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Abstract

The Large Hadron Collider at CERN has collected a vast amount of data at the highest
energies ever achieved in a laboratory setting. This data has allowed for the discovery of the
Higgs boson and the precise measurements of properties of the Standard Model of particle
physics. No new particles have been discovered beyond the Standard Model, and despite
an impressive physics program, there remain many extensions that have not been excluded.
Many extensions to the Standard Model predict the existence of new particles that decay
into a pair of visible particles, which would appear as a peak in the invariant dĳet mass
spectrum. The standard approach to searching for such resonances is to perform a bump
hunt, where the invariant mass spectrum is examined for a peak. This approach is limited
in its sensitivity as it only utilizes the information contained in the invariant mass spectrum.

This thesis presents a search that extends the bump hunt by including up to six additional
variables that are sensitive to the presence of physics beyond the Standard Model. Narrow
width new physics models are searched for in the dĳet invariant mass spectrum using
139 fb�1 of proton-proton collision data collected by the ATLAS detector at a center-of-
mass energy of

�
s = 13 TeV. Events that contain at least two large radius jets at high

transverse momentum are selected. The search uses two different interpolation techniques
for producing background estimates over the six additional variables. This search is the first
of its kind and thus requires extensive development and validation of the analysis strategy.
The development of the analysis, and the challenges that were faced, are laid out in detail.
Limits are set on the production of twenty different possible new physics processes, many of
which have not been studied by any other analysis. Many of the challenges that need to be
addressed in future iterations of such a search are also discussed in detail, as well as avenues
for interpreting the results of such a search.

In addition, studies using machine learning techniques to improve different aspects of high
energy physics analyses are presented.





11

Résumé

Le Grand collisionneur de hadrons du CERN a recueilli une grande quantité de données
aux énergies les plus élevées jamais atteintes en laboratoire. Ces données ont permis de
découvrir le boson de Higgs et de mesurer avec précision les propriétés du modèle standard
de la physique des particules. Aucune nouvelle particule n’a été découverte au-delà du
modèle standard et, malgré un programme de physique impressionnant, de nombreuses
extensions n’ont pas été exclues. De nombreuses extensions du modèle standard prédisent
l’existence de nouvelles particules qui se désintègrent en une paire de particules visibles,
ce qui apparaîtrait comme un pic dans le spectre de masse invariant des jets. L’approche
standard pour rechercher de telles résonances consiste à effectuer une chasse aux bosses,
c’est-à-dire à examiner le spectre de masse invariant à la recherche d’un pic. Cette approche
est limitée dans sa sensibilité car elle n’utilise que l’information contenue dans le spectre de
masse invariant.

Cette thèse présente une recherche qui étend la chasse aux bosses en incluant jusqu’à six
variables supplémentaires qui sont sensibles à la présence de physique au-delà du Modèle
Standard. Des modèles de nouvelle physique à largeur étroite sont recherchés dans le spectre
de masse invariant des jets en utilisant 139 fb�1 de données de collisions proton-proton
collectées par le détecteur ATLAS à une énergie de centre de masse de

�
s = 13 TeV. Les

événements qui contiennent au moins deux jets à grand rayon et à grand moment transverse
sont sélectionnés. La recherche utilise deux techniques d’interpolation différentes pour
produire des estimations du bruit de fond sur les six variables supplémentaires. Cette
recherche est la première du genre et nécessite donc un développement et une validation
approfondis de la stratégie d’analyse. Le développement de l’analyse et les défis à relever sont
décrits en détail. Des limites sont fixées pour la production de vingt processus de nouvelle
physique possibles, dont beaucoup n’ont été étudiés par aucune autre analyse. De nombreux
défis à relever dans les futures itérations d’une telle recherche sont également discutés en
détail, ainsi que des pistes pour l’interprétation des résultats d’une telle recherche.

En outre, des études utilisant des techniques d’apprentissage automatique pour améliorer
différents aspects des analyses de la physique des hautes énergies sont présentées.
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Chapter 1

Introduction

Modern physics has successfully built predictive models at radically different scales. At
large distances, General Relativity successfully explains the motion of planets and other
celestial bodies, the formation of galaxies, and even predicted the existence of gravitational
waves [1]. At ultra-cold temperatures, Bose-Einstein condensates are well described by
quantum mechanics [2]. At ultra-relativistic speeds massive particles are well described by
the Standard Model of particle physics [3–13]. However, the dream of a single Grand Unified
Theory of everything at all scales still eludes us.

To date, arguably the most successful theory is the Standard Model, which describes three
of the four known fundamental forces and all forms of matter that can currently be observed
directly. However, there are many observed phenomena the Standard Model does not
explain. For example, the Standard Model can not describe gravity, does not account for
the existence of dark matter [14], does not explain the matter-antimatter asymmetry in the
universe [14] or neutrino oscillations [15]. Given these limitations, there is a large physics
program searching for new physics beyond the Standard Model.

In particular, the Large Hadron Collider at CERN, the European Organization for Nuclear
Research, has collected data at the highest energy scales ever achieved in a particle accel-
erator. These data have been used, for example, to discover the Higgs boson [16, 17], and
to search for new physics beyond the Standard Model. However, no new physics has been
discovered at the Large Hadron Collider, and there remains the tantalizing possibility that
unknown physics processes could be hidden in datasets that have already been collected.
Such physics could take the form of new particles or even new forms of matter which require
fundamentally different descriptions. It is not known if such processes are accessible at the
scales probed by the Large Hadron Collider, and there is no unambiguous guide for the
energy scales at which they become relevant.

There are a plethora of possible new phenomena that could exist within the reach of current
physics experiments and there is no clear guide for where to search for new physics. This the-
sis presents an attempt to search for new physics processes with only minimal assumptions
about its nature. Specifically, this thesis presents a weakly supervised search for resonant
new physics using data recorded with the A���� experiment at the Large Hadron Collider
at CERN. This thesis also presents the development of multiple machine learning methods,
mostly with application to the field of High Energy Physics.

This thesis is structured as follows: Chapter 2 of this thesis briefly introduces the Standard
Model of particle physics and the concepts that are relevant to the work in this thesis.
Chapter 3 presents the experimental setup used to collect the data analysed in this thesis,
providing some brief background on the Large Hadron Collider and the A���� experiment.
Chapter 4 provides background on the statistics used in physics searches as relevant for
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the analysis presented in this thesis. Chapter 5 discusses machine learning and method
developments performed as a part of this thesis. Chapter 6 introduces the concept of a
weakly supervised search, the type of search pursued in this thesis. Chapter 7 introduces
the analysis strategy performed in this thesis, related work and the dataset that is analysed.
Chapter 8 presents the design choices made for the analysis and the rationale behind them.
Chapter 9 describes how the analysis was developed, and the challenges faced in this context.
This is relevant as this is the first search of this type performed at the A���� experiment.
Chapter 10 presents the results of the analysis on the final validation set and the recorded
dataset. Chapter 11 contains discussion around the successes and failures of this analysis,
some general conclusions about weakly supervised approaches and the outlook for future
work.
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Chapter 2

Standard Model of Particle Physics

The Standard Model (SM) of particle physics [3–13] is one of the most successful physical
theories ever constructed. The SM describes all known fundamental particles and all forces
except gravity. In the SM matter is split into half-integer spin fermions and integer spin
bosons. Fermions form the fundamental building blocks of matter and the gauge bosons
mediate the fundamental forces. In the SM all fermions have associated anti-particles that
are identical in mass but carry opposite quantum numbers. All particles of the SM, and the
hypothesized gravity mediating graviton, are shown in Figure 2.1.

The SM is the most general dimension four local quantum field theory (QFT) with symmetry
groups SU(3)C � SU(2)L � U(1)Y . Each of these groups describes a different interaction,
where SU(3)C is the gauge group for the strong interaction (color charge), SU(2)L is the
gauge group for the weak interaction (left-handed weak isospin) and the admixture of
SU(2)L and U(1)Y leads to electromagnetism. The SM Lagrangian is given by,

LSM = p1

4
Fµ⌫F

µ⌫ + i ̄�µD
µ
 + (yij ̄i� j + h.c.) + |Dµ�|2 p V (�). (2.1)

The term p1
4Fµ⌫F

µ⌫ represents the kinetic term for each of the gauge bosons and is defined
by,

Fµ⌫ = @µA⌫ p @⌫Aµ p ig[Aµ, A⌫ ], (2.2)

where Aµ is the gauge field, g is the coupling constant for the interaction and [Aµ, A⌫ ] is
the commutator of the gauge fields. In the SM the gauge fields are the gluons G

a
µ⌫ , the

weak bosons W
i
µ⌫ and the weak hypercharge boson Bµ. The term i ̄�µD

µ
 is the Dirac

term, accounting for the kinetic energy and interactions of the fermions  with the gauge
fields through the covariant derivative D

µ. The covariant derivative combines the spacetime
derivative with the gauge interactions, with each gauge field coupling to fermions according
to their respective charges. The Yukawa interactions between the fermions and the Higgs
field� are described by yij ̄i� j ; h.c. is the Hermitian conjugate of this term. The kinetic term
for the Higgs field is given by |Dµ�|2, and V (�) represents the Higgs potential. Together,
this Lagrangian describes the complete SM, describing the interactions and dynamics of
fundamental particles.

In the high energy limit, which is reached by the LHC, predictions can be made with this La-
grangian using perturbation theory. A useful technique for writing down the contributions
to a given process, at a given order in perturbation theory, is provided by Feynman diagrams
and the corresponding Feynman rules. The SM Lagrangian gives rise to the vertices shown
in Figure 2.2 as well as the conjugates of these diagrams. Time flows left to right in these di-
agrams, and particles with arrows pointing backward in time represent anti-particles. These
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Figure 2.1: The fundamental particles described by the Standard Model of
particle physics from Purcell [18].

vertices are determined by the terms in eq. (2.1) and provide a succinct visual summary of
the direct particle interactions that can occur in the SM.

2.1 Electroweak theory

For this thesis, the weak and electromagnetic interactions only play a minor role and so are
only described briefly. The unified electroweak theory describes weak and electromagnetic
interactions in the SM. This theory was combined in the Glashow-Weinberg-Salam theory
building on Fermi and quantum electrodynamics (QED) [3, 5]. The theory corresponds to
the SU(2)L � U(1)Y symmetry group and an interesting feature of the theory is that due to
gauge invariance none of the force-carrying fields can have mass. In the SM these fields (and
quarks) gain mass through their interaction with the Higgs boson in the Brout-Englert-Higgs
mechanism and spontaneous symmetry breaking [20–23]. In eq. (2.1) the appearance of mass
is due to the potential V (�) which is defined in such a way the vacuum expectation value
for the Higgs field � is not at zero. The discovery of the Higgs boson in 2012 [16, 17], first
predicted in 1964, was a major achievement of the SM and CERN.

2.2 Quantum chromodynamics

The strong force describes the interactions of color charged particles using quantum chro-
modynamics (QCD), a non-abelian gauge theory with the SU(3)C symmetry group [24–26].
The parts of this theory that are relevant to this thesis are described in some detail in the
following. There are eight different color charged gluons in QCD that mediate the strong
force. The fact the force mediators in QCD are themselves color charged has interesting
implications. In particular, the strong force coupling constant ↵s of QCD runs in such a
way that it is smaller at high energies and grows at low energies. The implication of this
is that at low energies QCD is strongly interacting and at high energies it is weak. This
leads to the ‘confinement’ principle, where color charged particles can not be observed in
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isolation. It also leads to ‘asymptotic freedom’, where color charged particles are weakly
coupled at high energies. Observable composite matter such as baryons (three quarks or
three antiquarks), mesons (quark-antiquark pairs), and more exotic states such as tetraquarks
(two quarks and two antiquarks) and pentaquarks (four quarks and one antiquark) are all
colorless combinations of quarks and gluons referred to as hadrons.

2.2.1 Jets

QCD is a rich physical theory and its fundamental description leads to important consid-
erations in terms of what can be experimentally observed. For example, the confinement
principle means that quarks and gluons can not be observed in isolation. Instead, bound
states formed from these particles and other decay products are observed, from which the
initiating particles’ properties can be inferred. Due to the nature of QCD, color charged
particles decay into collimated sprays of particles called jets. Jets are a fundamental object in
QCD and are a key object in collider experiments. The definition of a jet is ambiguous as it
exists as a concept in both perturbative and non-perturbative regimes. This thesis presents
an analysis of a dataset of jets and so these objects are described in some detail. A later
section describes how jets are reconstructed in a detector, this chapter is concerned with
their description in QCD. Jets form principally due to three properties of QCD as outlined
in the following.

At high energies, the strong coupling ↵s is small, which means the constituents of a proton
can be treated as point-like particles. These point-like particles are the quarks and gluons
that are the fundamental building blocks of the proton and are referred to as partons.
Perturbative series in QCD contain divergences in the collinear limit, which means that any
given parton is likely to decay into multiple parallel particles. For example, a quark can split
its energy into a gluon and an anti-quark, and due to the collinear divergence, these particles
are likely to be emitted in the same direction as the parent quark. The decay products can
further radiate in a cascade of collimated particles. This means QCD predicts that a parton
produced in a collision at the LHC decays into a stream of partons. This stream is called a jet
and is described by parton showering, it occurs at scales that are accessible with perturbation
theory.

Beyond the collinear divergence, it is also relevant the strong coupling ↵s is small at high
energies. If this coupling was large then both incident and outgoing partons would emit
radiation in all directions. There would still be a preference for radiation to be emitted
collinear to the parent particle, but in addition to this, high momenta emissions in any
direction would be likely. A large value for ↵s would lead to spherically distributed decay
products.

The final reason that jets form is the gluons carry color charge. To understand this, consider
a collision that produces two quarks propagating in opposite directions in the detector. Due
to the color charge of gluons, the field lines connecting these two quarks form a ‘color tube’.
The energy density of this tube increases as the quarks become separated, and at a certain
point, it becomes energetically favourable to break the tube by producing a light quark anti-
quark pair. This leads to the creation of two mesons that no longer strongly interact. This
process is not fully understood from first principles as it occurs at non-perturbative scales.
The description provided here is referred to as the Lund string model [27].

A final important feature of QCD is the soft divergence. This divergence means that QCD
partons have a high chance of emitting low momentum radiation, which can further split
and even form jets. Due to the collinear divergence, this is again most likely to be parallel
to the quark, but it can be emitted in any direction. Therefore, it also makes sense to think
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of quarks as being surrounded by a ‘soft haze’ of gluons. These emissions can also occur in
initial state radiation.

2.2.2 Parton distribution functions

Perturbation theory in QCD is performed in powers proportional to ↵s. Due to the running
of ↵s, perturbation theory in QCD is only valid at high energies. At the energy scales probed
by the LHC, the coupling is small enough to treat quarks and gluons as point like particles,
which are referred to as partons [28]. A proton at the LHC is composed of a down quark
and two up quarks, all three of which are referred to as valence quarks, which are bound
together by gluons. The gluons can spontaneously decay to two quarks which recombine
into a gluon, these are referred to as ‘sea quarks’. Each of the partons in a proton carries
a certain fraction of the total momentum of the proton referred to as the Bjorken xi. The
probability of having a particle with a certain xi is given by parton distribution functions
(PDFs). These distributions can not be calculated and instead are extracted from dedicated
measurements. An example PDF set is shown in Figure 2.3 as a function of x at a momentum
transfer of Q

2 = 10 GeV2 and Q
2 = 104 GeV2 [29].

The PDFs depend on the energy scale of the interaction and are extracted from data at a given
scale. The PDFs are then evolved to different scales using the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [30–32].

x

-410
-3

10 -210 -110 1

)
2

x
f(

x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

g/10

d

d

u

u
ss,

cc,

2 = 10 GeV2Q

x

-410
-3

10 -210 -110 1

)
2

x
f(

x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

x

-410
-3

10 -210 -110 1

)
2

x
f(

x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

g/10

d

d

u

u

ss,

cc,

bb,

2 GeV4 = 102Q

x

-410
-3

10 -210 -110 1

)
2

x
f(

x
,Q

0

0.2

0.4

0.6

0.8

1

1.2

MSTW 2008 NLO PDFs (68% C.L.)

Figure 2.3: The parton distribution functions of the proton as a function of x at
a scale of (left) Q

2 = 10 GeV2 and (right) Q
2 = 104 GeV2 as shown in Ref. [29].

While the PDFs are inherently non-perturbative, they can be understood in terms of the
general principles of QCD. Low energy probes of protons mostly resolve the valence quarks.
This is why at low Q

2 sharp peaks can be seen in the PDFs for the valence quarks and
a broad distribution in the sea quarks. As Q

2 increases the peaks in the valence quarks
broaden and the sea quarks become more prominent. There is an intrinsic order in the
PDFs, where amongst the quarks the up quark is the most likely as the lightest and most
common in a proton. Then amongst the other partons, the PDFs follow the mass hierarchy
from the SM, where heavier particles are less likely to be produced and therefore are less
likely to interact in a collision. Other than the masses of the quarks, there is no fundamental
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physical scale in QCD. In the PDFs this is why the virtual sea quarks can have any xi, but
the likelihood of having a given xi falls according to a power law distribution. As discussed
later in this thesis, the fact the PDFs have this power law distribution also means the mass
of the combined system in a hard scatter event, an important quantity for this analysis, also
smoothly falls as a function of xi. While it is understood that PDFs are smooth functions,
the exact form of the PDFs is not known and must be extracted from data. The NNPDF
collaboration uses neural networks to fit the PDFs [33].

2.3 s-channel resonances

One channel through which particles can interact in a QFT is by annihilating and forming
an intermediate virtual particle that then decays, this is referred to as an s-channel decay.
The mediating virtual particle can be anything the incident particles couple to, and at higher
orders in perturbation theory there are contributions from vacuum fluctuations of the me-
diators, called loops. If the total energy of the incident particles is the same as the mass
of particle X then the contribution of X to this process increases. Therefore, at the mass
of a particle, there is a peak in the cross section for the production of that particle, this is
referred to as an s-channel resonance. Two particles can alternatively interact when one
particle emits a mediator that then interacts with the other particle. These processes are
referred to as t- and u-channel processes. A t-channel process is more likely to occur in QCD
due to the gluon haze that surrounds and binds the valence quarks. It is also interesting to
note that s-channel resonances at the LHC are more likely to occur through quark-gluon and
gluon-gluon fusion as protons do not contain valence antiquarks and quark-antiquark fusion
requires a sea antiquark to be produced. In QCD these are the only first order s-channel
processes that can occur at the LHC as shown in Figure 2.2. A sea antiquark is less likely to
carry a large fraction of the proton’s momentum than a gluon or valence quark as shown in
Figure 2.3.

2.4 Theory to experiment

In connecting theory and experiment it is important to identify what can be measured
and practically predicted. One spectacular success of both theory and experiment is the
match between predicted and observed cross sections for a wide array of different processes
as shown in Figure 2.4. These processes can decay into multiple different final states.
These channels may be characterized by the presence of electrons, muons, taus, photons or
neutrinos (missing transverse energy). Experimentally it is important to be able to distinguish
between these different components. Theoretical predictions for these processes are made
using the SM Lagrangian and the Feynman rules. The cross sections for these processes are
calculated using perturbation theory. A later section describes how these cross sections are
measured at the LHC.

2.5 Beyond the Standard Model

Searches for new physics Beyond the SM (BSM) are well motivated by astrophysical obser-
vations, along with the inability of the SM to account for neutrino masses. There are also
general considerations, such as the notion of the naturalness of the Higgs mass, that point to
the existence of new physics within the reach of the LHC [35]. The overwhelming process at
the LHC is QCD and any new physics processes are likely to be buried in this background.
The abundance of the background causes issues for detecting new physics effects as dis-
cussed in detail later in this thesis. Theoretical model building of possible BSM physics,
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as shown in Ref. [34].

and characterizing decays within these models, is essential for discovering new physics.
However, there are many possible BSM models, and it is also possible that unforeseen new
physics scenarios exist. This is one of the motivations for the style of search presented in this
thesis. The analysis in this thesis focuses on a dataset of jets. There are many BSM scenarios
that produce jets and these objects are an excellent probe of our understanding of QCD.

Most new physics models have many free parameters, and it is not possible to test all of
these parameters. Instead, simplified models are used, which contain only a few parameters
but provide a rich phenomenology. For example, the Heavy Vector Triplet model [36] is a
simplified model that contains a heavy vector boson that decays into two bosons. This model
can represent a wide range of BSM physics scenarios and is used in this thesis to test the
sensitivity of the analysis to new physics effects. These models predict the appearance of a
resonance in the invariant mass spectrum of the decay products, which smoothly falls in the
predominantly QCD background. This property can be leveraged to search for new physics
effects, as discussed later in this thesis.
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Chapter 3

Experimental set up

The data analysed in this thesis was collected by the A���� detector [37] at the Large Hadron
Collider (LHC) [38]. The following provides a broad overview of these machines and the
data they produce.

3.1 The Large Hadron Collider

The LHC is the largest and most powerful particle accelerator ever built. As a proton-proton
collider, it is designed to reach very high energies and instantaneous luminosities to probe the
fundamental structure of matter. It is located at CERN in Geneva, Switzerland. The LHC is
a circular collider with a circumference of 26.7 km. Protons are accelerated from an injection
energy of 450 GeV up to energies of 7 TeV in opposite directions in two separate beam pipes.
At maximum design center of mass (CoM) energy, the protons would collide with a CoM
energy of

�
s = 14 TeV. Particles are guided around the LHC ring by superconducting dipole

magnets. The magnets are operated below their superconducting transition temperature of
1.9 K, which requires a large cryogenic system of superfluid helium. Higher order multipole
magnets are used to focus the beams and correct for imperfections in the magnetic field.
The maximum energy of the LHC is limited by strain on the superconducting magnets, but
operating CoM energy of

�
s = 13.6 TeV has been achieved. Sixteen radio frequency cavities

are used to accelerate the protons to these energies.

The LHC operates in data taking periods called Runs, which are followed by long shutdowns
to upgrade and replace the accelerator and detectors. Also, heavy ion runs are performed,
where lead ions are collided at the LHC, the data collected in these runs is not relevant for
this thesis. The dataset used in this thesis was collected during Run 2 of the LHC. This took
place from 2015 to 2018 while the LHC was operating at a CoM energy of

�
s = 13 TeV, and

had an estimated integrated luminosity of 139 fb�1 with an uncertainty of 1.7% [39, 40].

The LHC was built at CERN to leverage previous state-of-the-art detectors, and particles are
accelerated through an extended accelerator complex before being injected into the LHC.
The full complex as it existed in 2018 is shown in Figure 3.1. In the first stage, hydrogen
atoms are stripped of their electrons to produce protons. The protons are then accelerated
in the L����2 linear accelerator to an energy of 50 MeV. Next, the protons are injected into
the P����� S���������� B������ (PSB) where they are accelerated to 1.4 GeV. The protons
are then injected into the P����� S���������� (PS) where they are accelerated to 26 GeV.
As a final stage before the LHC, the protons are injected in sequential batches into the S����
P����� S���������� (SPS) where they are accelerated to 450 GeV. After Run2 the L����2
was replaced by the L����4, which accelerates negatively charged hydrogen ions which are
then stripped of their electrons before being injected into the PSB.
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Figure 3.1: The LHC accelerator complex at CERN as laid out in 2018, from
Lopienska [41].

To increase the luminosity of the LHC, protons are accelerated in bunches of ⇥ 1.15 � 1011

protons. Bunches of particles from each beam are crossed every 25 ns at the interaction points,
corresponding to a frequency of 40 MHz. The beam intensity is high enough that multiple
proton-proton collisions can occur in the same bunch crossing. Many of these collisions are
from elastic scattering and are not of interest to the physics goals of the A���� detector. These
additional interactions are referred to as pileup. Pileup can either be in-time, where it occurs
in the same bunch crossing as the hard scattering event, or out-of-time, where it occurs in a
different bunch crossing. The observed distribution of the number of interactions per bunch
crossing is shown in Figure 3.2. This makes for a complex environment in which to perform
physics measurements and analyses.

One physical quantity that is measured at the LHC is the cross section of a given process.
The cross section is a measure of the probability of a given process occurring. It is interesting
to measure the cross section of a process to compare with theoretical predictions. However,
the cross section is not directly measurable, the detectors at the LHC can measure the total
number of events N . The luminosity of the LHC can also be measured, this quantifies the
number of collisions per unit area per unit time. The luminosity is related to the cross section
by the equation,

dN

dt
= �L(t), (3.1)

where dN/dt is the number of events per unit time, � is the cross section, and L(t) is the
instantaneous luminosity. This equation can be integrated to find the total number of events,

N = �

Z
L(t)dt, (3.2)

= �Lint, (3.3)
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Figure 3.2: The mean number of interactions per bunch crossing in the ATLAS
detector during Run 2, from Ref. [42].

where Lint is the integrated luminosity. Together with a measurement of the integrated
luminosity, the cross section of the process can be extracted.

3.2 The ATLAS detector

The LHC provides an excellent source of high energy proton-proton collisions and some
heavy ion collisions. To do some physically interesting inference, the particles produced in
these collisions are measured. These measurements are performed by different detectors at
the LHC, each of which has a different design to study different aspects of the collisions. The
A���� detector [37], which is the focus of this thesis, is one of two multi-purpose particle
detectors at the LHC, the other being the CMS detector [43]. Being general purpose, the
A���� detector is intended to serve a wide range of physics goals.

Due to the confinement principle, and the fact that most BSM high mass particles have short
lifetimes, many particles of interest can not be directly observed, only their decay products.
By measuring these decay products, properties of the particles that produced them can
be inferred. The decay products have different properties that dictate their interaction
with ordinary matter. To measure these properties, the A���� detector is composed of
multiple sub-detectors that are optimized to measure different properties of the particles.
The sub-detectors are arranged in layers around the interaction point as shown in Figure 3.3.
Measurements from each of these detectors are composed to make more precise inferences
on the nature of the particles produced in the collisions. The detector covers nearly the full
4⇡ solid angle around the interaction point and is 25m in diameter and 44 m long.

The particles the detector can measure directly are primarily muons, electrons, photons,
pions, kaons, protons and neutrons. In general, the different properties of these particles
are leveraged to effectively measure them. Charged particles, for example, can be bent by a
magnetic field, and leave a clear trail in tracking detectors. These particles are also stopped
in calorimeters such that their energy can be measured. Neutral particles, on the other hand,
are not bent and do not leave a track, they do however interact strongly with high Z material
and produce showers of particles that can be measured. Particles like muons do not interact
strongly with the detector, and therefore interact with material in the outer layers of the
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Figure 3.3: An overview of the A���� detector at the LHC, from Ref. [37].

detector. The presence of particles like neutrinos can be inferred by the presence of missing
transverse momentum.

The A���� detector uses a coordinate system with its origin at the interaction point in the
center of the detector and the z-axis aligned with the beam axis, the x-axis pointing towards
the center of the LHC ring, and the y-axis pointing upwards. The azimuthal angle � is
measured from the x-axis, and the polar angle ✓ from the z-axis. Particle momenta are
typically described using the transverse momentum pT , which is the momentum component
perpendicular to the beam axis. This is because the transverse momentum is invariant to
boosts in the beam direction. This is relevant because the colliding partons do not necessarily
have equal and opposite momentum, so the center of mass frame might be boosted along
the beam axis. The polar angle ✓ is also often replaced by the rapidity y, which is defined as,

y =
1

2
ln

✓
E + pz

E p pz

◆
, (3.4)

where E is the energy of the particle and pz is the momentum component along the beam
axis. This is the rapidity of the boost along the beam axis which moves the lab frame to
the center of mass frame. The rapidity is useful because rapidity differences are invariant
under boosts along the beam axis. The pseudorapidity ⌘ = p ln

�
tan ✓

2

�
is also used as it

is also invariant under boosts along the beam axis, and is equivalent to the rapidity for
massless particles, and a good approximation for massive particles at high energies. The
pseudorapidity is often preferred because it is easier to measure than the rapidity as it only
depends on the angle of the particle with respect to the beam axis. In contrast, to measure
the rapidity, one needs to know both the energy and momentum of the particle.

The following sections describe the different sub-detectors of the A���� detector and their
purpose, starting with the innermost sub-detector and working outwards.

3.2.1 The Inner Detector

The closest sub-detector to the interaction point is the Inner Detector (ID). This is designed
to track charged particles produced in the collisions. It is important to have tracking close
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Figure 3.4: The layout of the Inner Detector of the A���� detector, from Ref. [37].

to the interaction point to accurately predict the primary and secondary vertices. The ID
is composed of three sub-detectors which in order of proximity to the beam pipe are the
Pixel Detector, the Semi-Conductor Tracker (SCT), and the Transition Radiation Tracker
(TRT). The full layout of the ID is shown in Figure 3.4. These detectors are submerged in
a ⇥ 2 T magnetic field to bend the charged particles and measure their momentum. Low
momentum particles have larger curvature and therefore their momentum can be measured
more accurately. Particles with momenta below⇥ 1 GeV suffer from multiple scattering and
are not measured accurately by the ID.

The three sub detectors of the ID are arranged in barrel like layers around the beam pipe, with
end caps on either side. The Pixel detector is constructed from silicon semiconductor pixels
and has more than 80 million read out channels. Per unit area, this is the most expensive part
of the detector. It is cooled to p6� C to reduce the spontaneous generation of electron-hole
pairs. A high granularity is needed to accurately reconstruct the primary and secondary
vertices, particularly in the Run 2 conditions where the number of interactions per bunch
crossing was high. For Run 2, the innermost layer of the Pixel detector in the barrel region
was replaced with the Insertable B-Layer (IBL) to improve the tracking performance [44, 45].
In the barrel region, the Pixel detector has three additional layers, placed at a radial distance
of 50.5 mm, 88.5 mm, and 122.5 mm from the beam pipe. There are an additional three layers
of flat disks in the end-cap region.

Additional information on the track of a particle is provided by the SCT. This detector is
composed of silicon microstrips and covers the region |⌘| < 2.5. The SCT has eight layers
in the barrel region and two flat end-cap disks. This detector provides high granularity �
measurements as half of the barrel strips are aligned in this direction. The other half of the
strips are rotated by 40 mrad to provide a measurement in the z direction.

The last sub-detector in the ID is the TRT. This detector is composed of straw tubes that are
filled with a gas mixture. In the barrel region, the tubes are placed parallel to the beam
pipe, while in the end-cap region, they are placed radially. This detector provides addi-
tional tracking information and is particularly useful for separating electrons from charged
hadrons.
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Figure 3.5: General overview of the A���� calorimeters, from Ref. [37].

3.2.2 The Calorimeters

The next sub-detector is the calorimeter system. These are designed to measure the energy
of particles produced in the collisions. This is performed by stopping the particles in the
detector by inducing a shower of particles. The energy of the particles is inferred from
the energy of the particles in the shower. Two different types of calorimeters are used in
the A���� detector, the electromagnetic calorimeter (ECAL) and the hadronic calorimeter
(HCAL). The former is designed to measure the energy of electrons and photons, while the
latter is designed to measure the energy of hadrons. The calorimeters are placed outside
the ID and the combined system is designed to cover up to |⌘| < 4.9. The ECAL has about
180 thousand readout channels, while the HCAL has about 14 thousand. The calorimeter
system is shown in Figure 3.5.

The ECAL is divided into a barrel structure covering |⌘| < 1.475 and two end-cap structures
covering 1.375 < |⌘| < 3.2. The ECAL has a relatively high granularity, compared to
the HCAL, to accurately measure the energy of electrons and photons. Incident electrons
(positrons) emit photons due to Bremsstrahlung in the ECAL. The average length to emit
a photon is characterized by the radiation length X0. Photons are converted into electron-
positron pairs in the material of the detector, on an average distance of⇥ 1.3X0. This defines
a cascade of processes such that as a particle passes through the ECAL, a shower of particles
is produced and measured. The length of the shower scales logarithmically with the energy
of the particle that initiated the shower. The shower stops when the energy of the particles is
below the threshold for ionization. The radiation length is dictated by the detector material,
and in total the ECAL is around 20 radiation lengths thick, to ensure that most of the energy
of the particles is absorbed.

The ECAL is a sampling calorimeter, meaning that it is composed of alternating layers of
active and passive material. The active material is a scintillating material that emits light
when particles pass through it and is used to measure the energy of the particles. The
material used for this in A���� is liquid argon. The passive material is ionized lead that
has a small interaction length to induce the shower when particles pass through. With this
design, only a fraction of the energy of the particles is directly measured. The total energy
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can be inferred from fsampling = Evisible/Edeposited. While sampling calorimeters are less
precise than homogeneous calorimeters, they are more cost effective and can be used for
large detectors.

The HCAL is also a sampling calorimeter and is designed to measure the energy of hadrons.
The development of showers in the HCAL follows a similar pattern to the ECAL, except
the initiating particles are hadrons. Showers in the HCAL are characterized by the nuclear
interaction length �, which is the average distance a hadron travels before interacting with
a nucleus. In general, the interaction length is 5-10 times larger than the radiation length,
and showers in the HCAL therefore take longer to develop. In total, the HCAL is around 10
interaction lengths thick. The HCAL is intended to minimize the amount of radiation that
punches through into the muon spectrometer. The HCAL has a tile calorimeter in the barrel
region and a liquid argon calorimeter in the end-cap region. The tile calorimeter is composed
of steel plates and scintillating tiles while the liquid argon calorimeter is composed of copper
plates and liquid argon. The tile calorimeter is used in the barrel region because it is more
radiation hard than the liquid argon calorimeter. The liquid argon calorimeter is used in the
end-cap region because it is more compact and has a higher granularity.

