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Derjaguin, Landau, Vervey, and Overbeek (DLVO) developed a theory of colloidal stability, which
currently represents the cornerstone of our understanding of interactions between colloidal par-
ticles and their aggregation behavior. This theory is also being used to rationalize forces acting
between interfaces and to interpret particle deposition to planar substrates. The same theory is
also used to rationalize forces between planar substrates, for example, thin liquid films.

The principal ideas were first developed by Boris Derjaguin [1], then extended in a landmark
article jointly with Lev Landau [2], and later more widely publicized in a book by Evert Verwey
and Jan Overbeek [3]. The theory was initially formulated for two identical interfaces (symmetric
system), which corresponds to the case of the aggregation of identical particles (homoaggrega-
tion). This concept was later extended to the two different interfaces (asymmetric system) and
aggregation of different particles (heteroaggregation). In the limiting case of large size disparity
between the particles, this process is analogous to deposition of particles to a planar substrate.
These processes are illustrated in the figure below. The present essay provides a short summary
of the relevant concepts, for more detailed treatment the reader is referred to textbooks [4-6].

Homoaggregation Deposition

Heteroaggregation

Interaction forces

The force F(h) acting between two colloidal particles having a surface separation h can be related
to the free energy of two plates W(h) per unit area by means of the Derjaguin approximation [4,5]

F(h)= 2πReffW(h)

where the effective radius is given by

Reff =
R+R−

R++R−

where R+ and R− are the radii of the two particles involved, see figure on the next page. In the
case of a symmetrical systems where the particles have the same radius R, one has Reff = R/2.
This approximation is good when the size of the particles is larger compared to range of the forces
involved, which is normally the case in most colloidal systems, except for small nanoparticles.
Here the focus is on the interaction between solid substrates across an aqueous electrolyte solu-
tion, even though many of the concepts discussed also apply to soft substrates (e.g., fluid films,
bubbles) and to other liquids.
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When the force between the particles is known, one can calculate the interaction free energy
of the two particles by its integration

U(h)=
∫ ∞

h
F(h′)dh′

DLVO theory assumes that the free energy per unit area can be well approximated by two additive
contributions, namely

W(h)=WvdW(h)+Wdl(h)

These two contributions refer to van der Waals and double layer interactions. The above equation
can be also used to model forces between to planar substrates (e.g., liquid films), and is sometimes
also referred to as the DLVO theory. In its original version, however, the DLVO theory includes
the additional step to calculate aggregation rates. We adopt this point of view here as well.

Van der Waals forces are almost always present, and they result from interactions of the
rotating or fluctuating dipoles of atoms and molecules. In the simplest situation, this interaction
can be modeled as

WvdW(h)=− H
12πh2

where H is the Hamaker constant, which defines its strength. In most situations, the Hamaker
constant is positive, meaning that the van der Waals force is attractive. Typical values of H are
10−21−10−19 J. These values may slightly decrease with increasing salt level. The above relation
is good at smaller separations for smooth substrates. At larger distances the interaction decays
more quickly due to retardation effects, while surface roughness may reduce this interaction at
smaller distances.

Double layer interactions are important for charged substrates, especially at lower salt levels.
The interaction free energy can be approximated as

Wdl(h)= 2σ+σ−
ϵ0ϵκ

exp(−κh)

where σ+ and σ− are the surface charge densities per unit area of the right and left surface, ϵ0 is
the permittivity of vacuum, ϵ the dielectric constant of water, and κ is the inverse Debye length.
The latter is given by

κ−1 =
(

kBTϵ0ϵ

2q2NAI

)1/2
= 0.3 nmp

I
where q is the elementary charge, NA is the Avocadro’s number, I is the ionic strength, kB is the
Boltzmann constant, and T is the absolute temperature. The second equality is approximatively
valid for water at room temperature. The ionic strength of the solution is given by

