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SUMMARY

Success rate of clinical trials (CTs) is low, with the protocol design itself being considered a major risk factor.
We aimed to investigate the use of deep learning methods to predict the risk of CTs based on their protocols.
Considering protocol changes and their final status, a retrospective risk assignmentmethodwas proposed to
label CTs according to low, medium, and high risk levels. Then, transformer and graph neural networks were
designed and combined in an ensemble model to learn to infer the ternary risk categories. The ensemble
model achieved robust performance (area under the receiving operator characteristic curve [AUROC] of
0.8453 [95% confidence interval: 0.8409–0.8495]), similar to the individual architectures but significantly out-
performing a baseline based on bag-of-words features (0.7548 [0.7493–0.7603] AUROC). We demonstrate
the potential of deep learning in predicting the risk of CTs from their protocols, paving theway for customized
risk mitigation strategies during protocol design.

INTRODUCTION

The fundamental way to assess the safety and efficacy of clinical

interventions is to carry out clinical trials (CTs), i.e., multiple

phases of randomized clinical studies on volunteer individuals

with clear hypotheses to be tested.1,2 For a candidate medica-

tion to reach the market, once the necessary basic drug discov-

ery research and preclinical animal studies are successful, mul-

tiple phases of CTs are executed to prove the safety and efficacy

of the intervention against a target study group. If successful

THEBIGGERPICTURE Many risk factors contributing to the low clinical trial (CT) success rate can be traced
back to protocol design issues. Our study proposes using machine learning techniques that leverage large
CT databases to predict protocol risks and help trial designers make more informed decisions about the
design. Our work is unique in that it takes advantage of historical evolution of protocols to retrospectively
derive risk-relatedmetrics. The proposed prediction models based on deep learning architectures, such as
transformers and graph neural networks, showed promising performance in predicting risk labels and can
provide clues about risk aspects of the protocol related to CT failure. The goal is not only to provide protocol
designers with retrospective insights but also to support risk-mitigation strategies to maximize CT effec-
tiveness. Given their significant costs, any effectivemethod of de-risking CTs can have a substantial benefit
to the healthcare system and patient well-being.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
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throughout all the phases, only then can a medication obtain

market authorization from regulatory agencies. This process

takes around 60%–70% of the average 13.8-year-long drug

development cycle3 and comprises a major portion4 of the

ever increasing cost of drug development, estimated to be

around 1.3B$ on average.5 Hence, CTs are among the major in-

fluencers of the final medication prices.6

Prior to each implementation phase, as required by regula-

tions, such as the FDAAA 8017 and Regulation (EU) no. 536/

2014,8 CTs are carefully planned and many of the execution de-

tails are precisely described in what are known as CT protocols.9

In fact, these regulations are becoming stricter; for example, with

requirements of risk assessment, and CTs may have to adapt to

situations like the COVID-19 pandemic, where vaccine develop-

ment timelines needed to be significantly shortened.10 Despite

careful planning, less than 14% of trials succeed in getting

from phase I to final market approval by regulatory agencies.11

Direct consequences of these failures include increased prices

of medications when reaching patients, prolonged drug-to-mar-

ket time, as well as other financial and ethical burdens associ-

ated with project failures incurred for pharma companies and

research partners (see, e.g., an industry report12 showing a

decrease in R&D return for pharma companies).

Using retrospective analyses of CT databases, various reasons

behind CT failures have been identified. While some reasons are

associated with the clinical intervention under study, e.g., drug

safety issues or lack of efficacy, a significant portion relates to

CT logistics and execution details, such as insufficient participant

enrollment, ineffective site selection, business or funding deci-

sions, protocol issues, or lack of drug supply.13–15 Specifically

for some therapeutic groups, research shows that interventions

in certain areas, such as oncology, are riskier than others.16–18

Thanks to the availability of largeCTprotocol collections, in the

past years there have been several works in the literature report-

ing data-driven methods to assess risk factors based on CT pro-

tocols19–21 andestimate risks prior toCTexecution. Insteadof re-

sorting tomanual inspection techniques,whichoftendonot scale

favorably with the complexity of the variables involved in CT risk

analyses, these works propose automatic and reliable machine

learning methods trained on historical CT registry data to predict

whether a CT would complete its phase or terminate before

achieving its objectives. Some of these works19,22 use classic

text mining approaches to identify keywords associated

with CT termination, as well as random forests and latent

Dirichlet allocation to perform risk classification. Other recent

studies20,21 pose the problemas abinary classification ofCTpro-

tocols into completed and terminated categories and create a set

of hand-crafted features that are fed to different off-the-shelf

classifiers to predict the risk of phase success. They furthermore

perform traditional feature selection and ranking strategies to

identify top factors associatedwith CT termination. Similar meth-

odologies have been used to carry out risk assessment for

COVID-related CTs.23

Methods based on hand-crafted feature engineering often do

not generalize well to textual data. As an alternative, deep

learning,24 that is, artificial neural network architectures with

several learning layers, has emerged as a paradigm based on

automatic extraction of useful representations from data through

multiple stages of processing, and with successful examples

across digital medicine.25,26 As for the use of deep learning for

CT risk assessment, recent studies27–29 have explored the use

geometric deep learning, a branch of deep learning used for

graph-based data, to predict whether a CT would successfully

complete a particular phase. By exploiting the hierarchical na-

ture of the CT protocol document, graph-based models provide

significant performance improvements compared with models

encoding the protocol using non-hierarchical representations.

