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Abstract

We develop and implement methods for determining whether introducing new se-

curities or relaxing investment constraints improves the investment opportunity set for

prospect investors. We formulate a new testing procedure for prospect spanning for two

nested portfolio sets based on subsampling and Linear Programming. In an application,

we use the prospect spanning framework to evaluate whether well-known anomalies are

spanned by standard factors. We find that of the strategies considered, many expand

the opportunity set of the prospect type investors, thus have real economic value for

them. In-sample and out-of-sample results prove remarkably consistent in identifying

genuine anomalies for prospect investors.

Keywords and phrases: Nonparametric test, prospect stochastic dominance effi-

ciency, prospect spanning, market anomaly, Linear Programming.

JEL Classification: C12, C14, C44, C58, D81, G11, G40.

1 Introduction

Traditional models in economics and finance assume that investors evaluate portfolios ac-

cording to the expected utility framework. The theoretical motivation for this goes back to
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Von Neumann and Morgenstern (1944). Nevertheles, experimental and empirical work has

shown that people systematically violate Expected Utility theory when choosing among risky

assets. Prospect theory, first described by Kahneman and Tversky (1979) (see also Tversky

and Kahneman (1992)), is widely viewed as a better description of how people evaluate risk

in experimental settings. While the theory contains many remarkable insights, it has proven

challenging to apply these insights in asset pricing, and it is only recently that there has been

real progress in doing so (Barberis et al. (2019)). Barberis and Thaler (2003) and Barberis

(2013) are excellent reviews on behavioral finance and prospect theory.

Stock market anomalies are key drivers of innovation in asset pricing. These are tradable

portfolio strategies, usually constructed as long-short portfolios based on the top and bottom

deciles of sorted stocks, according to specific characteristics (anomalies). Under the standard

Mean-Variance (MV) paradigm, establishing a cross-sectional return pattern as an anomaly

involves testing for pricing based on a factor model. If factors are traded, spanning regressions

relate to MV criterion. Arbitrage pricing stipulates that a portfolio of factors is MV-efficient

and no other portfolio can achieve a higher Sharpe Ratio (SR). In that sense, an anomaly is a

strategy that exhibits higher SR and should be traded away. However, we can question MV

spanning for portfolio selection if returns do not follow elliptical distributions, or investor

preferences depend on more than the first two moments of the return distribution. Moreover,

experimental evidence (Baucells and Heukamp (2006)) suggests that investors do not always

act as risk averters. Instead, under certain circumstances, they behave in a much more

complex fashion, exhibiting characteristics of both risk-loving and risk-averting. They behave

differently on gains and losses, and they are more sensitive to losses than to gains (loss

aversion). The relevant utility function could be concave for gains and convex for losses

(S-Shaped).

The present study contributes to this literature by introducing, operationalizing and

applying prospect spanning tests for portfolio analysis. The general research question is

whether a given investment possibility set K, namely the benchmark set, contains portfolios
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which prospect dominates all alternatives in an expanded investment possibility set L.

Stochastic spanning (Arvanitis et al. (2019)) is a model-free alternative to MV spanning

of Huberman and Kandel (1987) (see also Jobson and Korkie (1989), De Roon, Neyman,

and Werker (2001)). Spanning occurs if introducing new securities or relaxing investment

constraints does not improve the investment possibility set for a given class of investors.

MV spanning checks if the mean-variance frontier of a set of assets is identical to the mean-

variance frontier of a larger set made of those assets plus additional assets (Kan and Zhou

(2012), Penaranda and Sentana (2012)). Here we investigate such a problem for investors

with prospect type preferences which are interested in the whole return distributions gener-

ated by two sets of assets, namely stochastic dominance. First, we introduce the concept of

prospect spanning, which is consistent with prospect type investors. We propose a theoreti-

cal measure for prospect spanning based on stochastic dominance and derive the exact limit

distribution for the associated empirical test statistic for a general class of dynamic processes.

To check prospect spanning on data, we develop consistent and feasible test procedures based

on subsampling and Linear Programming (LP).

Similarly to Arvanitis et al. (2019), it is easy to see that if the prospect efficient set is non-

empty, a prospect spanning set is essentially any superset of the former. As such, we can use

a prospect spanning set to provide an outer approximation of the efficient set. This is useful

in at least two ways. First, if the spanning set is small enough, the problem of optimal choice

is reduced to a potentially simpler problem. Indeed, a spanning set is a reduction of the

original portfolio set without loss of investment opportunities for any investor with S-shaped

preferences. Secondly, if an algorithm for the choice of non-trivial canditate spanning sets is

available, we can use this to construct decreasing sequences of prospect spanning sets that

appropriately converge to the efficient set. Given the complexity of the prospect efficient set

(see for example Ingersoll (2016)) such an approach can be useful for the determination of

its properties.

The second contribution of the paper is to examine if we can explain well-known stock
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market anomalies by standard factor models for prospect investors. To do so, we test if

trading strategies are genuine violations of standard factor models. More precisely, in the in-

sample analysis, we use the prospect spanning test in order to check whether a portfolio set

originating from a standard factor model, K, spans the same set augmented with a market

anomaly, L. This check could be of significant relevance to the empirical analysis of financial

markets. If the hypothesis of prospect spanning holds, the particular market anomaly can be

explained by the factor model. Then the trading strategy that is identified in the literature as

market anomaly may not be an attractive investment opportunity for prospect investors. On

the contrary, if the hypothesis is not true, then the anomaly expands the opportunity set for

prospect investors, and is useful to that extent. We also examine whether the cross-sectional

patterns that found to expand the set of factors in-sample, maintain this abnormal return

out-of-sample. Therefore, we use out-of-sample backtesting experiments as an independent

criterion for robustness of in-sample test results (Harvey et al. (2016)). It turns out that

prospect spanning tests produce remarkably consistent results both in- and out-of-sample in

identifying trading strategies as genuine market anomalies for prospect investors. Thus, our

framework helps validating stock market anomalies for prospect preferences.

Benartzi and Thaler (1995) utilize prospect theory to present an approach called myopic

loss aversion which consists of two behavioural concepts, namely loss aversion and mental

accounting. Barberis et al. (2001) study asset prices in an economy where investors derive

direct utility not only from consumption but also from fluctuations in the value of their

financial wealth. They are loss averse over these fluctuations and how loss averse they are

depends on their prior investment performance. The design of their model is influenced by

prospect theory. Barberis and Huang (2008) study the pricing of financial securities when

investors make decisions according to cumulative prospect theory. Several other papers

confirm that positively skewed stocks have lower average returns (Boyer, Mitton, and Vorkink

(2010), Bali, Cakici, and Whitelaw (2011), Kumar (2009), Conrad, Dittmar, and Ghysels

(2013)). Barberis and Xiong (2009, 2012) and Ingersoll and Jin (2013) show that theoretical
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investment models based on S-Shape utility maximisers help to understand the disposition

effect found empirically in many studies (see e.g. Odean (1988), Grinblatt and Han (2005),

Frazzini (2006), Calvet, Campbell, and Sodini (2009)). Kyle, Ou-Yang, and Xiong (2006)

provide a formal framework to analyze the liquidation decisions of economic agents under

prospect theory. He and Zhou (2011) study the impact of prospect theory on optimal risky

exposures in portfolio choice through an analytical treatment. Ebert and Strack (2015) set

up a general version of prospect theory and prove that probability weighting implies skewness

preference in the small. Barberis et al. (2016) test the hypothesis that, when thinking about

allocating money to a stock, investors mentally represent the stock by the distribution of

its past returns and then evaluate this distribution in the way described by prospect theory.

Moreover, Barberis et al. (2019) present a model of asset prices in which investors evaluate

risk according to prospect theory and examine its ability to explain prominent stock market

anomalies. In our paper, we test whether well-known factor models span the augmented

universe with a prominent stock market anomaly, and if not, whether the result is supported

out-of sample.

The paper is organised as follows. In Section 2, we review the definition of prospect

stochastic dominance relation and we define the relevant concept of prospect spanning. We

provide with a representation based on a class of S-shaped utility functions without assuming

differentiability. Using an empirical approximation of the latter, we construct a test for the

null hypothesis of spanning based on subsampling. The construction is based on the limiting

null distribution of the test statistic which has the form of a saddle type point of a relevant

Gaussian process. Under a weak condition on the structure of the parameter contact sets,

we show that the test is asymptotically exact and consistent. This is weaker than the

parameter extreme point comparisons used in Arvanitis, Scaillet and Topaloglou (2019) to

obtain exactness in large samples.

In Section 3, we provide with a numerical approximation of the statistic that is based on

the utility representation derived before. The utility functions are univariate, and normal-
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ized. We use a finite set of increasing piecewise-linear functions, restricted to the bounded

empirical supports, that are constructed as convex mixtures of appropriate "ramp functions”

( in the spirit of Russel and Seo (1989)) in our representation. For every such utility func-

tion, we solve two embedded linear maximization problems. This is an improvement over the

implementation in Arvanitis and Topaloglou (2017) and Arvanitis, Scaillet and Topaloglou

(2019) where they formulate tests in terms of Mixed-Integer Programming (MIP) problems.

MIP problems are NP-complete, and far more difficult to solve. Our numerical approxima-

tions are simple and fast since they are based on standard LP. They suit better resampling

methods, which otherwise become quickly computationally demanding in empirical work.

In Section 4, we perform an empirical application where we use the prospect spanning

tests to evaluate stock market anomalies using standard factor models. We consider three

such models that build on the pioneer three-factor model of Fama and French (1993): the

four-factor model of Hou, Xue and Zhang (2015), the five-factor model of Fama and French

(2015), and the four-factor model of Stambaugh and Yuan (2017). Given the extensive

set of results produced under alternative spanning criteria, the analysis is confined to 11

well-known strategies used to construct Stambaugh-Yuan factors, along with 7 extra (18

overall) that attracted significant attention, namely Betting against Beta, Quality minus

Junk, Size, Growth Option, Value (Book to Market), Idiosyncratic Volatility and Profitabil-

ity. The 11 anomalies used in Stambaugh and Yuan (2017) are realigned appropriately to

yield positive average returns. In particular, anomaly variables that relate to investment

activity (Asset Growth, Investment to Assets, Net Stock Issues, Composite Equity Issue,

Accruals) are defined low-minus-high decile portfolio returns, rather than high-minus-low.

All the other anomalies are constructed as high-minus-low decile portfolio returns. These

18 trading strategies constitute our playing field for comparing spanning test results. Yet,

we emphasize that this paper is not intended to compare factor models in terms of their

ability to capture the cross-section of expected returns under prospect preferences. Instead,

we use alternative factor models as a robustness check for testing the consistency of in- and
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out-of-sample results under the prospect spanning framework. Each factor model is our ini-

tial system of investment coordinates which we take as a granted opportunity set, without

questioning its asset pricing validity. We view here the factors solely as investable assets

(since they correspond to tradable strategies based on asset portfolios), and similarly for the

anomalies. The anomalies might be labelled by other authors as factors if indeed priced in

the cross-section, but we do not address such a research question in this paper.

Finally, Section 5 concludes the paper. In Appendix A, we provide a short description of

the stock market anomalies used in the empirical application. In Appendix B, we also provide

a short description of the performance measure used in the out-of-sample analysis. We give

in a separate Online Appendix: i) the limiting properties of the testing procedures under

sequences of local alternatives, ii) a Monte Carlo study of the finite sample properties of the

test, iii) the proofs of the main results, as well as auxiliary lemmata and their proofs, iv)

summary statistics of the factor and anomaly returns over our sample period from January

1974 to December 2016, and v) additional empirical results on out-of-sample analysis of

market anomalies.

2 Prospect Stochastic Dominance and Stochastic Span-

ning

The theory of stochastic dominance (SD) gives a systematic framework for analyzing in-

vestor behavior under uncertainty (see Chapter 4 of Danthine and Donaldson (2014) for

an introduction oriented towards finance). Stochastic dominance ranks portfolios based on

general regularity conditions for decision making under risk (see Hadar and Russell (1969),

Hanoch and Levy (1969), and Rothschild and Stiglitz (1970)). SD uses a distribution-free

assumption framework which allows for nonparametric statistical estimation and inference

methods. We can see SD as a flexible model-free alternative to mean-variance dominance

of Modern Portfolio Theory (Markowitz (1952)). The mean-variance criterion is consistent
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with Expected Utility for elliptical distributions such as the normal distribution (Chamber-

lain (1983), Owen and Rabinovitch (1983), Berk (1997)) but has limited economic meaning

when we cannot completely characterize the probability distribution by its location and

scale. Simaan (1993), Athayde and Flores (2004), and Mencia and Sentana (2009) develop

a mean-variance-skewness framework based on generalizations of elliptical distributions that

are fully characterized by their first three moments. SD presents a further generalization

that accounts for all moments of the return distributions without necessarily assuming a

particular family of distributions.

Inspired by previous work, Levy and Levy (2002) formulate the notions of prospect

stochastic dominance (PSD) (see also Levy and Wiener (1998), Levy and Levy (2004)) and

Markowitz stochastic dominance (MSD). Those notions extend the well-know first degree

stochastic dominance (FSD) and second degree stochastic dominance (SSD). PSD and MSD

investigates choices by investors who have S-shaped utility functions and reverse S-shaped

utility functions. Arvanitis and Topaloglou (2017) develop consistent tests for PSD and MSD

efficiency which is an extension to the case where full diversication is allowed. Arvanitis,

Scaillet and Topaloglou (2019) investigate MSD spanning. This paper extends those works

to prospect spanning, which is consistent with prospect preferences.

2.1 Stochastic Spanning for Prospect Dominance and Analytical

Representation

Given a probability space (Ω,F ,P), suppose that F denotes the cdf of some probability

measure on Rn. Let G(z, λ, F ) be
∫
Rn 1{λTu≤z}dF (u), i.e., the cdf of the linear transformation

x ∈ Rn → λTx where λ assumes its values in L, which denotes the portfolio space. We

suppose that the portfolio space is a closed non-empty subset of S = {λ ∈ Rn
+ : 1Tλ= 1, },

possibly formulated by further economic, legal restrictions, etc. In many applications, we

have that L = S. We denote by K a distinguished subcollection of L and generic elements
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of L by λ, κ, etc. In order to define the concepts of PSD and subsequently of stochastic

spanning, we consider J (z1, z2, λ;F ) :=
∫ z2
z1
G (u, λ, F ) du.

Definition 1. κ weakly Prospect-dominates λ, written as κ <P λ, iff we have the inequal-

ities P1 (z, λ, κ, F ) := J (z, 0, κ, F ) − J (z, 0, λ, F ) ≤ 0, ∀z ∈ R− and P2 (z, λ, κ, F ) :=

J (0, z, κ, F )− J (0, z, λ, F ) ≤ 0, ∀z ∈ R++.

Given the stochastic dominance relation above, stochastic spanning occurs when aug-

mentation of the portfolio space does not enhance investment opportunities, or equivalently,

investment opportunities are not lost when the portfolio space is reduced. The following

definition clarifies the concept w.r.t. the Prospect dominance relation.

Definition 2. K Prospect-spans L (K <P L) iff for any λ ∈ L, ∃κ ∈ K : κ <P λ. If

K = {κ}, the element κ of the singleton K is termed as Prospect super-efficient.

The efficient set of the dominance relation is the subset of L that contains the maximal

elements. The efficient set is a spanning subset of the portfolio space. Thereby, any superset

of the efficient set is also a spanning subset of L. We can consider a spanning set as an outer

approximation of the efficient set. Given a candidate spanning set exists, the question is

whether this actually spans the portfolio space. If a method for answering such a question

also exists, we can accurately approximate the efficient set via the choice of finer spanning

subsets of the portfolio space. This is important in the context of decision theory and

investment choice.

