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Abstract. We consider the problem of solving numerically the stationary incompressible Navier–
Stokes equations in an exterior domain in two dimensions. For numerical purposes we truncate
the domain to a finite sub-domain, which leads to the problem of finding so called “artificial
boundary conditions” to replace the boundary conditions at infinity. To solve this problem
we construct – by combining results from dynamical systems theory with matched asymptotic
expansion techniques based on the old ideas of Goldstein and Van Dyke – a smooth divergence
free vector field depending explicitly on drag and lift and describing the solution to second and
dominant third order, asymptotically at large distances from the body. The resulting expression
appears to be new, even on a formal level. This improves the method introduced by the authors
in a previous paper and generalizes it to non-symmetric flows. The numerical scheme determines
the boundary conditions and the forces on the body in a self-consistent way as an integral part
of the solution process. When compared with our previous paper where first order asymptotic
expressions were used on the boundary, the inclusion of second and third order asymptotic terms
further reduces the computational cost for determining lift and drag to a given precision by
typically another order of magnitude.
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1. Introduction

Exterior flows at low Reynolds numbers – of the order of one to several thousand –
play an increasingly important role in applications. Specific examples of situations
where such flows occur are the sedimentation of small particles in the context of
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climate prediction [2], [41] and the engineering of wings in the design of miniature
aircraft [31], [9]. In all cases the forces exerted on the body need do be computed
accurately.

In the present work we limit ourselves to the case of two-dimensional stationary
incompressible flows. Linearized theories (Stokes, Oseen) provide a quantitative
description of such situations for Reynolds numbers less than one [4], and tra-
ditional approximation schemes based of some version of boundary layer theory
[35], [11], [12] provide a quantitative description for the case of Reynolds numbers
larger than some ten thousand. For the intermediate regime, where neither the
viscous forces nor the inertial forces dominate, the full Navier–Stokes equations
need to be solved.

So, consider a rigid body that is placed into a uniform stream of a homogeneous
incompressible fluid filling up all of R2. This situation is modeled by the stationary
Navier–Stokes equations

−ρ (ũ · ∇) ũ + µ∆ũ −∇p̃ = 0, (1)

∇ · ũ = 0, (2)

in Ω̃ = R2 \ B̃, with B̃ a compact set (the body) containing the origin of our
coordinate system, subject to the boundary conditions

ũ|∂B̃
= 0, (3)

lim
|x̃|→∞

ũ(x̃) = ũ∞. (4)

Here, ũ is the velocity field, p̃ is the pressure and ũ∞ is some constant non-zero
vector field which we choose without restriction of generality to be parallel to the
x̃-axis, i.e., ũ∞ = u∞e1, where e1 = (1, 0) and u∞ > 0. The density ρ and the
viscosity µ are arbitrary positive constants. From µ, ρ and u∞ we can form the
length ℓ,

ℓ =
µ

ρu∞
, (5)

the so called viscous length of the problem. The viscous forces and the inertial
forces are quantities of comparable size if the diameter A of B̃ is comparable with
ℓ, i.e., if the Reynolds number

Re =
A

ℓ
, (6)

is neither very small nor very large. Below, we will study flows with Reynolds
numbers in the range from one to several thousand. Note that for bodies with
smooth boundary ∂B̃ and for small enough Reynolds numbers (6) equation (1),
(2) subject to the boundary conditions (3), (4) is known to have a strong solution
[13], [14]. For large Reynolds numbers this is still an open problem [15].

When solving the problem (1)–(4) numerically by restricting the equations from
the exterior infinite domain Ω̃ to (a sequence of) bounded domains D̃ ⊂ Ω̃ (see
Figure 2), one is confronted with the necessity of finding appropriate boundary
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conditions on the surface Γ̃ = ∂D̃\∂B̃ of the truncated domain. In a recent paper
[8] we have introduced a novel self-consistent scheme that uses on the boundary
the vector field obtained from an asymptotic analysis of (1), (2) and (4) to leading
order [46], [48], [21]. Here, by using matched expansion techniques, we construct
a smooth divergence free vector field that satisfies the boundary condition (4) and
solves the stationary Navier–Stokes equations (1) to second and dominant third
order, asymptotically at large distances from the body. This vector field is given
in the form of an explicit expression depending on two real parameters which can
be determined from the drag and the lift exerted on the body. Using this vector
field to prescribe artificial boundary conditions on Γ̃ we set up a self-consistent
scheme that determines the two parameters and hence the boundary conditions
and the forces on the body as an integral part of the solution process. For related
ideas concerning artificial boundary conditions see [32], [3], [22].

For the construction of the asymptotic expansion used here we follow closely
the old ideas of Goldstein [20] and Van Dyke [39], supplemented with the more
recent ideas from dynamical systems theory [16]. It is these improvements that
allow us to use the results as artificial boundary conditions for numerical purposes,
or as the starting point for rigorous mathematical work [21], [47]. In particular,
we properly address questions related with the boundary condition (4) and the
regularity of the resulting vector fields across the x̃-axis within the wake. All the
formal work has been done using the computer-algebra system Maple.

The method presented here improves the scheme introduced in our previous
paper [8] and generalizes it to the situation of non-symmetric stationary flows. In
[8], the computation times necessary to determine the drag with a given precision
were typically several orders of magnitude reduced when compared to using homo-
geneous Dirichlet boundary conditions. The inclusion of higher order asymptotic
terms on the boundary reduces computational times further, typically by yet an-
other order of magnitude. Figure 1 is an example of what can be computed with
our setup. It shows the flow around the NACA profile 64-915, inclined by 5◦, at
Reynolds number (6) one thousand, with A the chord length of the profile (distance
from tip to tail) [29]. Our results quite nicely illustrate the scientific potential of a
combined use of modern techniques from analysis and geometry, formal algebraic
computation systems and numerical simulations.
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Figure 1. Flow around the NACA profile 64-015 at Reynolds number one thousand
as computed with second order adaptive boundary conditions (top) and experimental
flow around the NACA profile 64A015 (bottom). Bottom image: courtesy of ONERA
(H. Werlé, 1974, [43]).

