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Abstract
Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We
carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated
with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P =
10−190). We used functional genomic approaches including metabonomic profiling and gene
expression analyses to identify probable candidate genes at these regions. We identified 69
candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose,
carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL,
PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface
glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity
(CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism
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(GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including
ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into
genetic mechanisms and pathways influencing markers of liver function.

High concentrations of liver enzymes in plasma are observed in liver injury caused by
multiple insults including alcohol misuse, viral and other infections, metabolic disorders,
obesity, autoimmune disease and drug toxicity. High liver enzyme concentrations are
associated with increased risk of cirrhosis2, hepatocellular carcinoma3, type 2 diabetes4 and
cardiovascular disease5. Abnormal liver function is a common reason for terminating new
clinical therapeutic agents, representing a major challenge for the global pharmaceutical
industry6. Liver enzyme concentrations in plasma are highly heritable7, suggesting an
important role for genetic factors.

We carried out a genome-wide association study (GWAS) in 61,089 research participants to
identify genetic loci influencing liver function measured by concentrations of alanine
transaminase (ALT), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT) in
blood. ALT is mainly a marker of hepatocellular damage1, and may also be high in obesity
and fatty liver disease8. ALP is a marker of biliary obstruction, and is also released from
bone, intestine, leucocytes and other cells1. GGT is sensitive to most kinds of liver insult,
particularly alcohol1. Our study design is summarized in Figure 1. Characteristics of
participants, genotyping arrays and quality control measures are summarized in
Supplementary Tables 1–4. Genome-wide significance was inferred at P < 1 × 10−8,
allowing a Bonferroni correction for ~106 independent SNPs tested9, and for three separate
liver markers; the latter is a conservative adjustment given the correlations between
concentrations of the three liver markers (r = 0.19–0.64) and their association test results (r
= 0.02–0.19; Supplementary Table 5).

We found 1,304 SNPs associated with one or more liver markers at P < 1 × 10−7 across 42
genetic loci (Table 1 and Fig. 2). At 35 of these loci, one or more SNPs reached genome-
wide significance (P < 1 × 10−8; Supplementary Table 6); at the other seven genetic loci, the
top-ranking SNP reached genome-wide significance after further testing in an additional
sample of 12,139 research participants (Supplementary Table 7). Regional plots for each of
the genetic loci are shown in Supplementary Figures 1–3. Common variants at chromosome
8q24 were associated with both ALP and ALT, and variants at chromosome 19q13 were
associated with both ALP and GGT, at P < 1 × 10−8. Sixteen loci associated with one liver
marker at P < 10−8 showed additional associations with a second marker at P < 6 × 10−4

(corresponding to P < 0.05 after Bonferroni correction for testing 42 loci against two
alternate liver markers; Supplementary Fig. 4 and Supplementary Table 8). The loci
previously reported to be associated with liver markers in GWASs were replicated in the
current study, except for variants at the ALDH2 locus reported in Japanese populations,
which have low allele frequency in European populations10,11.

We used coding variation, expression quantitative trait loci (eQTL) and GRAIL analyses to
identify possible candidate genes at the 42 loci associated with liver enzymes (Table 1 and
Supplementary Table 9). There are 19 nonsynonymous SNPs (nsSNPs) that are in linkage
disequilibrium (LD) with one or more of the sentinel SNPs at r2 ≥ 0.5 in the HapMap phase
II CEU data set12 (see URLs), representing a ~3.5-fold enrichment compared with the
number expected under the null hypothesis (P = 0.004). We considered the gene containing
the nsSNP to be a strong candidate when (i) the nsSNP and the sentinel SNPs were in LD (r2

> 0.5) and (ii) there was no evidence for heterogeneity of effect on phenotype. The genes
with coding variants identified as candidates for mediating the observed associations with
liver markers (Supplementary Table 10) encode proteins involved in biliary transport
(ATP8B1)13, cell surface glycobiology, endoplasmic trafficking and susceptibility to
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gastrointestinal infection (FUT2 and GPLD1)14,15, carbohydrate and lipid metabolism,
including susceptibility to type 2 diabetes (GCKR, HNF1A and SLC2A2)16–18 and
inflammation as measured by circulating concentrations of C-reactive protein (CRP) (GCKR
and HNF1A)19. Mutations in ATP8B1 are responsible for progressive familial intrahepatic
cholestasis and are associated with high GGT concentrations20; the coding variant identified
is predicted to be nonconservative (Supplementary Fig. 5). At chromosome 14q32, rs944002
is in LD (r2 = 0.86) with two nsSNPs in C14orf73, a gene strongly expressed in liver.
C14orf73 has strong sequence homology with SEC6, a protein that interacts with the actin
cytoskeleton and vesicle transport machinery21. Of the two nsSNPs reported in C14orf73,
p.Arg77Trp is predicted to be a nonconservative change from a polar basic residue to a
nonpolar hydrophobic residue (Supplementary Fig. 5).

