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While the standard formulation of quantum theory assumes a fixed background causal structure, one can
relax this assumption within the so-called process matrix framework. Remarkably, some processes, termed
causally nonseparable, are incompatible with a definite causal order. We explore a form of certification of
causal nonseparability in a semi-device-independent scenario where the involved parties receive trusted
quantum inputs, but whose operations are otherwise uncharacterized. Defining the notion of causally
nonseparable distributed measurements, we show that certain causally nonseparable processes that cannot
violate any causal inequality, including the canonical example of the quantum switch, can generate
noncausal correlations in such a scenario. Moreover, by imposing some further natural structure to the
untrusted operations, we show that all bipartite causally nonseparable process matrices can be certified with

trusted quantum inputs.

DOI: 10.1103/PhysRevLett.129.090402

When reasoning about quantum and classical processes
alike, we usually assume a fixed causal structure. Remark-
ably, this turns out to be an unnecessarily restrictive
assumption: there are valid processes with indefinite causal
order. Such processes can be formalized within the process
matrix framework, where quantum theory is taken to hold
locally but no global causal structure is assumed [1]. The
existence of processes incompatible with a definite causal
order, termed ‘““causally nonseparable,” bears a foundational
significance, but moreover can be the basis for advantages
in a number of different tasks [2-4].

Some causally nonseparable process matrices can gen-
erate so-called noncausal correlations, allowing their causal
nonseparability to be certified in a “device-independent”
(DI) way by violating “causal inequalities™ [1,5]. However,
not all causally nonseparable process matrices are non-
causal in this strong sense [6—8]. Indeed, it remains unclear
if any physically realizable process can violate a causal
inequality, and causal models have recently been formu-
lated for a large class of quantum-realizable processes
[9,10]. This notably includes the canonical ‘“quantum
switch” [11], the resource behind most known advantages
arising from causal indefiniteness. At the same time,
causally nonseparable process matrices can always be
certified by “causal witnesses” [6,12]. This approach,
however, has the drawback of being “device-dependent”
(DD), as it requires one to perfectly trust the operations
performed by the involved parties.

Given the obstacles towards employing a DI approach to
certify particularly relevant processes, there is particular
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urgency in exploring intermediate, semi-DI (SDI)
approaches. One possible approach recently considered
is to trust only some of the parties’ operations [13]. Here,
we explore a different SDI regime, significantly weakening
the requirements of trust on all parties while simultane-
ously obtaining a widely applicable certification. Inspired
by recent developments in quantum nonlocality [14,15],
we consider a causal game scenario where the parties
receive inputs in the form of trusted quantum systems
(instead of classical ones), but are otherwise untrusted or
uncharacterized. We show that certain causally nonsepar-
able processes that cannot violate any causal inequality,
including the quantum switch [6,7,11], can nevertheless
display some new form of noncausality in a “semi-DI with
quantum inputs” (SDI-QI) scenario. We then consider a
more constrained version of this scenario in which the
uncharacterized operations have a specific, but rather
natural structure, and we show that a/l bipartite causally
nonseparable process matrices can be certified in this
“measurement device and channel independent” (MDCI)
scenario.

Causal (non)separability in the process matrix frame-
work.—We focus initially on the bipartite scenario before
returning, toward the end of this Letter, to the more
practically pertinent scenario in which the quantum switch
is formulated. Two parties, Alice and Bob, control separate
labs with input and output Hilbert spaces 4 and H*o for
Alice, and H® and ‘HBo for Bob. They may also receive

some ancillary quantum states in Hilbert spaces HA, HB,

© 2022 American Physical Society
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pAB e L(HAB). (Here and throughout, we denote the space
of linear operators on H* as £(HX) and write concisely
HY = HX @ HY, HA = HA4o, etc., superscripts indicate
on what spaces operators act.) They perform quantum
operations described as quantum instruments [16], i.e., sets
of completely positive maps M, : L(HA41) — L£(HA) and
M, : L(HBB) - L(HPBo), whose indices a, b refer to
some (classical) outcomes for Alice and Bob, and whose
sums »_, M, and ), M, are trace-preserving.

Using the Choi isomorphism [17] (see Supplemental
Material (SM) [18], Sec. A), the completely positive maps
M,, M, can be represented as positive semidefinite
matrices M4 and MP®. Within the process matrix frame-
work, the correlations established by Alice and Bob are
then given by the probabilities

P(a,b) = TrKM{;‘A ® MEB)T(p” ® WABH, (1)

where WAB € L£(HAB) is the so-called “process matrix.” To
ensure that Eq. (1) always defines valid probabilities, WA?
must be positive semidefinite and belong to a nontrivial
subspace of L(HAB) [1] (see SM [18], Sec. B).