2. Artificial boundary conditions

In this section we derive the boundary conditions used in later sections. The
discussion will be formal. For the wake region the correctness of the resulting
expressions is up to first order proved in [21]. A complete mathematical proof of
the second and third order asymptotics presented here is in preparation and will
be published elsewhere.

There exists an extensive literature on matched asymptotic expansions for lam-
inar flows [5], [10], [39], [30], [36]. Most of the work is however either limited to
symmetric flows or uses as a starting point not the Navier–Stokes equations but
some version of boundary layer theory. As an example, for the symmetric case,
results for the so-called centerline velocity (the velocity on the symmetry axis of
the body in the wake region) up to third order is given in [37], [36]. Our results
show that the expansions computed from the Navier–Stokes equations differ from
the ones computed from boundary layer theory already to second order, so that
higher order results based on boundary layer theory are inadequate for modeling
Navier–Stokes flows. An other problem of existing work is that the boundary con-
ditions and the regularity of the solution are only imposed asymptotically, rather
than term by term. For some applications such an approach may be sufficient,
but it is obviously insufficient for the use of such expansions as artificial boundary
conditions. As a result the expressions derived here appear to be new, even on a
formal level.

Before proceeding any further we now rewrite the Navier–Stokes equations in
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dimensionless form. Let ũ be the velocity field and p̃ the pressure introduced in
(1)–(4), and let ℓ be as defined in (5). Then, we define dimensionless coordinates
x = x̃/ℓ, and introduce a dimensionless vector fields u and a dimensionless pressure
p through the definitions

ũ(x̃) = u∞u(x), (7)

p̃(x̃) = (ρu2
∞)p(x). (8)

In the new coordinates we get instead of (1)–(4) the equations

− (u · ∇)u + ∆u −∇p = 0, (9)

∇ · u = 0, (10)

in Ω = R2 \ B, where

B =
{

x ∈ R2 | ℓx = x̃ for some x̃ ∈ B̃
}

,

and the boundary conditions

u|∂B
= 0, (11)

lim
|x|→∞

u(x) = (1, 0). (12)

In (9)–(10) all derivatives are with respect to the new coordinates.

2.1. The vorticity equation

Let u = (u, v), and let

ω(x, y) = −∂yu(x, y) + ∂xv(x, y). (13)

The function ω is the vorticity of the fluid. By taking the curl of (9) we get the
equation

W (u, v, ω) ≡ − (u · ∇)ω + ∆ω = 0. (14)

Once (10) and (14) are solved for u and ω, the pressure p can be constructed by
solving the equation that we get by taking the divergence of (9) subject to the
appropriate boundary conditions.

There is plenty of experimental, numerical and theoretical evidence that the
vorticity ω decays very rapidly (exponentially fast) away from the body except
within the wake region [1]. Recent mathematical results [42], [17], [18], [21] suggest
the existence of functions ωn with support in Ω+ = {(x, y) ∈ Ω | x > 0} such that

ω(x, y) ≈
∑

n≥1

ωn(x, y), (15)
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asymptotically as x→ +∞, in the sense that for all N ≥ 1

lim
x→∞

x
1+N

2 sup
y∈R

∣

∣

∣

∣

∣

ω(x, y) −
N
∑

n=1

ωn(x, y)

∣

∣

∣

∣

∣

= 0. (16)

More precisely, the functions ωn are conjectured to be of the form

ωn(x, y) =

n
∑

m=1

ρn,m(x)ϕ′′
n,m

(

y√
x

)

, (17)

for certain smooth functions ϕn,m with derivatives ϕ′
n,m, ϕ′′

n,m decaying at infinity
faster than exponential and

ρn,m(x) =
log(x)n−m

x(1+n)/2
. (18)

The main ideas of a proof of (16) forN = 1 and small enough Reynolds numbers
can be found in [21] and a complete mathematical proof of (15)–(18) up to N = 3
is in preparation. For N > 3 (15)–(18) are purely conjectural.

Here, we stay on a formal level and explain the construction of the functions
ϕn,m for 1 ≤ m ≤ 2 and 1 ≤ n ≤ 3 by asymptotic expansion techniques, using (14)
as a starting point. These formal results are then used for the purpose of prescrib-
ing artificial boundary conditions. As a consequence the numerical experiments
of Section 4 not only show the usefulness of asymptotic expressions for simula-
tion purposes, but at the same time provide interesting quantitative information
concerning the convergence of the limits in (16).

The main problem with (14) is that it involves in addition to the vorticity ω
also the velocity u. For this reason, the traditional approach for constructing an
asymptotic expansions is to use an ad hoc ansatz for the stream function ψ from
which one then computes expansions for u and v and ω via

u(x, y) = ∂yψ(x, y), (19)

v(x, y) = −∂xψ(x, y), (20)

and

ω(x, y) = −∆ψ(x, y), (21)

which are then plugged into (14) and solved order by order. The stream function
has however a more complicated structure than the vorticity and in spite of the
efforts of various authors the matched asymptotic expansion for ψ of the tradi-
tional ansatz is plagued with all sorts of inconsistencies concerning the boundary
condition (4) and the regularity of the resulting terms across the x-axis in the
wake region. Here we solve this problem by avoiding this ad hoc ansatz. The
basic observation is that from the vorticity ω and its downstream asymptotic ex-
pansion (15) an expansion of the stream function can be obtained simply by using
the definitions (see next paragraph). The terms of the old ad hoc ansatz can then
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be recovered together with certain new terms that solve the problems concerning
the boundary conditions and the regularity.