3.2.3 The Muon Spectrometer

The outermost sub-detector of the A���� detector is the Muon Spectrometer. Muons are
minimum ionizing particles and do not interact strongly with the calorimeters and therefore
can be measured in the outermost layers of the detector. This last layer has a toroidal
magnetic field to bend the muons and measure their momentum through the curvature
of their tracks. The muon spectrometer is composed of four sub-detectors, the Monitored
Drift Tubes (MDT), the Cathode Strip Chambers (CSC), the Resistive Plate Chambers (RPC),
and the Thin Gap Chambers (TGC). The muon spectrometer is a gas detector and operates
on similar principles to the TRT. For |⌘| < 2.7 the magnetic field is provided by the barrel
toroid and is approximately orthogonal to the muon tracks, while for 2.0 < |⌘| < 2.7 the
end-cap toroids are used. In the transition region between the barrel and end-cap regions,
both toroids are used. The muon spectrometer is shown in Figure 3.6. In the barrel region,
the muon spectrometer is oriented cylindrically around the beam pipe, while in the end-cap
region, the detectors are placed perpendicularly. The MDT is the main precision tracking
detector in the muon spectrometer and is used in the barrel region. For pseudorapidities
2.0 < |⌘| < 2.7 the CSC is used, this detector has a higher granularity than the MDT. Together
the MDT and CSC add up to 40 thousand readout channels. The RPC and TGC are used for
triggering and have a lower granularity than the MDT and CSC.

3.2.4 Trigger and Data Acquisition

With the high bunch crossing rate of the LHC, it is not feasible to record all complete events
that are produced. Instead, a trigger system is used to select events that are interesting for
further study. The Trigger and Data Acquisition (TDAQ) system is the center of the trigger
system in the A���� detector. In Run 2 the trigger system in A���� is composed of a hardware
level trigger (L1) and a software level trigger (HLT) [46]. The L1 trigger is designed to reduce
the event rate from 40 MHz to 100 kHz, which is further reduced to 1 kHz by the HLT.

The L1 trigger receives information from the low granularity components of the calorimeters
and the muon trigger system. On average the L1 trigger has ⇥ 1 µs to make a decision. This
trigger is implemented in custom hardware designed to be fast. The L1 trigger selects events
based on a predefined set of criteria, and these events are passed to the HLT.
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Figure 1.4: Cut-away view of the ATLAS muon system.

1.4 Muon system

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters
of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic
deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with
separate trigger and high-precision tracking chambers. Over the range |h | < 1.4, magnetic bending
is provided by the large barrel toroid. For 1.6 < |h | < 2.7, muon tracks are bent by two smaller
end-cap magnets inserted into both ends of the barrel toroid. Over 1.4 < |h | < 1.6, usually referred
to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap
fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajec-
tories, while minimising the degradation of resolution due to multiple scattering. The anticipated
high level of particle flux has had a major impact on the choice and design of the spectrome-
ter instrumentation, affecting performance parameters such as rate capability, granularity, ageing
properties, and radiation hardness.

In the barrel region, tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, also in three layers.

– 11 –

Figure 3.6: The layout of the Muon Spectrometer of the A���� detector, from
Ref. [37].

For many regions of phase space, the event selection is not stringent enough to reduce the
event rate enough so some triggers are prescaled. This means that only a fraction of the
events that pass the trigger are recorded. The main bottleneck here is that the full event must
be read out and stored, which is a time consuming process. Some analyses get around this
limitation by only recording a fraction of an event [47].

The HLT is a software trigger that runs on a farm of computers, it runs algorithms that are
more complex than the L1 trigger. The HLT has access to the full event information and can
therefore make more informed decisions. It also applies some similar reconstruction as is
performed offline. Trigger decisions in the HLT are made based on the candidate physics
objects produced by these algorithms. The offline reconstruction algorithms are the focus of
the next chapter.

3.3 Reconstruction

This chapter describes how the measurements from the different sub-detectors are combined
in software to infer the properties responsible for the given measurements. The A����
collaboration uses a software suite for simulation, reconstruction and triggering [48]. In
total, the A���� detector has around 100 million readout channels. Events only activate a
sparse set of these channels, and the data from these channels is used to infer the properties of
the particles that produced them. Other than the sparse nature of the data, the instantaneous
luminosity of the LHC is high enough that multiple proton-proton collisions can occur in the
same bunch crossing. Many of the collisions are from elastic scattering that is not of interest
to the physics goals of the A���� detector. However, there is still a high chance of multiple
hard scattering events in the same bunch crossing as already shown in Figure 3.2.
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3.3.1 Jet Reconstruction

Most of the particles created in a hard scattering event have a high transverse momentum,
but not many of these particles are stable enough to be detected directly by the detector.
For example, as already covered in section 2.2.1, color charged particles hadronize into
color neutral collimated sprays of particles called jets. At the level of the detector, a jet is
a collection of energy deposits in the calorimeters that are close to each other in ⌘ and �.
Without additional information, streams of particles initiated by a photon or electron can
also look like jets. The dataset used in this analysis does not apply any object based selection,
so the jets are reconstructed from the energy deposits in the calorimeters as described in the
following section.

The reconstruction of jets is a complex process that is performed in multiple steps. The goal
of this process is to infer the properties of the partons that produced the jets. Any charged
particle in a jet deposits energy in the ECAL and leaves a bent track in the ID, both of which
can be used to measure the momentum of the particle. Neutral particles only deposit energy
in the calorimeters. For the analysis presented in this thesis jets are reconstructed in A����
from the energy deposits in the calorimeters. Additional tracking information is used to
better resolve the jet’s kinematics.

In defining a jet reconstruction algorithm, one must consider the underlying physics of QCD.
Specifically, quarks and gluons undergo soft and collinear radiation with a high probability.
This means the jet reconstruction algorithm must be robust to the presence of additional
soft radiation and random splittings of particles in the jet. These properties are referred to
as infrared (IR) and collinear safety respectively. The jet reconstruction algorithm used in
A���� is the anti-kt algorithm [49], and it satisfies both of these properties.

A particularly useful form of jet clustering algorithms are sequential recombination algo-
rithms. These algorithms are based on the distance between particles in the ⌘p � plane and
their transverse momentum, defined as,

dij = min
�
p
2a
T,i, p

2a
T,j

�✓�Rij

R

◆2

, (3.5)

diB = p
2a
T,i, (3.6)

where pT,i is the transverse momentum of particle i, �R
2
ij = (⌘i p ⌘j)2 + (�i p �j)2 is the

distance between particles i and j, and R is a parameter of the algorithm that defines the
size of the jet. Pairs of particles are sequentially combined following the rules,

dij < diB, (3.7)
diB < djB. (3.8)

If the first condition is satisfied, particles i and j are combined into a single jet. If the
second condition is satisfied, particle i is considered a jet on its own. This process is
repeated until all particles are clustered into jets. The parameter a in eqs. (3.5) and (3.6)
balances the contributions to the jet definition of energy and ⌘ p � distance of the particles.
The anti-kt algorithm uses a = p1, and clustering proceeds by merging particles around
the hardest (largest transverse momentum) particle first. This algorithm is preferred as it
produces leading jets that are conical. Using this algorithm also means the number of jets
is dynamically determined by the event content. The kt algorithm uses a = 1 and merges
particles starting with the softest particles first.
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The sequential approach to jet clustering defines a tension between the merging and stopping
criteria of the algorithm. The radius parameter R defines the size of the jet and is a free
parameter of the algorithm. The total kinematics of a jet are defined by the sum of the four
momenta of the particles in the jet. From general kinematic considerations, one can show
the radius parameter of a jet should be chosen such that,

R & 2m

pT
, (3.9)

where m is the mass of the jet and pT is the transverse momentum of the jet. Jets with R = 1
are considered large-R jets and are used as a proxy for boosted W, Z, Higgs bosons and top
quarks.

Calorimeter jets

The jets used in this analysis are reconstructed from the energy deposits in the calorimeters.
This is done by constructing topological clusters of energy deposits in the calorimeters.
The topological clusters are then used as input to the jet reconstruction algorithm. The
topological clusters are constructed by grouping adjacent energy deposits based on the
significance, defined as,

⇠i =
Ei

�noise,i
, (3.10)

where Ei is the energy of the cell and �noise,i is the noise from the electronics and pileup.
Clusters are seeded by cells with ⇠i > 4 and are grown by adding adjacent cells with ⇠i > 2.
In a final step, all adjacent cells are added to the cluster. Topological clusters can also be split
if there are two local maxima in the cluster.

3.3.2 Jet grooming

The presence of radiation from the underlying event and pileup can have a significant impact
on the jet reconstruction. In the ⌘ p � plane, the effect of pileup is expected to be uniform.
The impact of pileup on the jet reconstruction can be reduced by grooming the jets. In the
dataset used in this thesis jets are groomed using trimming [50]. This is done by reclustering
the constituents of the jet with the kt algorithm with R = 0.2 and removing the softest
sub-jets with pT < 0.05 times the jet pT . The justification for this is the soft radiation is more
likely to be from pileup than from the hard scattering process. This soft radiation is expected
to appear as a sub-jet in the jet reconstruction and can therefore be trimmed following the
above procedure.

3.3.3 Jet substructure

Different particles result in different patterns in the energy deposits within a jet. This can
be used to infer the nature of the particles that produced the jet. These patterns are referred
to as jet substructure, and this is useful for understanding jet physics [51]. For example,
a jet initiated by a highly boosted W ⇠ qq̄ decay often has a two pronged substructure
within a large-R jet due to the two quarks. For this thesis, the ‘pronginess’ of jets is used
to discriminate between signal and background. Other more exotic particles might have
different substructure on average. The pronginess of a jet can be quantified by the N-
subjettiness variables [52]. These variables are calculated by minimizing the distance between
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the constituents of the jet and a set of N axes. The ⌧N variable is defined as,

⌧N =
1

p
jet
T

X

i

pT,imin (�R1,i,�R2,i, . . . ,�RN,i) , (3.11)

where �Rn,i is the distance between the ith constituent of the jet and the nth axis. In a two
pronged jet, the ⌧2 variable is small, while in a one pronged jet, it is large. For QCD initiated
jets, both the ⌧1 and ⌧2 variables can be either small or large depending on the jet, but these
variables are typically observed to have a similar scale in QCD jets, while the same is not
true for jets with genuine two-prong substructure. Therefore, the ratio ⌧MN = ⌧M

⌧N
variables

become powerful discriminants for signal and background [53]. The analysis presented in
this thesis uses the ⌧21 and ⌧32 variables. The calculation of ⌧32 is inherently more complex
than ⌧21, as multiple axes need to be minimized. Therefore, this variable is generally less
sensitive to three prong substructure than ⌧21 is to two prong substructure.

3.3.4 Trigger

During data taking the physics objects used in trigger decisions are constructed on the fly. In
general the trigger objects are not as well reconstructed as offline objects. Due to differences
between the trigger and offline reconstruction, there is not a sharp boundary at the online
threshold, instead following a smooth turn on curve. This turn on curve flattens out at
a certain value, which is referred to as the offline threshold. The region above the offline
threshold is referred to as the trigger plateau.

3.4 Simulation

To compare measured data to theoretical predictions, the physics processes that occur in the
detector need to be simulated. This is true for both the signal and the background processes.
For the analysis used in this thesis, the QCD background is simulated as well as a set of
postulated BSM signals. This thesis is largely data driven, but simulation is used to validate
the analysis, provide benchmark signal model samples and help estimate the background.
Simulated samples are also often used in machine learning studies that are discussed in
chapter 5.

The simulation chain in HEP is based on multiple steps at different scales, from the hard
scattering process to the detector response. The hard scattering process is simulated using
Monte Carlo (MC) event generators that use perturbative QCD to calculate the matrix element
of the targeted process. Outside the hard scattering process, partons produce sprays of
particles at energies accessible with perturbation theory. These processes are modelled
using a parton shower model, which is applied to both initial and final state partons. At
a certain scale, perturbative QCD breaks down and partons hadronize into color neutral
particles. This hadronization factorizes from the hard scattering [54]. The confinement
of color charged particles is modelled by a hadronization model such as the Lund string
model [27] as described in section 2.2.1. After the parton shower, only colorless particles
remain, and their interactions with the detector are simulated using a detector simulation.
The most accurate form of the detector simulation is a full GEANT4 simulation [55]. In
this simulation, individual particles are propagated through the detector material and the
response of the detector is simulated.
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Chapter 4

New physics searches

A search for new physics in HEP is a data analysis that attempts to find evidence of new
phenomena in data and to exclude the existence of such processes. This defines two different
statistical questions. Both exclusion and discovery are important for the field; discovery
informs us about new forms of matter, and exclusion informs us which theories do not
accurately explain nature. This chapter discusses how these questions are formally addressed
using the frequentist approach to statistics used in HEP [56].

4.1 Introduction

To make probabilistic statements about observed data a probabilistic model of our expec-
tations needs to be built. This involves constructing a likelihood model of our data as in
section 5.7.1 and repeated here in modified form. The likelihood,

L(µ, ✓) =
NY

i=1

p(xi|µ, ✓), (4.1)

is a function of the parameters {µ, ✓} given the observed dataset X = {x
i}Ni=1, where N

is the number of observations. A likelihood is constructed by making background and
signal predictions and accounting for all uncertainties that relate to these predictions. The
parameter µ is called the signal strength and allows us to compare signal plus background
likelihood models (µ != 0) and background only models (µ = 0). This likelihood allows us
to make statements about the likelihood of the observed data under a given model.

Due to the stochastic nature of HEP processes background and signal predictions are always
probabilistic in nature. For example, one might predict ⌫ 6 R events to be observed on
average in a certain region. The likelihood of observing n 6 Z events in this region is
then defined by a counting experiment and our model can be parameterized by a Poisson
distribution,

p(n|⌫) := Pois.(n|⌫) = ⌫
n
e
�⌫

n!
. (4.2)

The rate ⌫ can almost never be predicted with absolute certainty, and this value can be
expected to fluctuate according to the level of uncertainty. This can be either systematic or
statistical in origin. Systematic (epistemic) uncertainty arises due to a lack of knowledge
about the processes involved in our prediction. For example, uncertainty in predictions
about the detector response in simulation gives rise to systematic uncertainties. Statistical
(aleatoric) uncertainty arises due to inherent randomness in the data.

To encode knowledge about uncertainty, additional constrained parameters are introduced
into the likelihood. For example, the earlier predicted value of ⌫ might be expected to vary by



28 Chapter �. New physics searches

±� following a Gaussian distribution. Note the uncertainty as quantified by the parameter
� is itself a prediction. A likelihood model for this setting can be written as,

L(µ, ✓) = Pois.(x|⌫ + µS + ✓)N (0; ✓,�2), (4.3)

where µ is a free parameter, S is the expected number of signal samples, ⌫ is fixed and ✓ is
constrained by the Gaussian distribution.

4.2 Discovery of new physics

A search for new physics is formalized as a hypothesis test. The null hypothesis (H0) is
the data is described by the Standard Model and the alternative (H1) hypothesis is the data
contains new physics. A hypothesis test returns a test statistic, which together with the
sampling distribution for the test statistic can be converted to a p-value. The p-value is the
probability of observing as many, or more, events than were observed assuming the null
hypothesis is true. A p-value is often converted into a significance Z, which is the number
of standard deviations between the mean of the null hypothesis and the observed data. In
a search, the null hypothesis is rejected if the significance is greater than some threshold,
often 5� [57].

Hypothesis tests in HEP are based on the profile likelihood ratio [58, 59],

�(µ) =
max✓̂ L(µ, ✓̂)

maxµ̂,✓̂ L(µ̂, ✓̂)
, (4.4)

and the corresponding test statistic tµ = p2 ln(�(µ)). This test statistic is particularly useful
because in the asymptotic limit of large statistics, the sampling distribution of the test statistic
is known and so the p-value is straightforward to calculate [58]. Questions of discovery
are interested in �(µ = 0) which defines the likelihood ratio under the background only
hypothesis. In this thesis, it is assumed that physical processes are additive on top of the
background and therefore the signal strength µ > 0. To account for this the test statistic is set
to zero if the best fit µ̂ 2 0. For quantifying deficits, negative values of µ̂ are considered. The
appearance of a deficit is interpreted in the context of the assumptions made by this search
as a failure to accurately model the background.

To understand the test statistic the setting of a simple counting experiment is again useful.
In this setting, when µ is fixed the parameter ✓ shifts away from the nominal value of zero
if x != ⌫. A shift in ✓ away from zero comes at the cost of moving away from the maximum
likelihood of the Gaussian constraint. In contrast, when µ and ✓ are fit simultaneously there
is no cost to shifting µ and so ✓̂ stays fixed at zero. This results in no cost due to the Gaussian
constraint. Therefore, the numerator of eq. (4.4) is always less than the denominator and
�(µ) 6 [0, 1]. Also, note the larger the discrepancy between x and the predicted rate ⌫
the smaller the numerator becomes while the denominator remains fixed and so as the
discrepancy grows �(µ)⇠ 0.

One thing that is important to account for in HEP is the so-called ‘look-elsewhere’ effect. This
problem arises when an analysis makes multiple comparisons between model predictions
and observations. The reason multiple comparisons are problematic is the p-value is uniform
under resampling of the data in the background only case. That means if the background
model is exactly correct, and the same quantity was measured an infinite number of times,
discovery is claimed y% of the time, where y is fixed by the discovery threshold. Conversely,
if the alternate hypothesis were true then discovery would be claimed more than y% of the
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time when repeating a measurement an infinite number of times. The key takeaway here is
that discovery can be claimed in the background only case, though it is more likely if the
alternate is true. If multiple hypothesis tests are run on independent quantities, where the
fluctuations in the data are uncorrelated, the uniformity of the p-value distribution plays the
same role. Therefore, more comparisons increase the chance of claiming a discovery in the
background only case. Individual comparisons are used to construct ‘local’ p-values, but the
‘global’ p-value of the analysis has to combine these and pay a trials factor [60].

4.3 General search considerations

For this thesis, it is useful to consider binned searches, which are common in HEP. In a
binned search the observed data is defined by a histogram and the likelihood in eq. (4.1)
contains the product of multiple Poisson distributions. The histograms that are used in the
search are defined in variables where reliable background and uncertainty predictions can
be made. These variables are only ever a subset of the variables reconstructed from the
detector. The following provides some general considerations for searches in HEP that are
useful for understanding the work in this thesis.

Consider a histogram with a single bin and no systematic uncertainty on the number of
predicted background events B or the number of signal events S. The likelihood in this case
is given by,

L(µ) = Pois.(n|B + µS), (4.5)

where n is the number of observed events, and µ is the signal strength. In this setting,
µ = 1 is s = S/

�
B standard deviations from the median of the null hypothesis. For high

statistics (B & 50) this s is similar to the significance Z of the corresponding test statistic
tµ=0. If the background can be reduced by a factor of ↵0 > 1 at the cost of reducing the signal
strength by a factor of ↵1 > 1 then this significance scales like the significance improvement
characteristic SIC =

�
↵0/↵1 [61]. Therefore, the sensitivity of the search can be enhanced

by reducing the background faster than the signal. Note also that random downsampling
of the data by a factor of ↵ = ↵0 = ↵1 > 1 reduces the significance of the test statistic by
1/
�
↵ < 1.

In general, background can be reduced by making selections on the data by making use of
variables that are not fit in the hypothesis test1. That is variables that are not used to form
the count n. These selections need to be made carefully such that the background can still be
accurately predicted after selections have been made. This simple heuristic is complicated
by the fact the signal and background are not known exactly. The addition of systematic
uncertainties further complicates this picture.

One generic strategy for performing searches in HEP is to partition data based on a score to
define a ‘signal enriched’ dataset that can be used to perform a hypothesis test. The score
would be assigned to data samples using criteria based on some large set of features and the
hypothesis test would be run on a subset of features. This allows information from the full
feature set to be used indirectly to enhance the sensitivity of the final hypothesis test. To
permit a background prediction to be made, the partitioning and subset of features need to
be carefully selected. This is addressed later in this thesis.

1This generally means they are not a part of the vector xi in the likelihood defined in eq. (4.1)
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4.4 Exclusion of new physics

Conceptually, the existence of new physics can be excluded by observing its absence with
confidence. Formally, this can be done by setting upper limits on the parameters that
determine the signal. Limits are most often set on the cross section of new physics processes
at a certain threshold defined by a pre-defined confidence level. In HEP, limits are set at 95%
using a method that is referred to as the CLs procedure [62]. This procedure sets upper limits
based on pseudo frequentist p-values and is conservative as the true exclusion probability can
be greater than what is quoted. The CLs procedure is standard across multiple experiments
which is useful for allowing comparisons to be made.

For exclusion with a bounded parameter of interest, as studied here, a modified test statistic
is used [58],

q̃µ =

(
p2 ln �̃(µ) if µ̂ 2 µ

0 if µ̂ > µ
=

8
>>><

>>>:

p2 ln max✓̂ L(µ,✓̂)
max✓̂ L(0,✓̂)

if µ̂ 2 0

p2 ln max✓̂ L(µ,✓̂)
maxµ̂,✓̂ L(µ̂,✓̂)

if 0 2 µ̂ 2 µ

0 if µ̂ > µ

, (4.6)

where q̃µ = 0 for µ̂ > µ, because the signal is additive on top of the background and such a
fit result, does not indicate less compatibility of the data with the tested value of µ.

When performing physics analyses there is always some background contamination. This is
reflected by writing s + b to define the signal model. When excluding new physics the CLs

approach ensures the analysis does not exclude processes to which it has no sensitivity. In
the CLs approach limits are set using a pseudo p-value,

p
0
µ =

pµ

1p pb
=

CLs+b

CLb
= CLs, (4.7)

where pu is the p-value for q̃µ under the hypothesis of signal strength µ,

pµ =

Z 1

q̃µ

f(q̃0µ|µ, ✓̂(µ))dq̃
0
µ, (4.8)

where f is the PDF for the sampling distribution of the test statistic and ✓̂ is the maximum
likelihood estimate of ✓ with the signal strength fixed at µ. The p-value pb is the p-value for
the same test statistic q̃µ under the background only hypothesis,

pb =

Z q̃µ

�1
f(q̃0µ|0, ✓̂(0))dq̃

0
µ. (4.9)

The use of the CLs procedure has some nice features in the context of exclusion. If the data is
significantly in excess of what is expected under the background only likelihood model then
1ppb is small, and the CLs value is large, effectively making it hard to exclude the signal. This
is expected as the signal should not be excluded if an excess is observed. If an observation
in excess of what was measured is equally probable under both the signal and background
likelihood models, characterizing an analysis that has no sensitivity to the targeted signal,
then the numerator and denominator are approximately equal, the ratio is close to one, and
the signal can not be excluded. If the data agrees with the background only hypothesis, but
not with the signal hypothesis, then the fraction is small, and the signal can be excluded.
This is also expected as the data is much better described by the background model than
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the signal plus background model, and so it can be said with confidence the signal is not
produced at this cross section. A signal at a certain cross section �, as parameterized by the
signal strength µ, is excluded at 95% if p

0
µ < 0.05. In practice, the observed limit is found by

solving p
0
µ = 0.05 for µ.

Analyses also calculate expected limits to provide a comparison to the observed limit. These
limits are intended to represent the limit that would be set on average if the experiment
were repeated many times and the background only hypothesis was true [58]. In A����,
these limits are calculated by setting the expected observation to match exactly the recorded
observations (Asimov dataset), with no signal injected and all parameters in ✓ fixed to their
best fit values [63, 64]. One and two sigma variations of this are also reported by setting the
expected observation to the one and two sigma variations of the background only likelihood
distribution centered on the observed data. The expected limits reported in this thesis are
the median limit obtained under resampling of the observations assuming the recorded
observation characterizes the true background only prediction.
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Chapter 5

Machine learning

Over the last decade machine learning (ML) has become a valuable scientific tool [65–68].
More recently it has gained widespread attention in broader societal contexts with the advent
of high-fidelity text generation models like C���GPT [69] and image generation models like
S����� D�������� [70]. The success of these models has led to public debate about the promise
and dangers they may pose. These concerns are important, but in the context of this thesis,
ML is treated as a suite of tools that can be used to enhance the efficiency and precision
of many data analysis related tasks. There are challenges associated with deploying ML
algorithms in scientific contexts and some discussion of this is provided throughout this
chapter.

This chapter introduces the basic concepts of ML and the specific elements that are required
to understand the analysis this thesis presents. Work completed as part of this thesis that
does not pertain to the main analysis is described briefly. The chapter closes with some
discussion and outlook.

5.1 Background

In practice, an ML task is defined by data samples from some distribution, such as the
simulated interactions of particles with the ATLAS detector, and a task, such as object
identification or generation. An ML engineer produces a function, or model, that can
perform the specified task by minimizing the ‘error’ in the predictions of the model. This
minimization is performed by fitting a parametric ML model to data with some internal
structure (architecture) using some learning algorithm. There is a fundamental connection
between this algorithm, the structure of the data and the architecture of the ML model
which is illustrated in Figure 5.1. Few formal results exist for how to piece these different
elements together and ML engineers most often rely on experience to make decisions on
how to approach any given problem.

All the ML approaches used in this thesis fit differentiable parametric models to data using
some form of gradient descent in the space of model parameters to find the minima of some
objective function. The act of fitting the model to data is referred to as learning or training.
Models are typically fit to data using empirical risk minimization and assume independent
and identically distributed data (iid). The derivatives of the ML models are calculated using
backpropagation which is a special kind of reverse mode automatic differentiation [72]. The
parameters of ML models are referred to as weights. The parameters that define the ML
model’s structure and training algorithm are referred to as hyperparameters. It is often
observed that ML models can extract more accurate models from data than can be created
using human crafted algorithms.
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Figure 5.1: The elements of machine learning from Zdeborová [71]. All ma-
chine learning approaches involve an interaction between the structure in the
data, the architecture of the neural network and the learning algorithm used

to train the model.

Some ML models are known to be universal function approximators of continuous func-
tions [73, 74]. This means they can parameterize any possible continuous function. Models
that are used in practice are not universal function approximators and only have the capacity
to parameterize continuous functions in a certain family. A sufficiently flexible ML model
can have the capacity to ‘memorize’ the data on which it is trained. This quality is unde-
sirable as then the model is unlikely to make accurate predictions on data it has never seen
before.

The ability of a model to perform well on new data samples is referred to as generalization.
This is an essential property for ML models as they are trained on one dataset but deployed
on another. If the capacity of a model is too large, and it starts to memorize the data, its
generalization performance decreases, this is referred to as overfitting. If the capacity of
a model is too low then the true function may not lie within the space of functions the
model can approximate, in which case a poor function is learned [75]. This is referred to as
underfitting. This relationship between model capacity and generalization performance is
an example of the bias variance trade off.

Overfitting can be measured by splitting the available dataset into a train and validation
set. The model is trained on the training set and evaluated on the validation set, with the
difference in performance on the two sets being used as a proxy for overfitting. Regularization
techniques, where the model capacity is restricted, are used to improve generalization.
Selecting a regularization strategy, and other model parameters, using the validation set can
lead to overfitting on this dataset. This is solved by introducing a third split of the dataset,
the test set.

In modern ML a phenomenon known as ‘deep double descent’ has been observed, where
the generalization performance improves with the number of weights in a model [76]. This
is paradoxical if one assumes the number of parameters in a model uniquely defines its
capacity when fit to data. However, the relationships shown in Figure 5.1 are expected to
play a significant role in dictating model capacity. Therefore, the number of parameters in a
model is often a poor proxy for its capacity when fit to data. Both the structure of the data
and the learning algorithm used to train the model can significantly impact the capacity of
the model.
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The modern approach to ML, particularly in the subfield of deep learning, is to overparam-
eterize models and train them with specific learning algorithms [77–79] on large datasets.
This, of course, does not work on all possible datasets and settings [80–82], particularly when
the iid assumption is violated. However, in practice, this approach is successful in many
settings including HEP [65].

Issues in applying ML algorithms do arise when there is a domain shift. This is defined
by models being trained on one dataset and deployed on another, where the two datasets
are distributed differently [83]. This is particularly relevant for HEP, where supervised
algorithms are trained on simulated data and deployed on real recorded data. Due to
mismodelling in simulation, these two datasets are not drawn from the same distribution.

In choosing an ML model it is important to match the architecture to the data type, this
defines an important inductive bias. In general, injecting physics knowledge (inductive bias)
into a model significantly increases the efficiency with which it learns [84, 85]. However,
constraining models by introducing inductive bias can make them more difficult to fit to
data. This may be in part why more data and bigger models – while less efficient – have
consistently proven to be the highest performing [86–88]. If the goal of an ML algorithm is
to be as performant as possible and resources are not limited then analysts should pursue
more data and bigger models. However, if the goal is efficiency then one should try to inject
as much physics knowledge as possible [89, 90].

Modern ML can be broadly categorized into two classes: supervised and unsupervised. In
supervised ML a dataset of samples with targets is provided, and the objective is to learn
a map from the samples to the targets. Unsupervised ML does not have such labels, and
instead some inherent property of the data such as the density is estimated, or labels are
defined using the data directly to try and extract some useful representation. This chapter
introduces some specific examples of these types of learning. Approaches that are used in
this thesis are described in detail, all other methods are only described in high level terms.

A common problem faced by ML approaches is that models operate on high dimensional
spaces. This causes problems as high dimensional spaces behave in ways that are unfamiliar
to us and our experience in four dimensions, leading to counterintuitive behaviour in some
settings. For example, the volume of an N dimensional unit sphere V

S
N as a fraction of the

volume of an N dimensional unit hypercube V
C
N goes to zero as N goes to infinity,

lim
N!1

V
S
N

V
C
N

= 0, (5.1)

which shows that when sampling from a unit hypercube in N dimensions, for large N the
corners of the cube are much more likely to be sampled than the center. This is at odds
with the familiar picture in two dimensions, where samples are more likely to fall inside a
circle inscribed in a unit square. This is just one example of the difficulties associated with
thinking in high dimensions and the problems that result when sampling such spaces.

5.2 Data structures

Training simple neural networks is intractable if the data satisfies some worst-cast condi-
tions [91]. This suggests that datasets where ML is successful have some special properties.
It is commonly observed that almost all natural datasets have this property as ML algorithms
learn almost always. This subsection is not concerned with what this property is, instead
focussing on how data is represented when passed to an ML model. As is shown in the next
subsection, particular representations are complemented by specific ML model architectures.
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One of the simplest data representations is an N dimensional real vector x 6 RN . In ML
each entry xi in this vector is referred to as a feature. For HEP applications this vector could
represent a jet, described by its four momenta and substructure, for example. It is common
for these vectors to contain features with different scales and units. To account for this the
data is normally preprocessed as described in the following. Features with long tails are
often log scaled to reduce their variance. ML models are assumed to be sufficiently flexible to
be able to undo this transformation if it hampers learning. In practice, it is often observed in
HEP that this log transform improves learning. Choosing units to represent different features
is also arbitrary as ML models are expected to learn the relationship between features from
data. The input features to an ML model are therefore preprocessed to a common scale, each
feature is scaled to range from zero to one for example. Some features, such as particle type,
are not natively represented as real numbers. These features are referred to as categorical
features. Embedding these features as scalar integers is problematic as this implies an
ordering to particle type that does not exist. Instead, each entry in a set of M unique
categorical features is embedded as a row of an M dimensional identity matrix. This is
referred to as one hot encoding. A one hot encoded label can be included in the feature
vector x.

Two common data modalities in ML are text and images. Many approaches have been
developed for handling data in this form. Images are represented as three-dimensional
tensors of real numbers with three color channels and the spatial resolution of the image.
Text can be represented as an ordered sequence of categorical features. Breaking down text
into different chunks is not done on a word by word basis as this is inefficient. Instead, text
is broken into more atomic blocks based on the byte-pair encoding algorithm [92, 93], which
leverages common patterns to reduce redundancy.

In HEP data is often represented by physics objects like jets. A jet can be described as a
collection of particles as reconstructed from the detector. Each of these particles can be
assigned a feature vector x

i such that the full jet is described by the set x = {x
i}. Inherently

there is no order to this set, though one can be assigned based on pT . This introduces a
bias with limited information by identifying the pT part of the feature vectors x

i as special.
Natively a jet, as represented by a collection of particles, is an unordered attributed set. In
this representation of a jet the features in the vector x are treated on equal footing by an
ML model. This representation is also the same as how text is represented in ML, except
it is unordered, and therefore methods developed for text can be successfully translated to
the HEP domain [88]. The ability of ML algorithms to bridge domains, with methods being
developed for text finding significant utility in HEP, is a key strength of the field.

5.3 Model architecture

Machine learning models come in different types. The following describes some of the most
important and relevant for this thesis. They are typically composed of stacked layers. The
different parameters in the models are initialized randomly [94]. There are many choices
in how they are designed defined by hyperparameters that are typically chosen by a grid
search over a subspace. This search space is typically chosen from experience or by looking
at what has been found to be successful in the literature.