In thiswork, rather than solely relying on the reported final status

of the CTs, that is, completed (low) or terminated (high), we incor-

porate historical CT statistics gathered from protocol updates,

such as patient enrollment drop rate, study duration, and number

of protocol amendments, to characterize the notion of risk. These

statisticsare calculatedbymininga largecollectioncontaininghis-

torical evolution of CT protocols and use domain knowledge to

propose a ternary risk-assignment approach: low, medium, and

high risk. In contrast to previous works, this strategy is more

aligned with established ways in the literature for risk assessment

through manual methods.11 Subsequently, we hypothesize

whether these retrospectively assigned ternary risk labels can be

automatically learned and thus showcorrespondence to their pro-

tocol risk. Benefitting from recent advances indeep learning archi-

tectures, we investigated various transformers-based language

models30,31 and graph neural network (GNN)32 models trained to

predict the proposed ternary risk categories. These models are

combined into anensembleusing theprobabilities of the individual

models to obtain the final predictions. Interestingly, the ternary risk

hypothesis is confirmed in our experiments with a robust perfor-

mance of area under the receiving operator characteristic curve

(AUROC) of 0.8453 (95% CI: 0.8409–0.8495).

Our main contributions can be summarized as follows:

d We perform a large-scale analysis of historical changes in

CT protocols, focusing on enrollment, duration, outcome,

and amendment aspects, and show their relations to CT

risk levels.

d We propose a new risk assignment methodology using

termination status as well as key protocol design features

stratified by phase and condition.

d Wedesign a newmachine learningmodel for CT risk predic-

tion, combining state-of-the-art transformer andGNNarchi-

tectures to leverage both contextual word representation

and hierarchical features of semi-structured documents.

d We evaluate our model against state-of-the-art baselines

and show that it achieves superior performance on both bi-

nary and ternary risk prediction tasks. We also conduct an

explainability study to demonstrate the capacity of the

model to automatically identify protocol design aspects

associated with risk factors.

d We create a new benchmark that goes beyond the classic

binary classification, enabling the design and evaluation of

finer-grained CT risk assessment methodologies.

RESULTS

Protocol versioning analyses
The divergence in months between the planned and actual

CT duration obtained from the historical CT database is
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shown in Figure 1. Results indicate that most CTs underes-

timate the study duration (Figure 1A), with a higher diver-

gence spread in terminated CTs (SD = 20.9 and SD =

16.4 for non-completed and completed CTs, respectively,

p = 0.007) (Figure 1B), and a more accurate estimation is

seen as they progress across phases (phase I and II:

SD = 19.7; phase III: SD = 18.7; and phase IV: SD = 14.6,

p < 0.001) (Figure 1C). If we consider conditions composing

at least 1% of the dataset, Stomatognathic Diseases CTs

have the lowest divergence (SD = 11.5), while Hemic and

Lymphatic Diseases as well as Neoplasms CTs underesti-

mate the study duration by 6 months on average, taking

44.4 months (SD = 32.7 and SD = 31.8, respectively) on

average to complete a phase (Figure 1D).

Figure 2 describes the number of major protocol amendments

for different statuses, phases, and conditions. To provide a

robust measure, we only consider changes to key protocol

sections, namely Arms and Interventions, Conditions, Groups

and Interventions, Eligibility Criteria, Interventions, Outcome

Measures, Sponsor and Collaborators, Study Design, and Study

Status. As expected, the terminated trials have the highest num-

ber of substantial protocol changes (Figure 2B) (p < 0.001). Pre-

market CT phases (i.e., phases I to III) present a similar distribu-

tion of major changes (m = 3.3, p = 0.01) (Figure 2C), with a

Figure 1. Divergence between planned and actual clinical trial duration

(A–D) Histogram of the divergence between planned and actual clinical trial duration (A), and stratification per overall status (B), phase (C), and clinical condi-

tions (D).
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decrease in the number of changes for the post-market phase

(phase IV) (m = 2.5, p < 0.001). Within the clinical condition cate-

gories (Figure 2D), the Hemic and Lymphatic Diseases have the

highest frequency of major changes.

