to show how to include this information efficiently in the qualita-
tive calculus.

For the qualitative system Ax = —b, we have under Assumption 1: |4]x;
=|4,, i=1,...,n, where 4, is the matrix obtained by substituting — b to the
ith column of 4. The determinant |4| being qualitatively defined, all variables x;
for which the sign of |4,| is unambiguously determined from the qualitative
structure are consequently qualitatively defined.

In order to apply this property one must be able to efficiently check whether
the determinants |4, i=1, ..., n, are signed. As shown by Lancaster [10, p.
292] this can be done, for a generic matrix F = A;, by checking whether the
homogenous system, Fw = 0, admits a nontrivial qualitative solution.”

DEFINITION 13: For an » X p qualitative system Ho = 0, a variable v, is said to
be a strong qualitative zero if and only if 5; = 0 in each qualitative solution.

An equivalent formulation of the above result is as follows:
7Note however that this nontrivial solution need not be a solution vector without zeros as

Lancaster implicitly assumes. It would be so only for matrices F which cannot be put in block
triangular form.
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THEOREM 6: Assume F is a square qualitative matrix. Then its determinant |F|
is qualitatively determined if and only if all the variables of Fw =0 are strong
qualitative zeros.

The problem considered can thus be solved by seeking the strong qualitative
zeros of Fw = 0. This can be done using the following properties:

LEMMA 2: Assume the matrix H of an r X p qualitative system Hv = 0 contains
a row h{ with h; #0 and h; =0 for all j # k. The variable v, is then a strong
qualitative zero.

THEOREM 7: An r X p qualitative system Hv = 0 has a strong qualitative zero if
and only if it can be aggregated into a system H*v* = 0 for which at least one row
h* of H* has one and only one nonzero entry.

Proor: The argument for Lemma 2 is obvious since A/v = h, v, = 0 implies
v, = 0. The sufficiency in Theorem 7 follows directly from Lemma 2. The
necessity of the condition is proven by the following argument. Let H*v* = 0 be
a system in which no variables are qualitatively linked, such that it cannot be
further aggregated. Assume that each row of the »* X p* matrix H* has at least
two nonzero entries. Then H*v* =0 admits at least p* + 1 solutions without
zeros. Then no variable in v*, nor in v, can be a strong qualitative zero.

The algorithm given in Figure 3 is derived from Theorems 6 and 7 and Lemma
2. The successive deletion of the strong qualitative zeros is done without loss of
generality. Indeed if we denote w® and F° the vector and matrix obtained by
eliminating the strong qualitative zeros from w and the corresponding columns of
F, we have: Fw = F%0 It is important, however, to apply this elimination
procedure to the original system, and not to the aggregated one F*w* = 0.
Indeed, if the equations eliminated during the aggregation procedure are redun-
dant with respect to the solutions without zeros they may, however, remain
essential for the extraction of strong qualitative zeros.

Note that it is not necessary to apply the algorithm to each matrix 4,
i=1,...,n Indeed, when |4, is signed, each variable qualitatively linked to x;
will also have a signed determinant associated with it. Moreover, each matrix 4,
differs from another by only one column, apart from permutations of columns.
We then have the following property.

THEOREM 8: Assume the k (< n) variables in w' are the strong qualitative zeros
of the nX n system Aw=0. Let w =[w" w?] and partition A,=[A} A}
compatibly. Then the k matrices A; which, apart from permutations of columns,
differ from A; by one column of A}, all have an unsigned determinant.

PrROOF: Since w? are not strong qualitative zeros, A4,w =0 admits a nontrivial
solution [0’ s%]. But it is then also a solution of any system Fw =0, with
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row in F contain
only one non-zero
entry £ i ?

Aggregate Fw = 0
— F*w* =0

Does one
row in F* contain
only one non-zero
entry f;‘k ?

Wy is a strong
qualitative zero
Delete w, fram Fw = 0

k
Fow® =0

All variables wk represented by

wl: are strong qualitative zeros

Delete wk fram Fw =0
— Fowo =0

|F| IF|
o is signed is unsigned

F1GURE 3—Checking for the qualitative definition of a determinant |F]|.

F=[F' A?. Thus, each matrix 4; which can be put into this form by permuta-
tions of its columns has an unsigned determinant.

The problem remains, then, in finding the signs of qualitatively defined
determinants. For a signed determinant |F|, all nonzero terms in its expansion
are of the same sign. This sign can thus simply be obtained by computing only

one such term.
The method proposed requires the qualitative aggregation of the system
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Fw = 0 at each step. This is done efficiently by means of the iterative aggregation
procedure. Since the latter is a heuristic algorithm it will then also be the case of
the procedure in Figure 3. Note, however, that the possibly nondetected qualita-
tive links will not necessarily lead to a wrong conclusion about the determinant.
Undetected signed determinants should thus be even more rare than missed
links.®

Besides its efficiency, another advantage of the method is that it permits
checking for the sign determinacy of a determinant under side conditions.
Indeed, as is shown in the next section, side conditions often can be expressed in
terms of additional qualitative equations. Taking these into account, the study of
the determinant requires then the analysis of a rectangular matrix. But the
algorithm in Figure 3 applies obviously to such nonsquare matrices, which solves
the problem.