5.3.1 Multi-layer perceptrons

One of the most common building blocks of ML models is the multi-layer perceptron (MLP).
This model operates on vector inputs. It is constructed from interleaved linear transforma-
tions and element wise non-linear functions. The linear transformations Li are parameterized
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by real N �M dimensional matrices Wi and N dimensional bias vectors bi such that they
act on some M dimensional input ↵ as,

Li(↵) = Wi↵+ bi, (5.2)

and produce an N dimensional output vector. The non-linear functions are referred to as
activations and are typically simple and differentiable almost everywhere. The most famous
example is the R�LU [95] activation function,

ReLU(↵) = max(0,↵), (5.3)

where the max acts on each feature in ↵ separately. There are many forms of activation
functions [96] but they are always simple in form. An MLP with n p 1 hidden layers using
activations �i is defined as,

MLP(x) = �n  Ln  �n�1  Ln�1 · · ·�0  L0(x), (5.4)

acting on an input sample x. Normally all the internal activations are identical except for
the final activation �n. This output activation is chosen to match the prediction task. The
width of an MLP layer is defined by the size of the internal representations N , and the depth
is defined by the number of stacked layers n. A finite width and depth MLP with R�LU
activations is a universal function approximator [74]. Models like the MLP are often referred
to as deep neural networks when they have many layers.

The parameters of an MLP are the elements of the matrices Wi and biases bi. If the features
input to a neural network take large values or have different scales then the weight matrices
of an MLP can become extreme and generally makes learning more difficult. The same is
true for all ML models and this is the main motivation for preprocessing the features input
to a neural network.

5.3.2 Tree based algorithms

MLPs work well on data that is naturally represented by smooth, continuous, real valued
data, particularly if the dataset is large. However, lots of datasets contain heterogeneous
features, few samples (order 10k) and uninformative features. These datasets are referred to
as tabular. On these datasets tree based classification algorithms outperform MLPs [97]. In
tree based algorithms the dataset is split based on simple criteria of the features and some
splitting functions. Multiple trees of different depths are ensembled, whereby their predic-
tions are aggregated, to form performant algorithms for different tasks. These algorithms
have better inductive biases for tabular data and therefore learn more efficiently on these
datasets [97], where efficiency means they don’t need as much data to learn. This is relevant
for some ML problems in HEP [98].

5.3.3 Invertible neural networks

In various applications, it is useful to be able to parameterize flexible invertible functions.
These functions allow a single map between spaces to be defined, and typically both their
inverse and forward passes are required to be differentiable. An invertible function is useful
because it allows the spatial deformation due to a transformation to be directly quantified.
This is useful in density estimation tasks as discussed later.

A simple example of an invertible transformation is an affine transformation, f✓(x) = ax +
b, which has parameters ✓ = {a, b}. Parameterized in this way the transformation has
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little flexibility. More flexible invertible functions, such as rational quadratic splines, can
be used instead where the parameters of the spline define ✓ [99]. However, even these
transformations, defined in this way, can not represent complex functions.

A simple way to extend the flexibility of any invertible transformation is to parameterize the
invertible functions f✓ in terms of the data. For example, given a two dimension input vector,
an invertible transformation can be constructed by composing two invertible functions f✓1

and f✓2 as, 
x1

x2

�
⇠


x1

f✓1(x1)(x2)

�
=


x1

u2

�
⇠


f✓2(u2)(x1)

u2

�
, (5.5)

where the parameters of each invertible transformation are now predicted as a function of
the data. This effectively means that different invertible functions are applied at every value
of x. The predicted parameters ✓i(xi) of the invertible function are typically the output of
other non-invertible neural networks like MLPs.

More iterations of the steps in eq. (5.5) can be stacked together to form expressive invertible
transformations. These networks are typically either constructed using autoregressive [100,
101] or coupling [102, 103] approaches. Autoregressive approaches can be either quick
to encode data and slow to invert or vice versa. The choice of the fast direction is made
based on the nature of the problem they are designed to solve. Coupling approaches have
approximately the same speed in both directions. One of the main shortcomings of invertible
neural networks (INNs) is they are dimension preserving, which limits their expressivity.

The approach outlined in eq. (5.5) defines invertible transformations by stacking transforma-
tions together. An alternative approach is to parameterize the transformation as a dynamic
process through infinitesimal steps and then integrate to find the full transformation. This
defines continuous time flows, which uses the ordinary differential equation,

dut

dt
= f✓(ut, t), (5.6)

with some function f✓ that satisfies some minimal conditions to ensure this equation has a
unique solution. Most neural networks can be used to parameterize f✓ directly. Solving the
dynamics defined by this equation for finite time results in a flexible relatively unconstrained
invertible transformation.

5.3.4 Convolutional neural networks

Convolutional neural networks (CNNs) are composed of convolutional layers specifically
designed to process image inputs and MLPs. The convolutional layers have an inbuilt
inductive bias to handle images, and for a long time were the most successful architectures
to be applied to image data [104]. Though transformers are now competitive they also use
a similar inductive bias [105]. These networks are not used in this thesis and so are not
detailed here.

5.3.5 Transformers

One of the most successful modern architectures is the transformer [106]. The novel layers
in these architectures are based on the attention mechanism. This mechanism allows for
information to be quickly propagated across long sequences and can handle variable length
sequences of inputs. This is particularly relevant for jets in HEP, allowing their native
embedding as unordered sets to be modelled with high performance [88]. The attention
layer is more complicated than the other layers discussed so far and is not used for the work
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in this thesis. To form a transformer the attention mechanism is combined with MLP blocks
and other layers. For an excellent introduction see Fleuret [107].

5.4 Learning algorithm

Most ML models, except tree based algorithms, are fit to data using variants of stochastic
gradient descent (SGD) [108]. This is performed using derivatives with respect to the weights
of the model ✓ of an objective (loss) function L(x, ✓) such that the update step for the
parameters of an ML model is,

✓ = ✓ p ⌘ 1
n

nX

i=1

rL(xi
, ✓), (5.7)

where n is the number of samples used in the update and referred to as the batch size and ⌘
controls the step size taken in each update and referred to as the learning rate. The learning
rate is one of the most important hyperparameters in training machine learning models.
It is often found that scaling this global variable according to some schedule significantly
improves model performance [109]. In true SGD the gradient is estimated using single
samples n = 1, but it is more computationally efficient to compute this in batches with
n� 1. An epoch is defined as one full pass through the dataset.

Gradient estimates calculated in this way are noisy and this can interfere with learning. Many
variants of SGD exist that aim to smooth out the gradient estimate and assign per-weight
learning rates to increase the importance of sparse parameters. Some use a moving average
of the gradient rather than the gradient itself. Momentum, analogous to physics, can also be
used to smoothen gradient estimates. The most commonly used optimizer is Adam [110, 111]
which uses momentum with per parameter adaptive learning rates.

It has been shown that SGD finds minima that are smooth and ‘simple’ [112]. This means it is
often assumed the function parameterized by the fit ML model looks at simple relationships
in the data. Generally, this is thought of as being beneficial as simple patterns are often
more robust in the spirit of Occam’s razor. However, simplicity comes at the cost of ignoring
complex relationships that may be as informative as, and orthogonal to, simple ones. This
over reliance on simple information can cause a lack of robustness to small perturbations
in the input domain, particularly when simple patterns are spurious [80]. This may explain
adversarial attacks [113], where a small amount of additive noise to an input sample can
radically change the output prediction.

5.5 Classification

One of the conceptually most simple tasks in ML is classification. In this setting the dataset
X = {x

i
, y

i} is formed from paired samples x
i and labels y

i. Typically, the labels are one hot
encoded, the input features preprocessed, and then an ML model f✓ is fit to the data with a
������� (�������) activation function. This thesis focuses on binary classification, where the
labels are binary, and the ������� activation function is used. In HEP this is often used to
discriminate signal from background, which is the focus of the discussion here. This output
activation turns the prediction into a normalized probability estimate such that the cross
entropy objective function can be used,

LCE(x
i
, y

i
, ✓) = p(yi) log(f✓(x

i)), (5.8)
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where p is the true probability of the labels and is typically a delta function.

In HEP classification models are often trained on simulated data where the generating
process is known such that exact labels can be assigned. Due to the stochastic nature of
processes in HEP, it is almost never the case that different classes can be perfectly separated.
This is particularly true for the classification of jets in HEP. Instead, when fit to data the
model learns the likelihood ratio of the two classes. This ratio can be used to select events to
define data samples that are enriched in certain desirable properties.

An ML model is trained to minimize eq. (5.8) using a variant of eq. (5.7). This algorithm is
then applied to data that is measured by detectors like ATLAS and is often seen to have good
performance despite the mismodelling in simulation [114]. Applying ML models trained on
simulated data to real data is a common practice in HEP, and requires careful calibration to
ensure that simulation and data can be treated in the same way. This calibration itself is a
challenging task that can also be solved using ML methods [115].

5.5.1 Classification without labels

It has also been shown that classification algorithms can be trained on mixtures of data where
only the relative mixtures are known. This applies to binary classification problems such
as discriminating signal from background. Consider two datasets X1 and X2 with signal
to background ratios f1 and f2, respectively. If f1 > f2 and both signal and background
are sampled from the same distribution in both datasets, then the optimal classifier for
discriminating between signal and background can be found by assigning the label one to
X1, zero to X2 and training a classifier. This defines the classification without labels (CW�L�)
paradigm [116]. With this approach models can be trained directly on data, removing the
need for simulation. This has been shown to be effective for isolating muons in data [117]
for example.

Models trained in this paradigm still use the cross entropy loss function defined in eq. (5.8),
and functionally the training procedure is the same. The only difference is that labels are
assigned based on the relative mixtures of the datasets. There are some difficulties associated
with this approach, particularly when there are only a few samples from one of the classes.
In general, it is observed that CW�L� is sensitive to the absolute number of samples in
each class, rather than the relative mixtures. If one of the classes does not have a sufficient
number of samples then the model struggles to learn, as is typical in ML. When training a
classifier in this fashion it is also observed that MLP classifiers struggle to ignore irrelevant
features in the data [118]. This can limit the dimensionality of the data that can be used in the
classifier. However, it has been shown that tree based algorithms can largely overcome this
limitation [118]. The performance of these models is also significantly boosted by something
referred to as pretraining which is discussed later in this thesis.

The CW�L� approach to training classifiers plays a significant role in the work presented in
this thesis.

5.6 Decorrelation

Once a binary classifier has been trained in HEP it is often used in an event selection to create
a signal enriched data sample. In an analysis, this selection is only ever one step in a chain
of procedures. Some analyses rely on the classifier output having restricted correlation with
certain variables m [114]. This is required because analyses often rely on assumptions about
the distribution of the variables in m to estimate the background. Making a selection based
on a correlated classifier can distort this distribution and violate these assumptions.
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Decorrelation can be promoted by minimizing a measure of the correlation between the
classifier output f✓(x) and the protected attributes m while training a machine learning
model [119–122]. In practice, this means a model is trained to minimize the expectation over
a modified objective function of the form

L(xi
, y

i
, m

i
, ✓) = LCE(x

i
, y

i
, ✓) + ↵Ldecor(x

i
, m

i
, ✓), (5.9)

where m
i is the protected variable for sample i and Ldecor is an objective function that

decreases as the correlation between m and f✓(x) decreases. The parameter ↵ controls the
relative contribution of each of the objectives and is the minimal additional parameter that can
appear in such loss functions, though more parameters can appear in Ldecor. Decorrelation
methods that use eq. (5.9) incur additional costs when defining the classifier for calculating
derivatives and tuning additional parameters like ↵.

5.6.1 Decorrelation with the conditional CDF

During the work on this thesis, we proposed using the conditional cumulative distribution
function (CDF) to decorrelate trained classifiers [123]. This approach is compatible with
all preexisting decorrelation methods and corrects the output of the classifier after it has
been trained. In one dimension the CDF is defined as a map F : R ⇠ [0, 1] such that
F (x) =

R x
�1 p(x)dx. This means F is a monotonically increasing function, which also means

that it is order preserving. An example of a probability density function (PDF) and its
corresponding CDF is shown in Figure 5.2. The conditional CDF F (x|m) is defined in the
same way but operating on the conditional distribution p(x|m).

Figure 5.2: An example of a probability density function (PDF) and its corre-
sponding cumulative distribution function (CDF).

Fundamentally, a correlation between the classifier output and the protected variable m

manifests as a difference in p(f✓(x)|m) at different values of m,

p(f✓(x)|m) != p(f✓(x)|m0) 8m != m
0
. (5.10)

If the classifier output distribution were the same at every value of m then the classifier output
would be decorrelated from m. The conditional CDF maps the conditional distribution of
the classifier output to a uniform distribution on the [0, 1] interval. This means that at every
value of the parameter m the classifier output distribution is identical.

F (f✓(x)|m) = F (f✓(x)|m0) = U(0, 1) 8m, m
0
. (5.11)
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Therefore, F (f✓(x)|m) is decorrelated from the protected variable m. This form of decor-
relation also ensures the separation power of the classifier at each value of m is preserved
because the CDF is order preserving. In practice, this means that in bins of m the separation
power of the classifier is preserved.

When the underlying distribution of the data is unknown the CDF has to be estimated from
data and this is often done using the empirical CDF F̂ (x). This is defined as,

F̂ (x) =
1

n

nX

i=1

I(xi 2 x), (5.12)

where I is the indicator function. When estimating the empirical conditional CDF the samples
can be split into bins based on the protected variable m. However, this does not work well
when the number of samples in each bin is small, and it does not leverage the continuity
between bins. For this decorrelation application, we developed a novel approach to learning
the conditional CDF that is referred to as a conditional flow for the remainder of this section.
When this was originally presented this novel approach to CDF estimation was mixed with
the idea of decorrelation when in fact they are separate. The approach to CDF estimation is
described in detail in section 5.7.6.

5.6.2 Experiments

As an example of this application consider a problem where an ML model is trained to
classify signal from background. For this task, a dataset of QCD jets and hadronically
decaying boosted W bosons is used. Such a signal appears in many extensions of the
Standard Model, and the large boost of the W boson means the decay products are mostly
contained within a single large-R jet.

The samples were simulated in Refs. [121, 124] to emulate those used in an earlier ATLAS
study on mass decorrelation techniques [125]. Both signal and background were generated
by P����� at s =

�
13 TeV with a detector simulated by D������ [126]. Jets are reconstructed

using F���J�� [127, 128] and clustered using the anti-kt algorithm [49] with R = 1.0. Each
jet is required to have transverse momentum pT 6 [300, 400] GeV and mass m 6 [50, 300].
For each jet ten substructure variables are calculated and used as input to the ML classifiers,
these variables are the same as those used in previous studies of decorrelation [121, 122,
125].

The classifier used in our approach is an MLP (vDNN)1 constructed from three hidden layers
with 64 nodes in each hidden layer and R�LU activations [95] and a sigmoid activation on
the output. The classifiers are trained for 100 epochs using the Adam optimizer [110] with an
initial learning rate of 0.001 annealed to zero following a cosine schedule [129]. Comparisons
are made to other decorrelation methods that have been developed for this task, MoDe [122]
and DisCo [121]. These approaches introduce a Ldecor term as in eq. (5.9) that is designed to
decorrelate the classifier output from the mass. Following the prescriptions of the respective
papers, models trained with MoDe decorrelation use a batch size of 16384 and 2048 for
DisCo models. Both of these approaches require large batch sizes to be able to estimate
Ldecor accurately. The vDNN uses a batch size of 256.

The mass of the QCD background is a protected variable because the QCD background
spectrum falls smoothly in the mass and the signal peaks around some resonant value. In
the context of a search for boosted W bosons, the background could be estimated from data
using the assumption of a smoothly falling background. Before estimating the background,

1MLP models are often referred to as deep neural networks (DNN).



�.�. Decorrelation 43

50 100 150 200 250
Mass [GeV]

10�5

10�4

10�3

10�2

10�1

N
or

m
al

is
ed

co
un

ts

QCD

W

50 100 150 200 250
Mass [GeV]

10�6

10�5

10�4

10�3

10�2

N
or

m
al

iz
ed

co
un

ts

Background

vDNN

cf-vDNN

Figure 5.3: The invariant mass distribution for the background samples with-
out applying any selection, and the mass profile after selecting a threshold
that rejects 50% of the signal for a classifier (vDNN) that has no decorrelation
applied, and a decorrelated discriminant that is the output of a conditional

normalizing flow (cf-vDNN).
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Figure 5.4: The distribution of the discriminant over QCD (background) sam-
ples for a vanilla deep neural network (vDNN) and a conditional flow trained

on the vDNN output (cf-vDNN).

the signal would be enhanced by making a selection on a classifier output. If the classifier
output is correlated with the mass then the background estimate becomes distorted. Note
that this decorrelation is performed strictly on the QCD background, and the signal is not
considered in this process. If the classifier were decorrelated on both signal and background,
then no separation power would remain by definition. The mass distribution of the QCD
background and signal, and the background that results after making a selection using
correlated and uncorrelated classifiers are shown in Figure 5.3.

The output of a classifier that is correlated with the mass is distributed differently at different
values of the mass. The conditional CDF of the classifier output f✓(x) over the background
only distribution maps this conditional distribution to a uniform distribution on the [0, 1]
interval. This is shown in Figure 5.4. After applying the conditional CDF (cf) the classi-
fier output is decorrelated from the mass. This approach is applied after a classifier has
been trained as a post processing step. It, therefore, can be used with classifiers trained
using MoDe and DisCo approaches and significantly improves the performance of the clas-
sifier [123].
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Figure 5.5: The background rejection at 50% signal efficiency (R50) and the
inverse of the Jensen-Shannon divergence between the mass distribution of
events that do and do not pass the cut at the same threshold (1/JSD50). The
empty circles denote a classifier that uses the output of a trained conditional
normalizing flow. Ten classifiers are constructed for every training paradigm
and the shaded lines contain 8 of the classifiers for each paradigm. Figure we

made for Klein and Golling [123].

To compare the conditional flow decorrelation we developed to existing methods the trade
off between the inverse of the Jensen-Shannon divergence 1/JSD50 and background rejection
R50 at 50% signal efficiency can be studied. The JSD50 is computed between samples that pass
and fail the selection. The 1/JSD50 and R50 are correlated in the regime of finite statistics
such that there exists an optimal trade off between these two metrics. This trade off can
be estimated directly from data by applying random selections with the same proportions
defined by R50. This defines the optimal trade off and is referred to as ideal.

The conditional flow (cf) performs significantly boosts the performance of existing methods
as shown in Figure 5.5. When applied to models trained with decorrelation objectives in the
form of eq. (5.9), such as MoDe [122] and DisCo [121], the cf-decorrelation approaches the
ideal limit. A conditional normalizing flow can also be used to directly decorrelate the input
features to find a new representation on which a classifier (vDNN cf-inputs) can be trained.
As this decorrelation is performed on all input variables directly, some correlation with the
mass remains in the classifier output. This residual correlation is evidenced by the improved
performance of training another conditional flow on the resulting discriminant.

5.6.3 Discussion

The same idea was recently proposed by Chakravarti et al. [130], where the motivation was
the conditional CDF is the same as the optimal transport map to a uniform distribution in
one dimension. An optimal transport map is a map that minimizes the cost of transporting
one distribution to another. Minimal transport implies minimal changes to the distribution,
and therefore minimal changes to the classifier output.

Optimal transport maps are also unique, and can therefore be used to define the CDF of
a distribution. This definition is useful because it allows the CDF to be defined in higher
dimensions, where the CDF is the optimal transport map to a unit hypercube [131–133].
This also means that higher dimensional CDFs can be used for decorrelation in more than
one dimension. In HEP contexts this has been shown to be effective [134]. Further, in
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some settings, it may not be desirable to map the classifier output to a uniform distribution.
The conditional optimal transport map to the targeted output distribution then replaces the
conditional CDF as the more general form of decorrelation.

The issue of unwanted correlations with classifier outputs also appears in societal contexts
where systematic biases appear in the datasets on which ML algorithms are trained. If these
biases are not removed then the use of ML in decision-making reinforces these biases. There
is a lot of work in the ML community on this problem under the umbrella of fairness [135].
Ideas from this field can be directly applied to HEP, where the same issues arise, and vice
versa. This again highlights the strength of ML in being able to bridge domains.

5.7 Density estimation

Given samples X the task of density estimation is to estimate the true generating data
distribution pD(x) from which the samples are drawn. Density estimation can be used to
train generative models from which samples can be drawn, to identify rare events, or to learn
maps between different distributions.

5.7.1 Maximum likelihood estimation

Given a parametric density model p(·|✓) with parameters ✓ and observations X = {xi}Ni=1
the function,

L(✓) =
NY

i=1

p(xi|✓), (5.13)

defines the likelihood. The maximum likelihood estimate of ✓ is then given by,

✓̂ = max
✓

L(✓). (5.14)

This estimate is interesting because it defines the model that is most likely to explain the
given observations given the family of densities parameterized by p(·|✓). The next section
looks at how parametric densities are defined in ML.

5.7.2 Normalizing flows

Normalizing flows [136] are composed of a tractable base distribution pb(b) and an INN T . A
density pT (x) can be induced on the input space by applying the change of variables formula,

pT (x) = pb(T
�1(x))| det JT�1(x)|, (5.15)

where JT�1 is the Jacobian of the inverse INN T
�1 [137]. This construction leverages the

fact that invertible transformations deform the density in predictable ways and the density
of simple distributions like a Gaussian, which is typically used for pb(b), is known exactly.
Conditional densities can be learned by predicting the parameters of the INN as a function
of the conditional attributes.

A normalizing flow can be fit to data using the maximum likelihood principle, where the
maximization is performed over the parameters of the INN. The resulting model can be used
to estimate the density directly, or it can be sampled from by first sampling from the base
distribution2 and then transforming this sample through the INN. These models have been
shown to produce high fidelity samples [138]. A normalizing flow can also be fit to data by

2This is only possible if the base distribution is chosen such that it can be sampled from.
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starting from a tractable likelihood that describes the data generating process but is hard to
sample from. An example of this is the physics parameterized by a Lagrangian, as in QCD.
Normalizing flows show promise in being able to generate samples in these settings [90, 139,
140].

5.7.3 Flowification

In work completed during this thesis, we showed how any network composed of MLP
and CNN components that uses invertible activation functions can be converted into a
normalizing flow [141]. To demonstrate this we had to overcome fundamental restrictions
of invertible transformations, namely that they are dimension preserving. This can be
approached by considering dimension altering operations that increase or decrease the
dimension of the data.

Increasing the data dimension is straightforward, as samples u from a known distribution
pu can be produced and appended to data input to the INN, allowing arbitrary changes in
dimension with the cost of replacing the exact likelihood with a lower bound. This operation
is shown in Figure 5.6(a), and the idea is the data can be modelled on a larger dimensional
space, this provides significant benefits and has been shown to improve the performance of
normalizing flows [142]. The likelihood of the data under this operation is given by,

log p(x) = log

Z
du p(x, u) (5.16)

= log

Z
du

pu(u)p(x, u)

pu(u)
(5.17)

�
Z

du p(u) log
p(x, u)

pu(u)
(5.18)

= Eu⇠pu(u)

⇥
log

p(x, u)

pu(u)

⇤
(5.19)

= Eu⇠pu(u)

⇥
log p(x, u)p log pu(u)

⇤
. (5.20)

Where p(x, u) is the joint distribution of the data and the augmented data, and pu(u) is the
distribution of the augmented data. In modelling the joint distribution p(x, u) the flow might
not learn that p(x, u) = p(x)p(u), in which case the lower bound is not tight.

Reductions in dimension can be treated as being factorized models, where part of the input
data is simply no longer processed by the INN [143] as shown in Figure 5.6(b). These
two operations are enough to turn almost any neural network into a normalizing flow. For
example, by decomposing the linear operations in MLPs using singular value decomposition,

Wi = U⌃V (5.21)

every linear operation can be separated into two invertible matrices U, V , and a dimension
altering and linear scaling operation ⌃3. The two invertible matrices can be described as
standard flow layers, and the dimension altering operation can be described as either a
dimension preserving, increasing, or decreasing operation as described above.

The approach outlined here, while interesting, requires additional modelling components
to be effective. In particular, we found it necessary to augment MLPs and CNNs with
standard normalizing flows to be performant on density estimation tasks, and even then

3Any singular values that become zero can be treated as a dimension reducing operation followed by a
dimension increasing operation.
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Figure 5.6: Dimension altering flow layers as shown in Máté et al. [144].

results were mixed. This work was an interesting pursuit and does have some interesting
insights into how information is processed through standard ML networks. In particular, it
provides a principled way of injecting noise into neural networks, which may have interesting
applications [145]. It is also interesting to observe that standard neural networks are poor
density estimators, especially given these models are excellent at information extraction as
demonstrated by their performance on classification problems.

5.7.4 Flows for flows

A normalizing flow can be used to learn a map between distributions. In the standard
training approach, a normalizing flow learns a map from the data distribution to the base
distribution. In this thesis, we showed how this idea can be extended to learn a map
between two data distributions. Given samples from a distribution p

x
D(x) a map to another

distribution p
y
D(y) can be found by first fitting a normalizing flow pTx to the samples from

p
x
D(x) and then fitting a second flow pTy to the second dataset using the first flow as the base

density,
pTy(y) = pTx(Ty

�1(y))| det JTy
�1(y)|. (5.22)

In work completed as a part of this thesis, we explored the use of this idea in HEP con-
texts [146–148]. An example of this is shown in Figure 5.7, where a normalizing flow is
trained to rotate a distribution of overlapping circles. This example is particularly interesting
as the standard approach results in samples populating the space between the circles, while
the flows for flows approach results in samples that are rotated versions of the original cir-
cles. The reason the standard approach fails is the base distribution is not well suited to the
problem as it is topologically distinct from the target distribution. The flow for flow approach
is able to learn the rotation by mapping actual data samples to the target distribution.

5.7.5 Flow matching

Recent progress in generative models has largely come from diffusion models [150] and
more recently the concept of flow matching [151, 152]. The latter is a general framework that
combines elements of diffusion models and continuous time normalizing flows, which are
normalizing flows that use ODEs (eq. (5.6)) to define the INN. Similar approaches are the
key method behind high fidelity models like S����� D�������� [70].

The flow matching approach was designed to overcome the need to integrate in time the
full ODE when using continuous time normalizing flows. The idea is to define a parametric
vector field f✓(ut, t), as in eq. (5.6), and a conditional probability path pt(x|xi) that interpolates
between the base distribution pb and any given sample x

i. Samples from a simple example
of such a path can be drawn using the so-called linear schedule,

x
i
t = (1p t)xi + tu, x

i
t ⇥ pt(x|xi) (5.23)
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Figure 6: A flow for flow model trained on a distribution composed from four overlapping circles

conditioned on the angle. All models in this figure were trained using maximum likelihood with

no regularisation. The flow for flow (Flow4Flow) model is given a four circles distribution with no

rotation as input.

Another way of mapping between two values of the condition is to go via the base density map

f„Õ ¶ f≠1
„ . In the case of discontinuous distributions this again results in out of distribution samples

as shown in Fig. 7. Further, by color coding the input data it can be seen that the f„Õ ¶ f≠1
„ does

not have the same continuity as is inherent in the flows for flows model. A useful feature of the

flows for flows approach is that the learned map has some semantic cohesion without any explicit

regularisation. This is however not guaranteed, which can be addressed by introducing an explicit

optimal transport cost, though we find it has negligible impact in these settings.

The performance of the Flows For Flows approach is replicated in other conditional distributions as

shown in App. B.

9

Figure 5.7: Conditional flow for flow model trained on a distribution composed
of four overlapping circles conditioned on an absolute angle. The Flow4Flow
model takes as input an unrotated circle and is trained to rotate the circle. The
Base Density approach is the standard flow based approach to solving this

problem. Figure as shown in Klein, Raine, and Golling [149].

where u ⇥ pb(u). Defining this probability path defines a velocity field and the objective is
to regress this field. This can be done with a simple objective,

L(xi
, t, u, ✓) = ||f✓(xi

t, t)p (up x
i)||2, (5.24)

which is computed over data samples x
i ⇥ pD(x), time samples t ⇥ U [0, 1] and base dis-

tribution samples u ⇥ pb(u) during training. Crucially only one time sample and one base
distribution sample are required for each data sample in a batch. This has turned the full
integration that is required to train a standard continuous time normalizing flow, into a
simple regression problem that is fast to calculate. The training dynamics are also arguably
simpler, as the model does not have to learn to map from the base distribution to the data
distribution and to find a path. Instead, the path is prescribed and the model ‘simply’ has to
learn to reproduce this path to generate samples.

5.7.6 Estimating the conditional CDF

As discussed above, normalizing flows can be viewed as maps between different distribu-
tions, and therefore they can be used to estimate the CDF. This is because the CDF is a map
from the data distribution to the uniform distribution. The only additional constraint is the
CDF is monotonically increasing. This can be accounted for as all invertible functions in one
dimension are monotonic, and a monotonically decreasing function can be made monotoni-
cally increasing by taking the negative of the function. Therefore, an INN that estimates the
CDF can be fit using a normalizing flow with a uniform distribution as the base distribution.
The same can be done for a conditional CDF, where the INN is conditioned on the protected
variable m.

We developed this approach for the decorrelation of classifiers in HEP [123]. However, it is
also interesting in its own right. For example, the CDF can be used to directly estimate the
quantiles of a distribution. Quantile regression has many applications [153]. The approach
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we developed appears to estimate quantiles more robustly than other approaches [123], and
future work should look at this in more detail. As a conditional quantile regressor, we observe
that our approach estimates all quantiles simultaneously, and also leverages continuity in
the conditional distribution. This may explain why it was observed to be more robust than
other approaches [154, 155], with the estimation of additional quantiles providing additional
constraints on the model, and continuity providing additional information.

5.8 Foundation models

It can be resource intensive to design and train ML models for every possible task inde-
pendently. It is also inefficient because many tasks are similar and therefore require similar
modelling. This is why similar reconstruction algorithms can be used for different physics
analyses. A similar approach can be taken when training ML models, where an already
(pre-)trained model can be ‘fine-tuned’ on a new dataset or task. This fine tuning works by
training a model initialized with the pre-trained weights.

In ML it is becoming increasingly more common to train ‘foundation models’ (FMs). An
FM is a large model that is trained using self-supervised learning (SSL) on a large dataset.
SSL is a form of unsupervised ML where labels are derived directly from the data. It is
often observed that FMs require smaller datasets and training times to be performant. This
is particularly true for transformer architectures, which typically require huge volumes of
data to train. In HEP it is hoped that a large FM could be trained directly on experimentally
observed data and applied to an array of different tasks within different collaborations [156].

While working on this thesis we helped to develop an FM for HEP [156]. This approach
is referred to as masked particle modelling (MPM). The strategy is based on some of the
most successful foundation models developed for text [157] and image data [158]. In MPM a
subset of the particles in a jet are removed, and a model is tasked with predicting properties
of the dropped particles using the remainder of the jet. The MPM approach trained a 40
million parameter transformer model to use as an FM. Training this model on a dataset with
100 million samples, and then fine-tuning on smaller datasets from the same and different
distributions, we observed the FM is more sample and training time efficient.

The MPM strategy can use data directly and is similar to but more general than Kishimoto
et al. [159]. Earlier work had looked at self supervision using augmentation [160]. Several
further approaches have since been developed [161–163], including an extension of the
MPM work to which we contributed [164]. Notably amongst this work, Vigl, Hartman, and
Heinrich [165] have looked at fine tuning the reconstruction pipeline used by experiments
like ATLAS. This reflects the possibility of having end-to-end optimizable analyses in HEP.
The development of FMs for HEP is an exciting area for further development.

5.9 Discussion

The use of ML tools to solve HEP problems shows great promise, and these techniques are
useful throughout the rest of this thesis. While the future is bright, these models face issues
in their deployment, particularly as they are further integrated into the physics workflow.
In particular, the domain shift between simulation and data is a significant challenge. This
occurs because ML models require labelled training data, which can only be obtained from
simulation. However, the simulation is not a perfect representation of real data. There are
promising techniques for this issue like invariant risk minimization [83, 161, 166], as an
alternative to empirical risk minimization, and data based training [116, 117].
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Another possible challenge is that ML models are black boxes in the sense that a simple
formula to describe their action on data is often not available. This can mean, for example,
that an ML model could identify a discrepancy between a background estimate and data, and
it is not possible to characterize this discrepancy in terms of a simple formula. Interpreting
such discrepancies in a physics context can be difficult and an example of this appears in this
thesis.

We believe the issues we face when integrating ML tools into HEP are surmountable and
these tools offer many exciting opportunities for the future.
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Chapter 6

Weakly supervised searches

This chapter introduces and discusses the idea of weakly supervised searches. The search
presented in this thesis is based on a weakly supervised strategy and this chapter provides
the necessary background to understand the methods used in the analysis.

Definition 1. A weakly supervised search makes generic assumptions about new physics processes.