Results shows that terminated CTs enroll 52% of the planned

number of subjects compared with 88% for completed CTs

(p < 0.001) (Figure 3A). For some CTs, the enrollment is higher

in the last version compared with the first. This does not corre-

spond to risky behavior; therefore, in order not to bias the statis-

tics, we upper-bound the ratio to one and consider only the drop-

ping in enrollment. Similarly, as shown in Figure 3B, the number

of outcome changes is relatively higher in terminated CTs (30%)

when compared with the completed CTs (27%) (p < 0.001).

Retrospective multi-label risk assignment
After removing CT protocols for which the risk metrics could not

be applied, e.g., due to missing or inconsistent values while

computing the historical statistics, the number of unique CT pro-

tocols reduced to 135,940. Since the statistics were computed

for unique phase-condition group pairs to better reflect the spec-

ificity of the trial, and to account for multiple phases (e.g., phases

I and II) and condition groups (e.g., Neoplasms and Hemic and

Lymphatic Diseases) that a unique CT protocol may refer to,

the multi-label risks were assigned to CT-phase-condition trip-

lets. This resulted in a dataset containing 283,776 unique CT-

phase-condition triplets, for which the ternary risk model was

applied.

Figure 2. Major changes to the protocol

(A–D) Histogram of the number of major changes to the protocol (A), and stratification per overall status (B), phase (C), and clinical condition (D).
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Figure 4 sketches the distribution of the computed ternary la-

bels stratified by final status, CT phases, and clinical condition

categories, which are distributed among 85,820 (30%) low-

risk, 42,694 (15%) medium-risk, and 155,262 (55%) high-risk

categories. As shown in Figure 4A, from the set of CTs that

have the final status as completed, 43k triplets were labeled me-

dium risk, while 57k triplets were labeled high risk (the remaining

high risk comes from terminated, unknown, and withdraw sta-

tuses). While on average 30% of CT protocols are low risk, this

ratio is the lowest among trials of phase II (around 25%), with tri-

als on Infections (C01) and Musculoskeletal Diseases (C05) hav-

ing the highest ratio of low-risk CTs (around 35%).

As an example of the historical changes that a CT protocol can

go through during its execution, Figure 4D shows the timeline of

changes for the ClinicalTrials: NCT01432886 study, from its cre-

ation and submission to the ClinicalTrials.gov repository to the

study completion. The CT completed the phase (i.e., completed

overall status); however, the protocol had seven major changes

during its execution (10 in total). The study design section was

modified twice, changing the enrollment number from 24

planned participants to 12 enrolled (50%drop) and the allocation

type from ‘‘non-randomized’’ to ‘‘N/A.’’ Moreover, the primary

outcome changed from one primary outcome at the beginning

of the study (evaluation of dose limiting toxicity [DLT]) to two

outcome measurements in the final version (number of partici-

pants with DLT and number of participants with adverse events).

Finally, the study was expected to complete in 12 months, but it

lasted for 27 months (2.25-fold increase in duration). Thus,

instead of considering this CT protocol as low risk based only

on its final status, the study was labeled high risk according to

the ternary risk model.

Analyses of the distribution of risk categories according to

study duration, major changes, and enrollment ratio risk factors

(Figure 5) show that there are no clear boundaries between risk

categories. Medium-risk protocols are particularly scattered

around low- and high-risk protocols, suggesting a coherent

risk continuum across the three categories. Nevertheless,

some clusters can still be identified around the median values

of the risk factor metrics analyzed (low-risk CT protocols) or far

from them (high-risk CT protocols).

CT risk prediction performance
We investigated three deep learning models to predict the risk of

a CT based on its protocol: a graph model—Graph-BOW and

Graph-LM; a transformer-based language model—Sampled-

LM; and an ensemble combining results of the former two

models. For the graph-based model, two strategies were used

to encode the protocol leaves: bag-of-words (Graph-BOW)

and word embeddings provided by the PubMedBERT language

model33 (Graph-LM). The proposedmodels were compared with

a multi-layer perceptron baseline using bag-of-words (MLP-

BOW) or pre-trained language model embeddings (MLP-LM) to

encode features of the protocol sections (design, criteria, condi-

tion, intervention, etc.). In this setting, the representation of a CT

protocol is obtained by the feature concatenation of the k sec-

tions (k = 15 in our settings). In our experiments, the models

were trained using the dataset with ternary codes assigned to

the triplets CT-phase-condition.

The prediction performance for themulti-label risk approach is

presented Table 1. As we can see, both graph and language

models outperform the MLP baseline, achieving AUROC of

nearly 84% for both Graph-LM (0.8395 [95% CI: 0.8352–

0.8439]) and Sampled-LM (0.8363 [95% CI: 0.8318–0.8407]).

The ensemble model further improves the individual models in

terms of AUROC, achieving a performance of around 85%

(0.8453 [95% CI: 0.8409–0.8495]); however, this improvement

is not statistically significant compared with the Graph-LM

model. In terms of accuracy, the best results are provided by

the Sampled-LM model (around 68%), which can correctly pre-

dict the CT protocol risk in more than two out of three attempts

on average, while recall is maximum (around 62%) for the Graph-

LM model. For the macro F1 score, which reflects how well the

models can predict the individual risk classes, the ensemble

achieves the highest results, with a performance of around 61%.