6. AN APPLICATION: SOME QUALITATIVE PROPERTIES OF A 20-EQUATION
ECONOMETRIC MODEL?®

Our purpose here is to show how the techniques developed in the previous
sections can practically be used in the analysis of an actual fair sized model. The
point is that, except for very simple models, the sign assumptions which define
the qualitative structure are generally not sufficient to obtain significant results.
Removing qualitative indeterminacies will thus require the introduction of side
conditions. The crux of the matter is that the qualitative techniques considered
permit dealing with such further information. This is made possible by the fact
that the algorithms presented apply whatever the dimensions r X p of the
qualitative system.

8The following matrix (pointed out by a referee) provides an example of such an undetected
determinant:

0
+

+o+ +
o+ + |
o

+

However this counterexample does not invalidate the necessity in Theorem 7. Indeed, this qualitative
matrix can be aggregated though the proposed aggregation procedure does not work in this case. The
difficulty arises here because of the absence of necessity of the condition of Theorem 4 on which the
aggregation algorithm is based. It is easily shown that the necessary and sufficient (but nonopera-
tional!) condition given in Lemma 1 is satisfied for every nonzero entry in the above matrix. Any (but
one at time) nonzero element can thus be changed to zero. The procedure then works without further
problems.

On the other hand the reader can easily check that the algorithm detects a signed determinant for
any matrix 4, extracted from a system written in the Gorman-Lancaster [5, 8] standard form. These
matrices A;, are indeed reducible, each irreducible diagonal block of which can be put in the
La121caster form [7]: 4 =[a,-j], with a;=+ for i<j, a;=0, for i>j+1, and G,y =—»]
=2,...,n

®The analysis reported here has been carried out by means of the computer program ANAS [4,
16]. All the algorithms in this paper have been introduced in the latter version of ANAS.



1162 GILBERT RITSCHARD

To illustrate this point we study some qualitative properties of a regional
economic policy model: the Quebec Econometric Model [20]. The relations and
the variables are given in the Appendix together with the basic qualitative
assumptions taken into account for the analysis.

Impact multipliers are studied for five exogenous variables: 1. Public Con-
sumption (GP), 2. Public Investment (IG), 3. Federal Tax Rate (RF), 4. Wage
Rate (W), 5. Interest Rate on Mortgage (TH). Since the model is dynamic, it is
important to mention that the analysis relates only to direct (one period)
multipliers.

The qualitative structure analyzed is summarized in Table I which also gives
the causal outline of the model. As each exogenous variable considered appears
in the first interdependent block, none of the 100 multipliers studied is a
qualitative zero.

From the basic qualitative information, we determine the following classes of
qualitatively linked variables for each exogenous variable considered:

{C,ICR,TL YD},

(TPP,YP},
(26)
(YW,MO,EP,Y},

{IM,IB, PS,DIV,TC}.

All links are positive. If we only consider G, RF, W, and TH, the variables U
and EG are also positively linked. Among the effects on the other endogenous
variable we can note that the impact on TPF is qualitatively independent in all
five cases. The computation of the qualitative solutions gives 100 possibilities
when GP is the exogenous variable considered, 80 for IG, 64 for RF, 116 for W,
and 112 for TH. 7 7

These results are not very relevant. This, however is not surprising because of
the generality of the assumptions considered. In order to obtain more significant
results, we must consider further general information.

The determinant of the matrix 4 associated to the Jacobian 94/9y’ of the
model is qualitatively undetermined. Assuming the model represents the equilib-
rium relations of some underlying dynamic process, stability conditions imply a
given sign for the determinant |94 /9y’|. Our first additional constraint is there-
fore the following:

CONSTRAINT 1: |4| = sign[(— 1)?°] = +.

Positive determinants |4,| have been obtained for dYP/dGP and dYP/0IG
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and negative ones for dY/9RF, dYP/dW, and 0 YP/9TH."° Imposing Constraint
1 leads to the results:'!

@7 aYP>0 8YP>O QY <0, 8YP<O aYP

9GP 9IG 3RF oW g <0

This information is taken into account in the analysis by adding a qualitative
equation to each of the five qualitative systems. For example, adding the
equation

(28) cv=(+)gp+ (—)vyp=0

ensures a positive link between the variations of GP and YP.

According to Lancaster’s linear combination technique [10, p. 288], quantita-
tive a priori information sometimes allows definition of additional qualitative
equations. This method, together with the knowledge of the exact value (—1) of
the Jacobian diagonal elements, as well as that of the coefficients in definitional
equation 519, enables us to take into account the hypothesis.

CONSTRAINT 2: 0 < (3f}3/9YP) + (3f,/0YP) < 1.

This constraint postulates that the marginal change in Personal Taxes (TPP +
TPF) induced by a marginal change in Personal Income YP is less than unity.
By subtracting, in the Jacobian (Table I), rows 413 and 414 from row 519, we
obtain the qualitative equation:

(29) (=)orr + (—)vyp + (+)vyp + (+)vrpp =0.