The discussion should be interpreted within the context of new physics searches in HEP.
This discussion distinguishes between unsupervised, or weakly supervised, searches and
unsupervised, or weakly supervised, learning as defined in section 5.1. As an example of the
distinction, a generic assumption one can make about new physics is that it populates low
density regions of phase space. It might be possible to use unsupervised learning to identify
such events. This would define a weakly supervised search that uses unsupervised learning.

The need for weakly supervised searches is motivated by the large space of possible new
physics models and the possibility of unforeseen new physics scenarios to which standard
approaches may not be sensitive. As these searches do not make strong assumptions about
new physics processes they have broad sensitivity to different processes. This comes at the
cost of decreased sensitivity to any given model as compared to dedicated searches. These
approaches have gained significant interest in HEP [167–170].

This chapter first presents fully supervised and unsupervised searches to provide a contrast
to the weakly supervised search approach. Some approaches used to perform weakly
supervised searches are then discussed. The conclusion summarizes this discussion.

6.1 Supervised searches

Definition 2. A supervised search makes strong assumptions about new physics processes.

If a new physics process is specified and can be simulated, then a supervised search for
that process can be performed. In this setting, simulated signal samples can be drawn from
ps(x|✓), where ✓ defines the new physics process and x is some set of features that can be
reconstructed by the detector and are useful for discriminating signal from background.
Given these samples, and a background model pb(x), the likelihood ratio can be constructed.
By the Neymann-Pearson lemma [171] this is known to be the most powerful discriminant
for distinguishing between two distributions using the information in x. The resulting search
is maximally sensitive to any ✓0 that satisfies ps(x|✓0) = ps(x|✓)8x. Any model that deviates
from this no longer uses the optimal test statistic or selection criteria, and the sensitivity
of the search is necessarily reduced. These considerations justify the statement that a fully
supervised search has a high sensitivity to a narrow range of models.
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Figure 6.1: A visualisation of randomly sampling data without preference
three different times. The red points are considered anomalies and accepted

when applying a threshold using this score.

6.2 Unsupervised searches

Definition 3. An unsupervised search makes no assumptions about new physics processes.

This section discusses unsupervised search strategies. When discussing unsupervised
searches there is an instinctive feeling that it should be possible. After all, humans can
often spot anomalies in data. The problem with this justification is there is limited utility
in using the human brain to reason by analogy in this context. The human brain can not
find all types of anomalies, and it is not clear where the ability we have originated. The
following attempts to elucidate why it is not possible to design an unsupervised search with
meaningful sensitivity to new physics.

6.2.1 Random functions

One of the first steps to consider when designing a search is to make some selections to
reduce background (section 4.3). Selections can be made by using a function to assign a
score to each sample in the targeted dataset and then selecting events based on this score.
To design an unsupervised search, the function that assigns scores must be chosen without
any knowledge of the signal. To make the problems that arise in this context explicit one
can consider the use of random functions. These functions also appear in a different context
later in this thesis.

One approach to assigning scores that is unarguably unsupervised is to assign them ran-
domly. Making a selection in this setting, shown in Figure 6.1, is equivalent to randomly
downsampling the full dataset to define the signal enriched dataset. As this score has no con-
tinuity signal samples are just as likely to be sampled as background samples. Therefore, this
construction results in a dataset where the signal-to-background ratio remains unchanged,
and the discovery potential has strictly decreased, as discussed in section 4.3.

The main issue with assigning scores randomly is the lack of continuity in the score. There-
fore, a natural minimal extension is to consider sampling random functions from a family
of continuous functions. The sampled function can be used to assign scores to the data
points as visualized in Figure 6.2. Each of these functions has some set of signal samples
that populate the space that is accepted when making a selection and therefore each of these
functions can increase the sensitivity of a search to a given set of signal processes. However,
the set of signal samples to which any given function is sensitive is random, and might
not be interesting for the physics goals of the experiment. For example, this set of signal
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Figure 6.2: A visualization of sampling three random functions from randomly
initialized neural networks and using these functions to assign a score. The
red points are considered anomalies and accepted when applying a threshold

using this score.

samples could be excluded by existing searches or could violate fundamental assumptions
that would require significant evidence to discard [57]. These selections might also make
it difficult to model the background distribution in the reduced dataset, and therefore to
perform a hypothesis test.

Assuming that random functions are sampled in a way that makes any portion of the
data space equally likely to be rejected, the average overall selections simplify to randomly
downsampling the data. Therefore, for this approach to be useful the set of random functions
needs to be biased in some way. A bias could be chosen randomly, but this is unlikely to lead
to physically interesting insights. Choosing a meaningful bias requires a definition of new
physics, inevitably leading us to define a weakly supervised search.

The purpose of this discussion was to demonstrate that unsupervised search strategies as
defined in Definition 3 can only have random sensitivity and in trying to correct for the
deficiencies of random sensitivity one arrives at a weakly supervised search. A search can
only target new physics that is interesting to an experiment if it makes some assumptions
about the form of this new physics. There is a trade-off between sensitivity and the number
of assumptions that are made, with more assumptions resulting in higher sensitivity. Weakly
supervised searches make some minimal assumptions about new physics in an attempt to
develop broad sensitivity.

6.2.2 Perfect background model

An alternative approach to an unsupervised search is to assume perfect knowledge of the
background model and not make any selections. New physics could in principle be found by
comparing simulated samples from the background model to data. Such a comparison could
be made using the new physics learning machine1 [172] which calculates the test statistic
directly by comparing two samples and can account for all systematic uncertainties [173].
This comparison requires a background only sample to be produced and a selection of
features x over which to search for deviations. In the context of a supervised search, this
feature set is selected for the targeted signal model, in an unsupervised setting no signal
model is assumed. Choosing a large set of features increases the sensitivity to statistical
fluctuations in the data and simulation, whereas a small feature set is only sensitive to some
signal models. Further, a perfect background model does not exist, and simulation often

1This approach can be used any time a hypothesis test needs to be run.
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needs to be corrected to data. This correction can only be derived by defining signal depleted
regions, which again requires a definition of new physics. Given these considerations, we
classify this approach as a weakly supervised search. It should also be noted that such
an approach is always less sensitive to specific processes than a supervised search as a
supervised search is only sensitive to fluctuations where the density ps(x|✓)/pb(x) is large,
whereas global comparisons are sensitive to fluctuations relative to pb(x) everywhere pb(x)
has support.

6.3 Rare event detection

One common assumption about interesting events is they are rare. Rarity is defined by areas
of relatively low density in the data over some set of features. Such search strategies can not
be sensitive to new physics that populates the bulk of the background distribution. Selecting
rare events requires an estimate of the density, a task for which many methods have been
developed as discussed in section 5.7.

As with all weakly supervised searches, feature selection defines an important assumption
in rare event detection. However, in this setting the scaling of the features also becomes
relevant. As discussed in the definition of normalizing flows in section 5.7.2, transformations
of the features transform the density. Therefore, scaling the features changes the densities
and therefore the definition of what is rare. This means a rare event can be transformed
into a common event, or vice versa [174]. Therefore, the preprocessing of the features in
this approach defines an important assumption. This can not be avoided by accounting for
changes in density due to preprocessing as the original scale is defined by a choice of units,
which is itself arbitrary.

Feature selection is also important in this context as it defines the dimension over which
a density must be estimated. This is a particularly relevant concern in this setting as the
density is small everywhere in high dimensions. In estimating small densities to identify rare
events, random fluctuations in the training dataset and learning procedure become relevant.
A small random fluctuation in a density estimate can easily swap the rarity of two samples.
Further, in high dimensions, the typical set of a distribution can be shifted from areas of
high density, which makes it difficult to estimate the density without an explicit prior [175].
In addition to all of this, rare event detection should do something more interesting than
making simple selections based on high level features. For example, if the selection made by
the rare event detector can be approximately reduced to selections based on the transverse
momentum, then a density estimate adds little value.

Another particular problem of rare event detection is the lowest density regions contain
the least statistics by definition2. Therefore, the largest fluctuations in the density estimate
occur in exactly the regions that are the most interesting for rare event detection. Such
fluctuations lead to an unreliable method for detecting rare events. These fluctuations occur
due to the statistics of the dataset as well as the presumably stochastic training of the density
estimator. The latter can be marginalized out through ensemble methods, but addressing
the former would require low density regions to be upsampled – which requires knowledge
of the density. Low density regions could be upsampled through iterative use of a density
estimate, but to the best of our knowledge, this has not been explored.

Many different approaches have been developed for rare event detection based on unnormal-
ized [176–179] and normalized density estimates [180, 181]. While difficult, these approaches

2Unless the dataset is weighted and these regions have been upsampled using some procedure that does not
already assume knowledge of the density.



�.�. Bump hunts 55

do have some successes, in particular when they are not integrated into a search. For ex-
ample, CMS has integrated this approach into their L1 trigger system [182] and uses it for
online data quality monitoring [183]. There are several approaches to integrating rare event
detection into a search. This has been done using the ABCD method [184], a data driven
background estimation technique based on partitioning the data. Another approach is to
make a selection based on the score defined by the density estimate and then run a bump
hunt, this places additional requirements on the selection [185]. Specifically, the score that is
assigned can not be more than quadratically correlated with the feature in which the bump
hunt is performed [186]. This condition is typically handled by decorrelation techniques as
described in section 5.6.

6.4 Bump hunts

One broad assumption about new physics is that it is produced at resonance. Some domi-
nant background processes are also known to yield smoothly falling spectra. The resonant
production of particles can be detected as bumps in such spectra. A search for a bump is a
weakly supervised search where the primary assumption is that new physics is produced at
resonance. As an example, QCD multĳets are the dominant contribution to SM dĳet events,
which results in a smoothly falling dĳet mass (mJJ) spectrum in which bumps can be hunted.
This section describes a bump hunt using mJJ as a specific example.

To perform a search for a bump it is necessary to make a background prediction. This is
typically done by performing a background only fit to the mJJ spectrum. Data can be directly
compared with this fit in a hypothesis test, or a background plus signal fit is performed.
These fits mostly use an assumed functional form [114, 187, 188]. An alternative is to use
non-parametric approaches that directly incorporate knowledge of the physics [189]

A bump hunt can be performed on the full spectrum inclusively, or in sliding windows. The
analysis performed in this thesis uses a sliding window bump hunt. This involves splitting
the spectrum into different bands as shown in Figure 6.3. The lower end of the spectrum
is referred to as sideband one (SB1), the middle region is referred to as the signal region
(SR) and the final region is referred to as sideband two (SB2). Collectively, SB1 and SB2
are referred to as the sidebands (SBs). To perform a sliding window bump hunt, the data
in the SBs is fit with the SR masked. The fit is then used to make predictions in the SR.
These predictions are taken to be the background prediction in a hypothesis test. The fit
uncertainty is calculated by considering variations in the prediction to first order using the
Jacobian of the fit function. An additional uncertainty is assigned due to a lack of knowledge
about the correct form for the fit [114]. Each SR is tested separately and then combined to
form a global p-value as in B���H����� [190]. The search presented in this thesis does not
calculate a global p-value.

While bump hunts are an effective weakly supervised search they only leverage the infor-
mation contained in the spectrum on which they are performed. To increase the sensitivity
to possible new physics they can be performed on datasets that have passed additional high
level criteria and some generic selections such as requiring the presence of a photon [191]
or for jets to contain a b-hadron [114]. Such selections are typically motivated to enhance
the sensitivity to generic classes of new physics. Bump hunts can be performed directly in
higher dimensions, but this introduces new problems and there is a limit on the variables
that can be considered [192, 193].



56 Chapter �. Weakly supervised searches

Figure 6.3: Example of a bump hunt set up on a smoothly falling spectrum m.
The first sideband (SB1) is at lower values of m and the second (SB2) at higher

values of m than the SR (SR).

6.5 Extending bump hunts

To increase the sensitivity of a bump hunt it is necessary to add additional information beyond
that contained in the spectrum on which the hunt is performed. Additional information can
be provided in the form of additional variables x. In analogy with a bump hunt, the goal is
to produce a background estimate over these variables. At present no simulator can produce
an accurate enough estimate of the data to be used in this context, and estimates are derived
by including data in the SBs. Selecting the variables in x again introduces an important
assumption about new physics. Having chosen x the goal becomes to produce an estimate
of the background in these variables. Here, no functional form for x is assumed, instead,
it is assumed a background estimate can be produced following some procedure. This is a
non-trivial assumption that requires robust validation to be incorporated into an analysis.

The next subsections detail how background ‘reference’ estimates can be produced for vari-
ables in x and how they can be incorporated into an analysis. This type of search is used to
perform the analysis presented in this thesis.

6.5.1 Reference generation

Following the sliding window strategy, data in the SBs can be used to produce a background
estimate in the SR p

R
b (x). This is typically done by interpolating conditional densities over x

and then integrating over mJJ such that,

p
R
b (x) =

Z
p
R
b (x|mJJ)pb(mJJ)dmJJ, (6.1)

where p
R
b (x|mJJ) is the conditional estimate of the density from the SBs and pb(mJJ) is

the estimate of the mJJ distribution from a functional form fit to the SBs. Structuring
the problem in this way allows knowledge of the mJJ distribution to be encoded directly.
Leveraging knowledge of the form of mJJ minimizes the mismodelling in this feature. The
other features in x are chosen to be mostly uncorrelated with, and smoothly varying as a
function of, mJJ such that they can be interpolated.
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Figure 6.4: Ten different mJJ conditional quantiles evenly spaced between 5%
and 95% for the mass of the leading jet M1 in a dĳet system. The green lines

demarcate a possible SR boundary.

With the formulation of Equation (6.1) the problem reduces to estimating the conditional
distribution p

R
b (x|mJJ) using data in the SBs and interpolating it into the SR. One way to

visualize this is as a conditional quantile estimation task as shown in Figure 6.4. To estimate
the distribution in the SR every quantile needs to be interpolated from the SBs into the
SR. Visually this can be related to the interpolation performed in the standard bump hunt
of Figure 6.3. While this is a useful visualization in one dimension, the problem is more
complex in higher dimensions.

Most approaches that have been developed to perform the interpolation of p
R
b (x|mJJ) either

directly or indirectly estimate the conditional density. These approaches can be categorized
into whether they are simulation assisted or data driven and whether they estimate densities
directly, use the likelihood ratio or use optimal transport, as shown in Table 6.1. This
classification is useful in that it identifies that no method has been developed for this problem
that is data driven and uses the likelihood ratio. The data derived validation sets described
in a later chapter (section 8.2.3) could be used in this context. The interpolation of likelihood
ratios from data derived control regions (SBs) has been performed in searches [194–196], but
it is unclear how to best apply it in this context.

Table 6.1: Different reference generation techniques are classified by whether
they use likelihood ratios, density estimation or optimal transport and whether
they correct simulation or are data driven. This table characterizes methods
on the approach they use to interpolate, not how they are integrated into an

analysis.

Ratio Density Transport
Simulation S���� [197, 198] D����� [199], F��� [200] OT-�NN [196]

Data

(�-)A���� [201, 202]
(L�)C������ [203, 204]

C������� [148]
D����� [199]

R��-OT [205]
C�������OT [206]

The first approach to tackle this problem was A���� [201] where the density is estimated in
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the SBs with a normalizing flow and interpolated directly to the SR. The same approach is
used in C������ [203] but with a different integration into the analysis as discussed in the
next subsection. These approaches are data driven and do not apply any regularization to
the density estimate. In general, when performing interpolation, it is expected that some
kind of regularization would be beneficial.

In C�������OT [206] some implicit regularization was added by using an invertible neural
network (INN) to map from pD(x|m0

JJ) to pD(x|m1
JJ) where pD is the data distribution. The

model is trained to minimize the difference, as quantified by an optimal transport measure,
between the output of the INN and samples from the target distribution. The next iteration
of C������� improved on this by using density estimation directly to map between different
mJJ values using the approach outlined in section 5.7.4. This was found to give a more stable
estimate of the density and resulted in better performance than the original C�������OT
approach.

Complementary simulation assisted efforts have also been developed in this context. The
S���� [197] method corrects simulation to data in the SBs using a classifier parameterized
by mJJ. A reference is generated with S���� by applying the classifier to the simulation in
the SR. Both S���� and C������� are used in the analysis presented in this thesis and are
detailed in a later chapter.

There have also been studies into the combination of different reference generation tech-
niques [207].

6.5.2 Analysis integration

Once an estimate of the background in the SR has been produced, the challenge is to integrate
it into an analysis. A hypothesis test based on a direct comparison between the data and the
reference is technically possible but presents several challenges. First, the reference is not a
perfect estimate of the background, and it is unclear how to assign uncertainties. Second,
even if the reference were a perfect estimate of the background, no signal model is assumed,
and so a hypothesis test is sensitive to fluctuations anywhere the reference has support, as is
the case in an unsupervised search.

Instead of a direct hypothesis test, the reference is used to define a score that can be used
to make a selection. After the selection is made a bump hunt is performed in mJJ as in
the previous subsection. The selection can enhance the sensitivity of the bump hunt to
new physics by leveraging the additional information in x to reduce the background. This
approach has the advantage of utilizing the additional information in x to enhance the
sensitivity of the search without needing to produce a perfectly accurate reference over x.
Of course, the better the reference the more sensitive and less error-prone the search.

To be able to run a bump hunt after making a selection the selection must not be quadratically
correlated with mJJ [186] to avoid sculpting a bump in the background. The form of
Equation (6.1) promotes decorrelation but does not guarantee it, as mismodelling in the
reference can be correlated with mJJ. Ensuring this condition is satisfied requires extensive
validation of any analysis performed using these methods.

In A���� the conditional likelihood in both the SBs (pRb (x|mJJ)) and the SR (ps(x|mJJ)) is
fit and the likelihood ratio (ps(x|mJJ)/p

R
b (x|mJJ)) of the two density estimates is used as a

score. This is problematic as the two densities are fit separately, which leads to uncorrelated
fluctuations in the two likelihood estimates. This makes the likelihood ratio sensitive to
fluctuations in low density regions of p

R
b (x|mJJ), reducing the sensitivity of the search. This

problem is resolved by �-A���� [202] by fitting the likelihood in the SR using the SB estimate
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as a base distribution. In �-A���� the two likelihoods are coupled and the likelihood ratio
becomes less sensitive to random fluctuations.

The other approach to assigning scores is to generate samples from the estimated density
p
R
b (x) and use these samples to train a classifier as in the CW�L� approach [116] (sec-

tion 5.5.1). Here, the classifier learns the likelihood ratio directly and thus is smoother than
the ratio of two uncorrelated density estimates. This approach was shown to be successful
in C������ [203] and has since been the primary method for developing these approaches.
The method is more powerful with more samples from the estimated density [203]. It has
also been shown the type of classifier is important, with tree based algorithms performing
better than neural networks [98].

While the classifier approach has been shown to be effective for signal enhancement, it leads
to issues when the reference perfectly describes the data and there is no signal present. In
this case, the likelihood ratio is constant everywhere, and the classifier should therefore
assign a constant to all samples. However, in the setting of finite statistics and training time
the classifier instead places a decision boundary randomly as shown in Figure 6.2. This
can conflict with the classifier decorrelation requirement as a randomly placed boundary is
correlated with the mass with a certain probability. This means that even in the absence of
mismodelling in the reference the classifier can sculpt a bump in mJJ.

While this approach has been shown to have the potential to increase the sensitivity of
bump hunts it is unclear of its real utility. The sensitivity of the search is dependent on the
amount of signal present in the data, and new physics is most likely produced at low cross
sections. Further, if an excess is observed it is difficult to identify what feature of the data is
responsible. Analysis failure and new physics detection are not easy to distinguish in this
context. More work on procedures to follow the event of discovery is required to increase
the benefits of these approaches.

6.6 Limit setting

As already discussed, searches are intended to both discover and exclude new physics. The
discussion of this chapter so far has focused on the discovery aspect of searches. In searches
for rare events standard procedures for setting limits can be applied directly [208, 209]. In an
extended bump hunt, however, this becomes non-trivial. The sensitivity of these approaches
increases with the amount of signal that is injected. If there is no signal in the data then the
analysis has no sensitivity and nothing can be excluded.

To set limits in extended bump hunts it has become standard to inject simulated signals.
The procedure for setting limits in this context is outlined in Figure 6.5. First, signal is
injected into the data at a certain cross section. Then the analysis is run up until after the
classifier selection. At this point the signal samples are removed from the data and the CLs

procedure is run with the signal strength (µ) set such that the expected signal observed after
the classifier is applied corresponds to µ = 1. This procedure is run for a grid of signal
injections and the crossings of the relevant quantities of the 5% boundary are reported as
limits.

This approach is complicated because at every level of signal injection, a valid limit can
be extracted. The more signal that is injected the tighter the limit that is set. For some
physics cases these limits may be interesting to report, however by injecting a simulated
signal they become closer to a supervised search. As it stands the limits that are reported by
extended bump hunts are consistent with how limits are normally derived in physics, where
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Figure 6.5: A flow chart of how limits are set in an extended bump hunt.

the signal strength (µ) is varied until the 5% boundary is hit. However, the limits are not
model independent, while the analysis is intended to be ‘model agnostic’.

6.7 Conclusion

This chapter introduced the concept of weakly supervised searches and methods for per-
forming them. Searches based on other assumptions have been developed beyond what is
described here [210], such as assuming the factorization of scales holds differently for signal
and background [211] or that it breaks a known symmetry of the SM [212]. Enumerating
the assumptions made by a weakly supervised search is useful for identifying the kinds of
processes that can be detected as well as additional useful assumptions. Due to the necessity
of these assumptions, we think it is important to acknowledge these approaches are not
model independent. Such terms are misleading and should be avoided. To have something
other than non-random sensitivity to new physics some assumptions must be made about
both the form of the new physics model and the form of the background. Unfortunately,
almost all methods described in this chapter have uncontrolled assumptions in the form of
the hyperparameters involved in defining the ML components that parameterize them.

It is also important to be aware of the separate tasks that must be performed to leverage the
weak assumptions made in these searches. In rare event detection, some form of density
estimation is required, and this estimate is required to be performant in relatively low den-
sity regions. For extended bump hunts, precise high dimensional interpolation and weakly
supervised classification are required. In this, it is important to acknowledge that interpola-
tion is a separate task. For example, the main contribution that we made in developing the
C������� approach was the novel method for interpolating the density estimate [148]. By
separating the interpolation and classification tasks the development and validation of these
methods can be more focused.

In settings where limited searches have been performed or where the new physics is expected
to be produced at large cross sections weakly supervised searches likely have utility. For
example, extended bump hunts may prove to be effective in settings where high fidelity
simulation is unavailable, discriminatory features are easily interpolatable and analyses can
be rigorously validated. In developing such strategies it is particularly important to develop
approaches to further increase their sensitivity and make them more interpretable.
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It is unclear what impact weakly supervised approaches will have on the future of HEP.
In particular, if new physics at the LHC is only accessible at small total numbers, then it
is unlikely these approaches will be useful. However, as with many tools in science, the
approaches developed for weakly supervised searches have found applications in other
domains. For example, A���� and C������� may prove to be useful for discovering stellar
streams in cosmology [213, 214]. This application is particularly interesting as robust follow
ups can be performed on regions flagged by these methods. Also, weakly supervised
learning can be applied to tasks like muon isolation [117] and for testing the symmetries of
the standard model [212]. Developments for applications to weakly supervised searches are
therefore likely to be of interest to other areas of HEP.
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Part III

Analysis
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Chapter 7

Analysis introduction

This chapter introduces the weakly supervised search for resonant new physics developed
in this thesis using data recorded with the ATLAS experiment at the Large Hadron Collider
at CERN. The analysis is data driven, meaning the background estimate used in the ultimate
hypothesis test is estimated from the data itself. This chapter presents the methodology,
validation, results and implications of the search.

The first section describes related work detailing some motivation for performing this search,
the second section provides a high-level overview of the analysis, the next section details
the strategy and assumptions the analysis uses, and the following sections detail the specific
steps and ingredients used by the analysis.

7.1 Related work

The dĳet topology studied in this thesis is interesting for generic searches because many
proposed BSM models decay via jets. There has been an extensive set of inclusive dĳet
resonance searches at ATLAS. These searches are typically one of the first to be performed
at each energy increase –

�
s = 7TeV [215–217],

�
s = 8TeV [218], and

�
s = 13TeV [47,

114, 219, 220]. Their quick rollout after each energy increase is due to the simplicity of the
approach but is also a reflection of the fact that the dĳet topology is a broad probe of new
physics and is useful for excluding new physics produced at large rates.

Many BSM scenarios include A ⇠ BC decays, where A is a BSM particle and the daughter
(B, C) particles can be SM particles or BSM particles. This results in a large space of possible
theories that are not all covered by dedicated searches [221, 222]. Furthermore, only a few
searches [47, 223–237] encompass the range of possibilities where at least one of B or C

is itself a BSM particle [222]. This lack of coverage is one of the main motivations for the
analysis presented in this thesis.

A major benefit of using jets is that they have a rich substructure, where many BSM scenarios
are distributed in a way that is different from the SM background. This allows signal enriched
datasets to be produced by defining selections based on the substructure of the jets. The
application of an extended bump hunt as defined in section 6.5 to a dataset of jets is therefore
possible. Another benefit of jets is that the invariant mass of the dĳet system (mJJ) falls
smoothly. This mass is defined as

m
2
JJ = M

2
1 + M

2
2 + 2 (E1E2 p ~p1 · ~p2) , (7.1)

with Mi the mass of each jet and E
2
i = |~pi|2 + M

2
i and |~pi| = p

i
T cosh(⌘i). At high energies,

the mass of the jets is much smaller than their momentum, so the mass of the jets can be
neglected. Setting the masses of the jets to zero in the calculation of mJJ gives an alternate
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definition of the dĳet invariant mass,

m
2
JJ ⌘ 2 (|~p1||~p2|p ~p1 · ~p2) . (7.2)

This definition demonstrates that the mJJ distribution is largely determined by the momen-
tum of the jets, which is in turn determined by the PDFs of the partons (section 2.2.2), which
are observed to be smooth. This smoothness of the background distribution allows for a
bump hunt to be performed in the mJJ distribution.

The analysis presented in this thesis is a follow-up to a previous ATLAS analysis that used the
same dataset and a similar methodology [238]. In designing the analysis presented here, the
strategy of the previous analysis was followed as closely as possible. The aim was to change
as little as possible in the analysis presented here. The previous search had similarly followed
well established bump hunt techniques. The dataset used in the analysis presented here is
identical to the previous analysis, with the same selections applied, the same luminosity,
and the same reconstruction and calibration procedures. The mJJ fit framework that is used
in the bump hunt step remains unchanged. The mJJ SB and SRs are defined differently in
this analysis than in the previous analysis. This is discussed in more detail in the following
chapter.

Several improvements were made in this analysis relative to the previous iteration. In
particular, the previous analysis used a single feature set with only two variables and these
variables had to be decorrelated from the mass of the dĳet system (mJJ) to avoid sculpting an
excess in the mJJ distribution. The previous round trained a CW�L� classifier to distinguish
between the mJJ signal and SB regions. If the features used in the CW�L� step are correlated
with the mass then the CW�L� classifier learns to separate the different regions based purely
on mJJ. When making a selection with such a classifier, the mJJ distribution is sculpted to
look like a signal. This approach is therefore not robust to correlations between the features
used in training the CW�L� classifier and mJJ.

The analysis presented here uses multiple feature sets with up to six variables, all of which
have some degree of correlation with mJJ. Assuming these additional features can be well
modelled, they are expected to increase the sensitivity of the analysis to new physics. These
additional features can be added to this analysis thanks to the use of the C������� and
S���� techniques. One important difference between the previous iteration and the analysis
presented here is that the previous iteration trained a CW�L� classifier in both the mJJ SR
and SB on features that were decorrelated from mJJ. The analysis presented here trains a
classifier in the mJJ SR, on features correlated with mJJ, and applies this classifier to both
the mJJ SR and SB. This is important because it means that in the analysis presented here,
there is a domain shift when applying the classifier to the mJJ SB that was not present in the
previous iteration.

Another improvement in this analysis is the use of the full CLs procedure to set limits on
new physics [62]. The previous analysis used a simplified version of the CLs procedure that
prevents fair direct comparisons to other analyses. To be able to benchmark the analysis
presented here against the previous iteration, the same feature set is included. This feature
set is used as a proxy for the sensitivity of the previous analysis, though it is expected the
analysis presented here is more sensitive on the same feature set due to the use of the S����
and C������� techniques.

The CMS collaboration has made a note public that describes a similar analysis to the one
presented here [239]. The CMS work compares multiple different weakly supervised searches
for new physics. They found that weakly supervised approaches had broader sensitivity
to new physics than standard approaches. The note from CMS also shows results with
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significant deviations between the expected and observed limits for multiple signals, and
the reason for this is not clear.

Other searches for new physics in the ATLAS and CMS experiments have probed hadronic
final states. Inclusive dĳet searches that look for narrow resonances in the dĳet mass spectrum
have been performed by both collaborations. The first of these searches at

�
s = 13 TeV was

on a relatively small dataset,2 3.6 fb�1 [219, 240]. These searches were interesting to perform
as they were among the first at this new energy scale and there was still the possibility that
resonant new physics was produced at large total production rates in dĳet final states. Such
searches are broadly sensitive to new physics but only if the total production rate is large,
where the main limiting factors are the fully inclusive nature of the searches and the limited
amount of information contained in mJJ.

Other searches in dĳets have been performed with more targeted BSM models in mind.
As such searches are more targeted, they are expected to have higher sensitivity to the
signal models they are designed to probe. For example, searches for diboson resonances
have been performed by both collaborations as summarized in Refs. [241, 242]. A diboson
search looks for particles that decay into two bosons, such as ZZ, WW, WZ, WH, ZH or
��. These resonances are predicted to appear in a variety of new physics models, such
as composite Higgs models [243] or models with extra dimensions [244]. Such extensions
provide solutions to the naturalness problem in the SM (Section 2.5). The CMS collaboration
has also performed two three-dimensional bump hunts in the dĳet and jet mass spectra
to target diboson like decays [192, 193]. So far these searches have been tailored to signal
models where the parent particle is a new BSM particle that decays into two SM bosons.

The ATLAS collaboration has used unsupervised machine learning, based on the assumption
that new physics is rare, to search for new physics in the dĳet mass spectrum [208, 209]. On
top of different high level selections, these searches apply an autoencoder to estimate the
density of the events in the input data sample. A selection based on the density estimate of
the autoencoder is used to define a dataset on which a bump hunt is performed in mJJ.

Comparisons to the ATLAS dĳet search [114] and the ATLAS all-hadronic diboson search [245]
are made in this thesis. The same comparisons were made in the previous round of this
analysis [238]. These comparisons allow us to understand the sensitivity of the analysis
relative to more standard approaches.

The diboson search in particular is expected to be an upper bound on the possible sensitivity
of the analysis for certain signal models. This search targets narrow resonances in the
dĳet mass spectrum that decay hadronically into boosted topologies. This search used jet
substructure variables to enhance the presence of signal in the data. To optimize these
selections three reference models were used, one of which was from the Heavy Vector
Triplet model [36] with SM daughter particles. The diboson search is expected to have high
sensitivity to signals with masses close to the SM W , Z and H masses. Away from these
masses, the sensitivity of the search is expected to decrease. From the benchmark signals
used in this paper, only the W

0
80,80 signal was generated close to the SM W mass such that

the diboson search is sensitive to it. This diboson search is therefore expected to set strict
limits on the W

0
80,80 signal, and not be sensitive to the other signals.

The ATLAS dĳet search [114] is a search for narrow resonances in the dĳet mass spectrum.
The search is fully inclusive but includes an analysis of a dataset that uses information
about the presence of a b-hadron (b-tagging) to increase the sensitivity of the search to new
physics models that have sizeable couplings to b-quarks as discussed in section 6.4. Only the
fully inclusive version of this search is considered in this analysis. This search uses small
radius jets with R = 0.4, and they also make a selection based on |�Y |/2 < 1.2. The dĳet
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Figure 7.1: The full analysis workflow from an input dataset to the final p-value
used in the hypothesis test for a single set of features and fixed mJJ window.

analysis [114] is therefore likely to be more sensitive to signal models that are contained
within a single small radius jet. The W

0
80,80, W

0
80,200 and W

0
200,200 signal model decays are

expected to be largely contained in small radius jets. For large radius jets, the sensitivity of
the dĳet search is expected to decrease. Further, as the search presented in this thesis uses
additional substructure information it is expected the search presented here could be more
than the dĳet analysis.

7.2 Analysis overview

The analysis workflow is shown in Figure 7.1 where the input data was processed through
the ATLAS software framework and passed a set of selection criteria. Data input to the
analysis is divided into mJJ bins defining mJJ signal and SB regions. A reference generator
is fit on the mJJ SB data and produces a reference sample in the SR. Multiple classifiers (n)
are trained to distinguish between mJJ SR data and the reference sample (CW�L�). These
classifiers are then used to perform n selections and define n histograms in mJJ, which are
averaged to extract a single histogram and corresponding uncertainty. A background only
fit is performed on the SB of the averaged histogram to produce a background estimate in the
SR which is used to calculate a p-value for the data in the SR. An mJJ dependent correction to
this p-value is derived on signal suppressed validation datasets to correct for issues relating
to the possible misspecification of the function used in the background only fit to the mJJ

distribution. The analysis is repeated for multiple sets of features X and mJJ windows.
Upper limits are set on the cross section of a variety of new physics processes by injecting
simulated signal events into the data, repeating the analysis and using the CLs prescription.