To have a comparative reference with state-of-the-art ap-

proaches, which uses only the completed and terminated status

of a CT to assess risk, we also experimented with a binary label-

ing strategy. In our case, the CTs within the low-risk class had a

completed status, while the high-risk class was composed of

any of the terminated, withdrawn, or unknown statuses. The

risk prediction performance was obtained in an out-of-sample

dataset composed of 31,684 CT protocols (15%), and the re-

maining 178,813 protocols (85%) were used to train our models

(70% train and 15% develop). These results are reported in

Table 2, where we also show the performance of Elkin and

Zhu21 and Fu et al.,29 which were carried out within a similar

phase success setup but using different training and evaluation

CT protocol datasets extracted from ClinicalTrials.gov. It is

Figure 3. Enrollment ratio drop (A) and changes in outcome (B) per overall status
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important to note that, in addition to a smaller training set, these

previous experiments also used a smaller evaluation set

compared with our setting. Therefore, they are not directly

comparable.

Results show that the ensemble model achieves excellent

class discrimination performance in the binary labeling strategy

with an AUROC of 92% (0.9234 95% [CI: 0.9193–0.9274]) and

an accuracy of almost 90%, outperforming our individual models

and baseline. Comparing the individual models, the Sampled-

LM achieves the highest performance of the aggregated metrics

with a decision cutoff (84%macro F1 score and 87% accuracy).

Performance analyses
We further analyze the ternary predictive performance per risk

type, phase, and condition categories using the results of best

individual model according to the AUROC metric (i.e., Graph-

LM). Overall, the model provides robust performance across

risk type, phase, and condition (Figure 6), being above an

AUROC of 78% for all strata, despite CT dynamics being signif-

icantly distinct for phases and conditions.16–18 Nonetheless, we

see a 9% drop in performance for the medium-risk class (0.7769

[95% CI: 0.7716–0.7824]) compared with the high-risk class

(0.8691 [95%CI: 0.8658–0.8724]) (Figure 6A). Note that correctly

predicting high-risk CTs is the most important for risk mitigation

purposes. Theperformance is consistent phase-wise (Figure 6B),

with an AUROC difference of only 2%between the best perform-

ing phase—phase I (0.8493 [95% CI: 0.8408–0.8573])—and the

worst performing phase category—‘‘N/A’’ (0.8327 [95% CI:

0.8274–0.8379]). Similarly, among the conditions with at least

1,000 samples in our test set (Figure 6C) we see an AUROC dif-

ference of only 5% between the best performing—Hemic and

Lymphatic Diseases (0.8647 [95% CI: 0.8452–0.8841])—and

the worst performing—Nutritional and Metabolic Diseases

(0.8146 [95% CI: 0.8009–0.8277]). The results show that these

Figure 4. Distribution of ternary risk labels retrospectively assigned to CTs

(A–D) Distribution per overall status (A), phase (B), and clinical condition (C), and an example of historical changes for a CT protocol (D).
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models can be used consistently to assess CT for different trial

phases and conditions. Finally, looking at the confusion matrix

(Figure 6D), we notice that the model tends to confuse me-

dium-risk with low- and high-risk instances. This is expected

due to the continuity of the risk factors and the fact that there

are no clear boundaries between risk categories (see Figure 5).

Model explainability and risk factor identification
To identify the parts of the CT protocols that the models asso-

ciate with the high-risk label in their prediction, we use the inte-

grated gradients34 method, which has been successfully applied

to explain factors associated with inference of deep learning

models. For CTs classified by our graph-based method as high

risk, we use this method to calculate the output-input activities

for all CT nodes and consider those with the highest norm of ac-

tivity across dimensions as possible risky fields. For better ex-

plainability, we focus on our graph-basedmodel, which explicitly

preserves the initial trial protocol sections. While we initially

calculate the association of each single node from the input CT

to the final predicted risk label one-by-one, and use the inte-

grated gradients method to make results more robust and

improve explainability, we pool the individual nodes to the

main parent nodes (or sections) in the CT protocol hierarchy,

i.e., any of Arms and Interventions, Conditions, Contacts and

Locations, Eligibility Criteria, Outcome Measures, Oversight,

Sponsor and Collaborators, or Study Design.