So, let ω be given. Then, the stream function ψ has to satisfy (21) in Ω, subject
to the boundary conditions

ψ|∂B
= 0, (22)

∂nψ|∂B
= 0, (23)

lim
x,y→∞

−∂xψ(x, y) = 0, (24)

lim
x,y→∞

∂yψ(x, y) = 1. (25)

Equations (22) and (23) are equivalent to (11), and (24) and (25) are equivalent
to (12). Note that the system of equations (21)–(25) is a priori over-determined
since for a general problem of the form (21) only (22) (Dirichlet problem) or (23)
(Neumann problem) can be imposed. The fact that the Navier–Stokes problem
(1)–(4) is well posed has the important implication that the vorticity ω is such
that (22) and (23) are equivalent, i.e., lead to the same solution ψ. In any case,
using general results from potential theory (see Appendix I for more details) it
follows from (22)–(25) that

ψ(x, y) = y + ψω(x, y) + h(x, y), (26)

with ψω a particular solution of (21) that is independent of the geometry of B,
and h a harmonic function in Ω satisfying the bound

|h(x, y)| ≤ const.

r
, (27)

with r =
√

x2 + y2. The partial derivatives of h with respect to x and y obey
analogous bounds. Note that since the function h depends explicitly on the ge-
ometry of B it can not be determined from a large distance asymptotic expansion
alone. For the function ψω we will use for N ≥ 1 the decomposition

ψω = ψN +RN , (28)

with ψN appropriate solutions of the equation

∆ψN = −
N
∑

n=1

ωn, (29)

and we show that for N > 3

|RN (x, y)| ≤ const.

r
, (30)

and similar for partial derivatives. Together with the bound (27) it follows from
(30) on a heuristic level that one should not hope to be able to determine for
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N > 3 approximations to ψ from the large distance asymptotics alone, and there
appears indeed to be no straightforward way to extend the asymptotic scheme
presented here to yet higher order (see [18] for limitations of the same type in a
related case).

Basically, the idea is now to use the functions ψN as an approximation to ψ
in order to compute approximations uN and vN for u and v using (19) and (20).
These approximations are then plugged together with (15) into (14) in order to
obtain equations for the functions ωn. This way, by construction, the functions
uN and vN are smooth in Ω and decay at infinity as required by (4). This solves
the above mentioned consistency problems of the ad hoc procedures found in the
literature at the price of introducing expressions for uN and vN that depend in a
non-local way on ωn as is typical for solutions of (29). Such non-local expressions
are neither manipulated easily when trying to solve the resulting equations for ωn,
nor used easily for the prescription of boundary conditions for numerical purposes.
For N ≤ 3 we have therefore analyzed the solutions ψN in detail, and it turns out
that, modulo terms bounded again by const./r, local approximations to these
functionals can be constructed. The resulting expressions are indeed similar to
those used in the ad hoc procedures of earlier work, but additional terms arise
which restore the regularity of these local approximations. In the end, we find
the following explicit functions for the first couple of terms in (15), (17) (see
Appendix I),

ϕ1,1(z) = d erf
(z

2

)

,

ϕ2,1(z) = bd
1

π3/2
e−

z2

4 ,

ϕ2,2(z) = −d2 f(z) + b c2,2 e
− z2

4 ,

ϕ3,1(z) = −b2d z

4π5/2
e−

z2

4 . (31)

Here erf is the error function, i.e., erf(z) = 2√
π

∫ z

0 exp(−ζ2)dζ, and f : R → R is

the unique solution of the third order linear in-homogeneous ordinary differential
equation

f ′′′(z) +
1

2
zf ′′(z) + f ′(z) +

1

2π
e−

1
2
z2

= 0, (32)

satisfying f(0) = 0, f ′(0) = − 1
2π , f ′′(0) = 0. Explicitly we have1,

f(z) = − 1√
2π

erf

(

z√
2

)

+
1

2
√
π

erf
(z

2

)

e−
z2

4 . (33)

Note that f is an odd function and that f ′ and f ′′ decay faster than exponential
at infinity. Moreover

f∞ = lim
z→∞

f(z) = − 1√
2π
. (34)

1 This explicit expression is due to G. van Baalen.
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See Figure 3 for a graph of the function f . For the constants b and d we have (see
Appendix II),

d =
1

2

1

ρℓu2
∞
F̃ ,

b =
1

2

1

ρℓu2
∞
L̃, (35)

with F̃ the drag and L̃ the lift acting on the body (dimension-full quantities),
and ℓ as defined in (5). The constant c2,2 can not be determined from drag and
lift alone, i.e., the expansion of the even part of the vorticity (with respect to y)
can be computed as indicated up to the term ϕ2,1 only. The odd part of the
vorticity can be computed up to the term ϕ3,1. For more details we again relegate
to Appendix I. In most of what follows we set c2,2 as well as the functions ϕ3,2

and ϕ3,3 and all higher order terms equal to zero.

2.2. Asymptotic expansion for u and p

In Appendix I we compute together with (31) the following local approximations
uN = (uN , vN ) to u = (u, v):

uN (x, y) = e1 +

N
∑

n=1

n
∑

m=1

un,m(x, y),

where e1 = (1, 0). To first order we have

u1,1(x, y) = u1,1,E(x, y) − θ(x)
d√
π

1√
x
e−

y2

4x ,

v1,1(x, y) = v1,1,E(x, y) − θ(x)
d

2
√
π

y

x3/2
e−

y2

4x , (36)

with θ the Heaviside function (i.e., θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0),
and

u1,1,E(x, y) =
d

π

x

x2 + y2
+
b

π

y

x2 + y2
,

v1,1,E(x, y) =
d

π

y

x2 + y2
− b

π

x

x2 + y2
. (37)

Note that the vector field (u1,1, v1,1) in (36) is divergence free and smooth in
R2 \ {0}. For b = 0 this is the vector field that has been used for prescribing
artificial boundary conditions in our previous paper [8]. The additional term with
amplitude b is the vector field of a point vortex and is responsible for a nonzero
lift (see Appendix II, and see [21] for a proof that this is the dominant asymmetric
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term far downstream). To second order we find

u2,1(x, y) = θ(x)
bd

2

1

(
√
π)

3

log(x)

x

y√
x
e−

y2

4x ,

v2,1(x, y) = θ(x)
bd

2

1

(
√
π)

3

1

x3/2

(

log(x)

(

−1 +
1

2

y2

x

)

+ 2

)

e−
y2

4x , (38)

and

u2,2(x, y) = u2,2,E(x, y) + θ(x)d2 1

x
f ′
(

y√
x

)

+ λθ(x)f∞d
2 3

8

1

x2

((

1 +
|y|√
x

)(

1 − 1

2

y2

x

)

+
|y|√
x

)

e−
y2

4x ,

v2,2(x, y) = v2,2,E(x, y) + θ(x)
d2

2

1

x3/2

((

f

(

y√
x

)

− f∞sign(y)

)

+
y√
x
f ′
(

y√
x

))