The process matrix formalism makes no a priori
assumption of a global causal structure relating Alice
and Bob. In fact, the assumption of such a structure
imposes further constraints, due to the inability for a party
to “signal” to the causal past. Process matrices compatible,
for example, with Alice acting before Bob (denoted A < B)
are of the form WA<B = WA<Br @ 180, and similarly
WB<A = WB<41 @ 140 for Bob before Alice (B < A), with
WA<Bi and WB<41 being themselves valid process matrices
[1]. Process matrices that can be written as a convex
mixture of matrices compatible with A < B and B < A,
i.e., of the form

WAB — qu<B, ® -HBU + (1 _ q)WB-<A, ® HAO (2)

with g € [0, 1] are said to be “causally separable.” They can
be interpreted as being compatible with a definite (although
probabilistic) causal order. Remarkably, there exist “caus-
ally nonseparable” process matrices that cannot be decom-
posed as in Eq. (2), and are thus incompatible with any
definite causal order [1].

As recalled above, causal nonseparability can always be
certified in a DD manner using a causal witness [6,12],
while some processes can be certified in a DI way through
the violation of a causal inequality [1]. Here, we consider a
relaxation of the DI scenario, where rather than viewing
the parties as black boxes with classical inputs and outputs,
we provide them with quantum inputs. This intermediate
SDI-QI scenario has previously been shown to be
extremely useful for entanglement certification [14], but
its applicability to causal nonseparability, where parties

(S

MDCI structure

FIG. 1. SDI-QI scenario (main): A process matrix W48 connects
two parties who receive quantum inputs pr and pf , respectively.
They each perform a joint operation [(M5**?)  and (M fB’B(’) bs
respectively], and produce the classical outcomes a and b. The
purple box shows the D-POVM (E/;E )ap induced by these
instruments and the process matrix. Inset: In the MDCI scenario

(see later), additional structure is assumed on the quantum
instruments (shown here for Alice). The quantum input is a

bipartite state in HAA0 | 3 measurement is performed jointly on
HA141 and a channel sends HA¢ to the process matrix through H4o.

implement instruments rather than just measurements,
remains unstudied.

Process matrix scenario with quantum inputs.—We thus
consider a situation where Alice and Bob are provided with
quantum input states p% and p?, respectively, indexed by the
labels x and y. They each perform some fixed instruments
(MA4),, and (MBB),. We explicitly write the dependency on
the quantum inputs in the correlations P(a, b|p§ pf )
obtained according to Eq. (1), with p;“~9 = pé ® pf.

It will be convenient in our calculations to use the
so-called “link product” = [25,26], defined for any
matrices MXY € L(HXY), NY2 e L(H'?) as MXY «
NYZ = Try[(MXY @ 12)Tr(1¥ @ NY%)| € L(HX?) (where
Ty is the partial transpose over H'; see also SM [18],
Sec. A). Noting that a full trace Tr[(M”)” N"] and a tensor
product M* ® NZ can both be written as a link product,
and that the link product is commutative and associative,
Eq. (1) can be written as

P(a.blp}.pf) = (Mi“‘ ® MEB) * (p§ ®® WAB)
=E}}+ (o @ ph)
ey Ge] o
with EAB = gMéA ®~]\/~[EB) x* WAB_ According to Eq. (3),
the family E*8 := (E4}),, defines an effective, “distrib-
uted” measurement [27,28] on the quantum inputs, which

we term a “distributed positive-operator-valued measure”
(D-POVM); see Fig. 1.
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In the SDI-QI approach, the quantum inputs pé, pf’ and
their respective spaces are taken to be trusted. However, we
do not trust the instruments (M24)_ and (M58),, and make
no assumptions about the spaces H/, H4o, H5 and HBo.
Provided we can use a tomographically complete set of
trusted quantum inputs, the D-POVM elements Eégf can be
explicitly reconstructed via Eq. (3). The fundamental
question we address here is this: if WAZ is causally
nonseparable, can one certify its causal nonseparability
by just looking at the E‘;‘g ’s? To tackle this question, we ask
conversely whether assuming that W42 is causally sepa-
rable imposes any specific constraints on the Eéf ’s.