Hence, the question we address here is: given a candidate K, is K <P L? The following

lemma provides an analytical characterization by means of nested optimizations, which is

key for a numerical implementation on real data and statistical inference.

Lemma 3. Suppose that K is closed. Then K <P L iff we get the condition ρ (F ) :=

max
i=1,2

sup
λ∈L

sup
z∈Ai

inf
κ∈K

Pi (z, λ, κ, F ) = 0, where A1 = R−, A2 = R++. Moreover, we get that κ is

Prospect super-efficient iff supλ∈L maxi=1,2 supz∈Ai
Pi (z, λ, κ, F ) = 0.
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2.2 Representation By Utility Functions

We provide an expected utility characterization of spanning. Aside the economic interpre-

tation, this is key to the numerical LP implementation of the inferential procedures that we

construct in the next section. In doing so, we generalize the utility characterization of PSD

in Levy and Levy (2002), in the sense that we do not require differentiability of the utilities.

Our approach is in the spirit of the Russel and Seo (1989) representations for the second

order stochastic dominance. We rely on utilities represented as unions of graphs of convex

mixtures of appropriate “ramp functions” on each half-line.

To this end, we denote with W−,W+, the sets of Borel probability measures on the

real line with supports that are closed subsets of R− and R+, respectively, with existing

first moments and uniformly integrable. The latter requirement is convenient yet harm-

less since orderings are invariant to utility rescalings. Those sets are convex, and closed

w.r.t. the topology of weak convergence and their union contains the set of degenerate mea-

sures. Define V− :=
{
vw : R− → R, vw (u) =

∫
R−

[z1u≤z + u1z≤u≤0] dw (z) , w ∈ W−
}
, and

V+ :=
{
vw : R+ → R, vw (u) =

∫
R+

[u10≤u≤z + z1z≤u<+∞] dw (z) , w ∈ W+

}
. Every element

of V+ is increasing and concave, and dually every element of V− is increasing and convex.

Furthermore, any function defined by the union of the graph of an arbitrary element of V+

with the graph of an arbitrary element of V− is the graph of an S-shaped utility function as

defined by Levy and Levy (2002). Such a utility function is concave for gains and convex

for losses. Denote the set of S-shaped utility functions obtained by such graph unions as V .

Thereby,

V :=

v : R→ R, v (u) =


vw1 (u) , u ≤ 0

vw2 (u) , u ≥ 0

, where vw1 ∈ V−, vw2 ∈ V+

 .

Lemma 4. We have ρ (F ) = maxi=1,2 supvw∈Vi [supλ∈L Eλ [1u∈Ai
vw (u)]− supκ∈K Eκ [1u∈Ai

vw (u)]] ,
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where Eλ denotes expectation w.r.t. G(z, λ, F ). If the hypotheses of Lemma 3 hold and K is

convex, then K <P L iff, supv∈V [supλ∈L Eλ [v]− supκ∈K Eκ [v]] = 0.

The fist part of the lemma connects the functional that represents spanning to the afore-

mentioned classes of utilities. This is exploited below in order to obtain feasible numerical

formulations based on LP. Those formulations are reminiscent of the LP programs devel-

oped in the early papers of testing for SSD efficiency of a given portfolio by Post (2003) and

Kuosmanen (2004). The second part of Lemma 4 crystalizes the intuitive characterization

of spanning w.r.t. investment opportunities. It states that spanning holds if and only if the

reduction of investment opportunities from L to K does not reduce optimal choices uniformly

w.r.t. this class of preferences.

2.3 An Asymptotically Exact and Consistent Test for Spanning

We cannot directly rely on Lemma 3 for empirical work if F is unknown and/or the optimiza-

tions are infeasible. We construct a feasible statistical test for the null hypothesis of K <P L

by utilizing an empirical approximation of F and by building feasible and fast optimisations

with LP. The null and alternative hypotheses take the following forms: H0 : ρ (F ) = 0, and

Ha : ρ (F ) > 0. In the special case of super-efficiency, the hypotheses write as in Arvanitis

and Topaloglou (2017).

We consider a process (Yt)t∈Z taking values in Rn. Yi,t denotes the ith element of

Yt. The sample path of size T is the random element (Yt)t=1,...,T . In our empirical fi-

nance framework, it represents returns of n financial assets upon which we can construct

portfolios via convex combinations. F is the cdf of Y0 and FT is the empirical cdf as-

sociated with the random element (Yt)t=1,...,T . Under our assumptions below, FT is a

consistent estimator of F , so we consider the following test statistic ρT :=
√
Tρ (FT ) =

√
T maxi=1,2 supλ∈L supz∈Ai

infκ∈K Pi (z, λ, κ, FT ) , which is the scaled empirical analog of

ρ (F ). As already mentioned, when K is a singleton, the test statistic coincides with the

one used in Arvanitis and Topaloglou (2017). The following assumption enables the deriva-
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tion of the limit distribution of ρT under H0 and is weaker than Assumption 2 in Arvanitis,

Scaillet and Topaloglou (2019).

Assumption 5. F is absolutely continuous w.r.t. the Lebesgue measure on Rn with convex

support that is bounded from below, and for some 0 < δ, E
[
‖Y0‖2+δ

]
< +∞. (Yt)t∈Z is

a-mixing with mixing coefficients aT = O(T−a) for some a > 1 + 2
η
, 0 < η < 2, as T →∞.

The lower bound hypothesis is harmless in our empirical finance framework since we are

using financial returns. The mixing part is readily implied by concepts such as geometric er-

godicity which holds for many stationary models used in the context of financial econometrics

under parameter restrictions and restrictions on the properties of the underlying innovation

processes. Examples are the strictly stationary versions of (possibly multivariate) ARMA or

several GARCH and stochastic volatility type of models (see Francq and Zakoian (2011) for

several examples). Counter-examples are models that exhibit long memory, etc. The mo-

ment condition is established in the aforementioned models via restrictions on the properties

of building blocks and the parameters of the processes involved.

For the derivation of the limit theory of ρT under the null hypothesis, we consider the con-

tact sets Γi =
{
λ ∈ L, κ ∈ K�λ , z ∈ Ai : Pi (z, λ, κ, F ) = 0

}
, where K�λ := {κ ∈ K : κ <P λ}

which under the null contains elements different from λ for any element of L − K. For

any i, the set Γi is non empty since Γ?i := {(κ, κ, z) , κ ∈ K, z ∈ Ai} ⊆ Γi. Furthermore,

(λ, κ, 0) ∈ Γ1, ∀λ, κ. Since due to Assumption 5 z := infλ,Y0 λ
′Y0 exists, for all z ≤ z,

(λ, κ, z) ∈ Γi, ∀λ ∈ L, κ ∈ K�λ for the i that corresponds to the sign of z. In what follows,

we denote convergence in distribution by  .

Proposition 6. Suppose that K is closed, Assumption 5 holds and that H0 is true. Then as

T →∞, ρT  ρ∞, where ρ∞ := maxi=1,2 supλ supz infκ Pi (z, λ, κ,GF ) , (λ, z, κ) ∈ Γi, and GF

is a centered Gaussian process with covariance kernel given by

Cov(GF (x),GF (y)) =
∑

t∈ZCov
(
1{Y0≤x}, 1{Yt≤y}

)
and P almost surely uniformly continuous

sample paths defined on Rn.
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The limiting random variables have the form of saddle points of Gaussian processes w.r.t.

subsets of the relevant parameter spaces. This is well defined since Var
∫ +∞

0

GλF (u) du =∫ +∞

0

∑
t∈Z

Cov
(
1{λTY0≤u}, 1{λTrYt≤u}

)
du ≤ 2

∞∑
t=0

√
aT

∫ +∞

0

√
1−G (u, λ, F )du < +∞, and

Var
∫ 0

−∞
GλF (u) du =

∫ 0

−∞

∑
t∈Z

Cov
(
1{λTY0≤u}, 1{λTrYt≤u}

)
du≤ 2

∞∑
t=0

√
aT

∫ 0

−∞

√
G (u, λ, F )du

< +∞, where the first inequalities in each of the previous expressions follow from inequal-

ity 1.12b in Rio (2000), and the second ones follow from Assumption 5 (see also p. 196 of

Horvath et al. (2006)).

Since F and Γi are unknown in practice, we use the results of the previous lemma to

construct a decision procedure based on subsampling, in the spirit of Linton, Post and Whang

(2014) (see also Linton, Maasoumi, and Whang (2005)).1

Algorithm 7. This consists of the following steps:

1. Evaluate ρT at the original sample value.

2. For 0 < bT ≤ T , generate subsample values

from the original observations (Yl)l=t,...t+bT−1 for all t = 1, 2, . . . , T − bT + 1.

3. Evaluate the test statistic on each subsample value

thereby obtaining ρT,bT ,t for all t = 1, 2, . . . , T − bT + 1.

4. Approximate the cdf of the asymptotic distribution under the null of ρT

by sT,b(y) = 1
T−bT +1

∑T−bT +1
t=1 1 (ρT,bT ,t ≤ y) and calculate its 1− α quantile

qT,bT (1− α) = infy {sT,b(y) ≥ 1− α} , for the significance level 0 < α < .5.

5. Reject the null hypothesisH0 if ρT > qT,bT (1− α).

1The partitioning used to get the results in Proposition 6 directly leads to the consideration of subsampling
as a resampling procedure. A testing procedure based on (block) bootstrap as in Scaillet and Topaloglou
(2010), can, due to the form of the recentering, be consistent, but can be too conservative asymptotically,
and thereby suffer from a lack of power compared to the subsampling under particular local alternatives
(see also the relevant discussion in Arvanitis et al. (2019)). The potential of asymptotic exactness for the
subsampling test justifies the particular resampling choice for inference.
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In order to derive the limit theory for the testing procedure, namely its asymptotic exactness

and consistency stated in the next theorem, we first use the following standard assumption

that restricts the asymptotic behaviour of bT governing the size bT + 1 of each subsample.

Assumption 8. Suppose that (bT ), possibly depending on (Yt)t=1,...,T , satisfies the condition

P (lT ≤ bT ≤ uT )→ 1, where (lT ) and (uT ) are real sequences such that 1 ≤ lT ≤ uT for all

T , lT →∞ and uT
T
→ 0 as T →∞.

Theorem 9. Suppose Assumptions 5 and 8 hold. For the testing procedure described in

Algorithm 7, we have that

1. If H0 is true, and for λ ∈ L−K, infY0 λ
TrY0 ≤ 0 there exists (κ, z) ∈ K�λ ×R++ with

(λ, κ, z) ∈ Γ2 and that if (λ, κ?, z?) ∈ Γ2 for κ? 6= κ then z? 6= z, then for all α ∈ (0, .5)

limT→∞ P (ρT > qT,bT (1− α)) = α.

2. If Ha is true then limT→∞ P (ρT > qT,bT (1− α)) = 1.

When for λ ∈ L − K, infY0 λ
TrY0 ≤ 0 then due to Assumption 5 for any contact triple

(λ, κ, z) ∈ Γ2 we have that P2 (z, λ, κ,GF ) must be non-degenerate. Whenever z corresponds

solely to the particular κ, we obtain that ρ∞ is non-degenerate and if its cdf jumps at the

infimum of its support, then the jump magnitude is bounded above by .5. Hence in this

case the test is asymptotically exact for all the usual choices of the significance level since

the probability of rejection under the null hypothesis, i.e., the size of the test, reaches α

in large samples. We combine Proposition 6 above and Theorem 3.5.1 of Politis, Romano

and Wolf (1999) in the proof of the exactness statement, namely point 1 of Theorem 9. To

get exactness, the condition imposed on L − K is significantly weaker than the assumption

on the relation between the extreme points of L and K adopted by Arvanitis, Scaillet and

Topaloglou (2019). It amounts to the existence of a spanned portfolio whose support is not

strictly positive and so that, in the event of positive returns, there exists an elementary

increasing and concave utility for positive returns and a unique portfolio such that the
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latter dominates the former and we are indifferent between the two portfolios with this

particular utility. Besides, the test is also consistent since the probability of rejection under

the alternative hypothesis, i.e., the power of the test, reaches 1 in large samples. We show in

the proof of the consistency statement, namely point 2 of Theorem 9, that the test statistic

diverges to +∞ under the alternative hypothesis when T goes to +∞.

We opt for the “bias correction” regression analysis of Arvanitis et al. (2019) to reduce

the sensitivity of the quantile estimates qT,bT (1− α) on the choice of bT in empirically real-

istic dimensions for n and T (see also Arvanitis, Scaillet and Topaloglou (2019) for further

evidence on its better finite sample properties). Specifically, given α, we compute the quan-

tiles qT,bT (1 − α) for a “reasonable” range of bT . Next, we estimate the intercept and slope

of the following regression line by OLS: qT,bT (1 − α) = γ0;T,1−α + γ1;T,1−α(bT )−1 + νT ;1−α,bT .

Finally, we estimate the bias-corrected (1 − α)-quantile as the OLS predicted value for

bT = T : qBCT (1 − α) := γ̂0;T,1−α + γ̂1;T,1−α(T )−1. Since qT,bT (1 − α) converges in probability

to q(ρ∞, 1 − α) and (bT )−1 converges to zero as T → 0, γ̂0;T,1−α converges in probability to

q(ρ∞, 1− α) and the asymptotic properties are not affected.

In the Online Appendix, we also show that under further assumptions, the test is asymp-

totically locally unbiased under given sequences of local alternatives. Besides, the Monte

Carlo analysis reported in the Online Appendix shows that the test performs well with an

empirical size close to 5% and an empirical power above 90% for a significance level α = 5%.

3 Numerical Implementation

In this section, we exploit the results of Lemma 4 in order to provide with a finitary approx-

imation of the test statistic. We rely on this to provide with a numerical implementation

based on LP below. We denote expectation w.r.t. the empirical measure by EFT
. Let R−

denote maxi=1,...,nRange
(
Yi,t1Yi,t≤0

)
t=1,...,T

= [x, 0]. Partition R− into n1 equally spaced

values as x = z1 < · · · < zn1 = 0, where zn := x − n−1
n1−1

x, n = 1, · · · , n1; n1 ≥ 2. Fur-
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thermore, partition the interval [0, 1], as 0 < 1
n2−1

< · · · < n2−2
n2−1

< 1, n2 ≥ 2. Similarly,

R+ := maxi=1,...,nRange
(
Yi,t1Yi,t≥0

)
t=1,...,T

= [0, x]. Partition R+ into p1 equally spaced val-

ues as 0 = z1 < · · · < zp1 = x, where zp := p−1
p1−1

x, n = 1, · · · , p1; p1 ≥ 2, and again partition

the interval [0, 1], as 0 < 1
p2−1

< · · · < p2−2
p2−1

< 1, p2 ≥ 2. Using the above, we consider the

test statistic:

ρ?T :=
√
T max

i=1,2
sup
v∈V ?

i

[
sup
λ∈L

EFT

[
v
(
λTY

)]
− sup

κ∈K
EFT

[
v
(
κTY

)]]
, (1)

where the set of utility functions for negative returns is:

V ?
− :=

{
v : v(u) =

n1∑
n=1

wn [zn1x≤u≤zn + u1zn≤u≤0] , (w1, . . . , wn1)∈W−

}
,

W− :=

{
(w1, . . . ,wn1) ∈

{
0,

1

n2 − 1
, · · · , n2 − 2

n2 − 1
, 1

}n1

:

n1∑
n=1

wn = 1

}
,

and the set of utility functions for positive returns is:

V ?
+ :=

{
v : v(u) =

p1∑
p=1

wp
[
u10≤u≤zp + zp1zp≤u≤x

]
, (w1, . . . , wp1)∈W+

}
,

W+ :=

{
(w1, . . . ,wp1) ∈

{
0,

1

p2 − 1
, · · · , p2 − 2

p2 − 1
, 1

}p1

:

p1∑
p=1

wp = 1

}
.