We repeated the search for coding variants using available results from the 1000 Genomes
Project22 (see URLs) and identified coding variants in two additional genes, NBPF3
(chromosome 1p36.12) and MLXIPL (chromosome 7q11). Both genes are separately
implicated as candidates for genes mediating the associations of sentinel SNPs with liver
markers through eQTL analyses.

We examined the association of the sentinel SNPs with eQTL data from liver, fat and
peripheral blood leucocytes23–25 (Supplementary Tables 11–14). We tested SNPs for
association with expression of nearby (within 1 Mb) genes (at P < 0.05 after Bonferroni
correction for number of SNP expression associations tested). When we identified probable
eQTLs, we tested whether the sentinel SNP and the SNP most closely associated with the
eQTL were coincident (r2 > 0.5 and absence of heterogeneity at the phenotype or eQTL).
This strategy identified eQTLs at 23 of the 42 loci, representing genes implicated in
glutathione metabolism and drug detoxification (GSTT1 and GGT1), carbohydrate and lipid
metabolism (MLXIPL, PPP1R3B, FADS1 and FADS2), cell signaling (ABHD12 and
EPHA2) and inflammation and immunity (STAT4, MAPK10, CD276 and HPR). The
functions of the other candidate genes identified by eQTLs (including EFHD1, MICAL3,
DENND2D, CEPT1, MLIP (also known as C6orf142) and RSG1 (also known as C1orf89))
are poorly understood.

We also carried out a literature analysis using the GRAIL algorithm26 (see URLs), initially
using the 2006 data set to avoid studies of the GWAS era. At chromosome 2q24, GRAIL
identified ABCB11 as the most plausible candidate (Supplementary Table 15). ABCB11
activity is a major determinant of bile formation and bile flow27; mutations in ABCB11
cause progressive familial intra- hepatic cholestasis type 2 and are associated with increased
risk of hepatocellular carcinoma28,29. We repeated the GRAIL analysis using the 2010
PubMed data set. This also identified ABCB11 as the plausible candidate at chromosome
2q24 but additionally identified ABO, GCKR, MLXIPL and PNPLA3 as probable
candidates at other loci (Supplementary Table 15), replicating our findings from coding
variant and eQTL analyses.

Through our coding variant, expression and GRAIL analyses, we identified 44 genes as
strong candidates at the 42 loci associated with concentrations of liver enzymes in plasma.
We also considered the gene nearest to the sentinel SNP at each locus to be a potential
candidate. Together these approaches identified 69 candidate genes. Pathway analyses
showed subnetworks of closely interconnected genes (Supplementary Fig. 6) from core
metabolic path- ways and processes including carbohydrate metabolism, insulin signaling
and diabetes (GCKR, SLC2A2, PPP1R3B, FUT2, ALDOB, HNF1A and MLXIPL), lipid
metabolism (CEPT1, FADS1, FADS2, HNF1A, PNPLA3 and ALDH5A1),
glycosphingolipid biosynthesis and glycosylation (ST3GAL4, FUT2 and ABO) and
glutathione metabolism (ALDHA5, GGT1 and GSTT1).
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Of the 42 liver marker loci, 24 have been reported to be associated with other phenotypes in
genome-wide studies (Supplementary Table 16). At 12 of the loci, the lead SNP for the liver
marker and the phenotype are the same or in LD at r2 ≥ 0.5, suggesting shared biological
pathways. The phenotypes include Crohn’s disease, pancreatic carcinoma, type 2 diabetes,
waist circumference and concentrations of glucose, insulin, total, high-density lipoprotein
(HDL) and low-density lipoprotein (LDL) cholesterol, triglycerides, fatty acids, uric acid
and C-reactive protein. At other loci, the sentinel SNP from the liver marker GWAS and the
lead SNP in the US National Human Genome Research Institute (NHGRI) catalog30 (see
URLs) are in low LD, suggesting that these likely represent different underlying
mechanisms. We also ascertained the relationships of the 42 loci with quantitative
anthropometric and metabolic traits in published genome-wide meta-analyses
(Supplementary Table 17). We found that the loci associated with liver enzymes are
enriched in SNPs associated with lipid concentrations, fasting glucose and inflammation as
measured by CRP.