Causally separable D-POVMs.—Suppose that WAB =

WA<Bi @ 180 is compatible with the order A < B. Then one
can easily show (see SM [18], Sec. C) that

D Eap=E @ (4)

with EA = M4 « Trg, WA<B1 > 0 defining a (single-partite)
POVM (Eé)a. Equation (4) can be interpreted as a no-
signalling condition from Bob to Alice [27]: indeed, it
implies that Alice’s marginal probability distribution does
not depend on Bob’s quantum input. A D-POVM satisfying
> Ei‘f — FA® 12 for all a is thus compatible with
the causal order where Alice receives her quantum input
and acts before Bob (A < B); we generically denote such
a D-POVM [EA<B — (EA<B )ap- Similarly, for the order
B < A, the resulting D-POVM must satisfy ), Eé.f =
14 ® EB for all b; we generically denote such a D-POVM
(EB<A)a,b'

In analogy with the corresponding definition for process
matrices [cf. Eq. (2)], we introduce the following:

Definition 1: A bipartite D-POVM EA? that can be
decomposed as a convex mixture of D-POVMs compatible
with the causal orders A < B and B < A, i.e., of the form

|EB<A

[EAB — q[EA<B + (1 _ q)[EB<A, (5)
where ¢ € [0, 1] is said to be “causally separable.”

Clearly, it follows from the previous discussion that a
causally separable process matrix can only generate causally
separable D-POVMs. It turns out (see SM [18], Sec. E) that
the converse also holds: any causally separable D-POVM
can be realized by appropriate local operations on a causally
separable process matrix.

SDI-QI certification of causal nonseparability.—Let us
note already that one can verify whether a given D-POVM is
causally nonseparable with semidefinite programming.
Just as for process matrices [6,12], one can indeed construct

“witnesses of causal nonseparability for D-POVMs”
that certify any causally nonseparable D-POVM [EAZ

(see SM [18], Sec. H). Concretely, a witness provides a
family S*? = (§4%),, of operators such that 3, , S35 «
EAB <0 only if EAB is causally nonseparable. Taking
{p*}, and {p }y to be tomographlcally complete sets
SAB = ny o )94 @ pE, one can thus recon-

struct the witness from the correlations P(a, b|p?, py) and

and writing
certify the causal nonseparability of EAB by observing

SosifeEl = 3

ab a,b,x)y

P(a.blpt.pf) < 0. (6)

To certify the causal nonseparability of a process matrix
in a SDI-QI manner, the key problem is thus to find some
ancillary systems H*, H® and some instruments (M4%),
and (MBB), such that the D-POVM E*# introduced in
Eq. (3) is causally nonseparable.

The simplest case is if a bipartite process matrix can
generate noncausal correlations—i.e., if it is “noncausal,”
or even “not extensibly causal” [7]—then it is fairly easy to
see that it can generate a causally nonseparable D-POVM.
Indeed, these processes can be certified in a fully DI
manner through the violation of a causal inequality using
classical, rather than quantum, inputs (cf. SM [18], Sec. F).

Conceptually, it is more interesting to determine whether
some ‘“‘causal” process matrices can generate causally
nonseparable D-POVMs. One such bipartite process was
formulated by Feix et al. [8]. We were again able to find
simple instruments that directly generate a causally non-
separable D-POVM from this process (see SM [18], Sec. I).
In contrast, the alternative SDI approach of Ref. [13] in
which only some parties are trusted was unable to certify
the causal nonseparability of this process. This highlights
the potential power of our SDI-QI approach.

Certifying all bipartite causally nonseparable process
matrices with trusted quantum inputs.—The fact that the
nonseparability of some specific causal processes can be
nontrivially certified in a SDI-QI way leads one to wonder
whether there is a systematic way to obtain a causally
nonseparable D-POVM from any causally nonseparable
process matrix. Indeed, in the study of entanglement one
can certify any entangled state with trusted quantum inputs
in a “measurement-device-independent” (MDI) manner, and
a general recipe is known to construct MDI entanglement
witnesses [14,15]. Currently this remains an open question
with the general SDI-QI approach introduced above.