7.3 Analysis strategy

The analysis is weakly supervised and designed to be sensitive to new physics that may be
produced at unknown mJJ values, it follows the strategy broadly outlined in section 6.5. The
data is split into mJJ SB and SRs, and it is assumed the background in the mJJ SR can be
estimated from the SBs. In this analysis, the width of the mJJ SR fixes the resolution of the
search, and this analysis targets narrow width resonances such that the width of the mJJ SR
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should be set by the mass resolution of the detector. To isolate any possible resonant signal
in at least one mJJ SR a sliding window bump hunt is performed. The analysis is expected
to return a significant p-value in regions where a resonant signal populates the mJJ SR.

The analysis is a follow-up to a previous analysis that directly decorrelated the input fea-
tures [238]. The previous analysis used X = {m1, m2}. One of the goals of this analysis
is to increase the sensitivity to new physics by using feature sets with more variables. The
analysis uses two different reference generation techniques, S���� and C�������, to pro-
duce a background estimate over X in the SR. The signal sensitivity of these approaches is
compared, but not combined.

Analyses need to be validated in controlled settings where their expected behaviour can be
defined. This analysis is developed and validated using datasets on which resonant new
physics is suppressed. The focus of these validations is twofold. Firstly, the analysis should
behave as expected on background only data. This is characterized by the sampling distri-
bution of the significance Z following a rectified Gaussian distribution. This distribution is
expected because the significance should be Gaussian distributed, and the significance of a
deficit is set to zero. Secondly, the analysis should return a significant Z when new physics
is present. This is tested by injecting simulated signal events into the data at different cross
sections. The sensitivity of the analysis is dependent on the amount of signal present in the
data. Therefore, the entire analysis needs to be fit to data for each signal injection.

Different overlapping feature sets X were used in the analysis, these were selected based
on having broad sensitivity to new physics. Using simulated signal samples to select the
feature sets used in the analysis is another source of signal model dependent bias introduced
into the analysis. This is mitigated somewhat by using different signal models in the feature
selection. Using multiple combinations of features, in the final analysis, reduces the statistical
power due to the look-elsewhere effect and also increases the computational cost. Only local
p-values are reported by the analysis.

Limits are set on a variety of simulated signals using the procedure outlined in Sec. 6.6. The
capacity of the analysis to produce an ‘interesting’ result, defined as producing Z > 2�,
is explored by injecting signals at different cross sections and running the analysis. This
latter test is referred to as significance enhancement and is the primary means of probing
the sensitivity of the analysis during its development. The statistical tests used in hypothesis
testing and signal enhancement tests are similar, but the significance enhancement does not
use the modified p-value of the CLs procedure and in a sense exposes the direct discovery
potential of the analysis.

7.4 Data

The data for this analysis was produced by pp collisions provided by the LHC with
�

s = 13
TeV, as recorded by the ATLAS detector between 2015 and 2018. The data has a total
integrated luminosity of 139 fb�1 after requiring that all detector systems were functional
and providing high-quality data. The uncertainty on the integrated luminosity is 1.7% as
measured using the LUCID-2 detector for luminosity measurements. The general approach
to reconstruction in the A���� detector was discussed in section 3.3.1.

The lowest available unprescaled large-radius jet trigger was used to collect the data [46,
246]. In 2015-16 the trigger used untrimmed jet pT , and from 2017 onward the trigger used
trimmed jets and applied a jet energy scale calibration. At trigger level, events are required
to have at least two large-radius jets with pT > 100 GeV and |⌘| < 3.2 and uncalibrated jet
mass m > 30 GeV if the jet pT is less than 1000 GeV.
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Figure 7.2: The trigger efficiency as a function of the leading jet pT as shown
in Ref. [250].

Offline, jets are reconstructed using the anti-kt algorithm with a radius parameter of R =
1.0. The jets are reconstructed from topological clusters with the local cluster weighting
scheme [247] and an MC based particle-level calibration is applied to jets to correct on
average the reconstructed mass and pT to their true values [248]. Jet masses are calculated
using both tracking and calorimeter information, as this has been shown to have better mass
resolution [249]. Jets are trimmed [50] by reclustering the jet with the kt algorithm using
R = 0.2 and removing subjets with pT < 0.05 times the jet pT . The trimmed jets are calibrated
as detailed in Ref. [248].

In the offline selections, each event is required to have at least two jets with calibrated
pT > 200 GeV and |⌘| < 2.0, and at least one of these jets must have calibrated pT > 500 GeV.
The pT selections were made to increase the boost of the jets, and the ⌘ selection is made
to guarantee there is good overlap with the tracking acceptance. This selection was shown
to be fully efficient with respect to the trigger as shown in Figure 7.2. No lepton overlap
removal or veto is applied in this analysis. All offline selections were chosen to be maximally
inclusive with respect to prospective signal models while remaining on the trigger plateau.

The two jets with the highest pT are used in the analysis. The two jets in this analysis are
ordered by their transverse momentum such that p

1
T > p

2
T . The final analysis is run on data

with a rapidity difference |�Y | = |y1py2| < 1.2, where yi is the rapidity of the ith jet. Events
that pass this selection are referred to as the |�Y | SR. This selection is made to suppress
t-channel dĳet production while enhancing s-channel dĳet production.

To clarify the basis of the |�Y | selection, consider the physical differences between s- and
t-channel processes in a hard scattering event. As the colliding partons both have large
transverse momenta |pz|, to produce particles with small |pz| in a t-channel process, a large
momentum transfer in the z direction is required. Such transfers are suppressed in QCD,
so t-channel processes are more likely to produce particles with large |pz|. This corresponds
to large values of the rapidity, with one daughter particle with large positive rapidity and
the other with large negative rapidity, and therefore large values of |�Y | on average. In
contrast, an s-channel process produces a particle at rest in the center of mass frame of the
colliding partons. Such particles can decay into two particles that propagate in any direction,
uniformly populating the detector in the ✓̂ p � plane, where ✓̂ is the angle of the daughter
particles from the beam axis in the center of mass frame of the colliding partons. The rapidity
scales logarithmically with the z component of the momentum, and as the angle is uniformly
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distributed, s-channel processes populate small values of the rapidity in the center of mass
frame. This corresponds to small rapidity differences between the two daughter particles in
the center of mass frame. Rapidity differences are boost invariant in the z direction, so this
is also true in the lab frame. Therefore, it is expected that s-channel processes on average
have smaller values of |�Y | than t-channel processes.

The jets are required to have mass M1, M2 > 30 GeV so that jets are within the range of
what has been calibrated. An upper bound of M1, M2 < 500 GeV is also applied to the jet
masses, to ensure the reference generation operates on a bounded space. This selection was
inherited from the previous round of this analysis [238] where it was necessary to limit the
correlations between the jet masses and mJJ.

While the dĳet invariant mass is typically defined as the sum of the four momenta of the two
jets, in this analysis it is calculated with the jet masses set to zero. This is the definition of mJJ

shown in eq. (7.2). This is done to lessen the correlation between the jet mass and the dĳet
invariant mass and was required by the previous round of this analysis [238]. Though it is
not needed here, the mJJ definition was left unchanged from the previous round. Updating
this is expected to leave the results largely unchanged as the energy of the jets in this analysis
are much larger than their masses.

The full set of selections are summarized in Table 7.1.

Table 7.1: Jet selection criteria for this analysis. The jets are ordered by trans-
verse momentum pT .

Observable Selection
pT (leading) > 500 GeV

pT (subleading) > 200 GeV
|⌘| < 2.0

|y1 p y2| < 1.2
Mi > 30 GeV, < 500 GeV

7.5 Simulation

The analysis is data driven, but simulation is used to validate the analysis, to produce
reference samples in the S���� approach, and to simulate signals such that limits can be
set. The simulation used in the S���� approach could be sampled from any distribution in
principle, but the closer the reweighted distribution is to the true background distribution
the smaller the correction and the better the analysis. As the analysis is data driven little
emphasis is placed on the production of the simulation. Simulated samples are generated
using P�����8.2 [251, 252] using the A14 [253] tune and the NNPDF23LO [254] PDF set. The
after-burner E��G�� [255] is used to model the decay of heavy flavor hadrons.

7.5.1 Background

The same selections as applied to data are also applied to simulated samples. Simulated
samples from QCD dĳet and multĳet production are used to model the background in the
analysis. The jet cross section is several orders of magnitude larger than that of electroweak
production as shown in Figure 2.4, so samples from these processes are not considered nec-
essary for the analysis. Simulated samples are reconstructed using a full detector simulation
with simulated minimum-bias interactions superimposed to represent pile-up. The simu-
lated background is generated in slices of the parton level R = 0.6 jet pT to ensure that a
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Figure 7.3: The number of events in data and simulation as a function of mJJ.

wide range of detector level jet pT is covered. However, there is much less simulation than
|�Y | SR data overall, particularly at low mJJ, as shown in Figure 7.3. The opposite is true
at high mJJ. At low mJJ a S���� reference sample generated with this simulation has less
statistical power. This simulated set is also less useful for validation at low mJJ.

7.5.2 Signals

Simulated signals are used to ensure the analysis is sensitive to new physics during develop-
ment and to set limits on these processes. Using simulated signals to test the sensitivity of
the analysis introduces a signal model dependent bias. The simulated signals are intended
to be representative of a variety of new physics processes. Further, the analysis was not
specifically tuned at any point to be sensitive to any particular signal model. The main focus
during development was to ensure the analysis did not report a significant p-value when
no new physics was present. Samples from three different families of signal model were
generated for this analysis.

The first family of signal models are W
00 ⇠W

0
Z

0 processes, where the W
00 boson is a heavy

resonance with a mass of 3 TeV. The W
0 and Z

0 are modelled as modified W and Z bosons
with masses sampled from {80, 200, 400} GeV. The altered bosons are required to decay
hadronically without top quark decays. The same signal models were used in the previous
round of this analysis [238]. The W

00 ⇠ W
0
Z

0 sample, with mW 00 = 3TeV, mW 0 = 200GeV,
and mZ0 = 400GeV, was generated twice using different parton shower settings. These
samples allow the impact of variations in the mJJ spectrum on signal sensitivity to be
studied. The signal characterized by a narrower (wider) mJJ spectrum is labeled W

0
3000(4q)

(W 0
200,400).

The second family of signal models are A0 ⇠ H
0
Z

0 processes, where the A0 is a pseudoscalar
resonance from the 2-Higgs doublet model [256] with a mass of 3 or 4.5 TeV. The H

0 and Z
0

are modelled as modified Higgs and Z bosons with the masses of the daughter particles set
to 200 GeV and 400 GeV respectively. This family was modelled with different final states to
the W

00 family to test the sensitivity of the analysis to different decays. Specifically, samples
were generated with final state photons in the jets, b-quarks in the final state, and 6-quark
final states instead of 4-quarks.
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The final family is a V
0 ⇠ V V process with V

0 a heavy vector boson from the Heavy Vector
Triplet model [36] and V the SM W and Z bosons. These particles are set to always decay
hadronically. The mass of the parent particle was set to {2.6, 2.8, 3} TeV.

The widths of all signal models are set to 0.1 GeV, and the detector resolution is expected to
dominate the width of the signal. All the signal models presented here are highly boosted
with the decay products largely contained in a single large radius jet. The full set of processes
and the names they have been assigned are shown in Table 7.2. The distribution over |�Y | for
the W

00 ⇠W
0
Z

0 signal models is shown in Figure 7.4, all of these models are pure s-channel
processes and as expected have distributions that are peaked at low |�Y |. All signal models
have the same distribution in |�Y |.

Table 7.2: The signal models used in this analysis and the name they are
assigned in plots. The subscript x can be either 3000 GeV of 4500 GeV.

Name Process
W

0
80,200 W

0
3000 ⇠W80Z200

W
0
80,80 W

0
3000 ⇠W80Z80

W
0
200,400 W

0
3000 ⇠W200Z400

W
0
80,400 W

0
3000 ⇠W80Z400

W
0
200,200 W

0
3000 ⇠W200Z200

W
0
400,400 W

0
3000 ⇠W400Z400

W
0
x(6q) W

0
x ⇠W80Z200 ⇠ 6q

W
0
x(4q) W

0
x ⇠W80Z200 ⇠ 4q

W
0
4500(4q) W

0
4500 ⇠W80Z200 ⇠ 2q2b

A0,x(2�2b) A0,x ⇠ H200Z400 ⇠ 2�2b
A0,x(4b) A0,x ⇠ H200Z400 ⇠ 4b
A0,x(2q2b) A0,x ⇠W200Z400 ⇠ 2q2b
V V2600 V

0
2600 ⇠ V V ⇠ 4q

V V2800 V
0
2800 ⇠ V V ⇠ 4q

V V3000 V
0
3000 ⇠ V V ⇠ 4q

Figure 7.4: Distribution of |�Y | over one signal model family with a parent
particle mass of 3 TeV.
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Chapter 8

Analysis design

This chapter describes the design of the strategy for searching for new physics presented in
this thesis. This involves defining SRs, strategies for validating the analysis, implementing
the full analysis and developing the methods at every stage to work as expected. The analysis
strategy was developed on validation datasets, which are signal suppressed datasets where
the analysis is expected to be consistent with the background only hypothesis. Simulated
samples from the signal models from the set defined section 7.5.2 are injected into the data
to test the sensitivity of the analysis.

8.1 Signal regions

In this analysis, the data is divided into mJJ SRs and the analysis is run on different feature
sets and different classifier selections. Each of these combinations defines a different SR. The
choices made in defining the SRs are detailed in the following subsections.

8.1.1 Classifier selections

To run the analysis a threshold ✏ must be set on the classifier output. For ✏ = x the samples
in the largest (x� 100)% of the classifier output are selected. In a weakly supervised search,
there is no signal model to optimize the classifier selection against. The classifier selection is
instead chosen based on signal injection tests, where multiple different signals are injected
into the data. This means the analysis selection is optimized for a range of different signals,
which is in keeping with the idea of broad sensitivity but does introduce a bias towards the
kinds of signal models used for these tests. The selection is also chosen to ensure the analysis
does not return a significant excess when no signal is injected. Another consideration in the
selection is the amount of statistics available, overly tight cuts might select too few events for
the background to be estimated effectively.

Following the previous round of the analysis, two thresholds are used, a loose selection
and a tight selection. Initially, the thresholds were set to 10% and 1% as in the previous
round, where the choices were made using an educated guess that was confirmed by signal
injection tests. Early in the development of this analysis the tighter cut 1% was changed
to 2% in an attempt to stop the analysis from reporting a large significance when no signal
was injected. Changing the threshold did not fix this problem, but the threshold was not
changed. Therefore, this analysis uses a loose selection of ✏ = 0.1 and a tight selection of
✏ = 0.02.



76 Chapter �. Analysis design

8.1.2 mJJ band definitions

The analysis uses a sliding window bump hunt strategy to search for new physics. To define
the SRs the mJJ distribution is divided into bands. In this analysis all bands were defined
to have a width of 600 GeV and the bands were shifted in 300 GeV increments. Shifting the
bins in this way means the SRs overlap by 300 GeV. The overlap ensures any resonant process
should be largely contained in at least one mJJ SR.

The width of 600 GeV was chosen to match the mass resolution of the detector in the lowest
mJJ bins. The mJJ resolution of the detector increases with mJJ and the band definitions
should increase to reflect this. This was not done in this analysis, but it is an improvement
that should be made in future iterations. The bins were defined with fixed widths so the
reference generation interpolates the same ‘distance’ in mJJ for every region. No studies
were performed to determine the optimal binning or to test if the interpolation distance has
any impact on the quality of the generated reference. Using fixed bin widths might reduce
the sensitivity at high mJJ as the SRs are narrower than the mass resolution of the detector.
This means any signal can contaminate the SB and bias both the reference interpolation from
the SBs and the fit to the mJJ spectrum. Another concern with fixed bin widths is there can
be insufficient statistics after making a selection at high mJJ.

The analysis is sensitive to injected signals at both low and high mJJ SRs. Given this
sensitivity, the choice of fixed width bins was not revisited. The highest mJJ bin was chosen
to have more than ten events in the SR after applying the tightest selection. This ensures the
mJJ fit is stable, and the asymptotic approximation is valid for extracting a p-value for the
test statistic. The lowest mJJ bin was chosen to avoid the turn on in the data sample with
an inverted rapidity cut of |�Y | > 1.21. The bins on which the analysis is unblinded are
dictated by the final validation results shown in the next chapter. The full set of bins that
were considered in the analysis is shown in Table 8.1.

Table 8.1: The left (L) and right (R) mJJ bin edges used in the analysis in GeV
for the first sideband (SB1), the signal region (SR) and the second sideband

(SB2).

SB1 L SR L SR R SB2 R
1400 1700 2300 2900
1700 2000 2600 3200
2000 2300 2900 3500
2300 2600 3200 3800
2600 2900 3500 4100
2900 3200 3800 4400
3200 3500 4100 4700
3500 3800 4400 5000
3800 4100 4700 5300
4100 4400 5000 5600

8.1.3 Feature selection

The analysis is run on different sets of features X . Sets comprised of different per jet features
are considered. For jet i the jet mass Mi, the 2 to 1 jettiness ratios ⌧ i21 and the 3 to 2 jettiness

1The rapidity Y is correlated with mJJ such that the turn on is higher in mJJ for the inverted |�Y | > 1.2
selection. The choice of the lowest mJJ bin was made before the resampling described in section 8.2.1 was
discovered to be necessary.
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ratios ⌧ i32 are considered. The jet masses are chosen to match the previous round of this
analysis [238], and as then, they are expected to be sensitive to the presence of new physics.
The jettiness ratios are calculated using the N-subjettiness algorithm [53] and are expected
to be sensitive to the presence of new physics as discussed in section 3.3.3.

The features under consideration have all been explored in the development of the reference
generation techniques [148, 203, 204, 206] and were found to work well with the S���� and
C������� algorithms. However, these development studies only considered a single signal
model and were not run on data with challenging correlations between the feature set and
mJJ. In the inclusive datasets considered here all of these features appear to vary smoothly
as a function of mJJ, and therefore there is a high chance a useful reference sample can be
produced in all mJJ SRs using the data in the mJJ SBs. This assumption is thoroughly tested
during the validation of the analysis.

Exploring multiple feature sets would require running the full analysis multiple times and
therefore the number of feature sets that could be explored is limited by computational
resources. Also, more feature sets increase the impact of the look-elsewhere effect. The
following sets of features are considered:

1. M = {M1, M2}.

2. M, ⌧21 = {M1, M2, ⌧
1
21, ⌧

2
21}.

3. M, ⌧32 = {M1, M2, ⌧
1
21, ⌧

2
21, ⌧

1
32, ⌧

2
32}.

The first feature set is chosen to match what was used in the previous round of the anal-
ysis [238]. This permits comparisons between the performance of this analysis and the
previous round. The previous round did not include the reference generation techniques
that are used in this analysis, which is expected to enhance the performance. Unfortunately,
the additional benefits of the new techniques with respect to the previous analysis are not
quantified here. This is because the previous iteration did not use the full CLs procedure to
set limits. The first feature set was chosen to be used as a proxy for the previous round of
the analysis as described in section 7.1.

Building feature sets by progressively adding features allows us to determine the perfor-
mance of the analysis as a function of the number of features used. A priori, it is not clear
whether additional features improve the sensitivity of the analysis. Additional features
increase the difficulty of generating a reference sample, which increases the amount of mis-
modelling. The classifier performance can also degrade as the number of features increases,
especially if these features are irrelevant for a certain signal [118]. The second feature set was
chosen to contain the masses of the two jets and the 2 to 1 jettiness ratios. This choice was
not made based on any prior knowledge, and a priori there is no good reason to prioritize a
two prong scenario in the absence of a signal model.

The distributions of data and one representative signal in the |�Y | SR are shown in Fig-
ure 8.1. In this figure, the signal is the W

0
200,200 process, and as expected a peak in the signal

distribution around 200 GeV in both M1 and M2 is visible. The data distribution is much
flatter and mostly smoothly falling, as expected of predominantly QCD processes. In the
subjettiness ratios, the signal is more peaked at low values of ⌧21 than the data. This is
expected as the daughter particles in this signal process are modified SM vector bosons that
are expected to be highly boosted and decay to two quarks which results in a single large-R
jet with a significant two prong structure. The differences in these distributions are expected
to be used by the classifiers to distinguish signal from background. In Figure 8.1(g) the
signal peaks at around 3 TeV in mJJ, while the data distribution falls smoothly. Therefore, it
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is expected the bump hunting procedure will be sensitive to the presence of this signal if it
is present in sufficient quantities.

An important feature of the signal injection tests is to cover a wide range of different final
state topologies. Having a range of different distributions allows us to test the utility of the
different feature sets for discovering new physics. In practice, this would mean a variety of
different distributions in the features under consideration. The full set of features across all
the signal models simulated at the 3 TeV mass point is shown in Figure 8.2. As a reminder,
the jets are ordered by pT and therefore the distribution over the subleading jet mass can be
double peaked.

For the W
00 ⇠W

0
Z

0 signal models (first column) there are mass peaks around the respective
masses of the W

0 and Z
0 bosons as expected. All of these signals are biased towards small

values of ⌧21. The distribution in ⌧21 is shifted to the right as the masses of the daughter
particles decrease, this is expected as the boost of the jets decreases with the daughter mass
and therefore the two prongs of heavier daughter particles (lower boost) are more likely to
be resolved. For the V V final state, the distributions in all features are identical across the
different parent masses and similar to the W

0
80,80 signal model.

In the second column, it can be seen that the 4q final state has a peak in the ⌧21 distribution
at low values, while the 6q final state peaks at higher values and is more similar to the QCD
background. This is expected as the 4q final state on average has two prongs in the jet due
to the presence of two quarks in each jet. In contrast, the 6q final state is expected to result
in three prong substructure. The 4q final state has on average large values of ⌧32 as expected
for a two prong jet. The 6q final state has a slight shift downwards in the ⌧32 distribution as
expected for a three prong jet. This shift is moderate as higher order prongs are less well
resolved in the jet substructure and the ⌧32 distribution is less sensitive to the number of
prongs than the ⌧21 distribution [52].

For the A0 ⇠ HZ (third column) signal model family the mass peaks of the daughter particles
at 200 and 400 GeV are pronounced. The ⌧21 distribution is peaked at low values as expected
for these daughter particles. The final state containing a photon has a particularly sharp
peak in the ⌧21 and ⌧32 distributions at zero. This is expected as the photon is reconstructed
as a single jet with no substructure and in this case, the substructure is set to zero. As the
photon is almost always the subleading jet, the ⌧21 and ⌧32 distributions for the subleading
jet are more sharply peaked at zero.

The distribution of the different signals shown in Figure 8.2 are expected to be used by the
classifiers to distinguish between signal and background. The more different the signal dis-
tributions are from the background the more sensitive the analysis becomes to the presence
of new physics. For example, the final state containing a photon should be relatively easy to
distinguish from the background as the ⌧21 and ⌧32 distributions are sharply peaked at zero.

8.2 Validation strategies

To validate the analysis datasets on which the expected behavior of the analysis is known are
required. Ideally, this would be a dataset of pure background in the |�Y | SR. The validation
sample would also ideally contain many more samples than the |�Y | SR. Such a dataset
allows us to gather statistics on the behaviour of the analysis, specifically to test whether the
reported significance follows the correct distribution2. The simulated samples described in

2When evaluating the analysis on background only data the significance is expected to follow a rectified
Gaussian distribution.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8.1: Comparison of the distributions of the features used in the analysis
in the |�Y | SR for signal and the inclusive dataset. The signal is the W

0
200,200

process.
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Figure 8.2: Comparisons of the distributions of the features used in the analysis
across all signal models grouped by process.
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section 7.5.1 are pure background, but this dataset lacks statistics and is not a perfect model
of data. For this analysis, a simulated validation set is complimented by orthogonal data
derived validation sets. In total, three different validation datasets are used to validate the
analysis.

Data derived validation sets are required to satisfy three criteria:

• Signal suppressed.

• The density p(X|mJJ) is similar in both validation and the |�Y | SR for all mJJ.

• The density p(mJJ) matches in both validation and the |�Y | SR.

A perfect validation set would be background only, but in deriving validation sets from
data strongly suppressing signal is sufficient. The requirements of similar p(X|mJJ) and
p(mJJ) are important because the analysis is fit to both of these distributions. It is essential
to validate that the analysis can fit data with similar correlations to the |�Y | SR data. For
example, it must be verified that the reference generation and classifier selection do not bias
the mJJ fit.

Other than validating the analysis on known datasets, there are additional constructions
where the expected behaviour is known. This makes it possible to isolate the analysis stages
that introduce any biases that do appear. These constructions are referred to as ‘idealized’
strategies and were first introduced in Hallin et al. [203]. The following sections detail the
construction of the validation datasets and idealized strategies used in the development of
this analysis.

8.2.1 |�Y | SB

The analysis was unblinded on a dataset that makes a |�Y | < 1.2 selection to enhance the
targeted s-channel resonances. This selection can be inverted to define a signal suppressed
dataset. This dataset is referred to as the |�Y | SB. The |�Y | > 1.2 selection has a low signal
efficiency for the simulated signals used as benchmarks as shown in Figure 7.4. While this
dataset is signal suppressed there are correlations between |�Y |, mJJ and X that limit its
utility. Due to these correlations both p(X|mJJ) and p(mJJ) are different in the |�Y | SB than
in the |�Y | SR as shown in Figure 8.3 and Figure 8.4(b). Only a subset of the features are
shown in the body for brevity, see Appendix A for the full set of features.

The first is composed of a random partition of the |�Y | SB into ten distinct datasets. Each
of these datasets has fewer statistics than the |�Y | SR data, and the mJJ distribution is
different. The second set is constructed by resampling the full |�Y | SB dataset to match the
mJJ distribution in the |�Y | SR. The p(mJJ) distributions in the two datasets can be matched
by downsampling the |�Y | SB as shown in Figure 8.4(a). This is possible as there are more
total samples in the |�Y | SB. The resampling matches the mJJ distribution in the |�Y | SB to
the |�Y | SR. In principle, if there is signal in the |�Y | SR that can be detected in the fully
inclusive mJJ distribution, this resampling introduces a bias in the resampled |�Y | SB. It is
assumed the fully inclusive mJJ distribution in the |�Y | SR is not sensitive to new physics
without additional information. This is justified as this distribution has been rigorously
studied previously by Ref. [114]. This makes the |�Y | SB useful for testing the mJJ fit, up to
distortions introduced by the classifier.

Differences in p(X|mJJ) can not be so easily mitigated as this would require distribution
morphing. However, to validate the analysis it is still useful to study datasets that have
correlations similar to those observed in the |�Y | SR. All quantiles above mJJ = 2600 GeV
vary approximately linearly in both the |�Y | SR and the |�Y | SB. Therefore, testing the



82 Chapter �. Analysis design

(a) (b)

Figure 8.3: Distribution of the leading M1 and subleading M2 jet mass as a
function of mJJ for |�Y | SB and |�Y | SR data. Ten equally spaced quantiles

between 5% and 95% are shown.

(a) (b)

Figure 8.4: Distribution of the dĳet mass for |�Y | SB (a) with and (b) without
resampling, compared with |�Y | SR data.

analysis on the |�Y | SB is expected to provide some probe of the performance of the analysis
in some SRs in the |�Y | SR. The character of the correlations between X and mJJ is also
simpler in the |�Y | SB. There are non-linear correlations between the features and mJJ in the
|�Y | SR that are not present in the |�Y | SB as shown in Figure 8.3. Therefore, if the analysis
does not work on the |�Y | SB then it is unreasonable to expect it to work on the |�Y | SR.

The inverted |�Y | selection described here was used to construct the primary validation
dataset used in the previous round of this analysis [238]. This validation dataset was
resampled as described above. When running S���� on the |�Y | SB the |�Y | SR simulation
sample was reweighted to match data and generate the reference. As there are significant
differences between these two datasets, the performance of S���� in the |�Y | SB is expected
to be degraded.
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8.2.2 Monte Carlo validation

The simulated samples in the |�Y | SR are by definition pure background. However, as
already shown in Figure 7.3 the p(mJJ) distribution does not match the |�Y | SR data. Fortu-
nately, p(X|mJJ) in simulation does closely match the |�Y | SR as shown in Figure 8.5. This
dataset was used for validation in the previous round of this analysis. The mJJ distribu-
tions of the two datasets could be matched by sampling from simulation with replacement,
but this does not increase the effective statistics of the dataset. Instead, a generative model
p✓(X|mJJ) is fit to the simulated dataset. This distribution can be used with the mJJ samples
from the |�Y | SR to define a new validation dataset. The use of the mass distribution to
upsample is justified using the same logic as the previous subsection.

(a) (b)

Figure 8.5: Distribution of the leading M1 and subleading M2 jet mass as
a function of mJJ for |�Y | SR MC and |�Y | SR data. Ten equally spaced

quantiles between 5% and 95% are shown.

The distribution p✓ is of course only an estimate for the true distribution from which the
simulation is sampled. However, this distribution is fit on only six features and is observed to
produce high fidelity samples as shown in Figure 8.6. Note that comparing the marginals of
the samples from p✓ can not be compared directly to the original sample as the two datasets
have different mJJ distributions. More importantly, the correlations in the dataset generated
with p✓ are observed to match the original dataset as shown in Figure 8.7. Again, only a
subset of the features are shown in the body for brevity. See Appendix A for the full set
of features. The resulting validation set has the same effective statistics as the |�Y | SR
data, with the correlations of the |�Y | SR MC as modelled by p✓. The generative model is
trained using a flow matching objective as described in section 5.7.5. Specifically, continuous
flow matching [257] with logitnorm time sampling [258] was used, the vector field was
parameterized by a three layer MLP with 256 hidden units and SiLU activations [259].
The learning rate was linearly ramped up from 10�5 to 10�4 over the first epoch and then
held constant. Time was embedded into 8 dimensions using a cosine embedding and an
exponential moving average of the model weights was used to stabilize training. The model
was trained for 100 epochs with a batch size of 1024. In total ten different generative models
were trained on the |�Y | SR MC dataset to produce ten different validation sets. This was
done to account for any variations in the training of the generative model that could impact
the performance of the analysis.
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(a) (b)

Figure 8.6: Distribution of the leading M1 and subleading M2 jet mass as a
function of mJJ for the upsampled MC dataset and the original MC dataset.

8.2.3 Down sampling validation

The final validation set is derived directly from data. This approach is based on randomly
downsampling the |�Y | SR data. Random downsampling is expected to kill signal sensitivity
and is a commonly used strategy for blinding data analyses in HEP. The signal suppression
here comes from the reduction in significance discussed in section 4.3. In this case, if the
dataset is randomly downsampled by a factor of 1/↵ for ↵ 6 R+ then the amount of signal
and background are equally scaled on average by 1/↵. Therefore, random downsampling
leads to an average drop in sensitivity of 1/

�
↵.

The resulting downsampled dataset allows for a controllable amount of signal suppression
while maintaining samples drawn from the correct p(X|mJJ) and p(mJJ) distributions. The
downsampled dataset can be upsampled again by fitting a generative model p✓ as for sim-
ulated data. This generative model is trained on the downsampled dataset and can not
perfectly model the original dataset. The upsampled dataset has the same, or more, signal
suppression as the down sampled dataset. Therefore, the upsampled dataset is signal sup-
pressed. This procedure can be repeated, randomly downsampling multiple times and then
upsampling. Repeating the procedure results in different validation sets as the generative
model is fit to different datasets in each iteration. A schematic of this procedure is shown in
Figure 8.8. This procedure is referred to as the (down)upsampling.

The parameter ↵ plays an important role here. Large ↵ results in strong signal suppression,
but also limits the available statistics for fitting the generative model p✓ used for upsampling.
Also, the larger ↵ becomes the more variability in the estimates of p✓ when repeating the
down-up sampling procedure. For this analysis, ↵ = 30 was chosen and found to produce
good generative models. This corresponds to an average signal suppression of 1/

�
30 ⇡ 0.18,

which is expected to be large enough as no significant resonance (� 5) exists in the fully
inclusive dataset [114]. The ability to generate multiple validation sets allows us to better
probe the distribution of the significance reported by the analysis. Being able to generate
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(a) (b)

Figure 8.7: Distribution of the leading M1 and subleading M2 jet mass for
the upsampled MC dataset and the original MC dataset. Ten equally spaced

quantiles between 5% and 95% are shown.

multiple copies from the same distribution p✓ permits the same test3, but is also useful in the
idealized procedures.

For this analysis, the (down)upsampling procedure was repeated ten times to produce ten
validation sets. The performance of one example of such a model is shown in Figure 8.9.
The upsampled distributions do not exactly match the original data, especially in the tails.
A mismatch, especially in the tails, is expected as there are by definition fewer statistics
in the tails of a distribution. Mismodelling in these regions is exacerbated by the fact the
generative model is fit on a downsampled dataset. The mmismatch is also desirable as the
validation sets should not match exactly the original |�Y | SR dataset. The correlations in
the validation set again match the character of those in data as shown in Figure 8.10. The
same flow matching generative model training was used as upsampled the MC dataset.