+ λθ(x)f∞d
2 3

4

1

x5/2

((

1 +
|y|√
x

)

y√
x

(

1 − 1

8

y2

x

)

+
1

4

y2

x
sign(y)

)

e−
y2

4x ,

(39)

where

u2,2,E(x, y) = f∞
d2

2

|y|
r2

(

1

r2
− r2

r

)

,

v2,2,E(x, y) = f∞
d2

2

sign(y)

r

(

− 1

r2
− x

r2r
+
x r2
r2

)

, (40)

with r =
√

x2 + y2, r2 =
√

2r + 2x, λ = 1, and f∞ as defined in (34). Note that
the terms proportional to λ are higher order and one might be tempted to neglect
them, i.e., to set λ = 0. This is not possible, however, without giving up the
regularity of the second order derivatives ∂2

yu and ∂2
yv across the positive x-axis

(see Appendix I). Finally, to third order we find

u3,1(x, y) = θ(x)
b2d

4

1

(
√
π)

5

log(x)2

x3/2

(

1 − 1

2

y2

x

)

e−
y2

4x ,

v3,1(x, y) = θ(x)
b2d

2

1

(
√
π)

5

log(x)

x2

y√
x

(

log(x)

4

(

3 − 1

2

y2

x

)

− 1

)

e−
y2

4x , (41)

and we set all the other third order terms equal to zero (they can not be computed
from drag and lift alone). We finally note that once the approximate expressions
for the velocity field u are known, similar approximations can be computed for the
pressure. For the computation of drag and lift (see Appendix II) we only need the
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first order approximation, i.e., p ≈ p1, where

p1(x, y) = −1

2

(

(1 + u1,1,E(x, y))2 − 1 + v2
1,1,E(x, y)

)

, (42)

with the normalization limx,y→∞ p1(x, y) = p(x, y) = 0.

2.3. Adaptive boundary conditions of order N

In order to solve (1) numerically, it is more convenient to set ũ = ũ∞ + ṽ, and to
study the equation

−ρ (ũ∞ · ∇) ṽ−ρ (ṽ · ∇) ṽ + µ∆ṽ −∇p̃ = 0,

∇ · ṽ = 0, (43)

subject to the boundary conditions

ṽ|∂B̃
= −ũ∞, (44)

lim
|x̃|→∞

ṽ(x̃) = 0. (45)

Equations (43) are then discretized in a truncated domain D̃, and the boundary
condition (45) is replaced by the boundary conditions

ṽ|Γ̃ = ṽABC , (46)

with ṽABC(x̃, ỹ) = u∞ vN (x, y), where vN (x, y) =
∑N

n=1

∑n
m=1 un,m(x, y), x =

x̃/ℓ, y = ỹ/ℓ with ℓ as defined in (5), and where N = 0 (homogeneous Dirichlet
data), N = 1 (first order adaptive boundary conditions; see [8] and below), or
N = 2 or 3 (second, respectively third order adaptive boundary conditions; see
below).

3. Solution process

In what follows we give details concerning the discretization procedure and the
algorithms that we use to solve (43), (44), (46) numerically. To unburden the
notation we suppress throughout this section the “tildes”.

3.1. Galerkin finite element discretization

In order to solve equation (43), we consider a discretization based on conforming
mixed finite elements with continuous pressure. This discretization starts from a
variational formulation of the system of equations (43). First, we introduce some
notation needed for the derivation of this formulation.
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For a bounded domain D ⊂ R2, let L2(D) denote the Lebesgue space of square-
integrable functions on D equipped with the inner product and norm

(f, g)D =

∫

D

fg dx, ||f ||D = (f, f)
1/2
D
.

The pressure is assumed to lie in the space L2
0(D) := {q ∈ L2(D) |

∫

D
q dx = 0},

which defines it uniquely. The L2(D) functions with generalized (in the sense
of distributions) first-order derivatives in L2(D) form the Sobolev space H1(D),
while H1

0 (D) := {v ∈ H1(D) | v|∂D
= 0}. Let W = [H1

0 (D)]2 × L2
0(D). For

w = {v, p} ∈W and φ = {ϕ, q} ∈W , we define the semi-linear form

A(w;φ) = ρ (((v+u∞)·∇)v, ϕ)D−(p,∇·ϕ)D+2µ

∫

D

D(v) : D(ϕ) dx−(∇·v, q)D,
(47)

which is obtained by testing the equations (43) with φ ∈W and by integration by
parts of the diffusive term and the pressure gradient (see e.g. [33, 13, 14, 38, 26] for
more details). D(v) denotes the deformation tensor, i.e., D(v) = 1

2 (∇v + (∇v)T ).
Then, a weak form of the equations (43) can be formulated as: find w = {v, p} ∈
W , such that

A(w;φ) = 0, ∀φ ∈W. (48)

The discretization of problem (48) uses a conforming finite element space Wh ⊂
W defined on quasi-uniform triangulations Th = {K} consisting of quadrilateral
cells K covering the domain D. We consider the standard Hood–Taylor finite
elements [27] for the trial and test spaces, i.e., we define

Wh =
{

(v, p) ∈ [C(D)]3 | v|K ∈ [Q2]
2, p|K ∈ Q1

}

,

where Qr describes the space of isoparametric tensor-product polynomials of de-
gree r (for a detailed description of this standard construction process see for
example [6]). This choice for the trial and test functions guarantees a stable ap-
proximation of the pressure since the Babuska–Brezzi inf-sup stability condition
is satisfied uniformly in D (see [7] and references therein). The advantage, when
compared to equal order function spaces for the pressure and the velocity, is that
no additional stabilization terms are needed. The discrete counterpart of problem
(48) then reads: find wh = {vh, ph} ∈ wb,h +Wh, such that

A(wh;φh) = 0, ∀φh ∈ Wh. (49)

Here wb,h describes the prescribed Dirichlet data on the boundary Γ of the do-
main D. A straightforward approach consists in considering a domain D which
is large enough such that v is vanishingly small in Ω\D. As shown in [8] this
approach, which corresponds to imposing homogeneous Dirichlet boundary condi-
tions for v on Γ, generally leads to extremely large and intractable discrete prob-
lems. Our goal is to avoid these difficulties by imposing adequate non-homogeneous
Dirichlet boundary conditions on Γ. As explained in Section 2, the proposed ar-
tificial boundary conditions are independent of the details of the geometry of the
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body but depend explicitly on drag and lift. The accurate determination of these
forces is therefore a key issue in our context. As in [8] we use the approach pro-
posed in [19] which is based on a reformulation of the expressions for drag and lift
in terms of volume integrals by means of integration by parts. This reformulation
allows to attain the full order of convergence for the values of drag and lift.