We obtain the following result on the approximation of ρT by ρ?T .

Proposition 10. When the support of F is also bounded from above, as n1, n2, p1, p2 →∞,

we have ρ?T → ρT , P a.s.

Our feasible computational strategy builds on LP formulations for the numerical evalu-

ation using the previous finitary approximation of the test statistic.

We have a set of convex utility functions of the form: v(u) =
∑n1

n=1wn max(u, zn) for

the negative part. For every v ∈ V ?
−, we have at most n2 line segments with knots at n1

possible outcome levels. Then, we can enumerate all n3 = 1
(n1−1)!

∏n1−1
i=1 (n2 + i− 1) elements
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of V ?
−. Our application in Section 4 uses n1 = 10, and n2 = 5, which gives n3 = 715

distinct utility functions, and a total of 1430 small LP problems for the two embedded

maximisation problems in (1). Solving (1) yields simultaneously the optimal factor portfolio

κ, and the optimal augmented portfolio λ that maximize the expected utility. Below, we

give the mathematical formulation for the first optimization problem supλ∈ΛEFN

[
u
(
λTY

)]
,

that yields the optimal augmented portfolio λ. The same formulation is used for the second

optimization supκ∈κEFN

[
u
(
κTY

)]
.

Let us define: c0,n :=
∑n1

m=n (c1,m − c1,m+1) zm, c1,n :=
∑n1

m=nwm, and

N := {n = 1, · · · , n1 : wn > 0}
⋃
{n1}. For any given u ∈ V−, supλ∈ΛEFN

[
u
(
λTY

)]
is

the optimal value of the objective function of the following LP problem in canonical form:

maxT−1

T∑
t=1

yt (2)

s.t., for t = 1, · · · , T, n ∈ N , i = 1, · · · ,M,

yt ≤ λTYtc1,n +Q−t +Q+
t , yt ≤ c0,n +Q−t +Q+

t ,

Q−t ≥ c0,n − λTYtc1,n, Q+
t ≥ λTYtc1,n − c0,n, Q−t ≥ 0, Q+

t ,≥ 0,

M∑
i=1

λi = 1, λi ≥ 0, and yt being free.

We have a set of concave utility functions of the form: v(u) =
∑p1

p=1wp min(u, zp), for the

positive part. Again, for every v ∈ V ?
+, we have at most p2 line segments with knots at p1

possible outcome levels. As before, the number of elements of V ?
+ is p3 = 1

(p1−1)!

∏p1−1
i=1 (p2 +

i− 1) = 1430, for p1 = 10 and p2 = 5.

Let us define: c0,p :=
∑p1

m=p (c1,m − c1,m+1) zm, c1,p :=
∑p1

m=pwm, and

P := {p = 1, · · · , p1 : wp > 0}
⋃
{p1}. For any given u ∈ V+, supλ∈ΛEFN

[
u
(
λTY

)]
is the
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optimal value of the objective function of the following LP problem in canonical form:

maxT−1

T∑
t=1

yt (3)

s.t., for t = 1, · · · , T, n ∈ P , i = 1, · · · ,M,

yt ≤ λTYtc1,p, yt ≤ c0,p,
M∑
i=1

λi = 1 λi ≥ 0, and yt being free.

The total run time for each computation does not exceed one minute when we use a

desktop PC with a 3.6 GHz, 6-core Intel i7 processor, with 16 GB of RAM, using MATLAB

and GAMS with the Gurobi optimization solver.

4 Empirical Application

In the empirical application, we examine if we can explain well-known stock market anomalies

by standard factors within a new breed of asset pricing models, for prospect type investor

preferences. For this purpose, we use the prospect spanning tests, both in- and out-of-sample.

4.1 Factor Models and Anomalies

We start with a benchmark factor model from a set of models that have generated support

in the recent literature, and we ask whether a characteristic identified in the literature as

stock market anomaly, is a market anomaly for prospect investors. To answer this question,

we consider three models that build on the pioneer three-factor model of Fama and French

(1993): the four-factor model of Hou, Xue and Zhang (2015), the five-factor model of Fama

and French (2015), and the four-factor model of Stambaugh and Yuan (2017). Fama and

French (1993) aim to capture the part of average stock returns left unexplained in CAPM of

Sharpe (1964) and Lintner (1965) by including, in addition to the market factor, two extra

risk factors relating to size (measured by market equity) and the ratio of book-to-market
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equity. In addition to the market excess return, the influential three-factor model of Fama

and French (1993) includes a book-to-market or "value" factor, HML, and a size factor,

SMB, based on market capitalization. Motivated by Miller and Modigliani (1961), Fama

and French (2015) five-factor model (henceforth, FF-5) augments the original Fama-French

three-factor model by two extra factors, one for profitability and another for investment.

Hou, Xue and Zhang (2015) consider a four-factor model (dubbed the q-factor model) that

includes the original market and size factors of Fama and French (1993) augmented by a

profitability and investment factor. Stambaugh and Yuan (2017) consider a four-factor model

(henceforth, M-4) including the standard market and size factors along with two composite

factors for investment and profitability. To construct the composite factors, they combine

information from 11 market anomalies relating to investment and profitability measures. We

use alternative factor models as a robustness check, namely for testing the consistency of

in- and out-of-sample results under the prospect preferences, and not for a horse race in

cross-sectional asset pricing.

The stock market anomalies we examine in this paper have a long history in the relevant

literature. A common theme in the original papers that first highlighted these patterns,

is that they all challenge the rational asset pricing paradigm as they exhibit returns that

are not in line with the risks taken. However, notwithstanding whether they are caused

by sentiment (a catch-all term that stand for all kinds of irrational decision-making) or by

market frictions (e.g. margin requirements), it is also acknowledged that most of them persist

because they cannot be “arbitraged” away. From the perspective of the Arbitrage Pricing

Theory this implies that arbitrageurs cannot trade against them without exposing themselves

to significant risks. In this paper, we test the 11 strategies used to construct Stambaugh-

Yuan factors, along with Betting against Beta, Quality minus Junk, Size, Growth Option,

Value (Book to Market), Idiosyncratic volatility and Profitability. The 11 anomalies used in

Stambaugh and Yuan (2017) are Accruals, Asset Growth, Composite Equity Issue, Distress,

Growth Profitability Premium, Investment to Assets, Momentum, Net Operating Assets,
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Net Stock Issues, O-Score, and Return on Assets. They are realigned appropriately to yield

positive average returns. In particular, anomaly variables that relate to investment activity

(Asset Growth, Investment to Assets, Net Stock Issues, Composite Equity Isues, Aaccruals)

are defined low-minus-high decile portfolio returns, rather than high-minus-low, as in Hou

et al. (2015). All the other anomalies are constructed as high-minus-low decile portfolio

returns. A short description of the 18 market anomalies that we study in the paper is given

in Appendix A (see Stambaugh and Yuan (2017) for further details). Returns of the Fama

and French 5 factors were downloaded from Kenneth French’s site. The dataset consists

of all monthly observations from January 1974 until December 2016. M-4 factor returns

and anomaly spread return series were downloaded from the websites of Robert Stambaugh

and AQR. In the Online Appendix, we report summary statistics of the factor and anomaly

returns over our sample period.

4.2 In-Sample Analysis

In this section, we test in-sample the null hypothesis that the set of standard factors prospect

spans the set enlarged with a particular market anomaly. We test separately for the Fama

and French 5 factors, the Stambaugh-Yuan 4 factors as well as Hou-Xue-Zhang 4 factors,

with respect to each one of the 18 additional anomalies. We get the subsampling distribution

of the test statistic for subsample size bT ∈ {T 0.6, T 0.7, T 0.8, T 0.9}. Using OLS regression on

the empirical quantiles qT,bT (1− α) for a significance level α = 5%, we get the estimate qBCT

for the bias-corrected critical value. We reject spanning if the test statistic ρ?T is higher than

the regression estimate qBCT .

Tables 1-3 report the test statistics ρ?T as well as the regression estimates qBCT when we

test for spanning of the alternative factor models w.r.t. each one of the 18 market anomalies.
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Table 1: Test statistics: Fama and French (FF-5) Factors
Variable Test statistic ρ?T Regression estimates qBCT Result
Accruals 0.0016 0.0025 Spanning
Asset Growth 0.0 0.0 Spanning
Composite Equity Issue 0.0015 0.0003 Reject Spanning
Distress 0.0045 0.0005 Reject Spanning
Growth Profitability Premium 0.0015 0.0012 Reject Spanning
Investment to Assets 0.0014 0.0001 Reject Spanning
Momentum 0.0696 0.0204 Reject Spanning
Net Operating Assets 0.0268 0.0009 Reject Spanning
Net Stock Issues 0.0011 0.0003 Reject Spanning
O-Score 0.0129 0.0092 Reject Spanning
Return on Assets 0.0024 0.0047 Spanning
Betting against Beta 0.0235 0.0176 Reject Spanning
Quality minus Junk 0.0088 0.0061 Reject Spanning
Size 0.0 0.0 Spanning
Growth Option 0.0 0.0 Spanning
Value (Book to Market) 0.1921 0.1878 Reject Spanning
Idiosyncratic Volatility 01959 0.0100 Reject Spanning
Profitability 0.0 0.0 Spanning

Entries report the test statistics ρ?T and the regression estimates qBCT for spanning of the
Fama and French (FF-5) model with respect to each one of the 18 market anomalies. We
reject spanning at significance level α = 5% if ρ?T > qBCT . The dataset spans the period from
January, 1974 to December, 2016.
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Table 2: Test statistics: Stambaugh-Yuan (M-4) Factors
Variable Test statistic ρ?T Regression estimates qBCT Result
Accruals 0.0081 0.0083 Spanning
Asset Growth 0.0057 0.0069 Spanning
Composite Equity Issue 0.0143 0.078 Reject Spanning
Distress 0.0533 0.0020 Reject Spanning
Growth Profitability Premium 0.0113 0.0049 Reject Spanning
Investment to Assets 0.0116 0.0164 Reject Spanning
Momentum 0.1189 0.1143 Reject Spanning
Net Operating Assets 0.0653 0.0071 Reject Spanning
Net Stock Issues 0.0145 0.0073 Reject Spanning
O-Score 0.0133 0.0122 Reject Spanning
Return on Assets 0.0012 0.0015 Spanning
Betting against Beta 0.0755 0.0703 Reject Spanning
Quality minus Junk 0.0374 0.0099 Reject Spanning
Size 0.0 0.0 Spanning
Growth Option 0.0 0.0 Spanning
Value (Book to Market) 0.2939 0.2817 Reject Spanning
Idiosyncratic Volatility 0.2593 0.1039 Reject Spanning
Profitability 0.0 0.0 Spanning

Entries report the test statistics ρ?T and the regression estimates qBCT for spanning of the
Stambaugh-Yuan (M-4) model with respect to each one of the 18 market anomalies. We
reject spanning at significance level α = 5% if ρ?T > qBCT . The dataset spans the period from
January, 1974 to December, 2016.
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Table 3: Test statistics: Hou-Xue-Zhang (q) Factors
Variable Test statistic ρ?T Regression estimates qBCT Result
Accruals 0.0106 0.0039 Reject Spannin
Asset Growth 0.0176 0.0101 Reject Spanning
Composite Equity Issue 0.0163 0.0159 Reject Spanning
Distress 0.0386 0.0133 Reject Spanning
Growth Profitability Premium 0.0084 0.0038 Reject Spanning
Investment to Assets 0.0157 0.0123 Reject Spanning
Momentum 0.0835 0.0305 Reject Spanning
Net Operating Assets 0.0449 0.0059 Reject Spanning
Net Stock Issues 0.0178 0.0170 Reject Spanning
O-Score 0.0140 0.0109 Reject Spanning
Return on Assets 0.0235 0.0321 Spanning
Betting against Beta 0.0404 0.0424 Spanning
Quality minus Junk 0.0304 0.0177 Reject Spanning
Size 0.0 0.0 Spanning
Growth Option 0.0029 0.0 Reject Spanning
Value (Book to Market) 0.2045 0.1878 Reject Spanning
Idiosyncratic Volatility 0.2386 0.0101 Reject Spanning
Profitability 0.0 0.0 Spanning

Entries report the test statistics ρ?T and the regression estimates qBCT for spanning of the
Hou-Xue-Zhang (q) model with respect to each one of the 18 market anomalies. We reject
spanning at significance level α = 5% if ρ?T > qBCT . The dataset spans the period from
January, 1974 to December, 2016.

We observe that the FF-5 model spans 6 out of 18 market anomalies, that is, Accruals,

Asset Growth, Return on Assets, Size, Growth Option, and Profitability. The M-4 model

spans the same 6 market anomalies, while the q model spans Return on Assets, Betting

against Beta, Size, and Profitability. Thus, in most cases, optimal portfolios based on the

investment opportunity set that includes a market anomaly is not spanned by the corre-

sponding optimal portfolio strategies based on the original factors. We also observe that

Return on Assets, Size, and Profitability are spanned by all the factor models, indicating

the robustness of these characteristics being not considered as genuine market anomalies by

prospect investors.
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4.3 Out-of-Sample Analysis

In this section, we examine whether the inclusion of a market anomaly in the investment

opportunity set benefits to prospect investors out-of-sample. Although we reject the null

hypothesis of prospect spanning in most cases for the in-sample tests, it is not known a

priori whether an optimal augmented portfolio also outperforms an optimal portfolio made

of factors only in an out-of-sample analysis. This is because by construction we form these

portfolios at time t, based on the information prevailing at time t, while we reap the portfolio

returns over [t, t+ 1] (next month). The out-of-sample test is a real-time exercise mimicking

the way that a real-time investor acts.

Each time the hypothesized portfolio manager with prospect preferences forms optimal

portfolios from two separate asset universes: the first universe consists only of factors from

a factor model (FF-5, M-4, q), the set K. The second universe is the respective set of

factors augmented by a single trading (spread) strategy, the set L. Portfolio managers

are assumed to solve portfolio optimization problems, motivated by the prospect spanning

framework, effectively looking for a portfolio picked from the augmented universe L that

prospect stochastically dominates all portfolios of the respective factor universe K..

The rejection of the prospect spanning hypothesis implies that there exists at least

one portfolio in L build from the factors (of each particular factor model) and one mar-

ket anomaly, which is weakly prefered to every factor portfolio in K by at least one S-shaped

utility function (see Definition 2). Such a portfolio is by construction efficient w.r.t. K (see

Definition 2.1 in Linton et al. (2014) for the SSD case which we can easily generalize to our

PSD case). The empirical version of such a portfolio is the optimal portfolio λ that maxi-

mizes ρT for the particular sample value. In what follows, and given this characterization,

we analyze the performance of such empirically optimal PSD portfolios through time, com-

pared to the performance of the optimal factor portfolios solely derived from K by prospect

investors.

We resort to backtesting experiments on a rolling horizon basis. The rolling windows
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cover the 516 months period from 01/1974 to 12/2016. At each month, we use the data

from the previous 25 years (300 monthly observations) to calibrate the procedure. We solve

the resulting optimization problem for the prospect stochastic spanning test and record the

optimal portfolios. The clock is advanced and we determine the realized returns of the

optimal portfolios from the actual returns of the various assets. Then we repeat the same

procedure for the next time period and we compute the ex post realized returns over the

period from 01/1999 to 12/2016 (216 months) for both portfolios.

We compute a number of commonly used performance measures: the average return

(Mean), the standard deviation (SD) of returns, the Sharpe ratio, the downside Sharpe ratio

(D. Sharpe ratio) of Ziemba (2005), the upside potential and downside risk (UP) ratio of

Sortino and van der Meer (1991), the opportunity cost of Simaan (2013), and a measure of

the portfolio risk-adjusted returns net of transaction costs (Return Loss) of DeMiguel et al.