Interestingly, the answer turns out to be positive, in the
bipartite case, if one makes a further, physically motivated,
assumption on the structure of the instruments used by Alice
and Bob. In particular, let us now consider a modified
scenario, which we term “measurement device and channel
independent” (MDCI) and where we assume that Alice and
Bob’s (trusted) ancillary Hilbert spaces have a bipartite
structure of the form HA = HAA0 and HB = HB:Bo, and

090402-3



PHYSICAL REVIEW LETTERS 129, 090402 (2022)

that their instruments have the following structure (here,
e.g., for Alice; see also Fig. 1 inset): (i) Alice performs a
joint quantum measurement (i.e., a POVM) on the sub-
system of her quantum input in HA and the (untrusted)
system in H* she receives from the process matrix; (ii) the

part of the quantum input in HAo s sent (independently

from the joint measurement on H4/41) to the process matrix
in the (untrusted) output space H4¢ via a quantum channel
(i.e., a completely positive trace-preserving map). The Choi
maps of the instruments then factorize accordingly as

MéA _ MélAl ® MA()AO’ MEB — MIEIBI ® MB()B()’ (7)

with S, Mz = 144 and Tr, MA040 = 140, and sim-
ilarly for Bob. Importantly, in this MDCI scenario, we make
no assumption about the POVMs and completely positive
trace-preserving maps themselves, so they may be com-
pletely uncharacterized. We only assume the specified
bipartite structure of the instruments, a natural assumption
that can be physically justified if the quantum input is
provided as two physically distinct systems (e.g., photons in
two separate fibers) and distinct operations performed on
these inputs.

Using this additional structure, we prove in the SM
(Sec. G) [18] that every element EZ% of a D-POVM
obtained from a causally separable process matrix WAS
necessarily decomposes as

EAB — gENP @ 180 4+ (1 - ) EPM @ 140 (3)

for some Eﬁ;B’, ES’ZA’ > 0. Remarkably, this structure is
sufficient to certify the causal nonseparability of any
causally nonseparable process matrix by looking at a single
D-POVM element in a systematic way. In particular, by
taking ancillary spaces isomorphic to H44o and %180 and
appropriately chosen instruments M24, MBB, when Alice
and Bob observe a = b = 0 their operations effectively

“teleport” WA to the ancillary spaces so that Eé’g is (up to
normalization) formally the same as W45, One can then
show that if W42 cannot be decomposed as in Eq. (2), then
the D-POVM element Ej§ generated in this way can also
not be decomposed as in Eq. (8). Full details of the
argument are given in Sec. G of the SM [18].

Since matrices of the form of Eq. (8) can be charac-
terized via semidefinite programming, one can once again
use techniques similar to causal witnesses to certify that a
D-POVM is not of this form (see SM [18], Sec. H). Just as
in the SDI-QI scenario, we can then compute the observed
witness “value” and thereby certify any bipartite causally
nonseparable process matrix in an MDCI way, including
those that cannot violate causal inequalities.

We note that an analogous result and systematic con-
struction is also known for MDI entanglement witnesses
[14,15]. In contrast to that result, however, the extra MDCI
structure assumed in Eq. (7) is crucial here: in the standard
SDI-QI case where it is not assumed, no specific structure is
imposed in general on a single D-POVM element generated
by a causally separable process matrix (see SM [18],
Sec. G), and the SDI-QI certification of the previous section
thus required considering the full D-POVM.

Generalization to the quantum switch scenario.—A
causally nonseparable process that has received significant
interest is the “quantum switch” [11], a tripartite process in
which the order of Alice and Bob’s operations on some
“target system” is coherently controlled by the state of a
“control qubit,” given to a third party, Fiona, at the end. The
quantum switch provides advantages in several tasks [2—4]
and, unlike any known bipartite causally nonseparable
process, has a clear physical interpretation. Indeed, several
experimental realizations have been performed [29-33].

The quantum switch can be described as a process
matrix Wqg € L(H*BF) in a restricted tripartite scenario—
which we call the “(2 + F)-partite scenario”—in which
Fiona has no output Hilbert space and simply performs a
measurement. In this scenario, the only relevant causal
orders are A < B < F and B < A < F [6], and the gener-
alization of Eq. (1), as well as the definitions of causally
separable process matrices and D-POVMs is straightfor-
ward (see SM [18], Sec. D for details). Wg is known to be
causally nonseparable but to only generate causal corre-
lations [6,7]. Its importance as a resource in many tasks
makes certifying its causal nonseparability a key problem,
and multiple experiments have done this in a DD way
[30,31].