3.2. The solver

The nonlinear algebraic system (49) is solved implicitly in a fully coupled manner
by means of a damped Newton method. Denoting the derivative of A(·, ·) taken
at a discrete function wh ∈ Wh by A′(wh, ·)(·), the linear system arising at the
Newton step number k has the following form,

A′(wk
h, φh)(ŵk

h) = (rk
h, φh), ∀φh ∈ Wh, (50)

where rk
h is the equation residual of the current approximation wk

h, and where ŵk
h

corresponds to the needed correction. The updates wk+1
h = wk

h + αkŵk
h with a

relaxation parameter αk chosen by means of Armijo’s rule are carried out until
convergence. In practice, the Jacobian involved in (50) is directly derived from
the analytical expression for the derivative of the variational system (49).

It is well known that the ability of the Newton iteration to converge at the local
rate greatly depends on the quality of the initial approximation (see e.g. [28]). In
order to find such an initial approximation, we consider a mesh hierarchy Thl

with Thl
⊂ Thl+1

, and the corresponding system of equations (49) is successively
solved by taking advantage of the previously computed solution, i.e., the nonlinear
Newton steps are embedded in a nested iteration process (see e.g. [44], chapter 8).

The linear subproblems (50) are solved by the Generalized Minimal Residual

Method (GMRES), see Saad [34], preconditioned by means of multigrid iterations.
See [45, 44] and references therein for a description of the different multigrid tech-
niques for flow simulations. This preconditioner, based on a new multigrid scheme
oriented towards conformal higher order finite element methods, is a key ingredient
of the overall solution process. Two specific features characterizing the proposed
scheme are: varying order of the finite element ansatz on the mesh hierarchy and a
Vanka type smoother [40] adapted to higher order discretization. This somewhat
technical part of the solver is described in full details in [24]. Its implementation
is part of the HiFlow project (see [23]). See also [25].

To summarize, the specificity of our approach is to prescribe boundary con-
ditions which depend on the drag and the lift. These values, and therefore the
adequate boundary conditions, are not known at the beginning of the resolution
process. Therefore, the Newton steps previously described are embedded in an ad-
ditional fixed point iteration which determines the boundary conditions through
successive updates, based on the previously computed values of drag and lift.



58 S. Bönisch, V. Heuveline and P. Wittwer JMFM

4. Numerical experiments

The proposed adaptive boundary conditions (36)–(41) have a complicated struc-
ture. Our goal in this section is to quantify the impact of the various terms of these
boundary conditions on the accuracy of the solution. For that purpose we will con-
sider the five variants of boundary conditions as depicted in Table 1, ranging from
the pure first order boundary conditions to the full second order boundary condi-
tions that include the nonzero lift effects. See (35) for the expressions relating b to
the lift and d to the drag. Throughout this section we suppress the “tildes” from
the notation and we write (u, v) for the components of the (numerical) solution v

of (43).
First, we discuss the case of a symmetric body which consists of a rectangle

[−0.1, 0.1]× [−0.5, 0.5] immersed into a uniform stream of a homogeneous incom-
pressible fluid with density ρ = 1 and dynamic viscosity µ = 0.1. We impose
furthermore u∞ = 0.1. With A = 1 being the length of the rectangle, we find
from (5) that ℓ = 1 and therefore with (6) the Reynolds number Re = 1. This
configuration has already been investigated using first order boundary conditions
in [8]. On the basis of this benchmark configuration our goal is to examine the
gain obtained by means of the additional second order terms. Note that due to the
symmetry of the body the lift and therefore b is equal to zero. Therefore, the vari-
ants denoted by (sym/sym), (nonsym/sym) and (nonsym/nonsym) in Table 1 are
all equivalent. A quantity of importance in this context is the so called centerline
velocity u(x, 0). It has been extensively studied (see for example [37] and [36]),
as its behavior for (large) positive x reveals information on the asymptotics of the
wake. From (36) we get using (7) the theoretical prediction that in dimension-full
variables to leading order for large x,

u(x, 0) ≈
(

u∞
√
ℓ
) c

2
√
π

1√
x
, (51)

with c = −2d and d as defined in (35), i.e., c = −F̃ /(ρℓu2
∞). Numerically we

find that F̃ = 0.05029. In Figure 4 we have plotted the quantity −2
√
π
√
xu(x, 0)

as a function of x, where u has been computed once using first order boundary
conditions and once using the second order adaptive boundary conditions. With
second order boundary conditions the plot is closer to the asymptotic value on
most of the domain. The impact of the second order terms is however much more
evident when considering the gain with regard to the relative error of the drag.
In the plots of Figure 5, the relative error of the drag as a function of the domain
diameter is plotted considering the homogeneous Dirichlet boundary conditions,
the first order boundary conditions (sym) and the second order boundary condi-
tions (sym/sym). Clearly, the addition of the second order terms allow to again
substantially reduce the size of the computational domain when compared to the
first order approach. This is especially true if a high accuracy is needed for the
drag. Note that the additional computational time needed for the evaluation of
the second order boundary terms is negligible. Therefore, the reduction of the
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diameter of the computational domain induced by the second order terms leads to
direct and drastic benefits with regard to the overall computation time.

Due to the symmetry of the body leading to zero lift, all terms involving b
in the proposed boundary conditions were inactive in the preceding test case. In
order to check their relative role we consider a second body which consists of the
NACA profile 64-015 shown in Figure 1. In order to obtain values of the lift which
are comparable to the drag (so that b is comparable in size to d, see (35)), we
consider this setup at a Reynolds number Re = 1000. The resulting values for
drag and lift are given in Table 2. Similarly to the previous benchmark problem
we also plot in Figure 6 the relative error of drag and lift as a function of domain
size considering the different variants of boundary conditions as given in Table 1.
The results show that the terms of the boundary conditions that include the lift
effects only marginally influence the relative error of drag and lift at the level of
the absolute error and range of Reynolds numbers computed here.