We used metabonomic profiling, the systematic characterization of a metabolite panel, to
better understand the relationships of the 42 liver enzyme loci with intermediary and
lipoprotein metabolism. We carried out quantitative nuclear magnetic resonance (NMR)
spectroscopy on serum samples from 6,516 participants from the London Life Sciences
Population31 (LOLIPOP) and Northern Finland Birth Cohort 1966 (ref. 32; NFBC1966)
studies. Significance was inferred at P < 1 × 10−5, corresponding to P < 0.05 after
Bonferroni correction for the 42 independent SNPs tested, and for the 69 primary NMR
measures. At chromosomes 2p23 (C2orf16 and GCKR) and 8q24 (TRIB1), effect alleles of
the sentinel SNPs are associated with high very low-density lipoprotein, intermediate-
density lipoprotein and LDL concentration and VLDL particle size, high lipoprotein
triglyceride and cholesterol concentration, omega-3 and omega-6 fatty acid concentrations,
and concentrations of metabolic substrates citrate, pyruvate and branch chain amino acids
(Fig. 3). At chromosome 12q24 (HNF1A), rs7310409 is associated with lipoprotein
concentration and composition, and with tyrosine concentrations. At chromosomes 11q12
(C11orf10, FADS1 and FADS2) and 8p23 (PPP1R3B), the effect alleles are associated with
low concentrations of cholesterol and HDL cholesterol and with low concentrations of
omega-3 and other unsaturated fatty acids. Our results from the NMR confirm and extend
previous studies using mass spectroscopy, which showed strong association of GCKR and
FADS1 with absolute and relative abundances of polyunsaturated fatty acids33,34.

We examined the contribution of the 42 genetic loci to concentrations of liver enzymes in
plasma among the 8,112 participants of the LIFELINES population study35. SNPs at 41 loci
showed consistent direction of effect (P = 4 × 10−13, sign test; Supplementary Table 18).
Together the SNPs associated with each liver enzyme account for 0.1%, 3.5% and 1.9% of
population variation in plasma concentrations of ALT, ALP and GGT, respectively
(Supplementary Table 19). We then constructed a SNP score as the unweighted sum of the
effect allele counts for the SNPs associated with each liver marker. Participants in the top
quartile of distribution for SNP score for ALT, ALP or GGT were ~1.4, ~2.4 and ~1.8 times
more probable to have greater than the upper limit of normal concentrations of ALT, ALP
and GGT, and on average had concentrations of ALT, ALP and GGT that were 7%, 13% or
26% higher, respectively, than participants in the lowest quartile of SNP score
(Supplementary Table 19).

Finally we tested the relationship of the liver enzyme–associated loci with the presence of
structural changes in the liver indicative of hepatic steatosis, as determined by computerized
axial tomography (CT) scanning in a population sample of 9,610 participants of the Genetics
of Liver Disease (GOLD) study36. SNPs at five loci were associated with hepatic steatosis at
P < 0.05, including PNPLA3, PPP1R3B, GCKR, TRIB1, HNF1A and SOX9 loci

Chambers et al. Page 7

Nat Genet. Author manuscript; available in PMC 2012 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Supplementary Table 20); of these, PNPLA3, PPP1R3B and GCKR were associated with
hepatic steatosis at P < 0.0012 (that is, P < 0.05 after Bonferroni correction for 42 loci).

We identify 42 independent loci associated with ALP, ALT or GGT and 69 genes as
candidates for the associations observed (Supplementary Table 9). The candidate genes
include ATP8B1 and ABCB11, encoding biliary transporters with a key role in bile
formation and flow20,37, and many genes involved in carbohydrate and lipid metabolism,
including GCKR, MLXIPL, SLC2A2, HNF1A, PNPLA3, FADS1, FADS2 and
PPP1R3B17,38,39. PNPLA3, PPP1R3B and GCKR influence accumulation of hepatic
triglycerides40,41. We identify GSTT1, GSTT2 and GGT as candidates encoding key
enzymes in glutathione synthesis and drug metabolism42,43; these observations may be
relevant to pharmacogenetics and drug development. We also identify a set of genes
involved in inflammation and immunity, including CD276, CDH6, GCKR, HPR, ITGA1,
MAPK10, RORA and STAT4. Whether these genes influence hepatic inflammatory
responses to accumulation of triglycerides, viral infection or other exogenous challenges
remains to be determined. Finally we identify a set of genes involved in glycoprotein
biology, including ABO, ASGR1, FUT2, GPLD1 and ST3GAL4. The products of these
genes influence synthesis, cell surface binding and turnover of glycoproteins. These
pathways are linked to susceptibility to pancreatic44 and gastric malignancy45, intestinal and
other infections46 and vitamin B12 metabolism47. The pleiotropic nature of the genes we
identified suggests that their relationships with ALP, ALT or GGT may also be mediated by
pathways operating outside of the liver.