To validate this idea, we took a random set of correctly pre-

dicted high-risk CTs using our graph-based model for Breast

Cancer (n = 28) and Cardiovascular (n = 36) conditions, and

averaged the aggregated activities calculated from the inte-

grated gradients method for the CT sections. The results are

shown in Figure 7, where we note that the top 2 risky CT pro-

tocol sections for these analyzed conditions are Study Design

(32% for breast cancer and 43% for cardiovascular diseases)

and Contacts and Locations (31% for breast cancer and 29%

for cardiovascular diseases). Note that these two fields are

where the information regarding patient enrollment phase as

well as site selection are detailed, which are indeed identified

by the model as part of the top 5 nodes contributing most to

the Study Design and Contacts and Locations risks. For

example, according to the model Enrollment, Count contributes

to 35% and 36% of the Study Design risk for the breast cancer

and cardiovascular conditions, respectively (Figure 7B), while

the top 5 location-related nodes, such as facility, institution

Figure 5. Distribution of risk according to the study duration, major changes, and enrollment ratio risk factors

Table 1. Performance of the CT risk prediction models using the ternary risk labeling methodology

Model Precision Recall F1 score Accuracy AUROC (95% CI)

MLP-BOW 0.5064 0.5068 0.5060 0.5869 0.7548 (0.7493–0.7603)

MLP-LM 0.5804 0.5934 0.5723 0.6173 0.8216 (0.8171–0.8262)

Graph-BOW 0.5501 0.5603 0.5403 0.5834 0.7936 (0.7886–0.7988)

Graph-LM 0.6039 0.6215 0.5913 0.6283 0.8395 (0.8352–0.8439)

Sampled-LM 0.6017 0.5855 0.5858 0.6759 0.8363 (0.8318–0.8407)

Ensemble 0.6047 0.6152 0.6065 0.6677 0.8453 (0.8409-0.8495)

Precision, recall, and F1 score are reported using macro-average statistics.
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(affiliation), and zip code, account together for 70% and 71% of

the risk in the Contacts and Locations section for the breast

cancer and cardiovascular conditions, respectively. This is in

line with manual CT risk analysis literature, in which patient

attrition and poor selection of study sites are identified as the

main reasons behind trial failure.13–15

DISCUSSION

CT literature identifies various reasons behindCT failure, including

issues related to the safety or efficacy of themedical interventions

under study, but also related to logistics and protocol design. The

intricate combination of numerous factors potentially prone to fail-

ure, such as clinical conditions, study sites, and enrollment

criteria, and their analyses using large datasets of historical CT

protocols, makes manual inspection infeasible. As an alternative,

utilization of systematic machine learning approaches that benefit

from large databases of past records have been proposed. Our

study benefit data from historical CT evolution to retrospectively

derive risk-related measures that go beyond the binary approach

and to combine transformer- and graph-based methodologies to

predict risk labels from CT protocols. Our models are stratified

based on clinical conditions and trial phases and show promising

risk predictive performances for CTs.

Our approach carries some similarities to previous studies

since it uses neural networks for the CT protocol classification

Table 2. Performance of the CT risk prediction models using the binary risk labeling methodology

Model Precision Recall F1 score Accuracy AUROC (95% CI)

Elkin and Zhu21 – – – – 0.7281

Fu et al.29 – – – 0.837 0.817 (0.802–0.832)

MLP-BOW 0.8056 0.8148 0.8099 0.8449 0.8792 (0.8735–0.8846)

MLP-LM 0.8143 0.8292 0.8211 0.8527 0.9063 (0.9016–0.9109)

Graph-BOW 0.7907 0.8082 0.7983 0.8328 0.8865 (0.8813–0.8914)

Graph-LM 0.8400 0.8410 0.8405 0.8716 0.9161 (0.9118–0.9203)

Sampled-LM 0.8956 0.8203 0.8476 0.8883 0.9120 (0.9077–0.9163)

Ensemble 0.8913 0.8359 0.8577 0.8933 0.9234 (0.9193–0.9274)

Precision, recall, and F1 score are reported using macro-average statistics.

Figure 6. Classification results using the Graph-LM model
(A–D) Classification results per risk type (A), phase (B), and condition (C), and the confusion matrix (D).
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task in addition to the use of embeddings to represent textual

features as well as by including the disease hierarchy in the

feature set. Elkin and Zhu21 used feature engineering combined

with word embeddings and assessed their impact using different

off-the-shelf classifiers (logistic regression, random forest, etc.).

Differently, Fu et al.29 use multimodal data features, integrating

CT protocols with a drug knowledge base, which are fed to an

extended graph convolutional network architecture for phase

success prediction. Our CT classification architecture differenti-

ates mostly from previous attempts by the fact that it treats the

protocol itself as graph, and features are extracted from all

leaves independently, both by the graph- and transformer-based

approaches. Thus, the model is less prone to information

collapse (notice how the graph- and transformed-based models

improve upon the MLP model). Moreover, by combining the

graph- and transformer-based models in the ensemble, both

the hierarchical protocol information and the word contextual

representations are captured, which could lead to improved per-

formance (as shown by the ensemble results).