CONSTRAINT 3: of,/TPP > —1.

Analogously for this constraint, subtracting row 414 from row 519 leads to the
following qualitative equation:

30) (—)vre + (—)vyp + (+)vyp + (—)o7pp = 0.

The qualitative analysis under Constraints 1, 2, and 3 is done by adding the

10As a referee did point out to me the five corresponding matrices 4; are reducible to block
triangular matrices, the greatest irreducible block, of size 6 X 6, being in Asp. Elementary matrix
properties indicate that the entries of off-diagonal blocks in a block triangular matrix do not affect
the determinant of such a matrix. For this reason the more reducible a matrix is the more chance it
has of having a signed determinant. It is, however, worthwhile to notice that the reducibility is not a
necessary condition for this. For instance, from what has been said in footnote 8, the algorithm works
for any n X n irreducible matrix that can be put in the Lancaster standard form [7]: 4 = [a], with
a, =+ for i<j, a;,=0for i>j+1, and g, -y = —,j=2,...,n In terms of zeros the only
necessary condition for having a signed determinant is that the matrix contains at least (n — 1)(n — 2)
/2 null entries.

"'The same signs have been obtained numerically in [20, pp. 375-377] for a quantified version of
the model.
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TABLE II
MULTIPLIERS QUALITATIVELY DETERMINED UNDER CONSTRAINTS 1 AND 2

1 2 3 4 5

GP G RF w IH
101 C + + b - -
102 ICR + + -b - -
103 IM . . . . .
104 IB
205 PS . . . . .
206 YW + + -b . -
207 YR . . . . .
208 YNI + + -b - -
209 DIv . . . . .
310 MO + + -b - -
311 EP + + —a - -
312 EG . . . . .
413 TPP +2 +2 . —a —a
414 TPF . . . . .
415 TI + + -b - -
416 TC . . . . .
517 Y + + —a - -
518 YP +2 +2 . _a _a
519 YD + + -b - -
520 U . . . .

aSigns determined under Constraint 1 only.
bSigns determined under Constraints 1, 2, and 3.

above equations to the qualitative system studied for each exogenous variable.
We thus obtain the 52 signed multipliers given in Table II.

University of Geneva

Manuscript received November, 1980; final revision received July, 1982.

APPENDIX

THE QUEBEC ECONOMETRIC MODEL
(a) Equations and Related Endogenous Variables:

1. Expenditures:
101 Private Consumption:
C=f(YD,C_y).
=)
102 Investment in Housing Construction:
ICR = f,(YD, TH ,ICR _),).
=) (B =)
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103 Equipment Investment:
IM = fy(PS,AY _,IB_)).
=) (#)
104 Plant Investment:
IB = f,(PS,4,R).
=) )
2. Income:

205 Corporate Profits before Tax:

PS=fs(Y, U).
(=) (H(=)
206 Wage Bill:

YW = f(Y, AIPM ,W).
=) #H
207 Interests and other Capital Incomes:
YR = f;(ICR,IB,IM, IG , OPR).
(=) (HHH)(+)
208 Unincorporated Enterprises Net Income:
YNI = fo(Y,ICR).
=) (H )
209 Dividends:
DIV = fo(PS, DIV _)).
=) (#)
3. Labor Market:
310 Potential Labor Supply:
MO = fi(Y, PQ).
=
311 Private Employment:
EP=fi (Y, W).
=) (=)
312 Public Employment:
EG = f,,(U, GP, GFM).
(=) (+X+)



QUALITATIVE TECHNIQUES

4. Taxes:

413 Provincial Personal Taxes:
TPP = fi5(YP, RP).
=) (+) (+)

414 Federal Personal Taxes:

TPF = f,,(YP, RF,TPP).
(=) (+) (+) (=)

415 Indirect Taxes:

TI = f,s(YD,TI_,, RI).
=) (+) (+)

416 Taxes on Corporate Profits:
TC = f,¢(PS, RC).
=) ()

5. Accounting and Definitional Equations:

517 Gross National Product:

Y=C+ ICR+ IB+ IM+ GP + GFM + 1G — AH .

518 Personal Income:

YP=Y—TI- A+ TR+ IDP + BSNP.
519 Disposal Income:

YD = YP - TPP — TPF.
520 Unemployment:

U= MO — EP - EG.

(b) Analyzed Exogenous Variables:

Provincial Public Spending.

Public Investment.

Average Federal Personal Tax Rate.
Wage Rate.

Interest Rate on Mortgage

W B WN =
SRR

(c) Other Exogenous Variables:

A Depreciation.

BSNP Undistributed Profits.

GFM  Federal and Municipal Public Spending.
AH  Stock Adjustment.

IDP Interest on Public Debt.

1167
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Consumption Price Index in Montreal.

IPM

OPR  Debt Capital Ratio.

RQ Quebec Population.

R Interest Rate.

RC Corporate Profit Tax Rate.
RI Indirect Tax Rate.

RP Average Provincial Personal Tax Rate.
Net Transfers.

N
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