(2009). The downside Sharpe and UP ratios are considered to be more appropriate measures

of performance than the typical Sharpe ratio given the asymmetric return distribution of the

anomalies. For the calculation of the opportunity cost, we use the following utility function

which satisfies the curvature of prospect theory (S-shaped): U(R) = Rα if R ≥ 0 or −γ(−R)β

if R < 0, where γ is the coefficient of loss aversion (usually γ = 2.25) and α, β < 1. We

provide a short description of those performance measures in Appendix B. In the next lines,

we only detail the results of the out-of-sample tests for the Momentum market anomaly.

The latter is well documented on diverse markets and asset classes (Asness, Moskowitz, and

Pedersen (2013)). In the Online Appendix, we report the performance measures for the 5

Fama and French, the 4 Stambaugh and Yuan and the 4 Hou-Xue-Zhang optimal factor

portfolios, and the optimal augmented portfolios for all the other market anomalies that we

test.

Table 4 reports the performance measures for the Momentum anomaly under each factor

model (Panels A, B and C, respectively). These performance measures supplement the

evidence obtained from the in-sample analysis. We observe that the Mean, the Sharpe ratio,
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downside Sharpe ratio and UP ratio of the optimal augmented portfolio are improved with

respect to the optimal factor portfolio. Although these measures are based on the first

two moments, they support the in-sample result that the set enlarged with the momentum

anomaly is not spanned by any factor model. The same is true when we take into account

transaction costs. The Return Loss is always positive. The opportunity cost measure takes

into account the entire distribution of returns under a given characterization of preferences.

We observe that augmenting the factors by Momentum increases the performance of the

optimal portfolio with respect to each factor model. The optimal weight of Momentum

varies from 40% to 99%, indicating the superior performance of this characteristic.

In the Online Appendix, we present analogous Tables for the other market anomalies.

Interestingly, based on the opportunity cost, enlarging the factor set by a market anomaly

increases the performance of an optimal portfolio in 12 out of the 18 cases with respect to FF-

5 factors (Composite Equity Issue, Distress, Growth Profitability Premium, Investment to

Assets, Momentum, Net Operating Assets, O-Score, Net Stock Issues, Betting against Beta,

Quality minus Junk, Value, and Idiosyncratic Volatility), in 10 cases with respect to M-4

factors (Composite Equity Issue, Distress, Investment to Assets, Momentum, Net Operating

Assets, Net Stock Issues, Betting against Beta, Quality minus Junk, Value, and Idiosyncratic

Volatility) and in 14 cases with respect to q factors (Accruals, Asset Growth, Composite

Equity Issue, Distress, Growth Profitability Premium, Investment to Assets, Momentum,

Net Operating Assets, O-Score, Net Stock Issues, Betting against Beta, Quality minus Junk,

Size, Value, and Idiosyncratic Volatility). For all these additional market anomalies, we

find a positive opportunity cost θ. One needs to give a positive return equal to θ to an

investor who does not include the anomalies in her portfolio so that she becomes as happy

as an investor who includes them. The computation of the opportunity cost requires the

computation of the expected utility and hence the use of the probability density function of

portfolio returns. Thus, the calculated opportunity cost has taken into account the higher

order moments in contrast to the Sharpe ratios. Therefore, the opportunity cost estimates
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provide further convincing evidence for the diversification benefits of the inclusion of the

market anomalies given their deviation from normality.

Additionally, although the rest of the performance measures depend mostly on the first

two moments of the return distribution, they give consistent results. The Return Loss

measure that takes into account transaction costs, is positive in all the above cases. This

reflects an increase in risk-adjusted performance (i.e., an increase in expected return per unit

of risk) and hence expands the investment opportunities of prospect investors. The same is

true for the UP ratio. Finally, the Sharpe ratio and the downside Sharpe ratio agree that

the performance of the optimal portfolios augmented with the above market anomalies is

improved, although the differences are small in some cases.

The analysis indicates that the Composite Equity Issue, Distress, Investment to As-

sets, Momentum, Net Operating Assets, Net Stock Issues, Quality minus Junk, Value, and

Idiosyncratic Volatility emerge as unambiguously genuine market anomalies under all fac-

tor sets, both in- and out-of-sample. Prospect investors would benefit from including these

characteristics in their portfolios, expanding the investment opportunity set offered by factor

portfolios. We stress that the prospect spanning approach is particularly robust in-sample

and out-of-sample. The remarkable consistency of in-sample and out-of-sample results offers

good incentives for adopting such an approach when exploring instances of apparent market

inefficiency.

To sum up, the in-sample spanning tests, as well as the out-of-sample analysis given

by the performance measures, indicate that in most cases (depending on the factor model

used) the investment universe augmented with a market anomaly dominates the 5 Fama and

French, the 4 Stambaugh and Yuan, and the 4 Hou-Xue-Zhang factors, yielding diversifica-

tion benefits and providing better investment opportunities for investors with prospect type

preferences towards risk.
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Table 4: Performance measures. The case of the Momentum anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0056 0.0062 0.0044 0.0048 0.0073 0.0072
SD 0.0358 0.0370 0.0388 0.0409 0.0808 0.0385
Sharpe ratio 0.1507 0.1604 0.1063 0.1117 0.0879 0.1814
D. Sharpe ratio 0.1622 0.1706 0.1078 0.1108 0.0868 0.1995
UP ratio 0.6401 0.6693 0.5646 0.5853 0.5348 0.6769
Return Loss 0.0351% 0.0205% 0.3723%
Opportunity Cost
α = β = 0.2 0.0416% 0.1446% 0.4338%
α = β = 0.4 0.0210% 0.0129% 0.4093%
α = β = 0.6 0.0129% 0.0152% 0.3229 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.5955 0.1507 -3.3717 10.9074
SMB 0.0 0.0 - -
HML 0.0 0.0 - -
RMW 0.0 0.0 - -
CMA 0.0 0.0 - -

Momentum 0.4045 0.1507 3.3717 10.9074
M-4 Factors Market 0.5331 0.2255 -1.6812 1.5383

SMB 0.0 0.0 - -
MGMT1 0.0020 0.0113 7.4184 59.9621
PERf1 0.0 0.0 - -

Momentum 0.4648 0.2273 1.6464 1.4817
q Factors Market 0.0028 0.0411 14.6969 216.000

ME 0.0 0.0 - -
IA 0.0 0.0 - -

ROE 0.0 0.0 - -
Momentum 0.9972 0.0411 -14.6969 216

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Momentum optimal portfolio. The dataset spans the
period from January, 1999 to December, 2016. Panel A report measures for the case of
the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.

5 Conclusions

In this paper, we develop and implement methods for determining whether introducing new

securities or relaxing investment constraints improves the investment opportunity set for
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prospect investors. We develop a testing procedure for prospect spanning for two nested

portfolio sets based on subsampling and standard LP.

In the empirics, we apply the prospect spanning framework to asset prices in which

investors evaluate risk according to prospect theory and examine its ability to explain 18 well-

known stock market anomalies. The setting deploys prospect theory in a fully nonparametric

way. We find that of the strategies considered, many expand the opportunity set of the

prospect investors, thus have real economic value for them.

Most importantly, we show that the prospect spanning approach is particularly robust

between in-sample and out-of-sample applications. The paper contributes to a current strand

of literature aiming to reevaluate published anomalies and discern those with real economic

content for prospect investors. From a practitioner perspective, this robust framework for

establishing investment opportunities for prospect investors can be of real value, especially

in the case of quantitative investment funds that combine talent, capital and computational

power to the purpose of exploiting the existing anomalies and discovering new ones.
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APPENDIX A: Description of Stock Market Anomalies

Below we provide the origin and a short description of the 18 market anomalies used in

the empirical application.

1. Accruals: Sloan (1996) argues that investors tend to overestimate in their earnings

expectations the persistence of the earnings’ component that is due to accruals. As a result,

firms with low accruals earn on average abnormally higher returns than firms with high

accruals.

2. Asset Growth: Cooper, Gulen, and Schill (2008) maintain that investors tend to

overreact positively right after asset expansions. According to the authors, this behavior

causes firms with high growth in their total assets to exhibit relatively lower returns over

the subsequent fiscal years.

3. Composite Equity Issues: Daniel and Titman (2006) base their analysis on a measure

of equity issuance that they devised finding that equity issuers tend to underperform non-

issuer firms.

4. Distress: Campbell, Hilscher, and Szilagyi (2008) find that firms with high default

probability tend to exhibit lower subsequent returns. This pattern is counter-intuitive in

the context of rational asset pricing, given that according to the standard models high risk

entails high expected return and vice versa.

5. Gross Profitability Premium: Novy-Marx (2013) argues that gross profit is the most

objective profitability metric. As a result, firms with the strongest gross profit have on

average higher returns than the less profitable ones.

6. Investment to Assets: Titman, Wei, and Xie (2004) argue that investors are put off

by empire-building managers who over-invest. For this reason, firms showing a significant

increase in gross property, plant, equipment or inventories tend to underperform the market.

7. Momentum: Momentum (Jegadeesh and Titman (1993)) is perhaps the most cited
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anomaly in asset pricing. Since Carhart factor model (1997), it has been included in various

reduced-form models of the SDF as a factor. The momentum effect is attributed to sentiment

and describes the pattern of “winner” stocks gaining higher subsequent returns and “loser”

stocks relatively lower.

8. Net Operating Assets: Hirshleifer et al. (2004) suggest that investors often neglect

information about cash profitability and focus instead on accounting profitability. Because

of this bias, firms with high net operating assets (measured as the cumulative difference

between operating income and free cash flow) get to have negative long-run stock returns.

9. Net Stock Issues: Ritter (1991) and Loughran and Ritter (1995) indicate that eq-

uity issuers underperform non-issuers with similar characteristics. Fama and French (2008)

demonstrate that net stock issues are negatively correlated with subsequent returns.

10. O-Score: This anomaly coincides with the distress anomaly we mentioned earlier.

In this case, the spread portfolios are constructed from stock ranking based on the O-score

(Ohlson (1980)) to measure distress likelihood.

11. Return on Assets: Chen, Novy-Marx, and Zhang (2010) associate high past return

on assets with abnormally high subsequent returns. Return on assets is measured as the

ratio of quarterly earnings to last quarter’s assets.

12. Betting against Beta: Black, Jensen and Scholes (1972) showed that low (high) beta

stocks have consistently positive (negative) risk-adjusted returns. Frazzini and Pedersen

(2014) propose an investment strategy (“betting-against-beta” (BAB)) that exploits this

anomaly by buying low-beta stocks and shorting high-beta stocks. Because of its robustness,

this anomaly is currently one of the most widely examined APT violations.

13. Quality minus Junk: Asness, Frazzini and Pedersen (2013) show that high-quality

stocks (safe, profitable, growing, and well managed) exhibit high risk-adjusted returns. The

authors attribute this pattern to mispricing.

14. Size: The market capitalization. is computed as the log of the product of price per

share and number of shares outstanding, computed at the end of the previous month.
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15. Growth Option: Growth Option measure represents the residual future-oriented firm

growth potential. This future (yet-to-be exercised) growth option measure is calculated

as the % of a firm’s market value (V) arising from future-oriented growth opportunities

(PVGO/V). It is inferred by subtracting from the current market value of the firm (V) the

perpetual discounted stream of expected operating cash flows under a no-further growth

policy (see, e.g., Kester (1984), Anderson and Garcia-Feijoo (2006), Berk, Green, and Naik

(1999)).

16. Value (Book to market): The log of book value of equity scaled by market value

of equity, computed following Fama and French (1992) and Fama and French (2008); firms

with negative book value are excluded from the analysis.

17. Idiosyncratic Volatility: Standard deviation of the residuals from a firm-level regres-

sion of daily stock returns on the daily Fama-French three factors using data from the past

month. See Ang et al. (2006).

18. Profitability.: It is measured as revenue minus cost of goods sold at time t, divided by

assets at time t-1. Stocks with high profitability ratios tend to outperform on a risk-adjusted

basis (Novy-Marx (2013), Novy-Marx and Velikov (2015)). Recent research suggests that

profitability is one of the stock return anomalies that has the largest economic significance

(see Novy-Marx (2013)).

APPENDIX B: Description of Performance Measures

For the downside Sharpe ratio, first we need to calculate the downside variance (or

more precisely the downside risk), σ2
P−

=
∑T

t=1(xt−x̄)2−
T−1

, where the benchmark x̄ is zero, and

the xt taken are those returns of portfolio P at month t below x̄, i.e., those t of the T

months with losses. To get the total variance, we use twice the downside variance namely

2σ2
P−

so that the downside Sharpe ratio is, SP =
R̄p−R̄f√

2σP−
, where R̄p is the average period

return of portfolio P and R̄f is the average risk free rate. The UP ratio compares the
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upside potential to the shortfall risk over a specific target (benchmark) and is computed

as follows. Let Rt be the realized monthly return of portfolio P for t = 1, ..., T of the

backtesting period, where T = 216 is the number of experiments performed and let ρt be

respectively the return of the benchmark (risk free rate) for the same period. Then, we have,

UP ratio =
1
K

∑K
t=1 max[0,Rt−ρt]√

1
K

∑K
t=1(max[0,ρt−Rt])2

. It is obvious that the numerator of the above ratio is the

average excess return over the benchmark and so reflects upside potential. In the same way,

the denominator measures downside risk, i.e. shortfall risk over the benchmark.

Next, we use the concept of opportunity cost presented in Simaan (2013) to analyse the

economic significance of the performance difference of the two optimal portfolios. Let RAug

and RF be the realized returns of the optimal augmented and the optimal factors portfolios,

respectively. Then, the opportunity cost θ is defined as the return that needs to be added

to (or subtracted from) the optimal factors portfolio return RF , so that the investor is

indifferent (in utility terms) between the strategies imposed by the two different investment

opportunity sets, i.e., E[U(1 +RF + θ)] = E[U(1 +RAug)].

A positive (negative) opportunity cost implies that the investor is better (worse) off if the

investment opportunity set allows for the market anomaly factor prospect type investing.

The opportunity cost takes into account the entire probability density function of asset

returns and hence it is suitable to evaluate strategies even when the asset return distribution

is not normal. For the calculation of the opportunity cost, we use the following utility

function which satisfies the curvature of prospect theory (S-shaped): U(R) = Rα if R ≥ 0 or

−γ(−R)β if R < 0, where γ is the coefficient of loss aversion (usually γ = 2.25) and α, β < 1.

Finally, we evaluate the performance of the two portfolios under the risk-adjusted (net

of transaction costs) returns measure, proposed by DeMiguel et al. (2009) which indicates

the way that the proportional transaction cost, generated by the portfolio turnover, affects

the portfolio returns. Let trc be the proportional transaction cost, and RP,t+1 the realized

return of portfolio P at time t+1. The change in the net of transaction cost wealth NWP of

portfolio P through time is, NWP,t+1 = NWP,t(1 +RP,t+1)[1− trc×
∑N

i=1(|wP,i,t+1−wP,i,t|).
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The portfolio return, net of transaction costs is defined as RTCP,t+1 =
NWP,t+1

NWP,t
− 1. Let µF

and µAug be the out-of-sample mean of monthly RTC factros and the Augmented optimal

portfolio, respectively, and σF and σAug be the corresponding standard deviations. Then,

the return-loss measure is, RLoss =
µAug

σAug
× σF − µF , i.e., the additional return needed so

that the factors performs equally well with the optimal augmented with the market anomaly

portfolio. We follow the literature and use 35 bps for the transaction cost.
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Spanning analysis of stock market anomalies under

Prospect Stochastic Dominance

Stelios Arvanitis, Olivier Scaillet, Nikolas Topaloglou

Online Appendix

This online Appendix contains: i) the limiting properties of the testing procedures under

sequences of local alternatives, ii) a Monte Carlo study of the finite sample properties of the

test, iii) the proofs of the main results, as well as auxiliary lemmata and their proofs, iv)

summary statistics of the factor and anomaly returns over our sample period from January

1974 to December 2016 and v) additional empirical results on out-of-sample analysis of

market anomalies. We keep the numbering of assumptions and results as in the main text.