I = 1
2

∑
i

z2
i ci

where zi is the valence of the ion of type i, ci its concentration expressed in mol/L, and i runs over
all types of ions in solution. The ionic strength equals to to the concentration of a salt solution
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containing monovalent ions, while it is larger for salt solutions containing multivalent ions. One
may also characterize the substrate by its electric surface potential ψ±, namely

σ± = ϵ0ϵκψ±

The above formula for the double layer free energy is referred to as the superposition approxi-
mation, and is accurate for larger surface separations and low surface charge densities. Within
the latter conditions, one can use the Debye-Hückel theory to calculate the interaction energies.
For higher charge densities, the Poisson-Boltzmann theory must be used. At larger distances,
however, one may replace the actual surface charge density by an effective value, and the simple
exponential dependence often remains a good approximation.

Symmetric situation

The symmetric situation deals with two identical particles of radius R and a surface charge den-
sity σ. Such situations are typically encountered in colloidal suspensions, where all particles are
identical, or at least very similar. The figure below shows the force profiles in the left panel, while
the potential energy profiles are shown in the right panel. The total DLVO profile is compared
with the Van der Waals and double layer contributions. We have used R = 250 nm and a Hamaker
constant of H = 5.0×10−21 J. These parameters will be used in all other examples discussed below.
In the figure below, we use a surface charge density σ = 2 mC/m2, and a monovalent salt with
a concentration of 8 mM. Van der Waals forces dictate the profiles at large and small distances,
while the double layer force dominates the intermediate distances. At contact, the DLVO profile
is infinitely deep, but in reality there are repulsive forces acting at very short distances. The
combination of these forces with the DLVO force profile results in a deep attractive well, which
is referred to as the primary minimum. At larger distances, the energy profile goes then through
a maximum, and subsequently passes through a shallow minimum, which referred to as the sec-
ondary minimum. Note that when the force vanishes, the energy profile goes through a maximum
or a mimimum. In the symmetric situations, the profiles are the same whether the sign of the
charge is positive or negative.

Such DLVO interaction energy profiles evolve in a characteristic fashion, which is illustrated
in the figure on the top of the next page. The dependence on the salt concentration is shown in the
left panel, while on the surface charge density in the right one. At low salt levels or high surface
charge densities, the particles are repulsive, as the interaction is dominated by the double layer
contribution. At high salt levels or small surface charge densities, the interaction is dominated by
the attractive van der Waals force. At intermediate values, the energy profile passes through a
maximum, which occurs at a separation distance that is comparable to the Debye length κ−1. The
corresponding force profiles show very similar trends. One should note that such force profiles
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can be directly measured with various techniques, including the surface forces apparatus (SFA)
and the atomic force microscope (AFM) [4,6].

Homoaggregation

When colloidal particles are suspended in water, they will interact according to the energy profiles
discussed above. When this profile is strongly repulsive, the particles will repel each other, and
form a stable suspension. When this profile is attractive, the particles will approach all the way
into contact, and stick to each other. Initially, particle dimers and trimers will form. As the
aggregation proceeds, the particles form larger and larger flocs (or clusters, aggregates). As these
flocs grow larger, they sediment, and the suspension clarifies. Under these conditions, one says
that one has an unstable suspension. When particles aggregate, they are in contact in the deep
primary energy minimum. Under some conditions, the particles can be resuspended again. One
refers to this reverse process as peptization. But this process hardly occurs spontaneously. The
scheme below illustrates these processes.

Stable
Suspension Unstable Suspension

Early Stages Late Stages

Sedimentation

The suspension stability can be quantified by considering the kinetics of formation of particle
dimers, according to the reaction

A+A→A2

where A refers to the individual particle monomer, and A2 to the particle dimer aggregate. The
formation of dimers is important in the early stages of the aggregation, while the growth of larger
aggregates becomes important as the process continues. When the aggregates become larger, one
refers to later stages of the aggregation, but this regime is typically not considered within the
DLVO theory. The rate of dimer formation is given by the rate law

dN2

dt
= k

2
N2

1
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where N1 and N2 are the number concentrations of the particle monomers and dimers, t is the
time, and k is the aggregation rate coefficient. One uses the same relation in chemical kinetics,
except one defines the rate coefficient to be by a factor of two larger. The above equation is used
to evaluate the time-dependent concentration of doublets in a suspension initially only composed
of monomers of concentration N0, one obtains linear dependencies

N1(t) = N0 (1−kN0t+ ...)