8.2.4 Comparison of validation datasets

Each of the validation strategies has deficiencies and strengths that probe different aspects
of the analysis. The |�Y | SB has simple but incorrect, correlations between X and mJJ. Any
signal is strongly suppressed in this dataset, and it can be resampled to have the correct
p(mJJ) distribution. Therefore, it is sensible to use this dataset for developing the analysis,
but it is not reliable as a means of proper validation. The other validation sets more closely
match the correlations in the |�Y | SR dataset. The (down)upsampled datasets in particular
are seen to have correlations that match the data. These datasets also have much more
variability than MC because the downsampling can be performed multiple times. The
(down)upsampled datasets are expected to be the most useful for validation. A summary
of the different datasets is shown in Table 8.2. Unfortunately, there is a downside risk to the
generative model based upsampling procedures.

In upsampling it is possible for the generative model p✓(X|mJJ) to introduce localized,
quadratic mismodelling in mJJ such that the analysis reports an excess. This corresponds
to constructing a (down)upsampled validation set with an artifact consistent with signal.
The other downside is the down-up sampling procedure might not sufficiently suppress any

3The utility of repeated upsamplings from the same p✓ is limited because each of these samples has identical
mJJ values.
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Downsample

Sample

SR Data

Validation data

Figure 8.8: Schematic of the (down)upsampling procedure. The full |�Y | SR
dataset is first downsampled and a generative model p✓ is fit on this down-
sampled dataset. A new dataset is generated using p✓ and the mJJ samples

from the |�Y | SR dataset.

Table 8.2: Summary of datasets and their properties. Each dataset is classified
based on whether it has: the same statistics as the |�Y | signal region data;
matching p(x|mJJ) and p(mJJ) distributions; and the ability to generate vali-

dation sets with adjustable correlations between X and mJJ.

Dataset Statistics p(mJJ) p(x|mJJ) Variability
|�Y | SB
|�Y | SB

resampled
MC raw

MC upsampled
(down)upsampled

|�Y | SR

signal that is present in the |�Y | SR data. In both of these settings, it would be erroneously
concluded that the analysis was failing the validation. To account for this the upsampling
procedures themselves require validation. A dedicated study was performed to validate the
generative model based upsampling procedures and is presented in section 9.8.

8.2.5 Idealized constructions

There are several idealized constructions that are useful for validating parts of the analysis
and diagnosing failures. The two such constructions that were used in this analysis were
idealized classifiers and idealized references. These idealized constructions were invaluable
in developing this analysis.

In the absence of signal, an ideal classifier is equivalent to randomly downsampling the
data. This can be integrated into the analysis by replacing the classifier step with random
downsampling, which is equivalent to randomly assigning scores to samples. Using this
procedure makes the selection independent of the reference generation and the training of
an ML classifier. This isolates all steps downstream of the classifier selection and allows
issues with these steps to be identified. For example, if the fit to the mJJ distribution was
biased this would be identified with this test. The mJJ fit is expected to work on the fully
inclusive dataset as it was used in Ref. [114] for this purpose, however it is not known how
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(a) (b)

Figure 8.9: Distribution of the leading M1 and subleading M2 for one
(down)upsampled dataset and the original |�Y | SR data.

the fit performs when downsampling to ✏ = 0.1 and ✏ = 0.02. If the fit does not work on
randomly downsampled data then it can not be expected to work when a classifier is used to
select the samples. The random downsampling can be performed multiple times to generate
a distribution of significance. This is the expected distribution of significances when no
signal is present and the analysis performs perfectly with no bias from the classifier. Due to
finite statistics, this distribution is not a rectified Gaussian.

An idealized reference is a sample that is drawn from the same distribution as the data. This
reference sample contains, by definition, no mismodelling but includes the effects of finite
sample sizes. One way to generate an idealized reference sample is to sample from the same
generative model p✓ twice and treat one sample as data and the other as a perfect reference.
Training a classifier on an idealized reference isolates issues that arise from the reference
generation step using C������� and S����. If the analysis does not work as expected on an
idealized reference but does work with an idealized classifier, then it can be concluded the
classifier training is the source of the issue. An analysis that fails on an idealized reference
is not expected to work when integrating references generated by C������� or S����.

In addition to these idealized constructions, one could run idealized tests where the reference
generation methods are trained on both mJJ SB and SR data, rather than just on mJJ SB data.
This means the reference generation methods would do no interpolation. If the reference
sample generated in this way causes the analysis to behave unexpectedly, then the reference
generation methods are not working as expected. Further, all idealized constructions could
be used on |�Y | SR data directly. This is because when running the analysis in an idealized
mode the signal sensitivity can only be reduced, and it is assumed the fully inclusive dataset
is insensitive to new physics. Neither of these idealized approaches was used in this analysis,
but they may prove useful for later iterations.
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(a) (b)

Figure 8.10: Distribution of the leading M1 and subleading M2 jet mass as a
function of mJJ for one (down)upsampled dataset and the original |�Y | SR

data. Ten equally spaced quantiles between 5% and 95% are shown.

8.3 Analysis implementation

This section provides details of the implementation of the analysis. The methods outlined
here were chosen to be as close as possible to public studies of weakly supervised methods as
they existed when this analysis was being developed [148, 197, 198, 203, 206], and to follow
the general fit strategy successfully used in the previous round of this analysis [238]. The
previous round of this analysis used several strategies that were taken from more standard
analyses in HEP and thus expected to be well behaved in this context.

8.3.1 Reference sample generation

The reference sample was generated using either the S���� or C������� approach. These
two methods are described in detail in the following. A reference sample must be generated
because the features in X are correlated with mJJ. The generated reference is used to train
a CW�L� style classifier. Two different reference generators were explored such that one
could be used as a cross check on the other. In this case, a simulation based approach and
a fully data driven approach were used. As these two use different assumptions to build a
reference, they are expected to be useful as cross checks on each other.

S����

The S���� approach reweights simulated background B to match the target dataset D [197,
198]. The weighted simulation is used as the reference sample. The S���� approach uses
the following recipe to generate a reference sample:

1. Rescale all features in X according to a global scaling, such that, for each feature, the
largest value in the dataset is mapped to 1 and the smallest is mapped to 0.

2. In the mJJ SB assign a label of 0 to all simulated samples and 1 to all data samples.

3. Train a neural network f✓ to predict the labels.
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4. Assign a weight to each simulated sample {x
i
, m

i
JJ} in the mJJ SR using,

w
i =

f✓(xi
, m

i
JJ)

1p f✓(xi, mi
JJ)

,

where i indexes the samples.

5. Invert the preprocessing applied in Step 1 to the simulated data to obtain the final
reference sample.

The last step is important to ensure the reference sample is generated with the same feature
scaling as the data. For this analysis, the neural network f✓ is an MLP with a sigmoid
activation function and is trained using the binary cross entropy loss. If many of the weights
produced by the S���� procedure are significantly different from one then the effective
statistics of the reference sample is reduced.

The classifiers f✓ are MLPs with 4 layers of size 64, 64, 64, 1 and activation functions
ReLu, ReLu, ReLu, sigmoid, respectively [95]. A dropout of 5% was used between each
layer to reduce overfitting. Dropout randomly masks some weights in the network during
training [260]. These models were implemented in Keras [261] using the Tensorflow [262]
backend. The classifiers use the binary cross-entropy loss, and the Adam [110] optimizer with
a learning rate of 0.001 and no scheduling. Half of the data was used for training, and the
other half for validation. Training proceeded for 200 epochs with early stopping, with 25
epoch patience, on the validation loss and a batch size of 512. This means the training was
stopped if the validation loss did not improve for 25 epochs.

The classifier f✓ is trained on the mJJ SB and applied to the mJJ SR. This means that when
the reference is generated the classifier is applied to mJJ values which are not seen during
training. No strategy was used to mitigate issues that might arise from distribution shifts
between the mJJ SBs and the mJJ SR. This is justified as the features in X are assumed to
change smoothly and slowly as a function of mJJ. The implicit assumption is the distribution
in the SR is constrained relative to the SBs. No observe issues were observed when deploying
S���� in this way. It is possible that methods to account for the shift as a function of mJJ

could improve the performance of the analysis when using S����. The loss updates during
training were weighted such that both mJJ SBs contributed equally.

C�������

The C������� method uses a feature morphing approach to generate a reference sample [148].
This approach is fully data driven and therefore complementary to the S���� approach. The
C������� approach uses the following recipe to generate a reference sample:

1. Rescale all features in X according to a global scaling, such that, for each feature, the
largest value in the dataset is mapped to 3 and the smallest is mapped to -3. Any
features that have long tails, such as the masses of each of the jets, are first logit scaled.

2. Train a normalizing flow p�(X|mJJ) to estimate the conditional density of the features
in the SBs.

3. Train a second normalizing flow with INN f✓(m1
JJ,m

2
JJ)

to map features from any mass
point m

1
JJ 6 {SB1, SB2} to any other mass point m

2
JJ 6 {SB1, SB2} such that

p�(X|m1
JJ)

f✓(m1
JJ

,m2
JJ

)

ppppppp⇠ p�(X|m2
JJ). (8.1)
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This means that for x ⇥ p(x|mJJ = m
1
JJ) the INN f✓(m1

JJ,m
2
JJ)

maps x to x
0 such that

x
0 ⇥ p(x|mJJ = m

2
JJ).

4. Fit the mass distribution in the SBs using p1(1 p z)p2zp3 where z is mJJ divided by
the center of mass energy and pi are the fit parameters. Interpolate into the SR and
sample [263].

5. Use the INN from Step 3 to map each SB sample to a randomly selected mass value in
the SR sampled using the fit from Step 4.

6. Repeat Step 5 m times, for some choice of integer m.

7. Invert the preprocessing applied in Step 1 to obtain the final reference sample.

The scaling of the features in X was chosen to work with the rational quadratic spline [99]
layers that are used to construct the C������� models. The logit transform is used as it has
been shown to improve the modelling of long tailed features [203]. It is again important to
invert this preprocessing to ensure the reference sample is generated in the correct feature
space. Note that if there are n samples in the combined SBs then C������� generates m� n

samples in the SR. This is in contrast to S���� which only generates as many samples as
there are simulated SR samples. Oversampling the reference sample has been shown to
dramatically increase the signal sensitivity [148, 203, 206]. For this analysis, m = 4 was
chosen as this was found to be a good balance between signal sensitivity and computational
cost. When mapping the left SB and right SB into the SR no accounting for the difference
in statistics is made and the two samples contribute equally to the SR reference. During
training, by default, C������� applies no weights to the loss updates. This means that due
to the statistics of the training data, the lower mJJ SB contributes more to the training of the
INN than the higher mJJ SB.

The INN f✓ is trained using the maximum likelihood objective. It is also parameterized
such that the dependence on mass is restricted. Specifically, the function is defined as
f✓(g(m1

JJ,m
2
JJ))

(x) where g(m1
JJ, m

2
JJ) is a function that controls the dependence on mass. Con-

trol over the function g allows some control over the behaviour of the INN when interpolating
from the SBs into the SR. For this thesis, two options for this function were considered.

1. g(m1
JJ, m

2
JJ) =

��m1
JJ pm

2
JJ

��.

2. g(m1
JJ, m

2
JJ) = {m

1
JJ, m

2
JJ}.

The default option is the first, as it was found to work well in previous studies [148, 206].
These studies were performed on datasets where the correlations between the features and
the mass were relatively weak. When the correlations are non-linear, the second option is
expected to perform better.

All C������� models used the same settings as those used in Raine et al. [206]. All normalizing
flows were implemented using the nflows package [264] in pytorch [265]. All flows use
rational-quadratic spline layers [99]. Both the base flow INN and the top flow INN consist
of eight coupling RQ spline layers. The parameters of the spline in each layer have 8 bins
and 3 layers of hidden units with 256 units each. Each spline function uses 4 bins and the
parameters are predicted by an MLP with 2 hidden layers with 32 units each. The INN is
trained for 100 epochs using the Adam optimizer with a learning rate of 0.001 that is annealed
to zero following a cosine schedule.
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8.3.2 CW�L� classifier

The classifier used to discriminate between the reference and data is referred to as the CW�L�
classifier. This is because the classifier training relies on the CW�L� paradigm as defined
in section 5.5.1, with the reference considered to be a signal depleted dataset. The classifier
used in this analysis is an MLP, and the architecture mirrors that of the S���� classifier. No
hyperparameter tuning was performed on this classifier. The classifiers were trained for 100
epochs with a learning rate of 0.001, no learning rate schedule, the Adam optimizer, batch
sizes of 512, and early stopping with a 10 epoch patience.

The classifier training is based on the k-fold cross validation procedure [266]. This is done
to ensure the classifier is always evaluated on data that it has not seen during training. For
this procedure, the reference and mJJ SR datasets are split into 5 folds. A classifier is trained
on 3 of these folds, with one of the remaining folds used for validation and the other for
testing. The classifiers are trained to distinguish the reference sample from the SR data. The
folds are cycled through such that each fold is used as the test set once. The scores used in
the analysis selection are those assigned to the test set. One of the 5 classifiers is randomly
selected to assign a score to each data sample in the SBs. This makes the assignment of scores
to samples in the SBs consistent with the SR.

The classifiers are never trained on SB data, and this could be a problem as the distribution
over the features is not the same as in the SBs and the SR. As already discussed, the features
are expected to change smoothly as a function of mJJ. The distribution of the features in the
mJJ SBs is expected to cover the distribution of features in the mJJ SR as the SBs are adjacent
to the SR. However, the reverse is not expected to be true. This is a potential source of bias
in the classifier. An alternative approach would be to generate a reference for both the SBs
and the SR and train the CW�L� classifier on the full mJJ range. This was not explored in
this analysis but would be a useful avenue for future studies.

8.3.3 mJJ fit

The mJJ fit is performed to the data after performing a classifier selection. The fit is performed
using modified least squares to data in the mJJ SBs. A sequential approach, identical to the
previous round, is pursued as described in Algorithm 1. This fitting procedure is based on
the smoothly falling nature of the mJJ distribution in QCD. The procedure uses functions
that have empirically been observed to fit the mJJ distribution well. No form for the signal
is assumed in the fit, so there is no signal plus background fit performed and therefore no
spurious signal systematic uncertainties. The choice to not include an assumed signal shape
in the fit is motivated to reduce the number of signal specific assumptions in the analysis.
Other approaches to performing the mJJ fit would be useful to explore in future iterations
of this analysis. In particular, general assumptions about the form of the signal would not
introduce a strong signal bias in the analysis, because detector effects can be expected to
dominate the signal shape.

8.3.4 Systematic uncertainties

Systematic uncertainties in an HEP analysis are generally either related to background or
signal modelling. Signal systematic uncertainties typically only have an impact on the limit
setting procedure. The motivation for this search is to discover indications of new physics,
rather than to constrain specific new physics models. Therefore, in this search, consistent
with past weakly supervised analyses of jet substructure [208, 238], signal systematic un-
certainties are not included. This impacts the limit setting procedure, but not the discovery
potential of the analysis. Ignoring signal systematics is expected to make the limits reported
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Algorithm 1 Background Prediction Algorithm
1: A classifier selection is made.
2: The mJJ distribution of the samples that pass the selection are used to define a histogram

with 30 equally spaced bins. The mass of each bin is divided by the center of mass energy
for the fit x = mJJ/

�
s.

3: Define fit functions fi with parameters {pj}4j=1:
4: f1 = p1(1p x)p2x�p3

5: f2 = p1(1p x)p2x�p3+p4 log(x) [114]
6: f3 = p1x

p2e�p3x+p4x2 [267]
7: i 1
8: while �2 of the fit on SB data is greater than 5% do
9: if i = 4 then

10: Drop the furthest SB bins from the SR.
11: i 1
12: end if
13: Fit SB data with fi.
14: if SB contains less than six bins then
15: Fit failed.
16: break
17: end if
18: i i + 1
19: end while
20: Evaluate the fit fi in the mJJ SR to produce a background prediction.
21: Extract the uncertainty on the background prediction using error propagation with the

Jacobian of the fit.
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by this analysis slightly more strict than they would be otherwise. However, the search
probes statistically limited regions of phase-space and signal systematics are not expected to
have a large impact on the results.

There is an additional systematic uncertainty associated with a lack of knowledge about the
correct fit function to use in the mJJ fit and bias introduced by the reference. Both of these
are accounted for using the mJJ dependent correction that is described in section 8.3.6.

8.3.5 Likelihood fit

The likelihood fit to extract the test statistic and significance Z of an observation uses the
procedure described in section 4.2. The background in the mJJ SR is estimated using the fit
function from section 8.3.3. The observation x in the SR is the sum of the bin counts after
making selections. The background prediction b is the sum of the background prediction in
each bin. The statistical uncertainty on the prediction b is the Poisson variance

�
b. The fit

uncertainty  f on this count defines a Gaussian in the likelihood fit. The likelihood function
is then,

L(µ, ) = Pois.(x|b + µ +  )N (0| , f ), (8.2)

where the parameter µ is the signal strength and  is fit (profiled) to data. To extract
a significance on the observed SR counts, a profile likelihood fit is performed [58, 59] as
defined in section 4.2. All likelihood fits are performed using pyhf [63, 64].

8.3.6 mJJ dependent correction

There is an additional systematic uncertainty associated with our lack of knowledge about
the correct fit function to use in the mJJ fit. This is not accounted for in the likelihood fit,
instead, a correction to the significance Z returned by the likelihood fit is applied. This
correction is extracted using the procedure defined in Algorithm 2. A separate correc-
tion is derived for each feature set, method of reference generation and classifier selection
threshold. The moments µ and � are extracted by assuming the significances are normally
distributed but truncated at zero. This procedure was inherited from the previous round of
this analysis [238].

Algorithm 2 mJJ dependent correction for a fixed feature set, reference generation method
and classifier selection threshold.

1: for each signal region i do
2: for j = 1 to 10 do
3: Calculate Zj on the j-th (down)upsampled validation dataset.
4: end for
5: Extract the mean (µi) and standard deviation (�i) of the set {Zj}10j=1.
6: Calculate the SR center m

i
JJ.

7: end for
8: Fit a linear function µ

c to {µi} as a function of {m
i
JJ}.

9: Fit a linear function �c to {�i} as a function of {m
i
JJ}.

The correction is assumed to be a function of mJJ as every quantity in the analysis is assumed
to vary smoothly with mJJ. Fitting a function to the moments of the significances as a
function of mJJ is expected to capture a more accurate estimate of the systematic uncertainty.
This correction is also expected to correct for any mismodelling in the analysis, where any
systematic bias is expected to be caught by the validation datasets and accounted for with this
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correction. Such a systematic bias could arise from mismodelling in the reference generation
resulting in an excess in the SR.

For an observed significance Z calculated in an SR with center mJJ the corrected significance
Z

0 is,
Z

0 =
Z pmax{µ

c(mJJ), 0}
max{�c(mJJ), 1}

, (8.3)

where µ
c and �

c are the functions derived from Algorithm 2. The max functions are used
to ensure the correction is only ever applied to reduce the significance. This guarantees the
correction is conservative and does not introduce any bias. The final reported significance is
max{Z

0
, 0} to be consistent with the assumption that new physics can not produce a deficit

in the data, as described in Section 4.2.

Setting the significance to be at minimum zero is a reflection of the assumption that new
physics can not produce a deficit in the data. This excludes new physics models that predict
destructive interference between the signal and background, for example. Excluding signal
models of this kind is another assumption of this analysis. The appearance of a deficit in
this analysis is therefore assumed to be due to mismodelling in the analysis. To quantify the
amount of mismodelling in the analysis, negative significances are reported. In the context
of the assumption about new physics made by this search, a deficit represents a failure to
properly model the background.

8.3.7 Limit setting

Upper limits on the production of various signal models are set at 95% confidence level using
the CLs prescriptions as outlined in section 6.6. Adaptive grid sizes are used to calculate the
cross sections at which the signal samples are injected to ensure the limits are calculated with
sufficient precision. When limits are presented an explicit example of how this procedure
is performed is given. The CLs values are calculated using pyhf and corrected using the
mJJ dependent correction. In all signal models, the cross section is a free parameter, only
the shape of the signal distribution is relevant. Therefore, when model-dependent limits are
drawn only the acceptance and luminosity are needed to calculate the cross section. Both
the classifier and high level cuts are used to calculate the acceptance for each signal.

8.3.8 Analysis workflow

This analysis presents a technical challenge in that for every validation set, mJJ SR, feature set
X and reference generation method the full analysis pipeline must be run. This includes the
training of the C������� (S����) model, the generation of the reference sample, the training
of the classifier(s), the mJJ and likelihood fits. In the final analysis, there are seven different
mJJ SRs, three different feature sets and two different reference generation methods, so the
analysis must be run 42 times to be unblinded. During validation, this is repeated ten times
on the (down)upsampled validation set alone. Further, to set exclusion limits the analysis
is run in full for at least 10 different signal injections for 20 different signal models across
3 different feature sets. To set limits the analysis is therefore run a total of 600 times per
reference generation method. While the analysis was being developed the full analysis
pipeline was run on the order of 10,000 times.

Orchestrating all the steps in the analysis, including the fitting of all ML components, is made
possible by using a workflow language. This analysis was implemented in snakemake [268]
and this made both analysis development and deployment significantly easier. Theapptainer [269]
containerization system was also used to manage environments and ensure the analysis could
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be run on any system with minimal setup. All methods used numpy [270], pandas [271],
scipy [272], matplotlib [273], scikit-learn [274], scikit-hep [275], and pipeline runs
were configured using hydra [276] and omegaconf [277].
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Chapter 9

Analysis development

This type of analysis has never been performed before and therefore requires significant
development. This chapter describes how the development was done and some of the chal-
lenges that were faced in this process. Some procedures defined in the previous section
are modified here. This section is important for understanding how to structure the devel-
opment of this kind of analysis, and the reasoning behind the modifications made to the
procedures defined in the previous section.

The analysis was primarily developed using the ten partitions of the |�Y | > 1.2 SB dataset.
All results in this section use these samples, and the performance of the analysis is tested
with and without signal injected. Signal injection tests are performed by injecting signal
samples into the data at a certain significance s as defined in section 4.3 and then running the
full analysis pipeline. The signal injection tests are used to ensure the analysis is sensitive to
new physics but also introduce a signal dependent bias. When injecting signal samples into
the |�Y | SB data the signal from the |�Y | SR is used. Due to the differences in the feature
distributions between the |�Y | SB and SR data, the analysis is expected to be more sensitive
to signal in the |�Y | SB data.

The distribution of significances returned by the analysis is expected to be consistent with
the background only hypothesis when no signal is injected. As there are ten versions of this
dataset the significance distribution is only an estimate of the true significance distribution.
A better estimate of the mean and standard deviation of the significance distribution can be
found by looking across mJJ where the significance distribution in non-overlapping mJJ SRs
should be independent but correlated as the analysis should vary smoothly as a function of
mJJ.

As already stated the |�Y | SB data should be easier to fit than the |�Y | SR data. Therefore,
if the analysis fails here it most likely fails in the SR. However, an important reason for using
the |�Y | SB for analysis development is historical. As the previous round of this analysis
used the inverted |�Y | selection to construct a validation dataset it was assumed the same
procedure could be used for this analysis. This assumption proved to be flawed as described
in section 8.2. For this reason, the |�Y | SB data was used for analysis development, but
the other validation sets are the final arbiter for where the analysis can be unblinded. In an
ideal scenario the analysis would be developed using validation sets that better match the
behavior of the |�Y | SR data. The rest of this chapter is devoted to the development of the
data, which involves modifying the procedures outlined so far.
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9.1 Single classifier results

Using the analysis implementation described in section 8.3 large significances were reported
when no signal was injected. This means the analysis does not behave as expected in the
background only case. The cause of this issue is explored in detail in the following sections
and the solution is presented in section 9.2.

Large significances occurred much more often than would be expected from a rectified
Gaussian distribution. This was tested by running the full analysis pipeline multiple times
with different random seeds on the same input data. These random seeds change the
initialization and training of the C������� and S���� models, the classifier initialization and
the splitting of the data into the different k-folds. This causes the classifier used in the
event selection to be different in each run of the analysis. The significance reported by the
analysis was found to vary significantly between runs, such that not all runs would report a
significant excess. Solving this problem was the biggest challenge in developing this analysis.
An example of one of these excesses is shown in Figure 9.1, where it appears the reported
excess is due to a signal like artifact in the mJJ SR.

Figure 9.1: AnmJJ fit plot showing an excess in the mJJ SR. This fit is performed
after making a selection on the output of a classifier trained using a C�������

reference model on the M, ⌧21 feature set at a threshold of ✏ = 0.1.

To isolate the source of this issue the analysis was run in an idealized mode as described
in section 8.2.5. This allows different parts of the analysis to be tested with all steps up-
stream assumed to be performed perfectly. Specifically, the idealized classifier and idealized
reference constructions are described in section 8.2.5.

Idealized classifier

The idealized classifier was used to test the mJJ fit. For this, a fraction ✏ of the samples is
randomly selected to match a certain classifier selection. This random downsampling is the
ideal behaviour of the classifier in the absence of signal. On this randomly downsampled
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data, the mJJ fit was performed. When randomly downsampling the underlying mJJ distri-
bution remains unchanged, and if the fit produces excesses more frequently than expected
there is an issue with the fit procedure. No significant excesses are observed in the mJJ fit
when using the idealized classifier, as shown in Figure 9.2.

(a) (b)

Figure 9.2: The distribution of significances for different classifiers defined
in idealized settings. To show the distributions in the tails the significance
(Z) has been masked at 0.1 and the fraction of events below this value is
shown in the legend. The Idealized Classifier randomly assigns scores to
input samples, the Single classifier is trained on an idealized classifier using
an idealized reference and the Ensemble classifier is 10 classifiers trained on
the same idealized reference sample and ensembled to produce a prediction.

In these tests, the fit often fails when the left SB edge goes above 5600 GeV in mJJ. This is
due to a lack of statistics at high mJJ. As this is not a systemic failure of the analysis, but a
feature of the data, the analysis is restricted to look at bins below 5600 GeV. This is how the
upper mJJ SR in Table 8.1 was chosen. Choosing bins according to the mass resolution of the
detector would have allowed higher mJJ values to be probed as the mJJ SR would increase
with mJJ, and therefore there would be more statistics in the mJJ SR and SB. This was not
explored in this analysis but would be a useful avenue for future studies.

Idealized reference

Having identified the mJJ fit performs as expected in the absence of a biased classifier, we
move up the analysis chain to the classifier itself. To isolate the classifier training from the
reference generation, the idealized reference was used. In this case two of the partitioned
|�Y | SB datasets are compared. These two sets are drawn from the same distribution, and
therefore one serves as a perfect reference dataset. The classifier should not be able to
distinguish between the two datasets, up to statistical fluctuations. The analysis is run by
treating one of the datasets as the reference and the other as the data and then running the
rest of the analysis on the partition identified as the data. In this idealized mode, significant
excesses were sometimes reported. This is shown in Figure 9.1. Therefore, there is an issue
with the way classifiers are being deployed in the analysis.

While investigating the idealized reference outputs it was found the classifiers were assigning
identical scores to many input samples. This is a separate problem from what has been
reported so far, and it prevents a selection with exactly fraction ✏ from being made as there
are not enough unique predictions to exactly match the targeted fraction. To resolve this a
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random tie-break was introduced. This was done by sampling random noise on the order of
the machine precision and adding it to the classifier output. The issue of the tie-break did
not resolve the problem of the excesses. However, the tie-break is always required and is
applied to all classifiers in this analysis.

Discussion

The hypothesized cause of the issue with the classifier training is the classifier randomly
placing a decision boundary in the feature space that is consistent with signal. When
placing a decision boundary randomly in a feature space that is correlated with mJJ, there
is a probability an artificial excess is observed. This is what is assumed to be happening in
the idealized reference test.

The problem of randomly assigning decision boundaries is compounded by the fact the
classifiers are trained on the mJJ SR and applied to the mJJ SB. This makes the SB data
out of distribution for the classifier. The same is true when training the S���� classifier on
the mJJ SB and applying it to the mJJ SR. However, as the features are assumed to change
smoothly with mJJ, the support of the feature distributions in the mJJ SB is expected to
cover the support of the distributions in the mJJ SR. This is seen to be the case in all datasets
under consideration. Some attempts were made to train the classifier on both the SB and
SR data. However, there was evidence that this significantly reduced the signal sensitivity
of the analysis and was not pursued systematically. This approach should be explored in
future work using classifiers that are better suited to this weakly supervised task [118].

Another compounding feature of the classifier training is the mJJ distribution is skewed
such that there are more events at low mJJ than at high mJJ. This means the variance in the
classifier output is expected to be higher at high mJJ than low mJJ after training. In general,
this is a feature of training ML models on data with a skewed distribution and is accounted
for in the training of the S���� model by reweighting the input data 1. The skew towards
low mJJ values is problematic because the variance of the classifier output is also expected
to increase on data it was not trained on. Together, this represents a recipe for sculpting a
bump in the mJJ distribution. Accounting for this imbalance in the training of the CW�L�
classifier is something that should be explored in future work, but was not investigated in
this analysis.

In solving the problem of false excess the analysis faces three challenges. First, the random
seed should not play a large role in the final result reported by the analysis. Second, large
excesses should not be reported when no signal is injected. Third, the analysis should be
sensitive to signal when injected.

9.2 Ensembled classifiers

The main approach that was pursued to mitigate the issue with the classifier training was to
ensemble the classifiers as described in the following. Given our hypothesis the issue arises
from the random placement of the decision boundary, it is expected the decision boundaries
placed by different classifiers are uncorrelated up to statistical fluctuations and mismodelling
in the reference. Therefore, the issue can be resolved by training multiple classifiers {f

i
✓}ni=1

and assigning scores to a sample x by performing some ensemble operation G({f
i
✓(x)}ni=1).

Varying the architecture of the classifier is not expected to resolve the issue.

1It also becomes necessary for C������� on datasets that more closely match the |�Y | SR.
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To explore the hypothesis that classifiers are placing random boundaries in feature space, the
correlation between the outputs of two classifiers was studied. In Figure 9.3 the distribution
of two different randomly selected classifiers trained on the same idealized data is shown.
There is a relatively small amount of overlap between the events selected by the two classifiers.
This is consistent with the classifiers placing decision boundaries in different places in the
feature space. There is a difference in the classifier distribution in the mJJ SB and SR, which
is consistent with distribution shift playing a role in this problem. Therefore, the issue with
the classifier score assignment can likely be resolved by ensembling the classifiers.

(a) (b)

Figure 9.3: The correlation between the outputs of two randomly selected
classifiers trained on the same idealized reference data. The classifier outputs
are shown when applied to (a) the mJJ SB and (b) the mJJ signal region. The
✏ = 0.02 decision boundary for both classifiers is also shown. The area that is
selected by both classifiers is the rectangle in the top right of each plot. The

classifier is trained on the 2600-3200 GeV SR on the M, ⌧21 feature set.

In defining the ensemble function G some general properties are expected to hold. For
example, ensembling the output of the classifiers using a continuous function for G should
not be expected to fix the issue. Such an ensemble still results in the placement of a random
decision boundary in the feature space. This random boundary is sampled from a different
set of boundaries than the input classifiers, but can still be consistent with signal. Randomly
selecting which classifiers or non-continuous ensemble functions might resolve the issue.
However, no ensemble strategy that directly aggregated the classifier outputs was found to
work for this analysis.

The ensembling procedure that was found to work is outlined in Algorithm 3. This procedure
leverages the fact that each classifier produces a histogram of the mJJ distribution using
different data samples. In the absence of signal the classifiers are expected to randomly
select events. However, when signal is injected the classifiers are expected to select events
that are consistent with the signal and a study of this is presented later in this chapter.

Each classifier j produces a histogram with bins that each have counts n
j
i . The correlation in

bin i between the histograms produced by classifiers j and k is given by the number of events
⇢
jk
i that appear in both n

j
i and n

k
i . The number ⇢jki is calculated by counting the number of

events that are selected by both classifiers j and k. The uncertainty on the final histogram
count ni if there are N classifiers is then,

�
2
i =

1

N2

NX

j=1

NX

k=1

⇢
jk
i , (9.1)



102 Chapter �. Analysis development

Algorithm 3 Ensembled classifier histogram algorithm
1: for i = 1 to N do
2: Train a classifiers on the mJJ SR data and reference.
3: Make a selection on the dataset using classifier.
4: Define an mJJ histogram n

i for the selected dataset.
5: end for
6: Calculate the median of all mJJ histograms {n

i}1i=10 to create the final observed his-
togram.

7: Account for the correlation between the histograms to determine an additional uncer-
tainty.

8: Use the averaged histogram to perform the mJJ fit.
9: Use the averaged histogram as the observation in the mJJ SR.

where ⇢jji = n
j
i . This additional uncertainty is profiled in the likelihood fit where it is added

in quadrature to the fit uncertainty  f in eq. (8.2).