Identifying the common causes behind CT failures is a first

step toward mitigating their risk and increasing the odds of their

success, hence reducing the expected time of drug-to-market,

and potentially reducing medication prices. Our retrospective

analyses studied common trial failure reasons similarly to what

was previously highlighted by case-based studies in the CT liter-

ature. However, we go a step further by using a big data

approach under various clinical condition categories and trial

phases, and by benefiting from historical versions of CTs avail-

able from the ClinicalTrials.gov registry. We show that termi-

nated trials tend to misestimate their duration, enroll fewer sub-

jects than planned, but also to have more major and outcome

changes compared with completed trials. These results enable

the creation of fine-grained risk models as proposed here, which

allows for more detailed analyses of past trials and for targeted

predictive risk models.

Another important step toward optimization of trials is to be able

to predict the outcomeof a given trial study directly from its design

protocol. This per-case prediction can potentially be more useful

than solely relying on average-behavior studies, since customized

optimization would be possible before the CT execution. Relying

on databases of protocols along with their retrospective out-

comes, machine learning can provide an appropriate framework

to capture structures within protocols and map between proto-

col-outcome pairs in a way that can generalize to newly designed

CT studies. Among the variousmachine learning paradigms, deep

learning techniques are specifically suitable for large-scale data-

bases and have recently shown significant performance improve-

ments across many domains including healthcare and medicine.

Weutilize transformer-based languagemodelsandGNNstoadapt

to the hierarchical structure of trial protocols with free text and

contextualized biomedical concepts. With careful study design,

statistical analyses, and performancemeasurements, we demon-

strate that deep learning provides a robust framework to success-

fully predict trial risks in different stratification strategies.

Trial designers can benefit from deep learning-based risk pre-

diction models based on the protocol in various ways. One such

way is to keep changing the protocol components (e.g., the eligi-

bility criteria, the study locations, etc.) of a predicted high-risk

trial until the model predicts a low-risk label. Another way would

be to perform nearest neighbor search, not on the protocol text,

but rather on the latent space learned by the model.35–37 The

designers can then find similar past trials with their known

Figure 7. Results interpretability using integrated gradientes and the Graph-LM model

(A–C) Risk factors for high-risk CT protocols for breast cancer and cardiovascular conditions: impact of protocol sections on the risk prediction (A), top 5 nodes

within the study design section (B), and top 5 nodes within the contacts and locations section (C).
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outcomes based on some criteria that the model has learned.

This is more in-depth than keyword-based matching, since the

latent space of the model is implicitly enriched by the patterns

of all the examples it had been trained on.We leave this direction

of research for a future investigation.

To further enhance trial optimization, as a complementary step

it would be desirable to explicitly find certain patterns within a

given trial protocol that could potentially lead to an eventual risky

behavior. While deep learning models are highly successful in

incorporating large-scale data and automatically finding relevant

patterns, their architectures are essentially backbox functions

with powerful input-output mapping capabilities. In other words,

while they can map their inputs to their outputs very successfully,

it is usually not clear how they reach their decisions. Significant

progress, however, has been made in this regard thanks to the

areas of explainable machine learning.38,39 In our studies, we

used the popular integrated gradients approach with our graph-

based model, where we assign an importance weight coefficient

to nodes (or sections) of the protocol graph, i.e., the individual

components of the trial protocol. As a result, apart from being

able to predict the outcome of a study, the trial designers can

have an estimation of the individual sections within their designed

protocol that are more likely to be risk-inducing. While it is hard to

quantitatively evaluate explainability results in healthcare,40

Figure 8. Dataset description statistics

(A–C) Overall status distribution for interventional and observational CTs of the ClinicalTrials.gov registry (A), starting year of interventional CTs from 1990 to 2020

stratified by overall status (B), and histogram of the number of versions per protocol (C).
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preliminary qualitative analyses show that the risk factors identi-

fied by our models are supported by previous findings in the CT

risk analysis literature.

While wemade important strides in incorporating the history of

CTs in our analyses, an important limitation of our study is that

we do not consider patient-based or drug-related information.

While, in general, it would be very difficult to find records of pa-

tients recruited and potentially dropped from a sufficiently large

number of CT studies, several drug-related databases are pub-

licly available that could be incorporated into our study to enrich

the results. As an example, reports of adverse events for some

medications are available that can be used along with the clinical

conditions section of protocols to make them more specific.

Moreover, the chemical structure itself could be incorporated

as another node of the intervention section of the CT graph

and be exploited by the model for safety and efficacy related

risks. Indeed, our graph-based paradigm can be an ideal

approach to incorporate external metadata to the protocols.

We leave this direction for our future studies.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Douglas Teodoro (douglas.teodoro@unige.ch).

Materials availability

This study did not generate any physical materials.

Data availability

The datasets and code used in this work are available at https://doi.org/10.

5281/zenodo.7509571.