N2(t) = kN0t/2+ ...

For this reason, one also introduces the characteristic time of aggregation T1/2 = 2/(kN0), whereby
the factor of two is introduced such that this characteristic time is identical to the half-time of
aggregation in the Smoluchowski’s model [4]. This model assumes that aggregates of any size
form with the same rate coefficient k. The characteristic time of aggregation is a useful parameter
to estimate whether a given suspension is stable within an experimental time window or not.
When T1/2 is much larger than the experimental window, the suspension is stable, while when
T1/2 is much smaller, the suspension will be unstable. One should note that this characteristic
time T1/2 depends on the particle concentration, and thus a dilute suspension is more stable
than a concentrated one. The aggregation coefficient can be measured with various experimental
techniques, for example, time-resolved light scattering or single particle counting [7,8].

The particles undergo diffusional motion in the suspending fluid, and when they come close
enough, they will stick to each other and form an aggregate. However, they also interact with the
potential U(h). The aggregation rate due to diffusion in this force-field can be calculated by the
Fuchs formula, and the respective expression is also being used in DLVO theory [4,5]

k = 2kT
3ηReff

{∫ ∞

0

B(h)
(R++R−+h)2 exp[U(h)/(kBT)] dh

}−1

where B(h) is the hydrodynamic resistance function, η is the viscosity of water. The resistance
function originates from the hindrance of the diffusion process due hydrodynamic flow created by
the second particle, and can be approximated as

B(h)= 1+ Reff

h

This relation reduces to several important special cases. When the particles do not interact, mean-
ing that U(h)= B(h)= 0, one obtains the relation also obtained by Smoluchowski for the diffusion
controlled rate [4,5]

k = 8kBT
3η

= 1.2×10−17m3s−1

where the numerical value approximately refers to water at room temperature.
At high salt levels, particles aggregate approximately with the diffusion controlled rate, since

the van der Waals forces and hydrodynamic interactions have only minor effects. These conditions
are also referred to as the fast aggregation or diffusion controlled aggregation. At lower salt levels,
and energy barrier develops due to double layer interaction. The aggregation rate is substantially
slowed down, since the particles have to cross the barrier by means of thermal motion. This
mechanism is similar to a chemical reaction, where the reactants have to cross an activation
energy barrier. Therefore, one refers to this regime as slow aggregation or reaction controlled
aggregation.

The salt concentration dependencies of the aggregation rate coefficient calculated with the
Fuchs expression and the DLVO interaction potential discussed above are shown in the figure
on the next page. All curves show the same generic features. At high salt concentration, the
aggregation rate is constant, since the aggregation is in the fast regime. When one compares the
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plateau value calculated by DLVO theory as shown in the figure, one finds that the calculated
value is about a factor of 2 lower than the Smoluchowski’s value quoted above. This discrepancy
originates from the interplay between the van der Waals interaction, which leads to a faster rate,
and the hydrodynamic interaction, which leads to a slower rate. A similar effect is observed
experimentally [7].

When the salt concentration is decreased, the aggregation rate decreases rapidly due to the
presence of the barrier originating from the double layer repulsion. Thereby, one enters the slow
regime. One observes that the rate depends sensitively on the salt concentration and also on
the surface charge density, as shown in the left panel. The transition between the slow and
fast regime is relatively sharp, and therefore referred to as the critical coagulation concentration
(CCC). The CCC is an important characteristic of the aggregation process, as it provides a sim-
ple stability threshold of a colloidal suspension. As can be seen from the figure above, the CCC
decreases with decreasing surface charge density, since the double layer forces also weaken ac-
cordingly. For homoaggregation, these dependencies are the same whether the sign of the charge
is positive or negative.