We introduce a local numbering for assumptions and results that only appear here.

1 Local Alternatives

We enhance the consistency results of Theorem 9 by considering the limiting behavior of

the testing procedure under a sequence of local to spanning alternatives. In this respect,  
G

denotes weak convergence under the measure with cdf G. Furthermore, L0
2 (F ) denotes the

space of random variables with zero mean and finite second moment.

Assumption 1 (LOCAL). There exists a sequence of cdf (F ?
t )t∈N such that for some h ∈

1



L0
2 (F )

∫
Rn

[√
T
[√

dF ?
T −
√
dF
]
− h
√
dF
]
→ 0, as T →∞.

Assumptions 5 and LOCAL along with Theorem 7.3 of Rio (2000) and the analogous

extension of Theorem 1 of Wellner (1992) imply that
√
T (FT − F ) 

F ?
t

GF +δh where δh (x) :=∫ x1
−∞

∫ x2
−∞ . . .

∫ xn
−∞ hdF for any x ∈ Rn.

Proposition 2 (LOCLIM). Under Assumptions 5 and LOCAL, as T →∞,

ρT  
F ?
t

ρ?∞ := max
i=+,−

sup
λ

sup
z

inf
κ

[Pi (zi, λ, κ,GF ) + Pih (z, λ, κ, F )] , (λ, z, κ) ∈ Γi,

where

P1h (z, λ, κ, F ) := Jh (z, 0, κ, F )− Jh (z, 0, λ, F ) , z ∈ R−,

P2h (z, λ, κ, F ) := Jh (0, z, κ, F )− Jh (0, z, λ, F ) , z ∈ R++,

Jh(z1, z2, λ;F ) :=

∫ z2

z1

Gh (u, λ, F ) du,

and

Gh(z, λ, F ) :=

∫
Rn

I{λTru ≤ z}h (u) dF (u).

Using the premises of the previous proposition and if Pih > C > 0 for all i then a result

such as the C2 one in Theorem 1 of Wellner (1992), and arguments analogous to the proof

of Proposition 6 imply that

ρ (F ?
T ) =

1√
T

max
i=+,−

sup
λ

sup
z

inf
κ

[Pih (z, λ, κ, F )] , (λ, z, κ) ∈ Γi.

Hence, in such a case, we have that K �P L, and we can construct the following sequence
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of local alternative hypotheses:

H?
T : ρ (F ?

T ) =
c√
T
,

where c := maxi=+,− supλ supz infκ [Pih (z, λ, κ, F )] > 0 and (λ, z, κ) ∈ Γi. Obviously, H?
T

approximates the null hypothesis as T →∞.

Proposition 3 (LOCUN). Suppose that Assumptions 5 and LOCAL hold, Pih > C > 0,

while, for some λ ∈ L−K, infY0 λ
TrY0 ≤ 0, there exists (κ, z) ∈ K�λ ×R++ with (λ, κ, z) ∈ Γ2,

and that if (λ, κ?, z?) ∈ Γ2 for some κ? 6= κ then z? 6= z. Under H?
T and as T →∞,

lim
T→∞

P (ρT > qT,bT (1− α)) = P (ρ?∞ > q (ρ∞, α)) > α.

Hence the test is asymptotically locally unbiased under the chosen sequence of local

alternatives.

2 Monte Carlo Study

We now design and perform a set of Monte Carlo experiments to evaluate the size and

power of the proposed tests in finite samples. We do so in a framework of conditional

heteroskedasticity that is partially consistent with empirical findings on returns of financial

data and relevant to the empirical application that we develop in the main text. We construct

(Yt)t∈Z as a vector GARCH(1,1) process that also contains an appropriately transformed

element. Under the relevant restrictions, this allows for both temporal as well as cross

sectional dependence between the random variables that constitute the vector process.

Suppose that zt
iid∼ N (0, 1) , t ∈ Z. Furthermore for all t ∈ Z, for i = 1, 2, 3, ωi, αi, βi ∈

R++, µi ∈ R+ define yit = µi + zth
1/2
it

, with hit = ωi +
(
αiz

2
t−1 + βi

)
hit−1 , such that

E (αiz
2
0 + βi)

1+ε
< 1, for some ε > 0, while, for i = 4 and v1, v2 ∈ R, define y4t =

v1

(
zth

1/2
3t

)
+

+ v2

(
zth

1/2
3t

)
−
. Suppose that Yt = (y1t , y2t , y3t , y4t)

′. Arvanitis and Topaloglou
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(2017) establish that the vector process above satisfies our assumption framework. Let

τ = (0, 0, 1, 0), τ ?= (0, 0, 0, 1) and L = {(λ, 1− λ, 0, 0) , λ ∈ [0, 1] , τ, τ ?}. Using this portfolio

space we obtain the following result on Prospect-spanning. Its proof follows directly from

Proposition 4 of Arvanitis and Topaloglou (2017) and it essentially depends on the fact that

τ ? is a Prospect super-efficient portfolio w.r.t. the portfolio space.

Proposition 4 (MC). If µi = 0 for i = 1, 2, 3, |v1| >
√

max{ωi,αi,βi, i=1,2,3}
min{ωi,αi,βi, i=1,2,3} and |v2| <√

min{ωi,αi,βi, i=1,2,3}
max{ωi,αi,βi, i=1,2,3} then K := {(λ, 1− λ, 0, 0) , λ ∈ [0, 1]} ∪ {τ ?} Prospect-spans L, while

K− {τ ?} does not Prospect-span L.

2.1 Scenarios and Results

Scenarios We use as DGPs instances of the GARCH processes conforming to the previous

Proposition 4 in order to evaluate the size and power under a fixed T .

Size Evaluation Scenario-Parameters Selection: To approximate the fixed T size,

we test for PSD spanning by setting µi = 0 for i = 1, 2, 3, ω1 = 0.5, ω2 = 0.5, and ω3 = 0.5,

a1 = 0.4, a2 = 0.45, and a3 = 0.5 and β1 = 0.5, β2 = 0.45, β3 = 0.4, v1 = 1.5 and v2 = 0.5.

In this case, we have that |v1| >
√

max{ωi,ai,βi, i=1,2,3}
min{ωi,ai,βi, i=1,2,3} and |v2| <

√
min{ωi,ai,βi, i=1,2,3}
max{ωi,ai,βi, i=1,2,3} .

Power evaluation Scenario-Parameters Selection: To approximate the fixed T

power, we test for PSD spanning by setting µi = 0 for i = 1, 2, 3, ω1 = 0.5, ω2 = 0.5, and ω3 =

0.8, a1 = 0.3, a2 = 0.4, and a3 = 0.45 and β1 = 0.3, β2 = 0.4, β3 = 0.45, v1 = 2 and v2 = 0.2.

In this case, we have that ω1 < ω3, a1 < a3 and β1 < β3.

Results We present our Monte Carlo results in Table 1. We use three cases. In the first

case, T = 300 and we get the subsampling distribution of the test statistic for subsample

size bT ∈ {50, 100, 150, 200}. In the second case, T = 500 and bT ∈ {100, 200, 300, 400}.

Finally, in the third case, T = 1000 and bT ∈ {120, 240, 360, 480}. We present the results
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using the original subsampling critical values (without bias correction) as well as the ones

obtained using the bias correction method. We observe that for small samples (T=300 and

T=500) the bias correction method is more efficient and more powerful. The test with the

bias correction method seems to perform well in all cases with an empirical size close to 5%

and an empirical power above 90% for a nominal size α = 5%.

We observe that the computational time is not increasing with the number of assets, it

is only increasing with the number of observations.

Monte Carlo Results
Without bias correction

Cases T=300 T=500 T=1000
Empirical size 12.9% 11.8% 9.5%
Empirical power 82.6% 85.8% 90.2%

With bias correction
Cases T=300 T=500 T=1000
Empirical size 3.9% 4.6% 4.1%
Empirical power 91.5% 92.3% 94.3%

Table 1: Monte Carlo Results. Entries report the empirical size and empirical power based
on 1000 replications and a nominal size α = 5%. The rejection probabilities are calculated
both without and with the bias correction method.

3 Proofs

3.1 Proofs of Main Results

Proof of Lemma 3. i. (⇐) If K <P L, we have from Definition 1 that, for any λ, there

exists some κ such that supz∈A1
P1 (z, λ, κ, F ) ≤ 0 and supz∈A2

P2 (z, λ, κ, F ) ≤ 0. This

implies that maxi=1,2 supz∈Ai
infκ∈K Pi (z, λ, κ, F ) ≤ 0, which in turn implies that ρ (F ) ≤ 0.

Since K is closed and thereby compact, the Dominated Convergence Theorem implies that

J (z, 0, κ, F ) is continuous w.r.t. κ. This along with the compactness of K implies that

arg minκ∈K J (z, 0, κ, F ) is non empty. Let κ? be an element of the latter. Then, the first

equality follows from ρ (F ) ≥ infκ∈K J (z, 0, κ, F ) − J (z, 0, κ?, F ) = 0. If K �P L then for

5



some λ? ∈ L, and any κ ∈ K, there exists some i? and z? ∈ Ai? such that Pi? (z?, λ?, κ, F ) > 0.

Then the continuity of J (z, 0, κ, F ) and J (0, λ, κ, F ) w.r.t. κ and the compactness of K,

implies that for any z ∈ Ai,∃κλ,z,i ∈ K such that infκ∈K Pi (z, λ, κ, F ) = Pi (z, λ, κλ,z,i, F ),

and thereby ρ (F ) ≥ Pi? (z?, λ?, κλ?,z?,i? , F ) > 0.

ii. (⇒) If ρ (F ) = 0, then for any λ ∈ L we get that maxi=1,2 supz∈Ai
infκ∈K Pi (z, λ, κ, F ) ≤

0. Hence, there exists an element of K for which Pi (z, λ, κ, F ) ≤ 0, for every z ∈ Ai, i =

1, 2.

Proof of Lemma 4. Integrating by parts, for any −∞ < α < β < +∞, we have that

∫ β

α

G (u, λ, F ) du = (u− β)G (u, λ, F )|βα −
∫ β

α

(u− β) dG (u, λ, F )

= (β − α)G (α, λ, F )−
∫
R

(u− β) 1α≤u≤βdG (u, λ, F )

=

∫
R

[(β − α) 1u≤α + (β − u) 1α≤u≤β] dG (u, λ, F ) .

Hence, for α = z ∈ R−, β = 0, we obtain from Definition 1 that

P1 (z, λ, κ, F ) =

∫
R

[−z1u≤z − u1z≤u≤0] d [G (u, κ, F )−G (u, λ, F )]

=

∫
R

[z1u≤z + u1z≤u≤0] d [G (u, λ, F )−G (u, κ, F )] .

Analogously, for α = 0, β = z ∈ R++, we obtain from Definition 1 that

P2 (z, λ, κ, F ) =

∫
R

[z1u≤0 + (z − u) 10≤u≤z] d [G (u, κ, F )−G (u, λ, F )]

=

∫
R

[−u10≤u≤z + z1−∞<u≤z] d [G (u, κ, F )−G (u, λ, F )]

=

∫
R

[u10≤u≤z − z(1− 1z≤u<+∞)] d [G (u, λ, F )−G (u, κ, F )]
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=

∫
R

[u10≤u≤z + z1z≤u<+∞] d [G (u, λ, F )−G (u, κ, F )] .

The previous along with Fubini Theorem, enabled by the existence of the first moment for

the elements ofW−,W+, and supposing that the analogous suprema and infima exist, imply

that for any λ, κ,

sup
z≤0

inf
κ∈K

P1 (z, λ, κ, F ) = sup
w∈W−

inf
κ∈K

∫
R−

P1 (z, λ, κ, F ) dw (z)

= sup
w∈W−

inf
κ∈K

∫
R−

∫
R

[z1u≤z + u1z≤u≤0] d [G (u, λ, F )−G (u, κ, F )] dw (z)

= sup
w∈W−

inf
κ∈K

∫
R−

∫
R−

[z1u≤z + u1z≤u≤0] dw (z) d [G (u, λ, F )−G (u, κ, F )]

= sup
vw∈V−

[
Eλ [1u≤0vw (u)]− sup

κ∈K
Eκ [1u≤0vw (u)]

]
,

and analogously,

sup
z≥0

inf
κ∈K

P2 (z, λ, κ, F ) = sup
w∈W+

inf
κ∈K

∫
R+

P2 (z, λ, κ, F ) dw (x)

= sup
vw∈V+

[
Eλ [1u≥0vw (u)]− sup

κ∈K
Eκ [1u≥0vw (u)]

]
.

This and the commutativity of suprema imply that

ρ (F ) = max
i=1,2

sup
vw∈Vi

[
sup
λ∈L

Eλ [1u∈Ai
vw (u)]− sup

κ∈K
Eκ [1u∈Ai

vw (u)]

]
,

and the first result follows. For the second one, due to Lemma 3, the previous implies that

K <P L iff, maxi=1,2 supvw∈Vi [supλ∈L Eλ [1u∈Ai
vw (u)]− supκ∈K Eκ [1u∈Ai

vw (u)]] = 0. If the

latter holds then supvw∈Vi [supλ∈L Eλ [1u∈Ai
vw (u)]− supκ∈K Eκ [1u∈Ai

vw (u)]] ≤ 0, ∀i = 1, 2,

which due to the convexity of K and a double application of the Sion (1958) Minimax Theo-

rem implies that supv∈V [supλ∈L Eλ [v]− supκ∈K Eκ [v]] ≤ 0, and the result follows fromK⊆ L.

7



Now suppose that supv∈V [supλ∈L Eλ [v]− supκ∈K Eκ [v]] = 0, which implies from K ⊆ L that

supv∈V? supλ∈L infκ∈K [Eλ [v]− Eκ [v]] ≤ 0, supv∈V? supλ∈L infκ∈K [Eλ [v]− Eκ [v]] ≤ 0, where

V? =

v : R→ R, v (u) =


vw (u) , u ≤ 0

0, u ≥ 0

, where vw ∈ V−

 and

V ? =

v : R→ R, v (u) =


0, u ≤ 0

vw (u) , u ≥ 0

, where vw ∈ V+

. Using the obvious identi-

fication of V?, V ? with V−, V+, the latter display implies that

sup
vw∈Vi

[
sup
λ∈L

Eλ [1u∈Ai
vw (u)]− sup

κ∈K
Eκ [1u∈Ai

vw (u)]

]
≤ 0, ∀i = 1, 2,

and the result follows from K ⊆ L.