To summarize, the use of second order boundary conditions for exterior flows
is not of academic value only but is very relevant in numerical simulations. When
compared to the first order boundary conditions used in [8] their use allows a fur-
ther important reduction of the computational domain, especially at low Reynolds
numbers. Numerical evidence shows, however, that the boundary terms related to
the effects of the lift which appear for non symmetric bodies do not contribute in
an essential way to the accuracy of the solution when measured in terms of drag
and lift.

First order Second order
Notation Order equations b equations b
sym 1 (36),(37) = 0 - -
nonsym 1 (36),(37) 6= 0 - -
sym/sym 2 (36),(37) = 0 (38),(39 ),(40) = 0
nonsym/sym 2 (36),(37) 6= 0 (38 ),(39),(40) = 0
nonsym/nonsym 2 (36),(37) 6= 0 (38 ),(39),(40) 6= 0

Table 1. Definition of the notation for the different variants of first and second order
non homogeneous adaptive boundary conditions discussed in the paper.

Configuration drag lift
homogeneous Dirichlet 6.691 9.046
sym 6.626 8.925
nonsym 6.624 8.923
nonsym/sym 6.609 8.888
nonsym/nonsym 6.607 8.894

Table 2. Computed values of the drag and lift on a domain of diameter 10 for the
configuration depicted in Figure 1 (Re = 1000). An approximation of the exact values
as determined by a large scale computation are: drag ≈ 6.58 and lift ≈ 8.81.
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5. Appendix I

In this Appendix we present some details concerning the asymptotic expansion.
The basic idea is to give a representation formula for the functions ψω and ψN in
terms of the Greens function G,

G(x, y) =
1

2π
Re [log(−x− iy)] =

1

4π
log(x2 + y2). (52)

For rapidly decaying functions ω and ωn we would simply write that ψω = −G ∗ω
and that

ψN = 2b G−
N
∑

n=1

(G ∗ ωn − 2bnG) , (53)

with b = − 1
2

∫

Ω ω(x, y) dxdy and bn = − 1
2

∫

Ω ωn(x, y) dxdy. The functions ω
as well as ω1 and ω2 are however not (absolutely) integrable in Ω and therefore
some care is needed. Let B+,∞ = {(x, y) ∈ R2 | 0 < x < x+} for some fixed but
arbitrary x+ > 0 “to the right of B”, i.e., x+ > supx{x ∈ R | (x, y) ∈ B for some
y}. Then we define for n = 1, 2, . . .

bn =
1

2

∫

B+,∞

ωn(x, y) dxdy (54)

and (see the end of Appendix II for a proof of the relation between the lift and
the average vorticity)

b = −1

2

∫

Ω

(

ω −
∑

n=1,2

ωn

)

(x, y) dxdy +
∑

n=1,2

bn. (55)

Next we construct representation formulas for ψN and ψω. First we discuss ψ1.
From (17) and (18) we have for ω1,

ω1(x, y) =
d

x
ϕ′′

1,1

(

y√
x

)

. (56)

Now, let

H(x, y) =
1

2π
Im[log(−x− iy)] =

1

2π
arctan

(y

x

)

− 1

2
θ(x)sign(y), (57)

and define

ψ1,loc(x, y) = 2b G(x, y) + 2d H(x, y) − θ(x)

(

ϕ1,1

(

y√
x

)

− d sign(y)

)

. (58)

The function ψ1,loc is smooth in Ω and since G and H are harmonic functions in
Ω we find find that ∆ψ1,loc = −ω1 − ω̃1, with

ω̃1(x, y) =
θ(x)

x3
µ1

(

y√
x

)

, (59)
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and with

µ1(z) = ϕ′′
1,1(z)z

2/4 + 7ϕ′
1,1(z)z/4 + 2(ϕ1,1(z) − d sign(z)) (60)

a function that decays faster than exponential at infinity. The function ω̃1 is
integrable in Ω and we therefore get the following representation formula for ψ1,

ψ1(x, y) = ψ1,loc(x, y) +

∫

Ω

(G(x− x0, y − y0) −G(x, y)) ω̃1(x0, y0) dx0dy0. (61)

The second term in (61) is bounded by const./r, and analogous bounds hold for
partial derivatives. Therefore, using ψ1,loc as a local approximation for ψ1, (36)
follows using (19) and (20), respectively.

Next we compute local approximations for the second and third order terms.
Again, since ω2 is not integrable in Ω, one has to proceed as in the case of ψ1. But,
in order to illustrate the methods used to construct local expressions like (58), we
prefer to keep the discussion on a more formal level. Namely, from (53) we get,
using that (formally)

∫∞
x+
dx0

∫

R
dy0 ωn(x0, y0) = 0,

ψn(x, y) = ψn−1(x, y) +

∫

Ω

(G(x, y) −G(x− x0, y − y0))ωn(x0, y0) dx0dy0

= ψn−1(x, y) −
∫ ∞

x+

dx0

∫

R

dy0G(x − x0, y − y0)ωn(x0, y0) dx0dy0

+

∫

B+,∞

(G(x, y) −G(x − x0, y − y0))ωn(x0, y0) dx0dy0. (62)

The last term in (62) is bounded by const./r and will be neglected. For the
contribution of ϕ2,1 to ψ2 we have, integrating by parts twice, that

−
∫ ∞

x+

dx0

∫

R

dy0 G(x − x0, y − y0)
log(x0)

x
3/2
0

ϕ′′
2,1

(

y0√
x0

)

= −
∫ ∞

x+

dx0

∫

R

dy0 ∂yG(x− x0, y − y0)
log(x0)

x0
ϕ′

2,1

(

y0√
x0

)

= −∂y

∫ ∞

x+

dx0

∫

R

dy0 ∂yG(x− x0, y − y0)
log(x0)√

x0

bd

π3/2
e−

y2
0

4x0

= −θ(x− x+)
log(x)√

x

bd

π3/2
e−

y2

4x

+ ∂x

(

∫ ∞

x+

dx0

∫

R

dy0 ∂xG(x− x0, y − y0)
log(x0)√

x0

bd

π3/2
e−

y2
0

4x0

)

≈ −θ(x) log(x)√
x

bd

π3/2
e−

y2

4x , (63)

where the last approximation sign means that we have again neglected terms
bounded by const./r. Similarly we find for the contribution of ϕ3,1 to ψ3,
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−
∫ ∞

x+

dx0

∫

R

dy0 G(x− x0, y − y0)
log(x0)

2

x2
0

ϕ′′
3,1

(

y0√
x0

)

≈ θ(x)
log(x)2

x

b2d

4π5/2

y√
x
e−

y2

4x .