CT protocol dataset

The US-based ClinicalTrials.gov registry (publicly available at https://

clinicaltrials.gov/) is a major source of trials information with daily updates

and currently contains more than 390k registered CT items. In this work, we

use a snapshot collection of ClinicalTrials.gov protocols with trials registered

up to 2020. Figure 8 sketches the different status types (Figure 8A) of these

CTs for both interventional and observational studies, as well as their starting

year (Figure 8B), where an important increase in the number of launched CTs

per year is observed for the past 20 years. We limit our study to interventional

CTs, and consider only those with settled status, i.e., either completed, termi-

nated, unknown, or withdrawn, resulting in a subset of 210,497 CTs out of the

360,497 downloaded. In addition to the latest version of the CT protocol,

ClinicalTrials.gov also stores the historical protocol evolution from the day

they were first submitted until their last update. Since these data are not readily

available for download and there does not exist an API to access them,

after the authorization of the registry administrator, we use web scraping

Figure 9. Dataset creation and risk labeling flowcharts

(A and B) Flow chart for the benchmark dataset creation (A) and the procedural approach to assign ternary risk labels to CT protocols based on statistics from the

history-set as well as the final status reported in the protocols-set (B). Atypical values refer to statistics that are more than 1 standard deviation SD above the

average within the respective phase and condition strata. Very atypical values refer to those that are beyond 2 standard deviations from the average.

Table 3. Stratification of the of the CT protocols by phase

Phase No. %

I 41,175 20

II 70,496 34

III 41,228 20

IV 30,709 15

N/A 100,167 48
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techniques to retrieve all protocol versions and engineered them to a format

suitable for our studies. We call this new dataset the history-set to distinguish

it from the main protocols-set, which contains only the latest protocol version

and is readily available for download. The number of versions in the history-set

vary significantly among the different CT protocols, most of them having be-

tween 1 and 10 versions, while a still important number has between 10 and

100 versions (Figure 8C). The flow chart for the benchmark dataset creation

is depicted in Figure 9A.

Multi-label risk assignment strategy

For CTs that have finished their execution, the main protocols-set available from

ClinicalTrials.gov provides only the final status (completed, terminated, with-

drawn, etc.). This status is what previous risk prediction studies use20,21,27,29

based on which CTs they label into two classes—completed or terminated—

or minor variations therein, e.g., low or high risk. While we also experiment

with this labeling procedure for comparison purposes, to better reflect realistic

risk scenarios, we propose a more detailed procedure based on the history-

set to retrospectively assign labels to CTs into different risk categories.

Supported by retrospective risk analysis studies,13–18 we identified five fac-

tors that could be used to fine-grain risk levels and at the same time be derived

from the protocol and history sets: (1) the final status of the CT protocol, (2) the

attrition rate of recruited patients, (3) the divergence between the planned and

actual study durations, (4) the number of major protocol amendments, and (5)

major changes in the primary outcomes. We calculate the values for items (2)

to (5) using the history-set and item (1) is provided by the respective protocol

status in the protocols-set. Tomake our risk analysesmore specific, we stratify

the CT protocols according to their study phases (consisting of four phases

plus one extra N/A category to account for trials without phase) as well as their

condition groups, and we compute their stratified statistics. Within the

ClinicalTrials.gov registry, a CT protocol is associated with one or multiple

medical conditions and is annotated with Medical Subject Headings concepts

for the respective study conditions. Using the MeSH ontology tree, we identify

the condition group for each investigated disease, which is used during statis-

tics computation. For each CT, we compare its values to these statistics to

decide whether it deviates substantially (1 or 2 standard deviations) from other

CTs in the same phase-condition category. Tables 3 and 4 show the distribu-

tion of CT protocols according to their phase and condition group for the study

dataset, respectively.

As shown in the procedural approach of Figure 9B, we finally use these five

factors together with the computed statistics and a set of rules to assign either

low-, medium-, or high-risk labels to each CT. Overall, if trials fail to complete,

fail to enroll enough participants, take much longer than planned, or have too

many amendments, they are considered as high risk. Otherwise, if they take

relatively longer than expected, have many amendments, or changes in the

primary outcome, they are considered as medium risk; otherwise, as low risk.

CT risk prediction models

Figure 10 sketches the general schema of the predictive risk assignment

model. Given a CT protocol, a phase, and a condition (group), after a basic

pre-processing step, these features are fed to two machine learning models

based on the transformer30,31 (Figure 10B) and GNN27,28,32 (Figure 10C) archi-

tectures. During the training phase, these models learn the CT protocol repre-

sentation conditioned to the phase and clinical condition, and at the inference

phase they predict the CT risk. The results of the transformer- and GNN-based

models are merged using an ensemble model (Figure 10A), which computes

the average of the probabilities provided by the individual models to obtain

the final risk label. In the following sections we describe the transformer-

and GNN-based models.

Sampled language model for CT risk prediction

While traditional approaches for text classification represent the text in vecto-

rial representations (e.g., term frequency-inverse document frequency,

word2vec,41 etc.) and classify them based on off-the-shelf classifiers (e.g., lo-

gistic regression, support vector machine, etc.), the state-of-the-art approach

usually with large performance gaps is the family of transformer-based30 pre-

trained languagemodels.31 The idea behind suchmodels is to pretrain them on

massive amounts of text, so that they learn contextual word vector represen-

tations but also syntactic and semantic relations42 thanks to their highly

expressive architecture. Such models can then be further trained (or fine-

tuned) on a downstream task, e.g., text classification as in our case, while

benefiting from all they had already learnt in their pre-training phase.