Proof of Proposition 6. The results in the auxiliary Lemma 15 imply that P1

(
z1, λ, κ,

√
T (FT − F )

)
P2

(
z2, λ, κ,

√
T (FT − F )

)
 weakly converges to

 P1 (z1, λ, κ,GF )

P2 (z2, λ, κ,GF )

 w.r.t. to the prod-

uct topology of continuous (w.r.t. (z1, z2, λ)) epi-convergence (w.r.t. κ) on the product of the

relevant spaces of lower semi-continuous lsc real valued functions (see e.g. Knight (1999)

for the dual notion of epi-convergence). This product space is metrizable as complete and

separable (see again Knight (1999)). Hence, Skorokhod representations are applicable (as

above, see for example Theorem 1 in Cortissoz (2007)) and thereby for any (z1, z2, λ) and any

sequence (z1,T , z2,T , λT )→ (z1, z2, λ), there exist an enhanced probability space and processes P1,T (z1, λ, κ)

P2,T (z2, λ, κ)

 d
=

 P1

(
z1,T , λT , κ,

√
T (FT − F )

)
P2

(
z2,T , λT , κ,

√
T (FT − F )

)
,

 P ?
1 (z1, λ, κ)

P ?
2 (z2, λ, κ)

 d
=

 P1 (z1, λ, κ,GF )

P2 (z2, λ, κ,GF )

,

defined on it such that

 P1,T

P2,T

→
 P ?

1

P ?
2

 almost surely, w.r.t. to the product topology
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of epi-convergence, where d
= denotes equality in distribution. Notice that,

 P1

(
z1,T , λT , κ,

√
TFT

)
P2

(
z2,T , λT , κ,

√
TFT

)
 d

=

 P1,T

P2,T

+
√
T

 P1 (z1,T , λT , κ, F )

P2 (z2,T , λT , κ, F )

 ,

and for each i consider the function

P∞i (zi, λ, κ) :=


P ?
i (zi, λ, κ) , Pi (zi, λ, κ, F ) = 0

+∞, Pi (zi, λ, κ, F ) > 0

−∞, Pi (zi, λ, κ, F ) < 0

.

Notice that for P∞i (zi, λ, κ) = P ?
i (zi, λ, κ) for each (zi, λ, κ) ∈ Γi. Suppose that, H0 holds.

Then, for each i and for any compact K that contains κ ∈ K such that (zi,T , λT , κ) converges

on the boundary of Γi we have that almost surely,

lim infT→∞ infK Pi

(
zi,T , λT , κ,

√
TFT

)
≥ infK Pi (zi, λ, κ,GF ) + lim infT→∞

√
T infK Pi (zi,T , λT , κ, F )

≥ infK P
∞
i (zi, λ, κ) .

Hence, due to Proposition 3.2.(ii)-(iii) (ch. 5, p. 337) of Molchanov (2006), Pi
(
zi, λ, κ,

√
TFT

)
almost surely epi-converges w.r.t. κ, continuously w.r.t. (zi, λ) to P∞i (zi, λ, κ). The com-

pactness of K and Theorem 3.4 (ch. 5, p. 338) of Molchanov (2006) imply that, almost

surely

inf
κ
Pi

(
zi,T , λT , κ,

√
TFT

)
→ inf

κ
P∞i (zi, λ, κ) =


infκ P

?
i (zi, λ, κ) , ∀κ ∈ K�λ , (zi, λ, κ) ∈ Γi

−∞ ∃κ ∈ K�λ , (zi, λ, κ) /∈ Γi

.

(1)

The existence of z, the compactness of L, the fact that Pi
(
zi, λ, κ,

√
TFT

)
is a mono-
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tone transformation of Pi (zi, λ, κ, FT ), the fact that continuous convergence implies hypo-

convergence by Theorem 7.11 of Rockafellar and Wets (2009), the dual version of Theorem

3.4 of Molchanov (2006), the fact that Γi 6= ∅ for all i, imply the result by reverting to the

original probability space.

Proof of Theorem 9. The first result follows by a direct application of Theorem 3.5.1.i of

Politis et al. (1999) due to the results of Proposition 6, since the limiting cdf is continuous at

any q1−α for all α ∈
(
0, 1

2

)
due to the auxiliary Lemma 16. Notice that if Ha is true then for

λ? ∈ L−K, and any κ ∈ K there exists i?, z? ∈ Ai? such that Pi? (z?, λ?, κ, F ) > 0. Then we

have that ρT ≥ infκ∈K Pi?
(
z?, λ?, κ,

√
T (FT − F )

)
+
√
T infκ∈K Pi? (z?, λ?, κ, F ) , and due to

arguments analogous to the ones used in the proof of Proposition 6, we have that the first

term in the rhs of the last display is asymptotically tight, while due to the arguments used

in the proof of Proposition 3, the second term in the rhs of the last display diverges to +∞.

The result follows from the properties of bT .

Proof of Proposition LOCLIM. Analogous to the proof of Proposition 6.

Proof of Proposition LOCUN. Follows directly by Proposition LOCLIM and Theorem 3.5.1.iii

of Politis et al. (1999).

Proof of Proposition 10. First notice that the integration by parts formula and the proof of

Lemma 4 imply that

ρT =
√
T max

i=1,2
sup
vw∈Vi

[
sup
λ∈L

EFT

[
1λTY ∈Ai

vw
(
λTY

)]
− sup

κ∈K
EFT

[
1κTY ∈Ai

vw
(
kTY

)]]
.

Since V ?
i ⊂ Vi, i = −,+ (as a matter of fact, we have that P a.s. ρT ≥ ρ?T ), the result

obtains if EFT

[
1λTY ∈Ai

v
(
λTY

)]
converges uniformly P a.s. to EFT

[
1λTY ∈Ai

vw
(
λTY

)]
on

Vi × L × Ri, i = −,+. This follows from the compactness of Ri, the Density Theorem

(see Theorem 15.10 of Aliprantis and Border (2006)), and Theorem 15.11 of Aliprantis and

Border (2006).
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Proof of Proposition MC. From Proposition 4 of Arvanitis and Topaloglou (2017), we have

that τ ? strictly Prospect dominates every portfolio in L. Hence K <P L and thereby K ⊃

{τ ?} <P L. Due to the same reasoning there is no element in K − {τ ?} that Prospect

dominates τ ?. Hence K− {τ ?} cannot Prospect-span L.

3.2 Auxiliary Lemmata

The following are auxiliary results used in the proofs above.

Lemma 5. Under Assumption 5

 P1

(
z1, λ, κ,

√
T (FT − F )

)
P2

(
z2, λ, κ,

√
T (FT − F )

)
 

 P1 (z1, λ, κ,GF )

P2 (z2, λ, κ,GF )


as random elements with values on the space of R2-valued bounded functions on

L×K× R− × R++ equiped with the sup-norm. The limiting process has continuous sample

paths.

Proof. See Lemma 2 in Arvanitis and Topaloglou (2017).

Lemma 6. Under Assumptions 5, P (ρ∞ ≥ 0) = 1, its cdf is absolutely continuous on

(0,+∞) and it may have a jump discontinuity at zero. Suppose moreover that for λ ∈

L − K, infY0 λ
TrY0 ≤ 0 and there exists (κ, z) ∈ K�λ × R++ with (λ, κ, z) ∈ Γ2 and that if

(λ, κ?, z?) ∈ Γ2 for κ? 6= κ then z? 6= z. Then P (ρ∞ > 0) ≥ 1
2
.

Proof. Notice first that for all (λ, κ), Pi
(
λ, κ,mini≤N,t≤T (Yt) ,

√
TFT

)
= 0, for the i that

corresponds to the sign of z which then implies that Pi
(
z, λ, κ,

√
TFT

)
≥ 0 a.s., and then

due to the Portmanteau Theorem and Proposition 6, we get 0 = lim infT→∞ P (ρT < 0) ≥

P (ρ∞ < 0) . Now, for Λ = L×K×{1, 2}×R−×R++ where {1, 2} is equipped with the discrete

metric, consider Xµ := 1i=1P1 (z1, λ, κ,GF ) + 1i=2P2 (z2, λ, κ,GF ), for µ = (λ, κ, i, z1, z2), and

1j is the indicator of {j}. Xµ is zero mean Gaussian and has continuous sample paths due
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to the final assertion of Lemma 5. Since Pi (z, κ, κ,GF ) = 0 almost surely for all z and i, and

due Lemma 18.15 of van der Vaart (2000), we have that for µ? = (κ, κ, i, z1, z2)

0 ≤ σ2 := sup
Λ
E
(
X2
µ

)
= sup

Λ
E
(
(Xµ −Xµ?)2) ≤ sup

µ,v∈Λ
E
(
(Xµ −Xv)

2) < +∞.

Hence due to the zero mean function of Xµ, and Furnique inequality (see Relation (1,1) in

Samorodnitsky (1991)), we have that for 0 < ε < 1, there exists κ (ε), such that

E
(

sup
Λ
X2
µ

)
=

∫ +∞

0

P
(

sup
Λ
|Xµ| >

√
y

)
dy ≤ 2κ (ε)

∫ +∞

0

exp

(
− (1− ε)

2σ2
y

)
dy < +∞.

Then Ch. 2 of Nualart (2006), (see the remark after the proof of Proposition 2.1.11 (p.

109)) implies the existence of the square integrable Malliavin derivative for Xµ. The zero

mean Gaussianity, via the exclusion of P-negligible events, implies that Xµ is zero only

when κ = λ or κ 6= λ and z ≤ inf Y0, and at most only then that Xµ has degenerate

variance. Hence, Nualart (2006) implies then that the Malliavin derivative of Xµ equals

zero only then. The previous lines imply the validity of Assumption 1 of Arvanitis, Scaillet

and Topaloglou (2019) for T = {0} in their notation, and the second assertion follows by

Theorem 1 there. For the final assertion notice that since infY0 λ
TrY0 ≤ 0 and λ ∈ Λ −K,

then Var (P2 (z, λ, κ,GF )) > 0 due to Assumption 5. Then since for any (λ, κ?, z?) ∈ Γ2

with κ? 6= κ then z? 6= z, we have that P (supz infκ P2 (z, λ, κ,GF ) > 0, (λ, κ, z) ∈ Γ2) =

P (supz P2 (z, λ, κ,GF ) > 0, (λ, κ, z) ∈ Γ2) ≥ P (P2 (z, λ, κ,GF ) > 0, (λ, κ, z) ∈ Γ2) = 1
2
, due

to non-degeneracy and zero mean Gaussianity. We deduce the result since P (ρ∞ > 0) is

greater than or equal from the probability in the lhs of the inequality.

12



4 Summary Statistics of the Factor and Anomaly Re-

turns

Table 2 reports summary statistics of the factor and anomaly returns over our sample period.

Table 2: Descriptive Statistics of monthly returns
Panel Composite EquityA: Factor Models Mean SD Skewness Kurtosis Sharpe ratio
Market 0.0098 0.0454 -0.5234 2.0989 0.1306
FF-5 model
SMB 0.0028 0.0299 0.3853 4.2534 -0.0363
HML 0.0036 0.0293 0.0777 2.1566 -0.0108
RMW 0.0030 0.0235 -0.3615 12.444 -0.0387
CMA 0.0034 0.0198 0.3913 1.9190 -0.0251
M-4 model
SMB 0.0045 0.0280 0.2565 2.0487 0.0198
MGMT1 0.0061 0.0283 0.1510 1.8210 0.0789
PERF1 0.0065 0.0393 -0.0486 3.8711 0.0650
q model
ME 0.0034 0.0305 0.6317 6.3636 -0.0150
IA 0.0040 0.0184 0.2052 1.8422 0.0041
ROE 0.0055 0.0261 -0.7203 4.8811 0.0624
Panel B: Anomalies Mean SD Skewness Kurtosis Sharpe ratio
Accruals 0.0031 0.0310 0.0066 1.0947 -0.0272
Asset Growth 0.0052 0.0328 0.5986 3.6047 0.0390
Composite Equity Issues 0.0049 0.0337 0.0480 2.3218 0.0301
Distress 0.0045 0.0638 0.0830 3.6412 0.0102
Growth Profitability Premium 0.0021 0.0377 0.2643 1.2312 -0.0480
Investment to Assets 0.0053 0.0291 0.0804 0.1216 0.0478
Momentum 0.0107 0.0652 -0.8537 5.5629 0.1046
Net Operating Assets 0.0056 0.0291 0.1552 1.0253 0.0595
O-Score 0.000 0.0362 0.2574 1.1787 -0.1070
Return on Assets 0.0057 0.0417 0.3637 2.6874 0.0425
Net Stock Issues 0.0051 0.0271 0.1013 2.5132 0.0433
Betting against Beta 0.0088 0.0340 -0.6509 3.3393 0.1431
Quality minus Junk 0.0051 0.0454 0.0979 1.5959 0.0269
Size -0.0186 0.0637 -1.8285 8.4206 -0.3533
Growth Option -0.0218 0.0535 2.0057 10.1429 -0.4819
Value (Book to Market) 0.0181 0.0596 0.09919 13.4067 0.2384
Idiosyncratic Volatility 0.0103 0.0857 1.8921 8.6201 0.0743
Profitability -0.0037 0.0515 -1.9601 8.9951 -0.1481

Entries report the descriptive statistics of the factor and anomaly returns. The dataset spans
the period from January, 1974 to December, 2016.
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5 Out-of-Sample Analysis: Tables

Tables 3-19 reports the performance measures for the 5 Fama and French, the 4 Stambaugh

and Yuan and the 4 Hou-Xue-Zhang optimal factor portfolios, and the augmented portfolios

with each of the market anomaly (Panels A, B and C respectively).

Table 3: Performance measures. The case of the Accruals anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0059 0.0043 0.0068 0.0062 0.0033 0.0028
SD 0.0268 0.0278 0.0183 0.0182 0.0170 0.0137
Sharpe ratio 0.2113 0.1477 0.3606 0.3274 0.1778 0.1862
D. Sharpe ratio 0.2344 0.1645 0.5318 0.4538 0.1912 0.2087
UP ratio 0.7288 0.6683 1.0322 0.9529 0.5671 0.5859
Return Loss -0.1715% -0.0607% 0.0202%
Opportunity Cost
α = β = 0.2 -0.7316% -0.4870% 0.0201%
α = β = 0.4 -0.3076% -0.1571% 0.0079%
α = β = 0.6 -0.1321% -0.0567% 0.0074 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.5707 0.0548 0.0215 -0.0380
SMB 0.0 0.0 - -
HML 0.0842 0.0952 0.5712 -1.1834
RMW 0.0050 0.0127 2.4771 5.0953
CMA 0.0 0.0 - -

Accruals 0.3402 0.0695 0.0788 -1.2977
M-4 Factors Market 0.3510 0.2023 0.7799 -1.2026

SMB 0.1108 0.0850 -0.2305 -1.4947
MGMT1 0.2939 0.1477 -1.0372 -0.6208
PERf1 0.1238 0.0835 -0.6683 -1.4185
Accruals 0.1207 0.1052 0.8907 -1.0240

q Factors Market 0.1290 0.0397 1.4982 3.5138
ME 0.0388 0.0561 0.8400 -1.1400
IA 0.1237 0.1683 0.7041 -1.4664

ROE 0.5109 0.1550 -0.4084 -1.4611
Accruals 0.1975 0.0637 -0.0610 -1.0143

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Accruals optimal portfolio. The dataset spans the period
from January, 1999 to December, 2016. Panel A report measures for the case of the FF-5
factors. Panel B for the case of the M-4 factors, while panel C for the case of the q factors.
In the second half, the Table exhibits the descriptive statistics of the weight allocation of
the optimal augmented portfolios.
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Table 4: Performance measures. The case of the Asset Growth anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0056 0.0056 0.0047 0.0048 0.0028 0.0033
SD 0.0213 0.0215 0.0176 0.0176 0.0201 0.0219
Sharpe ratio 0.2511 0.2503 0.2563 0.2560 0.1295 0.1404
D. Sharpe ratio 0.2870 0.2894 0.2847 0.2836 0.1400 0.1590
UP ratio 0.7416 0.7406 0.6359 0.6359 0.5316 0.5559
Return Loss -0.0019% -0.0005% 0.0199%
Opportunity Cost
α = β = 0.2 -0.1492% -0.0007% 0.1506%
α = β = 0.4 -0.0358% -0.0005% 0.0400%
α = β = 0.6 -0.0064% -0.0003% 0.0120 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.4177 0.1572 1.0019 0.1074
SMB 0.0056 0.0188 3.8407 14.8344
HML 0.1797 0.0713 -1.2210 0.7154
RMW 0.2346 0.1295 -0.7992 -0.8630
CMA 0.0381 0.0791 2.3286 4.6684