An example of the histograms produced in this approach is shown in Figure 9.4. The different
histograms are seen to be consistent with each other, which is observed to be true across
both C������� and S���� in all SRs. This approach was found to resolve the issue with
the classifier training as shown in Figure 9.1. It was also found that this approach reduced
significantly the variance in the significance reported by the analysis when changing the
random seed. The analysis chose to use N = 10 classifiers, which was found to be well above
the threshold where the variance in the significance reported by the analysis was reduced.
This approach also resulted in reasonable signal sensitivity across all signal models, as is
explored in the context of the full analysis pipeline in the next section. Therefore, the problem
with the classifier implementation was considered solved and this ensembling approach was
employed for the rest of the analysis. The next step in developing the analysis was to validate
the reference generation could be integrated without biasing the classifier towards producing
large excesses on the validation datasets.

(a) (b)

Figure 9.4: The histograms from ten different classifiers trained on the same
idealized reference data. Each histogram is shown separately as well as its
error with respect to the median count with the error calculated using Poisson
statistics. The classifier is trained on the 2600-3200 GeV SR on the M, ⌧21 feature

set.
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9.3 Reference sample generation

The analysis pipeline has been developed to the point where the classifier is expected to
be unbiased in the absence of signal. The next step is to integrate the reference generation
into the analysis. It is possible the reference generation could be wrong in such a way
that it biases the classifier towards producing large excesses. In this analysis, the reference
generation was deemed acceptable if it did not produce an excess when no signal was injected
into the data. No uncertainties on the reference generation were considered, but this should
be systematically studied in future work. This section presents a visual inspection of the
generated references, the performance of the classifier when trained on the reference and the
full integration of the reference generation into the analysis.

An example of the reference generated by C������� is shown in Figure 9.5 and by S����
in Figure 9.6. For both of these methods, it is observed the reference sample is a good,
but imperfect, estimate of the data in the mJJ SR. The better the reference sample, the less
likely it is to bias the classifier and the more likely it is to amplify signal when it is injected.
This piece of the analysis could be developed by optimizing measures of the quality of
the reference sample to analysis independent metrics like those defined in Krause et al.
[278]. The approach taken by this analysis was to test the quality of the reference generation
directly in the context of the analysis by running the full analysis pipeline. This only tests the
performance of the reference at specific selections and is inherently less robust than testing
the reference generation using stand-alone metrics. Integrating the reference generation
into the analysis is always a necessary test, but the performance of the reference generation
should be quantified in a more robust way in future work.

A first concern when integrating the reference generation into the analysis is that mismod-
elling in the reference makes the selections made by the classifier more correlated and break
the ensemble approach. An example of the correlation between two different classifiers
trained on the same reference can be seen in Figure 9.7. The classifiers are observed to be
more correlated than in the idealized case but still show a significant fraction of samples
that are only selected by one of the classifiers. This is true for both reference generation
methods in all SRs. Therefore, the classifier ensemble can still be effective in the presence
of mismodelling in the reference. The correlations between two different classifiers could
be quantified explicitly, but the utility of this is not clear. Correlations between different
classifiers are expected, and the final test of the pipeline is the significance reported by the
analysis.

The analysis was validated using both S���� and C������� by running the full analysis
pipeline on the ten partitions of the |�Y | SB dataset in all SRs as shown in Figure 9.8. This
demonstrates the analysis behaves as expected in the absence of signal in all SRs. The analysis
strategy as defined so far is therefore considered valid on the partitioned |�Y | SB validation
dataset. Variations in the significance reported by the analysis when training on the same
data with different random seeds are also reduced, observed to have an absolute spread
in the reported significance of no more than 1� in any SR. This was tested by running the
full analysis pipeline on the same data with twenty different random seeds. Some variation
in the reported significance is expected as the significance is a random quantity, and the
downsampling of the data is expected to be random in an ideal background only setting.

In general, the performance of the analysis as summarized by Figure 9.8 is performed on
all validation sets. An important consideration, that is useful for later discussion, is the
number of models that need to be fit to test the analysis in this way. For each method,
there are three feature sets, eight mJJ SRs and ten partitions of the |�Y | SB dataset. This
means that 240 C������� and S���� models need to be fit to validate the analysis. On top of
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Figure 9.5: Comparison of the feature distributions in the |�Y | SB data and
the reference sample produced by C�������.

this, ten classifiers need to be trained for each model, and each of these classifiers is trained
using 5 fold cross-validation, such that 50 classifiers need to be trained for each model. This
means that 12,000 classifiers need to be trained to validate the analysis for each method on
each validation set. In total, 24,000 classifiers need to be trained to produce the summary
presented in Figure 9.8. This reflects a significant computation cost and, as already discussed,
presents a significant technical challenge.
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Figure 9.6: Comparison of the feature distributions in the |�Y | SB data and
the reference sample produced by S����.

9.4 Signal injection

For the analysis to be considered useful it must be sensitive to signal. In the context of
this analysis, sensitivity is defined as the ability to report a significant excess when signal is
injected into the data. For the analysis to be considered a success, it should enhance signals
injected below a 2� threshold in the fully inclusive mJJ spectrum. The threshold for 2� is
chosen because this is the threshold for identifying a region of interest in the mJJ spectrum.
It has also been reported in previous bump hunts that 2� of signal can be recovered just
using the fully inclusive mJJ spectrum [114]. The proxy for measuring the significance of the
injected signal is the local significance in the mJJ SR, defined as s = S/

�
B as described in
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(a) (b)

Figure 9.7: The correlation between the outputs of two randomly selected
classifiers trained on a reference sample generated with C�������. Same style

as Figure 9.3.

(a) (b)

(c) (d)

Figure 9.8: Spread of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are
shown for all feature sets and mJJ signal region centers. The spread is taken
over the ten different partitions of the |�Y | sideband dataset. There is 3�,
measured as a local significance in the 2600-3200 GeV signal region, of signal
injected into the data. Samples from the A0(2�2b) are injected into the data.
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section 4.3. The amount of signal and background is calculated in a fixed mJJ SR. This proxy
is expected to be less than the true significance of the injected signal as it does not account
for systematic uncertainties. Therefore, injecting signals at s = 2� is expected to be less than
2� in the true significance.

A first check of the signal injection performance is to look at the correlation between the
outputs of two classifiers trained on the same reference and mJJ SR data. This is shown
in Figure 9.9. It is observed the correlation between the classifiers increases when signal
is injected into the data. However, the classifiers are much more correlated for the signal
samples than the background, and while not fully efficient, the classifiers select a significant
fraction of the signal. This indicates that both classifiers have learned to identify the same
signal events, and the analysis is sensitive to signal. It is important that both classifiers select
the same signal events as this is also a method for identifying signal in the data as studied
in the next section.

(a) (b)

Figure 9.9: The correlation between the outputs of two randomly selected
classifiers trained on a reference sample generated with C������� with signal
samples from the A0(2�2b) model injected at s = 2� and the analysis run on
the 2600-3200 GeV SR on the M, ⌧21 feature set. In (a) the background in the

mJJ SR is shown, in (b) the signal in the mJJ SR is shown.

To test the sensitivity of the analysis, samples from all signal models were injected into the
data at a significance of 2�. Five different signal injections into the same data sample were
considered to account for fluctuations due to the signal samples that are injected into the data.
The significance reported by the analysis is summarized in Figure 9.10. It is observed the
analysis enhances the presence of almost all signal models above a significance of 2�, with a
maximum average significance of⇥ 5.8�. This reflects the possibility of the analysis detecting
the presence of signals in the data below the threshold achieved by standard approaches
on the fully inclusive mJJ spectrum. For some models the significance is actually reduced
below 2�, this is because the local significance of the injected signal is only a proxy for the
true significance, but also because if the classifier does not learn to discriminate the signal
from the background the sensitivity of the search is reduced. The ability of the analysis to
enhance signals below 2� suggests the analysis is sensitive to new physics on data that is
distributed similarly to the |�Y | SB data.

In the signal injection tests the larger feature sets, M, ⌧21 and M, ⌧21, ⌧32, are only slightly more
sensitive to signal than the M feature set. The ✏ = 0.02 selection is more sensitive to signal
than the ✏ = 0.1 selection, which is expected if the classifiers have learned to discriminate
signal from background. For some signal models there is a significant difference between the
significance reported by C������� and S����. This latter observation is possibly problematic,
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(a) (b) (c)

(d) (e) (f)

Figure 9.10: Signal injection tests at (a, b, c) ✏ = 0.1 and (d, e, f) ✏ = 0.02.
For both S���� and C������� all feature sets are used (a, d) X = M , (b, e)
X = M, ⌧21 and (c, f) X = M, ⌧21, ⌧32. The local significance (Z) reported by
the analysis pipeline is calculated after running the analysis with s = 2� of
signal injected into the data in the mJJ signal region centered on the different
signals. The analysis is run for five different signal injections on one partition

of the |�Y | sideband dataset.

as the two approaches are intended to serve as a cross check for each other, and when
unblinding, if one method reports an excess and the other does not it is unclear what should
be done. However, there are only a few signal models where one method reports evidence of
signal and the other does not. Therefore, the analysis is considered to be sensitive to signal
when injected into the data.

9.5 Signal identification

Beyond being sensitive to signal when injected into the data, the analysis would ideally be
able to characterize the signal in the data. This means the analysis should be able to identify
the distributions of signal samples in the features X that are used to make the classifier
selection. One approach to understanding the signal identification strategy of the analysis
is to look at the histograms of the events that pass the classifier selection. This is shown
in Figure 9.11, for one signal model, where it can be seen the distributions of the features
after the classifier selection closely match the characteristics of the signal. This is expected
as the classifier is trained to select signal events, but this behaviour is not guaranteed. A
general difficulty analyses of this type face is interpreting the nature of any excesses that are
reported. In particular, it is not clear how one should discriminate between analysis failure
and the presence of new physics.
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Figure 9.11: Signal identification plot where samples from the A0(2�2b) signal
model were injected at s = 2� into the data and the analysis was run on the
2600-3200 GeV signal region on the M, ⌧21 feature set. The histograms of the

events that pass all classifier selections at ✏ = 0.02 are shown.

9.6 Signal scan

Beyond validating that the analysis has sensitivity to signal when injected in a single mJJ

bin, it is important to understand how the analysis behaves across the full mJJ spectrum in
the presence of signal. To test this 3� of the A0(2�2b) signal model centered on 3000 Gev
was injected, calculated as the local significance in the 2600-3200 GeV SR, into the data in
all mJJ SRs. This means the analysis can be run on the full mJJ spectrum with a signal
present. The result of running a full scan in the presence of signal is shown in Figure 9.12.
The analysis reports a significant excess in two of the SRs, 2600-3200 GeV and 2900-3500 GeV.
The behaviour of C������� and S���� is seen to differ in the mJJ SRs that overlap with the
injected signal. It is observed that S���� has a greater average tendency to report deficits in
the immediate neighbouring bins of the signal. In the rest of the mJJ spectrum, the analysis
behaves as expected in the absence of signal. Therefore, signal in the data is expected to have
effects in multiple mJJ SRs. This effect is expected to be reduced in the presence of smaller
signal injections, and a large signal injection was chosen to demonstrate the effect.

9.7 Addtional validation sets

The analysis has been developed using the ten partitions of the |�Y | SB dataset, and it has
passed all the criteria set out in the previous sections for validation success. The next step
in the analysis development is to validate the analysis on a |�Y | SB dataset that has been
resampled to match the |�Y | SR mJJ distribution and on the |�Y | SR MC samples. For
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(a) (b)

(c) (d)

Figure 9.12: Spread of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are
shown for all feature sets and mJJ signal region centers. The spread is taken
over the ten different partitions of the |�Y | sideband dataset. There is 3�,
measured as a local significance in the 2600-3200 GeV signal region, of signal
injected into the data. Samples from the A0(2�2b) are injected into the data.

these tests, no signal injections are shown as the expected sensitivity is defined in the next
chapter. The analysis validation is presented in this way as it parallels the development of
the analysis and serves to demonstrate clearly why certain decisions were made.

When the analysis was applied to the resampled |�Y | SB dataset, the S���� branch of the
analysis behaved as expected, but C������� was seen to fail in multiple SRs, this was not
tested systematically as a single failure was enough to demonstrate the issue. This is the
first example of the reference generation method sculpting a spurious excess in the mJJ

spectrum and demonstrates that this is a failure mode of the analysis. This was identified
to be caused by the fact that C������� did not account for the statistical imbalance in the
mJJ distribution. As already shown in Figure 8.4 the mJJ distribution in the |�Y | SR is
much more steeply falling than the |�Y | SB. Therefore, the statistical imbalance in the mJJ

distribution is expected to be much larger in the resampled |�Y | SB dataset than in the
original |�Y | SB dataset. To account for this the C������� approach was modified such that
the model was fit on a dataset that was resampled to be flat in mJJ. This downsampling
was performed by resampling the mJJ spectrum in both SBs such that it followed a uniform
distribution. With this modification, the C������� approach performed as expected on the
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resampled |�Y | SB dataset. The results of both S���� and C������� on the resampled |�Y |
SB dataset are discussed in more detail in the next section where they are also relevant and
are shown in Figure 9.14.

The analysis was also run on the |�Y | SR MC samples. Here the S���� approach performed
as expected almost everywhere, but C������� resulted in a significant excess similar to
Figure 9.1 when tested in the 2600-3200 GeV SR. The method was not tested on the full
mJJ spectrum as this failure was anticipated, for the reasons outlined in the following. The
choice of the function g was left as the default g(m1

JJ, m
2
JJ) =

��m1
JJ pm

2
JJ

�� for the studies
on the |�Y | SB data. However, the correlations in the |�Y | SR are more complicated, as
shown in Figure 8.4. Therefore, using g(m1

JJ, m
2
JJ) = {m

1
JJ, m

2
JJ} was expected to be a more

suitable choice for the |�Y | SR. When changing to this conditioning function the C�������
approach performed as expected on the |�Y | SR MC samples. The full validation of both
C������� and S���� is shown in Figure 9.13. The change in C������� was again validated on
the resampled |�Y | SB dataset. This demonstrates that both S���� and C������� are capable
of producing valid reference samples on data samples with similar correlations to the |�Y |
SR data almost everywhere.

(a) (b)

(c) (d)

Figure 9.13: Spread of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are
shown for all feature sets and mJJ signal region centers. The spread is taken
over ten different upsamplings of the MC dataset in the |�Y | signal region.

At low mJJ both C������� and S���� can be seen to be biased towards producing an excess
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slightly more than is expected in the background only case. To explore the nature of this, the
analysis was run in lower mJJ SRs. The turn on in mJJ is at⇥ 1200GeV in the |�Y | SR, and so
the mJJ fit function is expected to work in this region. The likelihood of producing an excess
increases significantly at low mJJ when using C�������, but not when using S����. This
could be due to a random fluctuation produced when upsampling the MC samples, such
fluctuations are particularly likely in low mJJ as there are fewer MC events in this region.
However, it could also be due to the more complex correlations observed in this region as
shown in Figure 8.4. In either case it is possible there are issues at low mJJ that neither
method is capable of addressing properly. This motivates reconsidering the choice of mJJ

bins in the analysis. This choice is made using the final validation set, the (down)upsampled
|�Y | SR data.

In summary, the C������� approach to reference generation was updated to account for the
statistical imbalance in the mJJ distribution and the function g was updated to account for
the more complex correlations in the |�Y | SR. All results are now produced with these
updates in place. The only consideration made on the final validation set is the choice of SRs
to unblind.

9.8 Validating validation strategies

The (down)upsampled validation set may be susceptible to random signal like fluctuations,
as discussed in section 8.2.42. There is also the potential that through some unknown
mechanism the (down)upsampled validation sets are not sufficiently signal suppressed. The
analysis pipeline developed in the previous section does not produce any excesses on the
|�Y | SB validation set, and it behaves as expected almost everywhere on the |�Y | SR MC
samples. Therefore, this pipeline is used to test the validity of the procedures used to
generate the (down)upsampled validation sets.

To test this validation approach signal samples from the A0(2�2b) model are injected into
the resampled |�Y | SB data such that the analysis reports an excess of > 5� for both S����
and C������� in the 2600-3200 GeV SR. The (down)upsampling procedure on the combined
simulated signal and data samples is repeated 10 times and the full analysis is run on
all feature sets and mJJ windows. Similar behaviour to the original resampled |�Y | SB
samples from which these datasets were constructed was observed as shown in Figure 9.14.
This confirms the (down)upsampling procedure suppresses signal and does not produce
any spurious excesses on |�Y | SB data. It also demonstrates the upsampling procedure
produces datasets that are similar to those from which they were created, as demonstrated
by the correlation between the significances reported by the original resampled |�Y | SB data
and the (down)upsampled data. A full set of these studies on all feature sets and methods
is provided in Appendix B. No bias due to the signal injection is observed.

It is still possible the (down)upsampling approach could break down in the |�Y | SR where
the correlations between the features and mJJ are more complex than those of the |�Y | SB. To
fully validate the (down)upsampling procedure it should be tested on a dataset with similar
correlations to the |�Y | SR data. Validating the upsampling of the MC dataset is a partial
validation of this, but a stronger test would be to repeat the (down)upsampling test on the
upsampled MC dataset. This would also be an incomplete test as the upsampled MC dataset
still mismodels the |�Y | SR correlations. However, this would be a sensible test for future
iterations, especially if an equal statistics MC sample were produced. This does expose a
gap in the validation strategy of this procedure, where it is possible the (down)upsampling

2As discussed this applies to the upsampled MC as well, but the analysis has already been seen to pass this
validation everywhere in mJJ that is relevant.
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(a) (b)

(c) (d)

Figure 9.14: Spread of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are
shown for the M feature set and all mJJ signal region centers. The spread
is taken over ten different upsamplings of the downsampled resampled |�Y |

sideband dataset.

procedure can produce a dataset that causes the analysis to fail where it would not have
otherwise. To be conservative, it was decided that any failure on the (down)upsampled
|�Y | SR data would be considered a failure of the analysis.

9.9 Summary

This chapter detailed the development of the analysis. The analysis was primarily developed
using the partitioned |�Y | SB dataset, where the analysis was seen to behave as expected in
its default configuration, except for the classifier training. The classifier training was seen
to be sensitive to the random seed, where large excesses when no signal was injected were
observed much more often than expected in the background only case. This was resolved
by ensembling the classifiers, which was seen to reduce the variance in the significance
reported by the analysis when changing the random seed and to remove the appearance of
large excesses when no signal was injected. The issues around the classifier bias highlight
the inherent difficulty in constructing an analysis strategy around the weakly supervised
approach pursued here. Multiple studies have explored the use of reference generation
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techniques in the context of weakly supervised searches as discussed in Section 6.5, and none
have reported the classifier issues observed here. Further development of these methods
should take these approaches into account.

On the |�Y | SB dataset the generated references were observed to be of high quality, and
the analysis was seen to be sensitive to signal when injected. The analysis was also validated
on the resampled |�Y | SB dataset, where the C������� approach was seen to fail. This was
resolved by accounting for the statistical imbalance in the mJJ distribution, which the S����
implementation had already accounted for. The analysis was then validated on the |�Y |
SR MC samples, where the C������� approach was again seen to fail. This was resolved by
accounting for the more complex correlations in the |�Y | SR. The repeated failure of the
C������� approach reflects the need to tune these approaches to the specific dataset being
used. A robust validation strategy is also required to ensure the analysis is not biased by the
reference generation. The next chapter presents additional studies on the final validation
dataset, and also the unblinded results of the analysis.
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Chapter 10

Analysis results

This chapter presents the results of the analysis on the final validation datasets and the |�Y |
SR data. The analysis procedures are considered to be fixed at this point. The only remaining
consideration is the SRs – defined by classifier selection, feature set and mJJ bin – to unblind.
The choice to freeze the analysis procedures was made for expediency, as the analysis was
already in an advanced stage when it became evident the validation presented here was
necessary. Given the analysis timeline, making adjustments and fully validating them was
not feasible. Ideally, an analysis would be developed on more realistic representations of the
|�Y | SR data from the outset to avoid such situations.

10.1 Validation results

The (down)upsampling construction is now assumed to be valid and is used in this chapter
to produce the primary validation datasets. This choice is well motivated because the
(down)upsampled validation set does not have the low statistics issue of MC at low mJJ, and
has similar correlations to the |�Y | SR data. A full comparison of these validation sets was
provided in section 9.8. The frozen analysis has already passed all validation tests on the
upsampled MC dataset and the |�Y | SB dataset in all SRs.

10.1.1 Single run

This subsection presents a complete run of the analysis on a single dataset constructed using
the (down)upsampling procedure. The purpose of this is to state in one place the complete
analysis pipeline and show the main intermediate results, as well as to outline the challenges
faced in the |�Y | SR data. This demonstration is most clearly made for a single analysis run
and so only the M, ⌧21 feature set in the SR from 2600p3200 GeV using the C������� method
is shown. In all later sections, only summaries of the final results or partial intermediate
results are presented.

The first step of the analysis produces the reference distribution over the features in M, ⌧21

shown in Figure 10.1. This reference is visually worse than that produced for the |�Y | SB
validation set where the analysis was developed, shown in Figure 9.5. A similar degradation
is observed for the S���� method. This is expected as the correlations between M, ⌧21 and mJJ

in the |�Y | SR data are much more complex than in the |�Y | SB. Therefore, the interpolation
of the reference sample from the mJJ SBs is more challenging. The same degradation is not
observed in the MC validation set. This reflects the fact that the (down)upsampled validation
set is a more stringent test of the analysis than the MC validation set.

Once a reference sample has been produced the SR data is split into 5 folds. A classifier
is trained as defined in section 8.3.2, and a small amount of random noise on the order of
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Figure 10.1: Comparison of the feature distributions in the |�Y | signal region
data and the reference sample produced by C������� in the 2600 p 3200 GeV

mJJ signal region.

machine precision is added to the classifier scores to break ties as described in section 9.1. Ten
classifiers are trained on the same reference sample and |�Y | SR data. In each iteration the
splitting of the data into folds is different, and the classifier initializations are different. This
randomization results in variations amongst the scores assigned to different data samples.

For each of the ten classifiers, all samples in the top ✏ = 0.02 fraction of scores are selected.
Each of the ten selected datasets is used to build a histogram with 30 bins in mJJ. The
histograms are then combined to produce a final histogram for the SR. Uncertainties are
calculated using the error propagation of the different histograms defined in section 9.2.
The histogram bins in the mJJ SBs are used to estimate the background in the SR using the
parametric fit described in section 8.3.3. The final histogram and the fit function are shown
in Figure 10.2.

A likelihood fit is performed in the mJJ SR following the procedure described in section 4.2
with µ = 0. The quantities relevant to this fit are shown in Figure 10.3, where the observed
data can be seen to be consistent with the predicted background. The dominant uncertainty
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(a) (b)

Figure 10.2: Representative fits for the C������� method using the M, ⌧21

feature set. Fits are shown at (a) ✏ = 0.1 and (b) ✏ = 0.02. The mJJ sideband
p-value is generally high, indicating a good fit. The mJJ histograms change
smoothly, and the interpolated fit function agrees with the data in the signal

region.

in the fit is the uncertainty from the background fit, followed by the statistical error (Poisson)
and then the uncertainty from the mass histogram ensemble. The likelihood is converted to
a significance using the asymptotic formula. In the final unblinded analysis this significance
is corrected by a linear fit to the observed significances on ten different (down)upsampled
validation sets. The final significance is corrected using eq. (8.3). All unblinded results use
the corrected significance, including the limit setting procedure.

The performance of the analysis is summarized through the distribution of the output
significances Z extracted from the likelihood fit. In calculating this significance a modified
version of the significance is used, where negative significances are not set to zero as discussed
in section 4.2.

10.1.2 Signal region scan

To identify the SRs that can be unblinded the analysis is performed multiple times on
different (down)upsampled validation sets. Each of these sets is generated from a different
downsampling of the |�Y | SR data. The analysis is considered to pass the validation if both
the mean and the standard deviation of the significances are less than one. This choice is
arbitrary and would in principle allow for a 2� excess to be within one standard deviation
of the mean. However, this was deemed acceptable as the linear fit to the significances is
expected to correct for any such biases.

The results of the scan are shown in Figure 10.4. The SRs considered for unblinding are
centered on 2600, 2900, 3200, 3500, 3800, 4100, 4400 and 4700 GeV. A finer grid is considered
at low mJJ to better probe the performance of the analysis in this region. The analysis is
seen to perform as expected at high mJJ, but there are significant excesses at low mJJ. These
excesses appear across multiple mJJ bins and all feature sets and methods.

From Figure 10.4 it was concluded the mJJ bin centered on 2600 GeV could not be used
for unblinding. This is because the analysis reports on average an excess greater than one
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(a) (b)

Figure 10.3: The contributions to the likelihood fit from the different uncer-
tainties, the observed data and the predicted background (expected) at (a)
✏ = 0.1 and (b) ✏ = 0.02. The uncertainties from the background fit are shown
in blue, the uncertainties from the mass histogram ensemble are shown in red,
the variance of the Poisson with the predicted background is shown in green

and the total uncertainty is shown in grey.

for all feature sets, classifier selections and methods in this mJJ bin. All other mJJ bins
are considered suitable for unblinding. The primary reason for performing the scan in
Figure 10.4 was to identify the mJJ bins that could be unblinded, but the behaviour of the
analysis at low mJJ is not understood and so is explored further as detailed in the next
subsection.

10.1.3 Issues at low mJJ

The behaviour of the analysis at low mJJ, shown in Figure 10.4, could be due to a number
of reasons. The analysis could be failing due to a previously unseen issue, the generation
of the (down)upsampled validation set could be flawed, or there could be real signal in the
data. This subsection explores and discusses these possibilities. The (down)upsampling
construction has been assumed to be valid, but this is still discussed in the context of the
observations at low mJJ.

For real signal contamination to be the cause of the observed excesses the signal must be
produced at a large cross section. The (down)upsampling procedure suppresses the signal by
a factor of

�
30 and the largest excess observed in Figure 10.4 is on average⇥ 5�. Accounting

for the signal enhancement capabilities of the analysis, based on the best case signal injection
shown in Figure 9.10, the signal could be on the order of 2� in the data. Therefore, this
‘signal’ in the |�Y | SR dataset is most likely � 2

�
30 ⇥ 10�. Such a large excess is expected

to be visible in the fully inclusive dataset, and so this possibility is considered unlikely.

The observed excesses could be introduced by mismodelling in the generative model used
to build the (down)upsampled validation sets. This is possible because, as discussed in
section 9.8, there is a gap in the validation of this procedure. However, the low mJJ region
is the highest statistics region, so the generative model should be the most stable here. If the
generative modelling procedure were to introduce false excesses they would be expected to
appear in low statistics regions1. In the |�Y | SR MC the analysis also reports excesses at
low mJJ, as shown in Figure 9.13. Therefore, it is unlikely the upsampling procedure has
introduced the excesses at low mJJ.

1At high mJJ or below the trigger plateau.
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(a) (b)

(c) (d)

Figure 10.4: Spread of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are
shown for all feature sets and mJJ signal region centers. The spread is taken

over ten different (down)up-sampling validation sets.

This points to the most likely cause of the issue being an analysis failure. Assuming this
to be true the proximate question is if the reference sample generation is flawed, or if the
classifier training is again introducing a bias as in section 9.1. To try and identify the cause
of the issue a number of tests were performed as detailed in the following.

The first test was to repeat the use of the idealized reference sample to isolate the effect of
the reference sample generation. As the (down)upsampled validation set is generated using
a generative model, a perfect reference can be sampled from this model. This test is run in
all mJJ SRs with centers below 2600 GeV in Figure 10.4. In these tests, the absolute value
of the average, and the standard deviation, of the reported significance is less than one for
all feature sets. This demonstrates that mismodelling in reference sample is the cause of the
excesses at low mJJ. Having isolated the cause of the excess, the next step is to identify the
cause of the reference generation failure. In contrast to earlier reference generation failures,
such as those with C������� in Section 9.7, the reference generation failure at low mJJ is not
well understood.

Given that both C������� and S���� produce references that bias the analysis towards
reporting an excess, it is assumed that there is some property of the data that changes at
low mJJ. One way to understand such properties is to look at the correlations between
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the features and mJJ. From the results of Figure 10.4 the M feature set already results in
significant excesses at low mJJ. Therefore, studying this feature set should provide insight
into the cause of the issue. This feature set reduction is important as high dimensional
feature sets are inherently difficult to interpret. As already shown in Figure 8.3 the nature of
the correlations between the masses of the two jets and mJJ changes in character at low mJJ.
This change in character is likely to be the cause of the issue.

The correlation between the masses of the two jets and mJJ is shown in detail in Figure 10.5.
At low mJJ the leading jet mass does not reach the maximum cut off that is set at 500 GeV
by the high level selections, as described in Section 7.4. Both features vary smoothly with
mJJ everywhere, but the nature of the correlations changes at low mJJ where they appear
to be non-linear. This behaviour starts at ⇥ 2300 GeV, which coincides with the analysis
breakdown. It is difficult to draw a sharp connection between the observed correlations and
the analysis failure. However, the correlations changing in character at the same point as the
analysis fails strongly indicates that this is the cause of the issue.

(a) (b)

(c) (d)

Figure 10.5: The distribution of the masses of the two jets as a function of mJJ

in (a, b) one (down)upsampled validation set and (c, d) the MC validation
dataset. Every column in the histogram is normalized to one.

Assuming the cause of the issue is the relationship between the jet masses and mJJ at low mJJ

is the cause of the issue, the next step would be to understand the origin of these correlations.
The MC samples exhibit the same behaviour as shown in Section 7.4 and therefore, this is
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not a new physics effect. No detailed investigation of the source of these correlations was
performed.

Some signal identification tests as defined in section 9.5 were performed to try and identify
the cause of the excesses. The results of these tests were inconclusive, likely because the cause
of the excess was not due to signal but rather to reference generation failure. However, this
does demonstrate that these tests do not always allow the cause of an excess to be identified.
Being able to interpret the results of an analysis is crucial to its success. In this setting, it
is particularly important to be able to differentiate between real signal and analysis failure.
The inability to identify the cause of the excesses at low mJJ is one of the most significant
issues with the analysis and is a topic for future work.

While the exact cause of the issues at low mJJ is unknown, the analysis appears to be-
have as expected on mJJ SRs centered on 2900 GeV and above from the results on the
(down)upsampled validation sets in these regions, and the two other validation data sets.
This means seven mJJ bins, out of the eight considered, are considered suitable for unblind-
ing. The bins that succeed in the validation are all contiguous in mJJ. Given our assumption
the analysis performance varies smoothly as a function of mJJ, this provides additional
confidence the analysis is performing as expected.

10.1.4 Corrections fit

Proceeding with the unblinding of the |�Y | SR data for mJJ SRs centered on 2900 GeV and
above, the first step is to fit the corrections to the significances. This is the correction described
in section 8.3.6. This correction is applied to the reported significance to account for our
uncertainty about the functional form of the fit used in the analysis and as a non-closure
correction. The mean and standard deviations of the significances are shown in Figure 10.6,
where deficits have been set to zero following the assumption that any new physics appears
as an excess, as set out in section 4.2. The standard deviation is always less than one, and
so has no impact on the reported significance when used in eq. (8.3). The mean however
is always positive and therefore always decreases the reported significance. This correction
therefore always impacts the reported significance. All future results are reported with this
correction applied.

The linear fit in Figure 10.6 does not model the measured moments well. A linear fit is used as
it is the simplest model that can be used to correct the significance. More expressive functions
with regularization were not explored. Future analyses that use this method should consider
more expressive functions for the correction. Other approaches for estimating the correction
could also be considered, like that used in Ref. [114]. Future iterations of this kind of analysis
should also consider using different approaches to integrating this correction into the search,
rather than just directly applying it to the significance.

10.1.5 Signal injection

This subsection reports the results of the signal injection tests on the (down)upsampled
validation sets. This quantifies the expected performance of the analysis on the |�Y | SR
data. The signal injection tests are performed on five of the ten (down)upsampled validation
sets2. For this test, s = 2, 3� of different signals is injected separately into the 2600 p 3200
GeV SR and the 4100p 4700 GeV SR. The signal injection tests follow the same procedure as
performed in section 9.4.

2The full ten is not considered necessary as a precise estimate of the signal sensitivity for these comparisons
is not required.
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(a) (b) (c)

(d) (e) (f)

Figure 10.6: Mean (µ) and standard deviation (�) of the significance (Z) dis-
tribution for the mJJ signal regions. The averages are estimated across the
ten different (down)upsampling validation sets. The correction derived using
a linear fit to both the mean and the standard deviation as a function of the
central mJJ value of each mJJ signal region is also plotted. The top row (a, b,
c) shows the result for the C������� method and the bottom row (d, e, f) shows
the result for the S���� method. The first column (a, d) shows the result for the
M feature set, the second column (b, e) shows the result for the M, ⌧21 feature
set, and the third column (c, f) shows the result for the M, ⌧21, ⌧32 feature set.

Both methods are mostly insensitive to the s = 2� signal injection as shown in Figure 10.7,
with the analysis returning a significance Z � 2� for only a few signal models. This is in
sharp contrast to what is observed in the |�Y | SB data where the analysis recovered Z � 2
for s = 2� signal injections as shown in Figure 9.10. This is a failure of the analysis to enhance
the presence of signals in the interesting regime of s 2 2� in the |�Y | SR data. The most
likely cause for this failure is the significant degradation of the performance of the reference
generation on |�Y | SR data as shown in Figure 10.1.