(64)

We finally discuss the contribution of ϕ2,2 to ψ2. We have (we only treat here the
case c2,2 = 0)

−
∫ ∞

x+

dx0

∫

R

dy0 G(x − x0, y − y0)
1

x
3/2
0

ϕ′′
2,2

(

y0√
x0

)

= −
∫ ∞

x+

dx0

∫

R

dy0 ∂yG(x− x0, y − y0)
1

x0
ϕ′

2,2

(

y0√
x0

)

= d2

∫ ∞

x+

dx0

[

∂yG(x− x0, y − y0)
1√
x0

(

f

(

y0√
x0

)

+ f∞

)]0

−∞

+ d2

∫ ∞

x+

dx0

[

∂yG(x− x0, y − y0)
1√
x0

(

f

(

y0√
x0

)

− f∞

)]∞

0

+ d2∂y

∫ ∞

x+

dx0

∫

R

dy0 ∂yG(x− x0, y − y0)
1√
x0

(

f

(

y0√
x0

)

− f∞sign(y0)

)

= 2d2f∞

∫ ∞

0

dx0√
x0
∂yG(x− x0, y) + θ(x)

d2

√
x

(

f

(

y√
x

)

− f∞sign(y)

)

− 2d2f∞

∫ x+

0

dx0√
x0
∂yG(x− x0, y)

+ (θ(x− x+) − θ(x))
d2

√
x

(

f

(

y√
x

)

− f∞sign(y)

)

−∂x

(

d2

∫ ∞

x+

dx0

∫

R

dy0 ∂xG(x−x0, y−y0)
1√
x0

(

f

(

y0√
x0

)

−f∞sign(y0)

)

)

. (65)

The terms in the last two lines are again bounded by const./r, and we might
therefore be tempted to neglect them as in the previous cases. In contrast to all
the other terms considered so far the resulting local approximation is however not
sufficiently differentiable in y at y = 0 and x > 0. Namely,

∫ ∞

0

dx0√
x0
∂yG(x − x0, y) dx0 =

1

2
H2(x, y),

where

H2(x, y) = Im

[

1√−x− iy

]

=
1

2
sign(y)

r2
r
,

with r =
√

x2 + y2and r2 =
√

2r + 2x. For fixed x > 0 and y small we have
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H2(x, y) =
sign(y)√

x

(

1 − 3

8

( y

x

)2

+ O
(y

x

)4
)

, (66)

and it is now easy to see using (19) and (20) that the contribution of H2 to the
local approximation of u2 and v2 is not twice differentiable. We are therefore
forced to extract in (65) an additional term that compensates the contribution
proportional to sign(y)y2 in (66), and we finally get from (63)–(65) the following
local approximations ψ2,loc and ψ3,loc of ψ2 and ψ3,

ψ2,loc(x, y) = ψ1,loc(x, y) − θ(x)
log(x)√

x

bd

π3/2
e−

y2

4x

+ d2f∞H2(x, y) + θ(x)
d2

√
x

(

f

(

y√
x

)

− f∞sign(y)

)

+ λ θ(x) d2f∞
3

8

1

x3/2

y√
x

(

1 +
|y|√
x

)

e−
y2

4x

ψ3,loc(x, y) = ψ2,loc(x, y) + θ(x)
log(x)2

x

b2d

4π5/2

y√
x
e−

y2

4x ,

from which (38)–(41) follow using (19) and (20), respectively.
We still have to check that with the above choices for ϕi,j the equation (14) is

satisfied asymptotically as claimed in (30). To first order one can show (using the
computer-algebra system Maple for example) that

lim
x→∞

x2 W (u1, v1, ω1)
(

x,
√
xz
)

= 0,

because L1(ϕ1,1)(z) = 0, where for n ∈ N,

Ln(f)(z) = f ′′′′(z) +
1

2
zf ′′′(z) +

1 + n

2
f ′′(z).

The function ϕ1,1 is the (up to a constant) unique solution of L1(f) = 0 with
derivatives decaying faster than exponential at infinity. At order N of the expan-
sion the operator LN has to be discussed. The second order operator L2 contains
in its kernel the function z 7→ e−z2/4, and for this reason the equation L2(f) = g
with g a smooth function of rapid decrease, say, has typically a solution f whose
even part decays only algebraically at infinity (see [20], [39]). This is not accept-
able in our case since the vorticity is supposed to decay faster than exponential
transversal to the wake. This means that the correct asymptotic expansion has a
logarithmic second order term ϕ2,1 (see [39] for a description of the ideas). This
additional term permits to adjust the inhomogeneity g in the equation for ϕ2,2

such that the solution is of rapid decrease. It turns out that in our case the loga-
rithmic correction term ϕ2,1 can be chosen such that the equation for ϕ2,2 has no
even inhomogeneous term. More precisely we have

lim
x→∞

x5/2 W (u2, v2, ω1 + ω2)(x,
√
xz) = 0, (67)
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because L2(ϕ2,1)(z) = 0 and L2(ϕ2,2)(z) = −ze−z2/2/(2π) (this is the derivative
of equation (32)). Finally, to third order we have to discuss L3. This time the

problem is that L3 contains in its kernel the function z 7→ ze−z2/4, and for this
reason the equation L3(f) = g has typically a solution f whose odd part decays
only algebraically at infinity. In our case, because of the logarithmic second order
term, this problem already arises at the level of the equation for ϕ3,2. The correct
asymptotic expansion therefore contains a quadratic logarithmic third order term
ϕ3,1. This additional term permits to adjust the inhomogeneity g in the equation
for ϕ3,2 such that the solution is of rapid decrease. It turns out that in our case
the logarithmic correction term ϕ3,1 can be chosen such that the equation for ϕ3,2

has no odd inhomogeneous term. Finally, ϕ3,2 has to be chosen such that ϕ3,3 is
of rapid decrease. More precisely, we have

lim
x→∞

x3

log(x)
W (u3, v3, ω1 + ω2 + ω3)