Asset Growth 0.1243 0.0667 0.5853 1.6736
M-4 Factors Market 0.2406 0.1154 3.7302 18.5626

SMB 0.1508 0.0808 -1.1610 -0.4733
MGMT1 0.4274 0.0533 -4.9232 37.9211
PERf1 0.1812 0.0488 -1.4616 4.6238

Asset Growth 0.0 0.0 - -
q Factors Market 0.1084 0.0373 0.8722 0.8554

ME 0.0049 0.0171 3.4229 10.5101
IA 0.1127 0.1367 0.6434 -1.2765

ROE 0.5883 0.1091 -0.2565 -1.0208
Asset Growth 0.1857 0.0790 -0.2119 -1.0005

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Asset Growth optimal portfolio. The dataset spans the
period from January, 1999 to December, 2016. Panel A report measures for the case of
the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 5: Performance measures. The case of the Composite Equity Issues anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0045 0.0050 0.0048 0.0048 0.0033 0.0036
SD 0.0235 0.0228 0.0176 0.0177 0.0144 0.0138
Sharpe ratio 0.1832 0.2107 0.2574 0.2582 0.2133 0.2417
D. Sharpe ratio 0.1944 0.2255 0.2869 0.2870 0.2658 0.3199
UP ratio 0.6421 0.6612 0.6413 0.6404 0.6568 0.7168
Return Loss 0.0655% 0.0013% 0.0419%
Opportunity Cost
α = β = 0.2 0.0918% 0.0203% 0.2121%
α = β = 0.4 0.0807% 0.0045% 0.0836%
α = β = 0.6 0.0469% 0.0051% 0.0350 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.5150 0.1773 -1.1062 0.2813
SMB 0.0216 0.0453 1.6409 0.7124
HML 0.0910 0.0904 0.3713 -1.4702
RMW 0.0707 0.1280 1.4095 0.1273
CMA 0.0550 0.1137 1.6936 0.9982

Composite Equity Issues 0.2467 0.1028 -0.2571 -0.8688
M-4 Factors Market 0.2505 0.1414 3.3818 12.5893

SMB 0.1506 0.0807 -1.1619 -0.4676
MGMT1 0.4185 0.0636 -4.4121 24.3000
PERf1 0.1792 0.0514 -1.4698 4.4559

Composite Equity Issues 0.0013 0.0030 2.1122 2.6807
q Factors Market 0.1121 0.0170 0.4119 0.0547

ME 0.1321 0.0276 -2.5370 9.9149
IA 0.2602 0.0472 -3.6698 18.8782

ROE 0.3462 0.0439 5.5208 32.2358
Composite Equity Issues 0.1494 0.0179 1.9425 9.2660

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Composite Equity Issues optimal portfolio. The dataset
spans the period from January, 1999 to December, 2016. Panel A report measures for the
case of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case
of the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.

16



Table 6: Performance measures. The case of the Distress anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0054 0.0060 0.0058 0.0059 0.0032 0.0032
SD 0.0258 0.0192 0.0194 0.0192 0.0155 0.0156
Sharpe ratio 0.2011 0.3017 0.2873 0.2960 0.1923 0.1928
D. Sharpe ratio 0.2163 0.3818 0.3520 0.3697 0.2241 0.2248
UP ratio 0.6629 0.8655 0.8084 0.8306 0.6155 0.6161
Return Loss 0.2673% 0.0171% 0.0007%
Opportunity Cost
α = β = 0.2 0.3196% 0.0536% 0.0206%
α = β = 0.4 0.1777% 0.0202% 0.0022%
α = β = 0.6 0.1016% 0.0087% -0.0001 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.4809 0.1439 -1.0704 0.1330
SMB 0.0230 0.0490 1.7887 1.3365
HML 0.2374 0.0949 -0.6449 -0.1668
RMW 0.0565 0.0971 1.5373 1.0492
CMA 0.0283 0.0603 1.9261 2.3037

Distress 0.1739 0.0694 0.3919 -0.4916
M-4 Factors Market 0.3702 0.1819 0.6927 -0.5093

SMB 0.0812 0.0963 0.3925 -1.8170
MGMT1 0.4138 0.0848 -1.9998 4.1059
PERf1 0.1176 0.0777 -0.2801 -1.1894
Distress 0.0171 0.0323 3.1190 9.9059

q Factors Market 0.1201 0.1239 5.8609 36.9753
ME 0.0985 0.0558 -0.9635 -0.7772
IA 0.3880 0.1316 -2.2555 3.8149

ROE 0.3926 0.1556 2.0878 5.4582
Distress 0.0007 0.0017 3.5167 13.3486

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Distress optimal portfolio. The dataset spans the period
from January, 1999 to December, 2016. Panel A report measures for the case of the FF-5
factors. Panel B for the case of the M-4 factors, while panel C for the case of the q factors.
In the second half, the Table exhibits the descriptive statistics of the weight allocation of
the optimal augmented portfolios.
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Table 7: Performance measures. The case of the Growth Profitability Premium anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0039 0.0038 0.0054 0.0051 0.0033 0.0033
SD 0.0159 0.0144 0.0147 0.0140 0.0142 0.0130
Sharpe ratio 0.2303 0.2452 0.3520 0.3484 0.2175 0.2397
D. Sharpe ratio 0.2952 0.3320 0.5170 0.5188 0.2720 0.3098
UP ratio 0.6675 0.7192 0.9510 0.9542 0.6621 0.7014
Return Loss 0.0262% -0.0042% 0.0336%
Opportunity Cost
α = β = 0.2 0.0179% -0.0822% 0.0283%
α = β = 0.4 0.0089% -0.0410% 0.0239%
α = β = 0.6 0.0079% -0.0159% 0.0154 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.1659 0.0172 0.5357 0.6656
SMB 0.0856 0.0169 -0.6251 -0.4621
HML 0.2252 0.0218 0.1375 0.4455
RMW 0.2209 0.0330 0.1250 -0.0319
CMA 0.1768 0.0266 -0.2260 -0.6922

Growth Profitability Premium 0.1255 0.0120 -0.5937 -0.8303
M-4 Factors Market 0.2005 0.0125 0.5748 0.4893

SMB 0.1846 0.0119 -0.3763 -1.0212
MGMT1 0.4162 0.0184 1.1284 -1.3355
PERf1 0.1262 0.0218 -0.1952 -0.0222

Growth Profitability Premium 0.0725 0.0299 0.9256 -0.7726
q Factors Market 0.1235 0.0246 0.4001 -1.0900

ME 0.0991 0.0218 -0.0259 0.5554
IA 0.4562 0.0233 -1.6101 2.1101

ROE 0.2687 0.0192 0.2681 -0.1388
Growth Profitability Premium 0.0525 0.0087 -0.8981 4.1834

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Growth Profitability Premium optimal portfolio. The
dataset spans the period from January, 1999 to December, 2016. Panel A report measures
for the case of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for
the case of the q factors. In the second half, the Table exhibits the descriptive statistics of
the weight allocation of the optimal augmented portfolios.
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Table 8: Performance measures. The case of the Investment to Assets anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0052 0.0059 0.0053 0.0052 0.0026 0.0030
SD 0.0236 0.0224 0.0136 0.0133 0.0215 0.0191
Sharpe ratio 0.2092 0.2543 0.3694 0.3750 0.1111 0.1440
D. Sharpe ratio 0.2357 0.3074 0.5410 0.5534 0.1144 0.1496
UP ratio 0.7136 0.7992 0.9760 0.9930 0.4993 0.5480
Return Loss 0.1077% 0.0081% 0.0737%
Opportunity Cost
α = β = 0.2 0.0776% 0.0123% 0.1252%
α = β = 0.4 0.0457% 0.0047% 0.0740%
α = β = 0.6 0.0451% 0.0010% 0.0406 %
Descriptive statistics of the weight allocation of the optimal portfolios

Mean Std. Dev. Skewness Kurtosis
FF-5 Factors Market 0.5120 0.1337 0.2717 0.2998

SMB 0.0 0.0 - -
HML 0.1287 0.0545 -0.8572 0.4498
RMW 0.1094 0.1295 0.9001 -0.3029
CMA 0.0062 0.0190 3.6493 13.3856

Investment to Assets 0.2446 0.0919 0.8896 0.2064
M-4 Factors Market 0.2794 0.1326 2.2679 8.0248

SMB 0.1143 0.0980 -0.2727 -1.9057
MGMT1 0.4213 0.0529 -5.1549 38.3569
PERf1 0.1710 0.0561 -0.9983 2.2962

Investment to Assets 0.0141 0.0295 2.3963 5.6739
q Factors Market 0.1239 0.0421 1.6964 3.9373

ME 0.0 0.0 - -
IA 0.0368 0.0716 2.7607 8.3445

ROE 0.6357 0.0706 -0.1423 1.5461
Investment to Assets 0.2036 0.0709 0.0894 -1.0312

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Investment to Assets optimal portfolio. The dataset spans
the period from January, 1999 to December, 2016. Panel A report measures for the case
of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.

19



Table 9: Performance measures. The case of the Net Operating Assets anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0060 0.0061 0.0059 0.0061 0.0042 0.0047
SD 0.0205 0.0188 0.0160 0.0160 0.0154 0.0152
Sharpe ratio 0.2806 0.3093 0.3563 0.3658 0.2537 0.2917
D. Sharpe ratio 0.3716 0.4014 0.5355 0.5423 0.3109 0.3878
UP ratio 0.8375 0.8611 0.9866 0.9982 0.7113 0.8193
Return Loss 0.0610% 0.0151% 0.0591%
Opportunity Cost
α = β = 0.2 0.1756% 0.1628% 0.1106%
α = β = 0.4 0.0830% 0.0309% 0.0079%
α = β = 0.6 0.0364% 0.0035% 0.0199 %
Descriptive statistics of the weight allocation of the optimal portfolios

Mean Std. Dev. Skewness Kurtosis
FF-5 Factors Market 0.2921 0.2118 0.8839 -0.6001

SMB 0.0567 0.0634 0.2552 -1.9347
HML 0.0568 0.0603 1.4862 4.4021
RMW 0.2455 0.1540 -0.9128 -1.0649
CMA 0.1765 0.1213 -0.4828 -1.3261

Net Operating Assets 0.1725 0.1334 1.2569 0.2194
M-4 Factors Market 0.2276 0.0887 2.2317 5.3869

SMB 0.1343 0.0752 -1.1034 -0.5756
MGMT1 0.3563 0.0503 -3.0522 13.5934
PERf1 0.2036 0.0496 -2.0178 6.6946

Net Operating Assets 0.0782 0.0521 2.2033 5.9295
q Factors Market 0.0941 0.0471 3.9241 25.8403

ME 0.0522 0.0530 0.2838 -1.3734
IA 0.2319 0.1980 -0.1403 -1.9270

ROE 0.4707 0.1970 0.3297 -1.0640
Net Operating Assets 0.1511 0.1005 2.2749 8.2326

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Net Operating Assets optimal portfolio. The dataset spans
the period from January, 1999 to December, 2016. Panel A report measures for the case
of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 10: Performance measures. The case of the O-Score anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0040 0.0034 0.0053 0.0043 0.0033 0.0031
SD 0.0153 0.0117 0.0146 0.0119 0.0138 0.0109
Sharpe ratio 0.2448 0.2738 0.3428 0.3441 0.2220 0.2592
D. Sharpe ratio 0.3256 0.3793 0.5000 0.4989 0.2789 0.3606
UP ratio 0.7155 0.7523 0.9321 0.9137 0.6647 0.7573
Return Loss 0.0518% -0.0074% 0.0581%
Opportunity Cost
α = β = 0.2 0.0941% -0.0052% 0.0236%
α = β = 0.4 0.0335% -0.0033% 0.0096%
α = β = 0.6 0.0296% -0.0013% 0.0027 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.1586 0.0887 4.2729 -17.2761
SMB 0.1505 0.0364 -3.2311 10.9244
HML 0.1055 0.0262 -0.2659 -0.9961
RMW 0.1656 0.0478 -1.7096 4.1146
CMA 0.2679 0.0671 -2.7919 9.2713

O-Score 0.518 0.0427 2.9879 10.2264
M-4 Factors Market 0.1808 0.0104 0.0090 -0.9814

SMB 0.2397 0.0097 -0.0779 -0.5587
MGMT1 0.3633 0.0082 -1.1236 1.3092
PERf1 0.0591 0.0223 0.2919 -0.5503
O-Score 0.1571 0.0224 -0.2357 -1.0662

q Factors Market 0.1052 0.0197 0.5103 0.4478
ME 0.1844 0.0301 -1.1632 0.2721
IA 0.4265 0.0176 -0.6765 -0.7199

ROE 0.1539 0.0415 0.0814 -1.0066
O-Score 0.1300 0.0182 -1.2697 1.1189

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios„
as well as the augmented with the O-Score optimal portfolio. The dataset spans the period
from January, 1999 to December, 2016. Panel A report measures for the case of the FF-5
factors. Panel B for the case of the M-4 factors, while panel C for the case of the q factors.
In the second half, the Table exhibits the descriptive statistics of the weight allocation of
the optimal augmented portfolios.
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Table 11: Performance measures. The case of the Return on Assets anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0058 0.0048 0.0064 0.0055 0.0050 0.0054
SD 0.0215 0.0186 0.0173 0.0163 0.0226 0.0285
Sharpe ratio 0.2592 0.2434 0.3577 0.3226 0.212 0.1801
D. Sharpe ratio 0.3054 0.2967 0.4874 0.4360 0.2340 0.2291
UP ratio 0.7749 0.7550 0.9438 0.8897 0.6392 0.6968
Return Loss -0.0302% -0.0593% -0.0774%
Opportunity Cost
α = β = 0.2 -0.0690% -0.0281% -0.0419%
α = β = 0.4 -0.0301% -0.0118% -0.0216%
α = β = 0.6 -0.0124% -0.0486% -0.0096 %
Descriptive statistics of the weight allocation of the optimal portfolios

Mean Std. Dev. Skewness Kurtosis
FF-5 Factors Market 0.3706 0.0600 0.4847 -0.1630

SMB 0.0049 0.0139 3.6965 16.9345
HML 0.2500 0.1110 -1.2613 0.6127
RMW 0.0 0.0 NA NA
CMA 0.0454 0.0624 0.9837 -0.5813

Return on Assets 0.3290 0.0969 01.1293 0.3935
M-4 Factors Market 0.2923 0.1026 0.2693 -1.4140

SMB 0.0956 0.0940 0.0549 -1.9457
MGMT1 0.3641 0.0814 -2.6871 8.0730
PERf1 0.0392 0.0421 0.3992 -1.2842

Return on Assets 0.2088 0.0886 0.9793 0.5493
q Factors Market 0.1399 0.1881 2.4086 5..7135

ME 0.0739 0.0662 -0.1287 -1.7956
IA 0.2614 0.2284 -0.2561 -1.9239

ROE 0.1370 0.1266 0.5857 0.9076
Return on Assets 0.3877 0.4080 0.6962 -1.3660

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Return on Assets optimal portfolio. The dataset spans
the period from January, 1999 to December, 2016. Panel A report measures for the case
of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 12: Performance measures. The case of the Net Stock Issues anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0056 0.0055 0.0053 0.0054 0.0033 0.0037
SD 0.0210 0.0193 0.0146 0.0146 0.0142 0.0134
Sharpe ratio 0.2569 0.2741 0.3431 0.3503 0.2124 0.2604
D. Sharpe ratio 0.2991 0.3102 0.5002 0.5156 0.02641 0.3523
UP ratio 0.7848 0.7697 0.9326 0.9443 0.6536 0.7432
Return Loss 0.0382% 0.0107% 0.0696%
Opportunity Cost
α = β = 0.2 0.0542% 0.0932% 0.1313%
α = β = 0.4 0.0617% 0.0275% 0.0893%
α = β = 0.6 0.0341% 0.0100% 0.0479 %
Descriptive statistics of the weight allocation of the optimal portfolios