Can this important process be certified in a SDI-QI or
MDCI way, despite being extensibly causal [7]? We find
that in both scenarios the response is positive. Indeed, in the
SDI-QI case (i.e., without assuming any structure on the
instruments used) and taking a qubit target system and
qubit ancillary systems (quantum inputs) for Alice and
Bob, and without any quantum input for Fiona, the
instruments

M2 = |a)(a* @ |1){(1]*o,

~ o ME= B (9)
MEP = [b)(b|" & [1){T|%Pe,
with [1)A40 = 37, |i)A @ |i)A and similarly for |1)5B0
(cf. SM [18], Sec. A) give a causally nonseparable
D-POVM (see [18], Sec. I). These instruments can be
interpreted as Alice and Bob performing computational
basis measurements on the untrusted systems they receive
from the process (in ‘HA' and HB, respectively) while
sending their quantum inputs to the process via identity
channels; Fiona then measures in the basis {|+) =

(1/v2)(10) £ 1))}
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To understand how robust this certification is, we can
consider the robustness of causal nonseparability to noise.
Let us consider the “depolarized” quantum switch

Wos(r) = 1 (Wos & r1%57/8) (10

parametrized by r > 0; it is known that Wg(r) is causally
nonseparable for » < 1.576 [12]. With the instruments
[Eq. (9)], it is readily checked that Wqg(r) generates a
causally nonseparable D-POVM for r <0.367 (see SM
[18], Sec. I). Despite extensive numerical searches, we were
unable to find instruments allowing us to certify the causal
nonseparability of Wqg(r) for 0.367 < r < 1.576 with our
SDI-QI approach. It thus seems that this approach cannot
certify all causally nonseparable processes (we found a
similar “robustness gap” for the bipartite process of Ref. [8]
discussed above), in contrast to the MDI certification of
entanglement and the MDCI certification of causal non-
separability in the bipartite case. Nevertheless, the fact our
approach provides a noise robust SDI-QI certification of the
quantum switch is of significant relevance, given that it is
responsible for most known applications of causal non-
separability and yet cannot be certified in a fully DI manner.

One may wonder whether the bipartite results on MDCI
witnesses generalize straightforwardly to the (2 + F)-partite
case. Surprisingly, this turns out not to be the case.
Nonetheless, one can show that MDCI certification is
possible for some important classes of processes in this
scenario: the “TTU-" and “TUU-noncausal” processes of
Ref. [13]. These include, in particular, the depolarized
quantum switch Wqg(r) of Eq. (10) for » < 1.319 [13],
significantly improving the noise tolerance obtained above
for SDI-QI certification without the additional MDCI
assumption, showing how robustly the quantum switch
can be certified with only rather weak assumptions about the
performed operations. Nonetheless, there remains a gap for
1.319 < r < 1.576 where it is open whether Ws(r) can be
certified in a MDCI way. A detailed study and discussion of
this is given in Sec. G of the SM [18].

Discussion.—In this contribution we significantly relaxed
the assumptions required to certify the causal nonsepar-
ability of many processes, investigating both SDI-QI and
MDCI scenarios. Notably, we showed how the quantum
switch can be certified in a SDI-QI way, and that all bipartite
causally nonseparable process matrices can be certified in a
MDCI manner.

One key open question is to understand precisely which
causally nonseparable processes can be certified in a SDI-
QI way. Our inability to find instruments generating a
causally nonseparable D-POVM from Wg(r) for 0.367 <
r < 1.576 indeed leads us to conjecture that some such
processes cannot be certified in this way.

Beyond understanding fully the bipartite case, an
important future direction is the generalization to multi-
partite process matrices, where the definition of causal
(non)separability is more subtle [7,34]. One may wonder,
for example, whether one can provide a SDI-QI or MDCI
certification of more general quantum circuits with quan-
tum control of causal order than just the quantum switch,
which can also not violate causal inequalities [9]. Another
interesting direction is whether our SDI-QI approach can
be combined with self-testing techniques to construct fully
DI witnesses (as, e.g., in Refs. [35,36] for the case of
entanglement). More broadly, we believe that the notion
of causally nonseparable D-POVMs we introduced may be
of independent interest to study in its own right; this also
suggests that new types of causal nonseparability could be
defined, for other kinds of objects beyond process matrices
and D-POVMs. Finally, the idea of imposing extra struc-
ture on the instruments used (as in the MDCI scenario)
could be adapted to a wide range of quantum resources,
opening up new approaches for their certification and
exploitation.

We thank Marco Tilio Quintino for enlightening dis-
cussions, and acknowledge financial support from the Swiss
National Science Foundation (NCCR SwissMAP) and the
ERC grant QUSCO.
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