(

x,
√
xz
)

= 0, (68)

because L3(ϕ3,1)(z) = 0 and L3(ϕ3,2)(z) =
(

e−
1
2
z2

/(2π2)
)′′

. Explicitly we find,

ϕ3,2(z) = − d2

2π3/2

(

1 − d

4
√

3

)

ze−
z2

4 − c2,2b
2 z

2π
e−

z2

4 + f3,2(z),

with f3,2 satisfying f3,2(0) = −1/(2π2), f ′
3,2(0) = f ′′

3,2(0) = f ′′′
3,2(0) = 0. Note that

f3,2 is an even function decaying faster than exponential at infinity. See Figure 3
for a graph of the function f3,2.

6. Appendix II

In this appendix we recall the computation of drag and lift through surface inte-
grals. We also recall the relation between the lift and the average vorticity, i.e., the
fact that b is given by (55). Let u, p be a solution of the Navier–Stokes equations
(9), (10) subject to the boundary conditions (11), (12), and let e be some arbitrary
unit vector in R2. Multiplying (9) with e leads to

− (u · ∇) (u · e) + ∆ (u · e) −∇ · (pe) = 0. (69)
Since

∇ · ((u · e)u) = u · (∇ (u · e)) + (u · e) (∇ · u) = (u · ∇) (u · e) ,

∆(u · e) = ∇ ·
(

[∇u+(∇u)
T
] · e
)

,

equation (69) can be written as ∇ · P(e) = 0, where

P(e) = − (u · e)u + [∇u+ (∇u)T ] · e− pe, (70)

i.e., the vector field P(e) is divergence free. Therefore, applying Gauss’s theorem
to the region ΩS (see Figure 2) we find that
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∫

∂Ω

P(e) · n dσ =

∫

S

P(e) · n dσ, (71)

with the choice of normal vectors as indicated in Figure 2. We have that P(ẽ) ·
e = P(e) · ẽ for any two unit vectors e and ẽ, and therefore, since e is arbitrary,
it follows from (71) that

∫

∂Ω

P(n) dσ =

∫

S

P(n) dσ. (72)

Since u = 0 on ∂Ω, we finally get from (72) and (70) that the total force the fluid
exerts on the body is

F =

∫

∂Ω

Σ(u, p)n dσ =

∫

S

(

− (u · n)u + [∇u+ (∇u)
T
]n − pn

)

dσ,

with Σ(u, p) = ∇u+(∇u)T − p the Stress tensor. In dimension-full variables we
have

F̃ =

∫

S̃

(

−ρ (ũ · n) ũ + µ[∇̃ũ + (∇̃ũ)
T
]n− p̃n

)

dσ̃ = ρu2
∞ℓ F. (73)

The force F is traditionally decomposed into a component F parallel to the
flow at infinity called drag and a component L perpendicular to the flow at infinity
called lift. Note that F is independent of the choice of S. This has the important
consequence that F and L can be computed from the dominant terms u1 and p1

of the velocity field and the pressure. Also, since lim|y|→∞ u(x, y) = (1, 0) and
lim|y|→∞ p(x, y) = 0, we can replace S by two vertical lines, one at −x < 0 to the
left of the body and one at x > 0 to the right of the body. Therefore we have,
modulo terms that vanish as x goes to infinity,

F = lim
x→∞

∫

R

(

−
(

1 − d√
π

1√
x
e−

y2

4x + u1,1,E(x, y)

)2

+ (1 + u1,1,E(−x, y))2
)

dy

+
1

2
lim

x→∞

∫

R

(

(1 + u1,1,E(x, y))
2 − 1 + v1,1,E(x, y)2

)

dy

− 1

2
lim

x→∞

∫

R

(

(1 + u1,1,E(−x, y))2 − 1 + v1,1,E(−x, y)2
)

dy

=

∫

R

(

2d√
π

1√
x
e−

y2

4x − 4
d

π

x

x2 + y2

)

dy +
1

2

∫

R

(

4
d

π

x

x2 + y2

)

dy = 2d (74)

and

L = − lim
x→∞

∫

R

(

1− d√
π

1√
x
e−

y2

4x +u1,1,E(x, y)

)(

− d

2
√
π

y

x3/2
e−

y2

4x +v1,1,E(x, y)

)

dy

+ lim
x→∞

∫

R

(1 + u1,1,E(−x, y))v1,1,E(−x, y) dy

= −
∫

R

(

− b

π

x

x2 + y2

)

dy +

∫

R

(

− b

π

−x
x2 + y2

)

dy = 2b, (75)
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and equation (35) now follows using (73). Finally, in order to show identity (55),
we use Stokes’ theorem which relates the average vorticity to a line integral along
∂B and a line integral along S in the limit when S goes to infinity. The integral
along ∂B is zero since u|∂B

= 0 and the limit of the integral along S can be
computed as above by first taking the limit where S is replaced by two vertical
lines and then the limit when x goes to infinity.

7. Figures

Figure 2. The body B̃, the exterior domain Ω̃, the computational domain D̃ and the
artificial boundary Γ̃ (left) and the surface S used in the the theorems of Gauss and
Stokes and the definition of normal vectors on ∂Ω and S (right).
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Figure 3. The graph of the function f (left) and f3,2 (right).
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Figure 4. The scaled centerline velocity to first and second order (left) and zoom on
the same quantities (right).
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Figure 5. Plot of the relative error of the drag as a function of the domain diameter
considering homogeneous Dirichlet boundary conditions and the adaptive boundary con-
ditions to first and second order. From left to right and top to bottom the quantities
are plotted in semilog plots un-zoomed and zoomed and in log/log plots un-zoomed and
zoomed.
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Figure 6. Plot of the relative error of the drag (left) and the lift (right) as a function
of the domain diameter considering homogeneous Dirichlet boundary conditions and the
adaptive boundary conditions to first and second order.
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