Mean Std. Dev. Skewness Kurtosis
FF-5 Factors Market 0.4957 0.1309 -0.6432 1.4947

SMB 0.0105 0.0346 3.1457 8.3998
HML 0.1128 0.0936 0.7579 -0.2461
RMW 0.0433 0.1105 2.3566 3.8523
CMA 0.0269 0.0693 2.4315 4.5644

Net Stock Issues 0.3108 0.1239 -0.9356 -0.1402
M-4 Factors Market 0.1807 0.0138 0.8270 -0.0001

SMB 0.2087 0.0165 -0.5718 -0.9720
MGMT1 0.3833 0.0274 0.2426 -0.2977
PERf1 0.1758 0.0191 1.2487 0.3269

Net Stock Issues 0.0515 0.0214 -0.1445 0.8229
q Factors Market 0.1065 0.0165 0.1272 -0.4359

ME 0.1424 0.0288 -0.6258 0.2834
IA 0.3063 0.0159 0.6399 -0.7070

ROE 0.2878 0.0316 0.6894 0.0121
Net Stock Issuese 0.1569 0.0253 -0.5046 -1.3702

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Net Stock Issues optimal portfolio. The dataset spans
the period from January, 1999 to December, 2016. Panel A report measures for the case
of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 13: Performance measures. The case of the Betting against Beta anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0048 0.0061 0.0056 0.0060 0.0042 0.0032
SD 0.0315 0.0257 0.0293 0.0271 0.0294 0.0395
Sharpe ratio 0.1451 0.2293 0.1844 0.2126 0.1353 0.0757
D. Sharpe ratio 0.1494 0.2354 0.1980 0.2193 0.1440 0.0742
UP ratio 0.6249 0.6778 0.6715 0.6655 0.5516 0.4792
Return Loss 0.2709% 0.0845% -0.1813%
Opportunity Cost
α = β = 0.2 0.8951% 0.3222% -0.0184%
α = β = 0.4 0.4312% 0.1624% -0.0873%
α = β = 0.6 0.2052% 0.0774% -0.0994 %
Descriptive statistics of the weight allocation of the optimal portfolios

Mean Std. Dev. Skewness Kurtosis
FF-5 Factors Market 0.4927 0.0780 0.4549 -0.5794

SMB 0.0 0.0 - -
HML 0.0 0.0 - -
RMW 0.0 0.0 - -
CMA 0.0 0.0 - -

Betting against Beta 0.5073 0.0780 -0.4549 -0.5794
M-4 Factors Market 0.5757 0.0963 1.2783 1.3169

SMB 0.0 0.0 - -
MGMT1 0.0005 0.0043 10.5695 117.9659
PERf1 0.0 0.0 - -

Betting against Beta 0.4238 0.0969 -1.2686 1.2466
q Factors Market 0.0238 0.0521 4.4753 25.9427

ME 0.0 0.0 - -
IA 0.0 0.0 - -

ROE 0.2347 0.2990 0.5188 -1.7113
Betting against Beta 0.7415 0.3211 -0.4558 -1.7923

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Betting against Beta optimal portfolio. The dataset spans
the period from January, 1999 to December, 2016. Panel A report measures for the case
of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 14: Performance measures. The case of the Quality minus Junk anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0065 0.0063 0.0068 0.0070 0.0040 0.0079
SD 0.0228 0.0164 0.0191 0.0167 0.0202 0.0262
Sharpe ratio 0.2750 0.3704 0.3455 0.4087 0.1869 0.2936
D. Sharpe ratio 0.3299 0.4733 0.4712 0.5982 0.1988 0.4115
UP ratio 0.8220 0.9440 0.9099 1.0587 0.5580 0.7862
Return Loss 0.2269% 0.1242% 0.2103%
Opportunity Cost
α = β = 0.2 0.6876% 0.1349% 0.8794%
α = β = 0.4 0.2887% 0.0773% 0.4153%
α = β = 0.6 0.1242% 0.0397% 0.1996 %
Descriptive statistics of the weight allocation of the optimal portfolios

Mean Std. Dev. Skewness Kurtosis
FF-5 Factors Market 0.4495 0.0868 -0.4931 0.8726

SMB 0.0212 0.0549 2.3423 3.76587
HML 0.1986 0.1008 -0.5960 -0.6281
RMW 0.0022 0.0093 4.9980 28.6591
CMA 0.0066 0.0297 4.6831 20.5962

Quality minus Junk 0.3219 0.0693 -0.0925 -0.8967
M-4 Factors Market 0.2821 0.1704 1.4413 0.3443

SMB 0.1818 0.1001 -1.2589 -0.3806
MGMT1 0.2982 0.1064 -1.8810 2.0838
PERf1 0.0737 0.0413 -1.1342 -0.5347

Quality minus Junk 0.1634 0.0734 1.6537 1.4978
q Factors Market 0.1440 0.1224 2.6661 7.7854

ME 0.1363 0.0757 -0.9990 -0.6671
IA 0.3172 0.1598 -1.4410 0.1860

ROE 0.1558 0.0914 0.0235 1.9922
Quality minus Junk 0.2467 0.2893 1.9998 2.3764

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Quality minus Junk optimal portfolio. The dataset spans
the period from January, 1999 to December, 2016. Panel A report measures for the case
of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 15: Performance measures. The case of the Size anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0020 0.0020 0.0056 0.0056 0.0025 0.0025
SD 0.0226 0.0226 0.0162 0.0162 0.0168 0.0167
Sharpe ratio 0.0788 0.0785 0.3289 0.3292 0.1327 0.1354
D. Sharpe ratio 0.0716 0.0713 0.4955 0.4963 0.1439 0.1472
UP ratio 0.3715 0.3711 0.9535 0.9545 0.5223 0.5245
Return Loss -0.0006% -0.0004% 0.0047%
Opportunity Cost
α = β = 0.2 -0.0006% -0.0002% 0.0059%
α = β = 0.4 -0.0001% -0.0002% 0.0050%
α = β = 0.6 -0.0001% -0.0001% 0.0032 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.2277 0.2259 2.7209 6.0253
SMB 0.0842 0.0496 -0.9628 -0.7832
HML 0.0835 0.0661 2.1073 8.8455
RMW 0.3452 0.1127 -2.6311 5.2458
CMA 0.2594 0.0997 -1.7785 2.2821
Size 0.0 0.0 - -

M-4 Factors Market 0.2579 0.1491 3.3910 13.0018
SMB 0.1403 0.0866 -0.9070 -1.0637

MGMT1 0.4206 0.0727 -4.6324 24.3892
PERf1 0.1812 0.0602 -1.4963 3.3174
Size 0.0 0.0 - -

q Factors Market 0.1103 0.0950 7.8161 70.1779
ME 0.0977 0.0579 -0.9870 -0.8295
IA 0.3843 0.1322 -2.0914 3.2149

ROE 0.4077 0.1633 1.8647 3.6192
Size 0.0 0.0 - -

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Size optimal portfolio.The dataset spans the period from
January, 1999 to December, 2016. Panel A report measures for the case of the FF-5 factors.
Panel B for the case of the M-4 factors, while panel C for the case of the q factors. In
the second half, the Table exhibits the descriptive statistics of the weight allocation of the
optimal augmented portfolios.
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Table 16: Performance measures. The case of the Growth Option anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0025 0.0025 0.052 0.0052 0.0028 0.0028
SD 0.0220 0.0220 0.0180 0.0181 0.0163 0.0163
Sharpe ratio 0.1018 0.1015 0.2739 0.2736 0.1580 0.1574
D. Sharpe ratio 0.0931 0.0928 0.3128 0.3115 0.1776 0.1767
UP ratio 0.3876 0.3870 0.6702 0.6677 0.5396 0.5385
Return Loss -0.0007% -0.0006% -0.0010%
Opportunity Cost
α = β = 0.2 -0.0009% -0.0010% -0.0067%
α = β = 0.4 -0.0007% -0.0007% -0.0031%
α = β = 0.6 -0.0001% -0.0004% -0.0015 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.2176 0.1899 2.8779 8.0596
SMB 0.0853 0.0484 -0.9662 -0.6778
HML 0.0956 0.0783 1.6905 3.9285
RMW 0.3445 0.1080 -2.5427 4.9875
CMA 0.2569 0.0945 -1.6888 2.1760

Growth Option 0.0 0.0 - -
M-4 Factors Market 0.2568 0.1472 3.1545 10.9871

SMB 0.1451 0.0847 -0.9958 -0.8732
MGMT1 0.4211 0.0679 -3.9884 19.9554
PERf1 0.1770 0.0555 -1.5982 3.5359

Growth Option 0.0 0.0 - -
q Factors Market 0.1218 0.1258 6.3636 41.9992

ME 0.0885 0.0591 -0.6129 -1.4018
IA 0.3866 0.1326 -2.0673 3.2401

ROE 0.4031 0.1539 1.4330 3.1234
Growth Option 0.0 0.0 - -

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Growth Option optimal portfolio. The dataset spans the
period from January, 1999 to December, 2016. Panel A report measures for the case of
the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 17: Performance measures. The case of the Value (Book to Market) anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0050 0.0129 0.0048 0.0132 0.0072 0.0174
SD 0.0323 0.0454 0.0333 0.0494 0.0385 0.0697
Sharpe ratio 0.1484 0.2780 0.1356 0.2617 0.1817 0.2463
D. Sharpe ratio 0.1517 0.3820 0.1348 0.3300 0.1999 0.3140
UP ratio 0.6275 0.8444 0.5940 0.7677 0.6803 0.7438
Return Loss 0.4114% 0.4127% 0.2379%
Opportunity Cost
α = β = 0.2 0.8846% 0.4433% 0.1074%
α = β = 0.4 0.4954% 0.3685% 0.1854%
α = β = 0.6 0.2853% 0.2500% 0.1573 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.4059 0.0627 -2.7731 15.2183
SMB 0.0 0.0 - -
HML 0.0 0.0 - -
RMW 0.0 0.0 - -
CMA 0.0 0.0 - -

Value (Book to Market) 0.5941 0.0627 2.7731 15.2183
M-4 Factors Market 0.3299 0.1740 -0.9762 -0.2593

SMB 0.0 0.0 - -
MGMT1 0.0 0.0 - -
PERf1 0.0 0.0 - -

Value (Book to Market) 0.6701 0.1740 0.9762 -0.2593
q Factors Market 0.0 0.0 - -

ME 0.0 0.0 - -
IA 0.0 0.0 - -

ROE 0.0 0.0 - -
Value (Book to Market) 1.0 0.0 - -

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Value (Book to Market) optimal portfolio. The dataset
spans the period from January, 1999 to December, 2016. Panel A report measures for the
case of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case
of the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 18: Performance measures. The case of the Idiosyncratic Volatility anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0057 0.0057 0.0058 0.0061 0.0031 0.0052
SD 0.0235 0.0230 0.0161 0.0156 0.0205 0.0281
Sharpe ratio 0.2337 0.2365 0.3445 0.3746 0.1379 0.1749
D. Sharpe ratio 0.2753 0.2786 0.4957 0.5692 0.1548 0.1893
UP ratio 0.7260 0.7300 0.9531 1.0274 0.5647 0.6616
Return Loss 0.0072% 0.0492% 0.0695%
Opportunity Cost
α = β = 0.2 0.0420% 0.0501% 0.0822%
α = β = 0.4 0.0093% 0.0387% 0.0631%
α = β = 0.6 0.0006% 0.0227% 0.0411 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.3635 0.3229 0.8736 -1.0761
SMB 0.0560 0.0514 -0.1043 -1.8739
HML 0.0928 0.0586 -0.5338 -0.9200
RMW 0.2705 0.1686 -0.9693 -1.2245
CMA 0.1714 0.1139 -0.6073 -1.2245

Idiosyncratic Volatility 0.0458 0.0434 1.2932 0.1275
M-4 Factors Market 0.3078 0.0804 3.4567 26.7380

SMB 0.0238 0.0605 2.4099 4.1298
MGMT1 0.4340 0.0514 -2.9292 21.4974
PERf1 0.2011 0.0380 -2.3557 9.2464

Idiosyncratic Volatility 0.0333 0.0220 0.1900 -1.3584
q Factors Market 0.2753 0.1411 1.7242 7.850

ME 0.0049 0.0148 4.4966 25.9102
IA 0.2262 0.1673 -0,5589 -1.5864

ROE 0.2005 0.1486 1.3694 1.6745
Idiosyncratic Volatility 0.2930 0.2479 2.1754 3.3433

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Idiosyncratic Volatility optimal portfolio. The dataset
spans the period from January, 1999 to December, 2016. Panel A report measures for the
case of the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case
of the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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Table 19: Performance measures. The case of the Profitability anomaly.
Panel A Panel B Panel C
FF-5 + anom. M-4 + anom. q + anom.

Mean 0.0042 0.0040 0.0054 0.0047 0.0030 0.0027
SD 0.0154 0.0156 0.0147 0.0148 0.0151 0.0157
Sharpe ratio 0.2581 0.2408 0.3506 0.3036 0.1848 0.1550
D. Sharpe ratio 0.3511 0.3132 0.5152 0.4193 0.2221 0.1791
UP ratio 0.7410 0.6963 0.9476 0.8310 0.6108 0.5611
Return Loss -0.0027% -0.0692% -0.2254%
Opportunity Cost
α = β = 0.2 -0.0095% -0.0943% -0.2550%
α = β = 0.4 -0.0034% -0.0412% -0.1119%
α = β = 0.6 -0.0016% -0.0230% -0.0865 %

Descriptive statistics of the weight allocation of the optimal portfolios
Mean Std. Dev. Skewness Kurtosis

FF-5 Factors Market 0.1657 0.0955 7.3826 58.3022
SMB 0.0976 0.0220 -3.0034 10.3874
HML 0.1029 0.0642 0.0701 -0.7638
RMW 0.3614 0.0518 -5.4348 34.7300
CMA 0.2641 0.0620 -1.2678 4.2188

Profitability 0.0083 0.0058 -0.1242 -1.1423
M-4 Factors Market 0.1851 0.0143 0.7369 -0.8036

SMB 0.1957 0.0104 -0.8692 0.4101
MGMT1 0.4073 0.0113 -1.3624 0.7675
PERf1 0.1792 0.0158 1.2205 1.7524

Profitability 0.0327 0.0144 0.0186 -1.4605
q Factors Market 0.1028 0.1107 7.4578 58.2318

ME 0.1281 0.0404 -2.4151 5.2278
IA 0.4141 0.0968 -3.6550 12.9320

ROE 0.3327 0.1116 2.8444 13.5653
Profitability 0.0222 0.0183 0.2704 -1.5003

Entries report the performance measures (Mean, Standard Deviation, Sharpe ratio, Downside
Sharpe ratio, UP ratio, Returns Loss and Opportunity Cost) for the factor optimal portfolios,
as well as the augmented with the Profitability optimal portfolio. The dataset spans the
period from January, 1999 to December, 2016. Panel A report measures for the case of
the FF-5 factors. Panel B for the case of the M-4 factors, while panel C for the case of
the q factors. In the second half, the Table exhibits the descriptive statistics of the weight
allocation of the optimal augmented portfolios.
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