The right panel of the figure above shows the salt dependence in different 1 : z electrolytes,
where the valence of the counterions is being changed. The main influence originates from the fact
that the DLVO potential depends on the ionic strength, and in the presence of multivalent ions,
the respective concentrations are substantially smaller. The CCC shifts towards smaller concen-
trations with increasing valence. This shift reflects the classical Schulze-Hardy rule, which states
that salts are increasingly more effective in destabilizing colloidal suspensions with increasing va-
lence of the counterions. The actual dependence of the CCC versus the valence is shown in the
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figure below. This dependence roughly follows an empirical relation of the type

CCC∝ 1
zn

DLVO theory predicts z = 2 for low surface charge densities for symmetric electrolytes (z : z),
while a similar dependence is observed for different asymmetric electrolytes (z : 1 or 1 : z). This
dependence mainly originates from converting the concentration to the ionic strength. For higher
charge densities, this dependence becomes more important as shown in the bottom figure of the
previous page. For unphysically high charge densities, the DLVO theory predicts z = 6 [9].

The secondary minimum normally does not influence the aggregation kinetics. However, for
larger particles this minimum can be relatively deep, and in this case the aggregation processes
may feature an initial rapid transient. During this transient, the particles aggregate into the sec-
ondary minimum. For longer times, the particles overcome the energy barrier and the aggregates
transform into those trapped in the primary well [10].

Asymmetric situation

The asymmetric situation deals with two different particles, especially having different surface
charge densities σ+ and σ−. Such situations occur in mixtures of colloidal suspensions, or when
particles interact with a planar interface. A size disparity between the particles does not intro-
duce any new features, since the two particle radii only enter through the effective radius Reff.
For this reason, the interactions in the plate-particle geometry can be also inferred from the same
model. When the particles consist of different materials, the actual Hamaker constant might dif-
fer, but they normally remain positive. In certain asymmetric situations, however, the van der
Waals force can be repulsive, resulting in a negative Hamaker constant. An important example
of this type of a setting is a gas bubble interacting with a solid substrate [6]. But here we focus
on the common case of attractive van der Waals forces.

Depending on the surface charge densities, the interaction energies may vary widely. Let us
illustrate the various types of interactions by discussing two different asymmetric cases, namely
the oppositely charged case, and the charged-neutral case. In the oppositely charged chase, the
surface charge densities are opposite in sign, but have the same magnitude (σ+ = −σ−). In the
charged-neutral case, one of the surfaces is neutral (σ− = 0). The third important case is the
symmetric case (σ+ =σ−), and this case was already discussed above. The qualitative features of
other situations lie in between these three cases [11].

In the oppositely charged case, the forces between particles are always attractive. This fea-
ture can be understood, since the double layer force is also attractive and adds to the already
attractive van der Waals force. However, the double layer force is strongest at low salt levels,
while negligible at high salt. Therefore, the attraction becomes stronger and longer ranged with
decreasing salt concentration. This situation is illustrated for the interaction energies in the left
panel of the figure on the next page for a charge density of 2 mC/m2. The respective graph for the
force profiles would be very similar.

The charged-neutral case is more interesting. Based on the superposition approximation, one
would expect that there is no double layer force, when one of the surfaces is neutral. However,
the charged surface still has a diffuse layer, and even when a neutral surface is approached, this
diffuse layer is compressed, and a net interaction results. This interaction must be treated within
the Debye-Hückel model, which is correct for low surface charge densities. At larger distances,
the interaction free energy can be shown to behave as [11,12]

Wdl(h)= 2σ2+
ϵ0ϵκ

(2p−−1)exp(−2κh)