In our algorithm, we pre-trained a BERT-like31 language model on the

PubMed corpus and fine-tuned the resulting model to classify CT protocols

according to the risk classes. The language model architecture has 6 trans-

former layers with 8 attention heads each and, like other BERT-based models,

an embedding dimension of 512 tokens. To overcome the sequence length

limitation of 512 tokens, which is usually surpassed by the length of the CT pro-

tocols, as shown in Figure 10B the pre-trained language model computes

vectorial representations for n different text inputs sampled from the CT proto-

col leaves (n = 8 in our experiments). The n samples are drawn considering

the leaf token size to reduce sampling bias, in which the larger the field length,

the higher its sampling probability, and the higher its sampling frequency, the

lower its probability of being redrawn. Subsequently, the sampled representa-

tions are passed through amean pooling layer to obtain a CT-vector represen-

tation, which is then fed to a fully connected layer that predicts the risk label

probabilities. This process is parallelly computed N times (N = 100 in our ex-

periments) and the final CT risk label is computed by taking the label with

the highest mean probability across the N predictions.

Graph neural network model for CT risk prediction

As an alternative method to the sampled-based language model, we use a

variant of deep learning suitable to handle graph-based data, notably GNNs.

In fact, the structure of a CT protocol, unlike traditional textual documents,

is semi-structured with many hierarchical dependencies between different

Table 4. Stratification of the of the CT protocols by condition

MeSH

code Condition group No. %

C01 infections 15,132 7.20

C04 neoplasms 30,992 14.75

C05 musculoskeletal diseases 9,111 4.34

C06 digestive system diseases 15,246 7.26

C07 stomatognathic disease 3,681 1.75

C08 respiratory tract diseases 14,584 6.94

C09 otorhinolaryngologic diseases 2,392 1.14

C10 nervous system diseases 20,799 9.90

C11 eye diseases 5,301 2.52

C12 male urogenital diseases 10,196 4.85

C13 female urogenital diseases

and pregnancy complications

12,155 5.78

C14 cardiovascular diseases 20,283 9.65

C15 hemic and lymphatic diseases 8,316 3.96

C16 congenital, hereditary, and

neonatal diseases and abnormalities

6,731 3.20

C17 skin and connective tissue diseases 11,493 5.47

C18 nutritional and metabolic diseases 15,515 7.38

C19 endocrine system diseases 11,034 5.25

C20 immune system diseases 15,467 7.36

C22 animal diseases 25 0.01

C23 pathological conditions, signs

and symptoms

46,974 22.36

C24 occupational diseases 24 0.01

C25 chemically induced disorders 3,008 1.43

C26 wounds and injuries 5,316 2.53

Trials with unknown phase, or those without a particular phase assigned

to them, are represented as N/A.
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Figure 10. CT risk classification diagram

The schematic description of the predictive models: CT protocols, their associated phase, and condition categories are input as features to our two machine

learning models, which are ensembled to predict the CT risk class.
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protocol sections. This choice is furthermore driven by many successful appli-

cations of GNNs in various fields, e.g., the works of Stokes et al.43 and Jumper

et al.,44 as well as our recent work addressing a simplified scenario of CT

classification.27,28

The GNN-basedCT risk prediction algorithm, as shown in Figure 10C, works

by extracting raw vectorial features from individual textual pieces of the CT

protocol and initializes the graph structure defined by a standard CT template

with the vectorial features on their corresponding nodes.27 The nodes of the

graph will then propagate information between each other using L layers

(L = 4 in our experiments) of themessage passing algorithm.45 This is to ensure

that the network, along with the textual content, also incorporates the hierar-

chical structure of the CTs into account. This propagated information is then

pooled together in a final vectorial representation, on which a fully connected

neural network classifier is applied to predict the risk label. All these operations

are performed with respect to a weighted cross-entropy classification loss to

account for class imbalances and are optimized using the Adam algorithmwith

standard parameters. To extract vectorial features from text, we use a BOW

representation as a baseline as well as the state-of-the-art transformer-based

models described above. Unlike the above case and to minimize computa-

tional complexities, however, instead of fine-tuning the transformer weights

we use pre-trained networks on large medical corpora and with sentence

embedding capabilities.33

Statistical analyses

The selected subset ofCTswere split into train, validation, and test setswith pro-

portions of 70% (95,197), 15% (20,242), and 15% (20,501) unique CTs for the

ternary risk model, respectively. The model parameters were trained on the

training set, the hyper-parameters were tuned on the validation set, andmodel’s

performance results are reported on the test set using standard classification

metrics: precision, recall, and F1 score (macro), accuracy and AUROC.
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