At the larger signal injection of s = 3� both methods can be seen to return a significance of
Z > 3 for most of the injected signals. This is shown in Figure 10.8 and is particularly true in
the M, ⌧21 feature set at ✏ = 0.02. This reflects the significance enhancement ability of both
S���� and C������� in the presence of a significant amount of signal. In general C�������
is more sensitive to the signal injections than S����. This is not a general statement about
the methods but is true in this specific case where the methods have been implemented
in a specific fashion. The difference in the signal sensitivity of the different methods is
concerning. When unblinding, if C������� reports an excess and S���� does not there is no
way to know if this is because C������� has identified a signal that S���� is not sensitive to,
or if the reference produced by C������� has resulted in a spurious excess. This concern is
somewhat alleviated by the fact that both methods have been validated on multiple datasets
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(a) (b) (c)

(d) (e) (f)

Figure 10.7: Signal injection tests at (a, b, c) ✏ = 0.1 and (d, e, f) ✏ = 0.02.
For both S���� and C������� all feature sets are used (a, d) X = M , (b, e)
X = M, ⌧21 and (c, f) X = M, ⌧21, ⌧32. The local significance (Z) reported by
the analysis pipeline is calculated after running the analysis with 2� of signal
injected into the data in the mJJ SR centered on the different signals. The errors
show the variance in the reported significance as calculated across different

signal injections and analysis runs.

and do not produce false excesses in any of the mJJ regions where they are unblinded. This
is a concern that should be addressed in future work.

In general, the tighter selection is more sensitive to a wide range of signals at both signal
injections and in all feature sets for both methods. This suggests the classifier is better able
to enrich signal in the tighter selection, which is expected if it has learned to discriminate
signal from background. The M, ⌧21 feature set is the most sensitive to injected signals, with
the M, ⌧21, ⌧32 feature set the second most sensitive and the M feature set the least sensitive.

The failure of the M, ⌧21, ⌧32 feature set relative to the M, ⌧21 feature set is likely due to the
increased complexity of the feature set. This complexity makes the reference generation
more difficult, and the classifier less able to identify signal. The additional ⌧32 feature is
irrelevant for most of the signal samples considered in this analysis as shown in Figure 8.2.
Further, it has been shown that MLP classifiers, like those used in this analysis, are not able
to ignore irrelevant features [118]. Therefore, the drop in sensitivity is likely to be due to the
classifier being unable to discriminate signal from background. To properly understand the
source of the drop in sensitivity a more detailed study using idealized references would be
required.

The sensitivity of the analysis to different signal models can be understood through the
physics of the signal model and the features used in the analysis. The distribution of the
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(a) (b) (c)

(d) (e) (f)

Figure 10.8: Plot in the style of Figure 10.7 but with 3� of signal injected.

signals overall features was shown in Figure 8.2 and some discussion of the signals was
provided in the associated section 8.1.3. The analysis is almost always sensitive to the signal
models with photons in the final state A0,3000(2�2b) and A0,4500(2�2b). The sensitivity to this
signal model is significantly higher on the M, ⌧21 feature set than the M feature set. This is
likely due to the additional ⌧21 variable, which has a sharp peak at zero for this signal model
due to the photon misidentification as a jet. The analysis is also more sensitive to the W

0(4q)
signal models when adding ⌧21, which is expected as this final state results in a distinct jet
topology with two prong substructure. The analysis is also more sensitive to this model than
the W

0(6q) signal models, which is again expected as the 6q final state should result in a
three prong substructure3. In general, the sensitivity of the different feature sets to the signal
models is consistent with the feature distributions of the signals. In conclusion, the analysis
is most sensitive to signal models that are significantly different from the QCD background.

Another signal specific conclusion to draw is analysis is more sensitive to signals that are
better localized in mJJ. This is reflected by the analysis almost always being more sensitive
to the W

0
3000(4q) model than the W

0
200,400 model. These two signal models are identically

distributed in all features except for mJJ, where the former signal has a narrower distribution.
For the V Vx signal models (V 0

x ⇠ V V ⇠ 4q), all feature distributions are identical except for
mJJ, where the mJJ distributions have different centers. The analysis is never sensitive to the
V V2600 signal model, which is centered on the edge of the 2600 p 3200 GeV SR into which
it is injected. The analysis has similar sensitivity to the V V2800 and V V3000 signal models,
which is surprising as the latter is exactly centered on the SR. The lack of a clear difference
between these two models is possibly due to the lack of a precise test of the sensitivity of the
analysis to the signal models.

3This signal model does not have a significant peak in the ⌧32 distribution, which is expected as higher order
⌧ variables are less sensitive to the substructure.
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10.2 Search results

This section presents the results of the analysis on the |�Y | SR data. The analysis was
unblinded on the mJJ bins that passed the previous validation. The significance corrected
by the linear fit as a function of mJJ is reported, and used in the limit setting procedure.

10.2.1 Search

The largest observed excess has a local significance of Z = 1.26�. A significant deficit is
seen in the first mJJ SR for both C������� and S���� when running on the M feature set
at ✏ = 0.1 as quantified in Figure 10.9. The nature of this deficit is shown in Figure 10.10
where the entire SR is reduced. Only the first four non-overlapping mJJ SRs are shown in
Figure 10.9 as this set contains the region where a deficit is observed. Between neighbouring
SRs of Figure 10.10 sharp discontinuities are observed in the mJJ spectrum. These appear
because the classifier selection is performed in each SR independently. Therefore, there is
no guarantee that adjacent SRs are continuous in mJJ 4. For all other selections and mJJ

SRs both C������� and S���� behave similarly to the validation region results. A full set of
histograms is shown in Appendix C.

(a) (b)

(c) (d)

Figure 10.9: Table of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are

shown for all feature sets and mJJ signal regions.

It is difficult to provide a physical interpretation of the deficit observed in the first mJJ SR.
To understand this effect in terms of new physics a signal model that causes a similar deficit
would need to be found. However, it is more likely this is related to the effect observed in the
(down)upsampled validation sets at low mJJ shown in Figure 10.4. On the validation sets,
there are significant deficits at low mJJ that are most likely to appear in the M feature set.
In validation, these deficits are more likely in mJJ SRs centered on 2700 p 2800, while the
deficit in the |�Y | SR data is at 2900 GeV. However, it is expected the effect causing the deficit
in validation would be enhanced in real data and could extend higher in mJJ than what is
observed in validation. This suggests the unblinding strategy should be reconsidered, and
possibly SRs should only pass the validation if all neighbouring SRs also pass.

To understand the cause of the deficit in the lowest mJJ bins the approach to understanding
the cause of the excesses at low mJJ in the validation sets should be repeated as detailed in

4The discontinuities were also observed in the previous ATLAS weakly supervised search [238].
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(a) (b) (c)

(d) (e) (f)

Figure 10.10: Histograms of mJJ in the first set of non-overlapping mJJ

signal regions on all feature sets at the ✏ = 0.1 classifier selection on one
(down)upsampled validation set. Dashed histograms represent the fit uncer-
tainty. The rows show different methods: (a, b, c) C������� and (d, e, f) S����.
The columns show different feature sets: (a, d) is the result of T = M , (b, e)
is the result of T = M, ⌧21 and (c, f) is the result of T = M, ⌧21, ⌧32. The fit is
derived from the background-only fit interpolated from the sidebands and the
uncertainty on the fit comes from the fit uncertainty and the Poisson statistical
uncertainty. The uncertainty on the observed counts is the Poisson uncertainty
plus the uncertainty from the mass bin ensembling procedure. The vertical
dashed lines mark the edges of each signal region in mJJ. The lower panel in
each plot shows the Gaussian-equivalent significance of the deviation between

the fit and data.

section 10.1.3. Pursuant to this, the correlations between the leading jet masses and mJJ are
shown in Figure 10.11. As in Figure 10.5 the correlations change in character at low mJJ.
However, there is unexpected behaviour in the low subleading jet mass where there is a
dearth of events in the data. This effect is present in the (down)upsampled validation sets
but is more pronounced in the |�Y | SR data. The effect is contained in the lower mJJ SB of
the 2600-3200 GeV SR, and so this influences the reference generation methods. It is expected
that this kind of non-linear correlation can cause the reference generation to fail and is likely
the cause of the deficit in the first mJJ SR. The fact the deficit is suppressed in the M, ⌧21 and
M, ⌧21, ⌧32 feature sets is likely due to the classifier failing to ignore the irrelevant ⌧ features.
This is a similar effect to what is observed in signal injection tests, where the analysis is most
sensitive in feature sets that fully contain the signal information.

The observed behaviour of the subleading jet mass is most likely not due to a new physics
effect, but no investigation into the source of these correlations was performed. The inability
to sharply diagnose the cause of the deficit is a significant issue with the analysis. This again
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(a) (b)

Figure 10.11: The distribution of the masses of the two jets as a function of mJJ

in the |�Y | SR data. Every column in the histogram is normalized to one.

falls under the category of interpreting the results of the analysis, which is emerging as a
significant issue. It should be noted that a significance correction as defined in Section 8.3.6
is not applied to negative significances. If this were to be applied, then the significance of
the deficit would reduce in magnitude, as there is a⇥ p1� deficit observed in the M feature
set at ✏ = 0.1 in the validation set as shown in Figure 10.4.

10.2.2 Signal enhancement

The signal enhancement tests were performed on the |�Y | SR data. As the expected sen-
sitivity at s = 2� is small, only the s = 3� signal enhancement tests were performed. The
results of these tests are shown in Figure 10.12. These tests consider variations of the signal
injection at a fixed level. The full analysis pipeline is run ten times with different signal
samples injected for each signal for every feature set and method. The different analysis
runs on the same signal model are used to estimate the variance in the reported significance.

In contrast to what was observed during the signal injection tests on the validation sets, the
S���� method is more sensitive to signals than the C������� method in the low mJJ SR. The
performance of the C������� approach is seen to drop significantly, while the S���� approach
improves. A simple explanation for this might be that the MC simulation used by S����
is a better representation of the |�Y | SR data than the (down)upsampled validation sets.
This could be compounded by the deficit that was observed in the first mJJ SR, which might
reduce the sensitivity of both methods. Another difference in the signal enhancement tests
is the M feature set is now more sensitive than the M, ⌧21, ⌧32 feature set. This is unexpected
as the deficit in the M feature set is expected to reduce the signal sensitivity of the analysis.

As S���� is better than C������� at low mJJ, and the opposite is true at high mJJ, the two
methods are complementary. Complementarity is in principle a desirable property, however,
as already discussed, in this setting it is undesirable. This issue is exacerbated by the fact
the signal injection tests performed during validation C������� was more sensitive to signals
than S����. Therefore, an observed excess by S���� that is not observed by C������� would
be concerning when unblinding. This is a significant issue that needs to be addressed in
future work.
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(a) (b) (c)

(d) (e) (f)

Figure 10.12: Signal injection tests at (a, b, c) ✏ = 0.1 and (d, e, f) ✏ = 0.02.
For both S���� and C������� all feature sets are used (a, d) X = M , (b, e)
X = M, ⌧21 and (c, f) X = M, ⌧21, ⌧32. The local significance (Z) reported by
the analysis pipeline is calculated after running the analysis with 3� of signal
injected into the data in the mJJ signal region centered on the different signals.
The errors show the variance in the reported significance as calculated across

different signal injections and analysis runs.

The signal specific conclusions drawn from the signal injection tests on the validation sets
are confirmed in the unblinded results. In general, the higher mJJ SR has a similar sensitivity
in the validation injection tests and the |�Y | SR injection tests, the same is not true at low
mJJ. This suggests that something about the |�Y | SR data is causing the analysis to fail at
low mJJ, which is consistent with the deficit observed in the first mJJ SR. The most sensitive
SR is still the M, ⌧21 feature set at ✏ = 0.02.

10.2.3 Limit setting

The limit setting procedure is performed on the |�Y | SR data. This procedure was defined
in full in section 8.3.7. The following presents the intermediate results used to extract limits
as well as the final results of the limit setting.

Limit derivation

Signals were injected using an adaptive procedure where signal is injected as necessary to
resolve the relevant quantities. The inputs used to extract the values for setting limits are
shown in Figure 10.13. Each point in this plot represents a different signal injection. At
each injection, the expected and observed CLs values are calculated as well as the ±1 and
±2 variations. Linear interpolation between the points for each of these quantities is used
to extract the limit. The limit is set by the intersection with CLs = 0.05. This procedure is
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repeated for all feature sets, selections, methods and signal samples. At each signal injection
level, the entire analysis pipeline is run to calculate the CLs values. All signal samples are
used to estimate the classifier selection efficiency.

(a) (b)

Figure 10.13: The extracted CLs values for the A0,3000(2�2q) signal model at
different signal injection levels. At every injection the expected and observed
CLs values are calculated and the ±1 and ±2 variations for (a) the ✏ = 0.1
and (b) ✏ = 0.02 selections. The CLs values are calculated using the C�������
method with the X = M, ⌧21 feature set. The line at 5% represents the CLs =

0.05 threshold and the intersection with this line is used to set the limit.

The curve at ✏ = 0.02 is sharper than that at ✏ = 0.1 in Figure 10.13. This is consistent
with the large difference in the expected sensitivity between the two selections for the signal
enhancement tests of the previous section, shown in Figure 10.12. It is interesting to note
that while the shape of the curves are different, the crossing point for the observed CLs is
similar. This suggests that at small signal injections, the differences in sensitivity are less
pronounced. The steepness of the curves shows the sensitivity of the analysis increases faster
at ✏ = 0.02 than at ✏ = 0.1.

The points needed for finding the crossing point at ✏ = 0.02 are not needed at ✏ = 0.1. This is
particularly clear at low signal injections. If limits were to be derived for only one selection
then fewer signal injections would be needed. Running the full analysis pipeline for each
signal injection level is computationally expensive. This restricts the limit setting capacity of
the analysis and makes it less useful for setting limits on many signal models. In particular,
this makes it difficult to reinterpret the results of the analysis on new signal models after the
analysis is published [279].

Method comparison

The limits set by C������� and S���� are compared in Figure 10.14. This result is shown for
✏ = 0.02 with the M, ⌧21 feature set. Both C������� and S���� set similar limits on the signal
cross section at both ends of the mJJ spectrum. At low mJJ S���� sets slightly stricter limits,
while at high mJJ C������� sets slightly stricter limits. This is consistent with the expected
sensitivity of the two methods as shown in Figure 10.12. The same is true for all selections,
feature sets and signals as shown in Appendix D. The observed limits are always less than
the expected limits at low mJJ. This is because there is a deficit in the first mJJ SR in all
feature sets for the signal injection at which the limits are set.

Comparisons are made to the A���� dĳet search [114] and the A���� diboson search [245],
both of which were detailed in Section 7.1. As expected, the diboson search sets much
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stricter limits on the W
0
80,80 signal model than both the dĳet search and this analysis. This

search however has extremely limited sensitivity to the other signal models considered in
this analysis, due to the selections it applies to data. The dĳet search sets stricter limits on
signal models that produce decays that are on average contained within two small radius
jets (R > 0.4), while this analysis appears to set stricter limits on signal models that are not.
This reflects another failure of the analysis presented in this thesis. If the A���� dĳet strategy
were to be reoptimized for large radius jets it is likely the resulting limits would be stricter
than those set by this analysis. Further, if the analysis presented here fully leveraged the
information in the M, ⌧21 feature set then it should set stricter limits on signal models that
are contained within small radius jets. A concrete example of this is provided later in this
chapter. It is also important to remember the limits reported by this search do not account
for systematic uncertainties in the signal models, and therefore the limit comparisons are
not entirely fair.

In the high mJJ SR, the analysis sets stricter limits on the signal cross section than at low
mJJ. Tighter limits at high mJJ are consistent with the previous weakly supervised search in
ATLAS [238]. In the previous analysis, it was shown the two comparison searches [114, 245]
set stricter limits at high mJJ. Without a benchmark analysis in this region, it is difficult to
interpret the relative performance of the analysis. The two comparison searches could not
be reinterpreted using the signals simulated for this analysis due to technical issues. As is
discussed in the next subsection, the M feature set can be used as a proxy for the sensitivity
of the previous weakly supervised search [238].

Figure 10.14: Comparison of the limits set by C������� and S���� at ✏ = 0.02
with T = M, ⌧21. The one and two sigma variations on the expected limits
for both S���� and C������� are shown as the shaded regions. The signal
models are described in detail in section 7.5.2. The observed limits from the
ATLAS dĳet search [114] and the ATLAS all-hadronic diboson search [245] as
derived in the previous weakly supervised ATLAS search [238]. Limits for the
inclusive dĳet search are calculated using the W

0 signals from this paper and
the analysis of Ref. [114]; the diboson search limits are computed using the
Heavy Vector Triplet [36] W

0 signal from Ref. [245]. The acceptance for the W
0

in this paper, compared to the W
0 acceptance in Ref. [245], is 86%. Missing

dĳets limits are shown with red arrows.
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Comparison of feature sets

The M, ⌧21 feature set results in the strictest limits on the signal cross section across almost
all signals at ✏ = 0.02 as shown in Figure 10.15. This is true for both S���� and C�������. In
the 2600p3200 GeV SR at ✏ = 0.1, the M feature set results in the strictest limits on the signal
cross section across almost all signals due to the deficit observed in Figure 10.10, which only
appears in this region for this feature set. Otherwise, the M, ⌧21 feature set most often sets
the strictest limits in all regions and selections for both methods as shown in Appendix D.

This analysis uses the full CLs prescription to derive limits, whereas the previous weakly
supervised dĳet search used a different approach [238]. Therefore, direct comparisons can
not be made between the two analyses. However, the previous search used the M feature
set, which can therefore serve as a proxy for the sensitivity of the previous analysis. Given
the M, ⌧21 feature set generally improves the sensitivity of the analysis this iteration of the
analysis represents an improvement over the previous search. This is reinforced by the signal
injection plots of Figure 10.12 where the M, ⌧21 feature set is more sensitive to signals than
the M feature set.

Figure 10.15: Comparison of the observed limits set with the different feature
sets. All limits use the C������� method with the ✏ = 0.02 selection. The signal

models are described in detail in section 7.5.2.

Comparison of classifier selections

The limits set at ✏ = 0.1 and ✏ = 0.02 are compared in Figure 10.16. Generally, the limits
set by the two selections are similar. This is not consistent with what might be expected
from the signal enhancement tests in Figure 10.12. However, as shown in Figure 10.13 the
improved signal enhancement at ✏ = 0.02 results in a steeper curve in the CLs vs signal
injection plot. This translates to a smaller spread in the ±1 and ±2 variations on the expected
limits at ✏ = 0.02. This is an issue because the sensitivity of the analysis is most important
at small cross sections as new physics is expected to be rare. The similarity of the limits set
by the two selections suggests the signal enhancement of ✏ = 0.02 degrades at low signal
injection levels. This reflects the need to have signal injection tests as a function of injected
cross section rather than at a fixed signal injection.
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Figure 10.16: Comparison of the limits set by C������� and S���� at ✏ = 0.02
with T = M, ⌧21. The same style as fig. 10.14 is used.

Best possible limit

The limits presented so far are based on the approach described in section 10.2.3. However,
every time the analysis is run it is possible to derive a valid limit for any signal model. When
no signal is injected the analysis is expected to set weak limits. As the amount of injected
signal increases the analysis becomes closer to a supervised search so the analysis should set
tighter limits. Therefore, the best possible limit set by the analysis differs from the previously
reported limits.

The best possible limit is derived by injecting signal at cross section � and running the
full analysis pipeline. An upper limit on the signal cross section is then set using the CLs

prescription which sets an upper bound on the parameter µ in the likelihood fit. This
parameter is a scale that multiplies the signal cross section, it is set to one when all signal
is injected. The upper bound on the parameter µ can be used to set an upper bound on the
signal cross section.

To derive the best possible limit the signal injections of the adaptive grid are used. At every
signal injection, a limit is calculated and the best limit across all points in the signal injection
grid is reported as the best possible limit. The best possible limit, compared to the limit
reported by the analysis is shown in Figure 10.17. This limit is seen to be significantly stricter
than the limit reported by the analysis. For some signal models, there is a significant shift
in the limit, while for others the shift is small. The full set of these limits across all features
and selections is shown in Appendix D. The best possible limit is better than the atlas dĳet
search [114] for all signal models considered in this analysis. This demonstrates the capacity
of the analysis to be more sensitive to signals than the dĳet search when the information in
M, ⌧21 is properly leveraged.

When testing analyses of this type this limit is interesting because it shows the performance
the analysis could achieve. These limits also allow signal models to be excluded at lower
cross sections. The limits reported using the approach defined in section 10.2.3 are a repre-
sentation of how low in signal cross section the analysis can go and are useful for making
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fair comparisons to other searches. The best possible limit is not a fair comparison in these
contexts as this limit represents something closer to a supervised search. However, both of
these limits are valid and should be reported.

Figure 10.17: Comparison of the limits set by C������� and S����, at ✏ = 0.02
with T = M, ⌧21, using the best possible derived limit and the limit the analysis

reported.
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Chapter 11

Discussion

The search presented in this thesis attempted to develop an analysis with broad sensitivity to
possible new physics processes. This was done using substructure information to extend a
bump hunt in the dĳet invariant mass spectrum and search for narrow width resonances. A
bump hunt is already well established as a useful data analysis tool, particularly for exploring
datasets at new energy scales [47, 114, 215–220]. The results presented in this thesis make
it clear that extending bump hunts by including additional information is possible but faces
many challenges. In the following, the key summary points are discussed based on what
was learned about nature, the method, and some outlook for the future.

11.1 Inference about nature

No significant excess was observed in the data, and the analysis was used to set limits on the
production of new physics processes. Many of these signal processes have not been studied
by any other analysis, and the reported limits appear to be tighter than those set by the other
relevant searches. A significant deficit was observed in the 2600-3200 GeV mjj signal region,
but this is assumed to be attributed to a failure to model the background correctly.

11.2 Method

In developing the extended bump hunt that was presented here, several challenges were
encountered. The method can be seen to fail in some areas, but there were also some
successes. These are discussed in the following sections.

11.2.1 Challenges (Failures)

The analysis presented here faced many difficulties, and in particular, there were four main
fundamental areas where future work is needed.

First, it was shown the CW�L� classifier can introduce a bias into the mJJ spectrum that
results in the analysis reporting a false excess. In this analysis, this was resolved by training
an ensemble of classifiers, but this solution significantly increased the computational cost of
the analysis and may not be suitable for all analyses. The source of this failure is likely due
to the random placement of decision boundaries, the correlation of the features on which the
classifier is trained with the dĳet invariant mass, and the smoothly falling nature of the mJJ

spectrum. Future work should focus on developing methods to better explore and mitigate
this bias.

Second, it is unclear how to robustly validate the analysis. During validation, it was observed
the analysis passed the validation tests in all the proposed signal regions on the |�Y |
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sideband dataset and the simulated background dataset. The same was not true for the
novel validation set generated from the |�Y | signal region data, where the analysis was
seen to fail at small mJJ values. Further, after unblinding the analysis reported a significant
deficit in the 2600-3200 GeV signal region, which was much more significant than what was
observed in the validation datasets. This deficit was almost captured by the novel validation
strategy, and it is possible further investigations of similar approaches may allow for a more
robust validation of the analysis. An alternative approach would be to follow a progressive
unblinding procedure and to set stricter criteria for succeeding in the validation phase.

Third, it is unclear how to account for systematic bias in the significance reported by the
analysis. In this analysis, this was done by directly correcting the reported significance, but
this should be included in the profile likelihood fit in future work. Methods for accounting
and measuring such biases would significantly increase the robustness of the analysis.

Fourth, the analysis was not able to characterize the properties of all excesses that were
observed. The analysis failure on the validation dataset constructed from the |�Y | signal
region data is attributed to the challenging correlations between the features used in the
analysis and mJJ. However, it was not identified what exact property of the data caused the
analysis to fail. The same statement is true for the deficit observed after unblinding. Future
work should focus on developing methods to concretely identify the cause of any excesses
reported by the analysis.

11.2.2 Successes

While the analysis faced many challenges, there were also some successes, which are dis-
cussed in this section. This analysis identified idealized constructions as a useful tool for
developing the analysis strategy and diagnosing failures. Future iterations should leverage
these approaches, and also explore more sophisticated methods for constructing idealized
datasets. Also, the use of a workflow language [268] for the analysis development was seen
to be an indispensable tool for managing the complexity of the analysis. Another success of
the analysis was the development of a novel validation strategy that was seen to be a more
stringent test of the analysis than standard validation strategies. This approach is still in its
infancy and could be further developed to provide a more robust validation. The analysis
was also sensitive to small levels of signal in the |�Y | sideband validation dataset, which
demonstrates these kinds of approaches can be successful on real measured data. This anal-
ysis also clearly identified multiple failures and subtle issues that arise when developing a
weakly supervised search of this type. These lessons are valuable for the ongoing work in
this area. There is significant interest in searches of this type, and this analysis serves as a
useful proof of concept for the development of future searches.

11.3 Outlook

The analysis presented in this thesis is the first of its kind at the A���� experiment, and it is
clear there is much work to be done in this area to develop a robust procedure. In the future,
analyses of this type may provide useful extensions to the existing bump hunt paradigm.
Such searches may be useful in ensuring there is no new physics produced at significant
cross sections in the data that has been missed by existing searches. What is unclear is how
much utility this will bring to a given physics program, and whether these approaches justify
the significant resource investment they currently claim.

A weakly supervised search like the one presented here will only ever be sensitive to a subset
of possible new physics processes. This sensitivity is always partially random, as it is dictated
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by the choice of those same features and the ability of the classifier to learn the signal. The
choice of features dictates the space over which the signal model can be differentiated from
the background, and how interpolatable the background is from the sidebands, and impacts
the ability of the classifier to learn the signal. The choice of classifier and its hyperparameters
dictates how well the signal can actually be learned if present in data. Such randomness may
be deemed acceptable in the context of a broad search, but this begs the question of whether
something more systematic could be done to increase the sensitivity of the search.

One clear benefit of developing these searches is that in interpreting them there is the option
to set useful limits by reporting the best possible limit. However, it is worth noting that
when setting such limits the analysis is essentially fit to a specific signal model. This means
that something closer to a dedicated search is performed when setting limits, with the
analysis tailored towards the injected simulated signal. If this kind of program were to be
pursued, it would likely make more sense to simply perform a dedicated search for each
signal model that is being reinterpreted. Such a strategy would be more sensitive than any
weakly supervised search and would allow for strict limits to be set on a wide range of signal
models.
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Appendix A

Feature distributions

This appendix contains the full set of features used to extend the bump hunt, M, ⌧21, ⌧32,
for different datasets. Some of these feature distributions were not shown in the body for
brevity. A comparison of the correlations between the features for the |�Y | SB and |�Y | SR
datasets is shown in Figure A.1. The marginal distributions of the upsampled MC dataset
and the original MC dataset are shown in Figure A.2. The comparison of the correlations
between the features for the upsampled MC dataset and the original MC dataset is shown
in Figure A.3.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Distribution of the additional features used to extend the bump
hunt as a function of mJJ for |�Y | SB and |�Y | SR data. Ten equally spaced

quantiles between 5% and 95% are shown.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Distribution of the additional features used to extend the bump
hunt for the upsampled MC dataset and the original MC dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Distribution of the additional features used to extend the bump
hunt as a function of mJJ for the upsampled MC dataset and the original MC

dataset. Ten equally spaced quantiles between 5% and 95% are shown.
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Appendix B

(Down)upsampling validation

The full set of validation studies for the (down)upsampling validation procedure on the
|�Y | SB dataset. The spread of significances for C������� and S���� at the two different
selections, ✏ = 0.1 and ✏ = 0.02, is shown in Figure B.1, Figure B.2, and Figure B.3.

(a) (b)

(c) (d)

Figure B.1: Spread of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are
shown for the M feature set and all mJJ signal region centers. The spread
is taken over ten different upsamplings of the downsampled resampled |�Y |

sideband dataset.
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(a) (b)

(c) (d)

Figure B.2: Spread of significances for (a, b) C������� and (c, d) S���� at the
two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances are
shown for the M, ⌧21 feature set and all mJJ signal region centers. The spread
is taken over ten different upsamplings of the downsampled resampled |�Y |

sideband dataset.
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(a) (b)

(c) (d)

Figure B.3: Spread of significances for (a, b) C������� and (c, d) S���� at
the two different selections, (a, c) ✏ = 0.1 and (b, d) ✏ = 0.02. Significances
are shown for the M, ⌧21, ⌧32 feature set and all mJJ signal region centers. The
spread is taken over ten different upsamplings of the downsampled resampled

|�Y | sideband dataset.
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Appendix C

Histograms

The histograms of mJJ in the second set of non-overlapping mJJ signal regions on all feature
sets at the ✏ = 0.1 classifier selection on one (down)upsampled validation set are shown
in Figure 10.10. The histograms of mJJ in the first (second) set of non-overlapping mJJ

signal regions on all feature sets at the ✏ = 0.02 classifier selection on one (down)upsampled
validation set are shown in Figure C.2 (Figure C.3).
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(a) (b) (c)

(d) (e) (f)

Figure C.1: Histograms of mJJ in the second set of non-overlapping mJJ

signal regions on all feature sets at the ✏ = 0.1 classifier selection on one
(down)upsampled validation set. Dashed histograms represent the fit uncer-
tainty. The rows show different methods: (a, b, c) C������� and (d, e, f) S����.
The columns show different feature sets: (a, d) is the result of T = M , (b, e)
is the result of T = M, ⌧21 and (c, f) is the result of T = M, ⌧21, ⌧32. The fit is
derived from the background-only fit interpolated from the sidebands and the
uncertainty on the fit comes from the fit uncertainty and the Poisson statistical
uncertainty. The uncertainty on the observed counts is the Poisson uncertainty
plus the uncertainty from the mass bin ensembling procedure. The vertical
dashed lines mark the edges of each signal region in mJJ. The lower panel in
each plot shows the Gaussian-equivalent significance of the deviation between

the fit and data.
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(a) (b) (c)

(d) (e) (f)

Figure C.2: Histograms of mJJ in the second set of non-overlapping mJJ

signal regions on all feature sets at the ✏ = 0.02 classifier selection on one
(down)upsampled validation set. Dashed histograms represent the fit uncer-
tainty. The rows show different methods: (a, b, c) C������� and (d, e, f) S����.
The columns show different feature sets: (a, d) is the result of T = M , (b, e)
is the result of T = M, ⌧21 and (c, f) is the result of T = M, ⌧21, ⌧32. The fit is
derived from the background-only fit interpolated from the sidebands and the
uncertainty on the fit comes from the fit uncertainty and the Poisson statistical
uncertainty. The uncertainty on the observed counts is the Poisson uncertainty
plus the uncertainty from the mass bin ensembling procedure. The vertical
dashed lines mark the edges of each signal region in mJJ. The lower panel in
each plot shows the Gaussian-equivalent significance of the deviation between

the fit and data.
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(a) (b) (c)

(d) (e) (f)

Figure C.3: Histograms of mJJ in the second set of non-overlapping mJJ

signal regions on all feature sets at the ✏ = 0.02 classifier selection on one
(down)upsampled validation set. Dashed histograms represent the fit uncer-
tainty. The rows show different methods: (a, b, c) C������� and (d, e, f) S����.
The columns show different feature sets: (a, d) is the result of T = M , (b, e)
is the result of T = M, ⌧21 and (c, f) is the result of T = M, ⌧21, ⌧32. The fit is
derived from the background-only fit interpolated from the sidebands and the
uncertainty on the fit comes from the fit uncertainty and the Poisson statistical
uncertainty. The uncertainty on the observed counts is the Poisson uncertainty
plus the uncertainty from the mass bin ensembling procedure. The vertical
dashed lines mark the edges of each signal region in mJJ. The lower panel in
each plot shows the Gaussian-equivalent significance of the deviation between

the fit and data.
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Appendix D

Limits

The full set of limits on all signal regions and selections for C������� and S���� are shown
in Figure D.1. The comparison of the limits set by C������� and S���� using the best
possible derived limit and the limit the analysis reported is shown in Figure D.2. The best
possible limits, including expected and observed limits, for C������� and S���� are shown
in Figure D.3.
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(a) (b)

(c) (d)

(e) (f)

Figure D.1: Limits for S���� and C������� with (a, b) T = M , (c, d) T = M, ⌧21,
and (e, f) T = M, ⌧21, ⌧32 and (a, c, e) at ✏ = 0.1 and (b, d, f) at ✏ = 0.02.
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(a) (b)

(c) (d)

(e) (f)

Figure D.2: Comparison of the limits set by C������� and S���� using the best
possible derived limit and the limit the analysis reported.
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(a) (b)

(c) (d)

(e) (f)

Figure D.3: Best possible limits for S���� and C������� with (a, b) T = M , (c,
d) T = M, ⌧21, and (e, f) T = M, ⌧21, ⌧32 and (a, c, e) at ✏ = 0.1 and (b, d, f) at

✏ = 0.02.
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