7
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where p− is the regulation parameter of the neutral surface on the left. This parameter charac-
terizes how the surface charge density (or the surface potential) changes upon approach. When
the surface charge density remains constant, p− = 1 and one refers to constant charge boundary
condition. When the surface potential remains constant, p− = 0, and one refers to constant po-
tential boundary condition. However, this parameter often assumes values between these two
limiting situations. For example, the superposition approximation is recovered when p− = 1/2,
which refers to intermediate regulation conditions. This charge regulation is related to adsorp-
tion of ions to the surface, the extend of which can vary upon approach. The respective interaction
energy profiles are shown in the right panel of figure above. One observes that depending on the
regulation properties of the surface, the interaction can be repulsive or attractive (grey region).
Therefore, in the charge neutral case, the charge regulation effects are extremely important. On
the other hand, in the symmetric case or the oppositely charged case, charge regulation also plays
a role, but the effects are much weaker, and the superposition approximation is relatively accu-
rate.

Heteroaggregation

When a colloidal suspension contains two (or several) types of particles, the aggregation process
is much more complicated, since different types of aggregates may contain different types of par-
ticles. Consider a suspension that consists two types of particles A and B in the early stages of
aggregation. In this situation, we may have two different homoaggregation processes, which lead
to two different symmetric particle dimers A2 and B2. Moreover, heteroaggregation may lead to
an asymmetric dimer according to the scheme

A+B→AB

In some situations, some of the processes may be very slow, but in others, they can all occur
simultaneously. The corresponding rate law for the heteroaggregation process in the early stages
reads

dNAB

dt
= kNANB

where the rate coefficient k can be again calculated by the Fuchs’ expression quoted above. We
will again discuss the two relevant asymmetric cases, namely the oppositely charged case, and the
charged-neutral case.

In the oppositely charged case, the interaction energies are attractive. The salt dependence
of the heteroaggreagtion rate constant is shown in the left panel of the figure on the next page.
Since the attraction becomes stronger with decreasing salt level, the aggregation becomes faster,
but the effect is relatively weak, as ones notes observing the y-scale of the figure. This effect is
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weak since the aggregation remains close to diffusion controlled. In the case of homoaggregation,
on the other hand, the effect of salt is extremely important, since the potential profile develops a
barrier, which substantially slows down the aggregation process.

The aggregation rates in the charged-neutral case as shown in the right panel features a tran-
sition from a situation resembling homoaggregation to situation similar to heteroaggregation in
the oppositely charged case. Again, charge regulation effects are extremely important. For con-
stant potential conditions, the interaction energies are attractive. Therefore, the aggregation rate
remains close to diffusion controlled, albeit showing a similar minor enhancement as discussed
in the oppositely charged case. For constant charge conditions, the interaction energies are repul-
sive at low salt levels, while they become attractive at high levels. Therefore, the dependence of
the aggregation rate is similar to homoaggregation, and also features a CCC. However, this CCC
occurs at much lower salt concentrations, since the repulsive forces are weaker. Clearly, effects of
charge regulation are again extremely important in this situation. In the presence of multivalent
ions, the asymmetric situation remains analogous. The force profiles and aggregation diagrams
will be similar when the same ionic strength is being used, the least for sufficiently low charge
densities.

Conclusion

The DLVO theory represents an important framework to model interactions in aqueous colloidal
suspensions and the respective aggregation rates. The theory assumes that the interaction forces
can be well approximated by a superposition of van der Waals and double layer forces. In an
symmetric system or in the case of homoaggreagtion, van der Waals forces are attractive and
double layer forces repulsive. When one deals with asymmetric systems and heteroaggregation,
the situation is can be more complex. While van der Waals forces are normally attractive, the
double layer forces can be attractive, repulsive, or both. Moreover, effects of charge regulation
can become important. DLVO theory is further capable to describe experimental situations rela-
tively well. In some cases, this theory can describe interaction forces as well as aggregation rate
constants quantitatively. Deviations may persist, however, especially at higher salt levels. These
details are subject of current research.

First posted September 29, 2014. Last revision, November 16, 2017.
This work is licensed under a Creative Commons Attribution 4.0 International License.
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