In summary, we report a GWAS for concentrations of liver enzymes in plasma, providing
new insight into the genetic variation and pathways influencing ALP, ALT and GGT. Our
findings provide the basis for further studies investigating the biological mechanisms
involved in liver injury.

ONLINE METHODS
Participants

Genome-wide association was done among 61,089 participants from the following published
studies: the Australian Twin cohort (n = 425)48; the British Genetics of Hypertension study
(BRIGHT, n = 1,955)49; the Lausanne Cohort (CoLaus, n = 5,636)50; deCODE genetics (n =
12,572)51; the Fenland study (n = 1,397)52; the Finnish Twin cohort study (FinnTwin, n =
32)53; the Framingham Heart Study (n = 2,869)54; the Monica/KORA Augsburg study
(KORA, n = 1,809)55; the London Life Sciences Population study (LOLIPOP, n =
10,338)31; the Northern Finland Birth Cohort 1966 (NFBC1966, n = 4,562)32; the
Netherlands Study of Depression and Anxiety (NESDA, n = 1,724)56; the Netherlands Twin
study (n = 1,721)57; the Precocious Coronary Artery Disease study (Procardis, n = 1,239)58;
the Rotterdam Study 1 (RS1, n = 4,312)59; the SardiNIA study (n = 4,302)60; the Study of
Health in Pomerania (SHIP, n = 4,101)61 and the TwinsUK study (n = 2,256)62. Sample
sizes for ALT, ALP and GGT genome-wide analyses were 45,596, 56,415 and 61,089,
respectively. Further characteristics of the genome-wide association cohorts are listed in
Supplementary Note and Supplementary Tables 1 and 2. SNPs showing equivocal
association with liver markers were further tested among 12,139 participants from the
LOLIPOP study, with none included in the genome-wide study (Supplementary Table 4).

Genotyping and quality control
Genome-wide association scans were done using Affymetrix, Illumina and Perlegen
Sciences arrays (Supplementary Table 3). Imputation of missing genotypes was done using
phased haplotypes from HapMap build36 and dbSNP build 126. Imputed SNPs with minor
allele frequency < 0.01 or low-quality score (r2 < 0.30 in MACH, or information score <0.3
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in IMPUTE) were removed. This generated ~2.6 million directly genotyped or imputed
autosomal SNPs. Genotyping for further testing was done by KASPar (K-Biosciences,
LTD).

Statistical analysis
Plasma concentrations of ALT, ALP and GGT were log10 transformed to achieve
approximate normality. SNPs were tested for association with liver markers by linear
regression using an additive genetic model adjusted for age and sex. An additional term was
included to indicate case status in case-control studies, and principal component scores
(EIGENSTRAT63) were used to adjust for substructure in studies of unrelated individuals
(Supplementary Table 3). Test statistics were corrected for respective genomic control
inflation factor (Supplementary Table 4) to adjust for residual population structure.
Association analyses were carried out separately in each cohort followed by meta-analysis
using weighted z scores. Meta-analysis P values were then corrected for the meta-analysis
genomic control inflation factors. The GWAS had 80% power to detect SNPs associated
with 0.1% of population variation in ALP and 0.06% of population variation in ALT and
GGT at P < 5 × 10−7.

In the replication samples, SNP associations were tested by linear regression using an
additive genetic model and adjustment for age and sex. Results were combined with findings
from the genome-wide association cohorts, using the weighted z scores. Genome-wide
significance was inferred at P < 1 × 10−8.

SNP effect sizes were estimated by inverse-variance meta-analysis in the genome-wide
association cohorts and available replication cohorts using a fixed effects model.

Coding variant analyses
We identified coding SNPs within 1 Mb and in LD at r2 > 0.5 with the sentinel liver SNPs
using HapMap CEU II genotype data (see URLs). We tested for enrichment by permutation
testing using 42 randomly selected SNPs from the ~2.6 million genotyped or imputed SNPs
studied that had similar minor allele frequency ±0.02), number of nearby genes (±10%) and
gene proximity (±20 kb) to the sentinel SNPs. We counted coding SNPs within 1 Mb and in
LD at r2 > 0.5 of the random SNPs; this was repeated 1,000 times to generate a distribution
for expected, against which we compared the number observed (n = 19, P = 0.004).

We considered a coding SNP to be a strong candidate for the observed association when it
was in LD at r2 > 0.5 with the sentinel SNP, with no evidence for heterogeneity of effect on
phenotype (P > 0.05). Using this approach, we identified 17 coding SNPs in 14 genes as
candidates for mediating the observed associations with liver markers (Supplementary Table
10). We used PHYRE64 to model the molecular structure of the protein products and
possible pathogenicity of the coding SNPs identified.

Expression analyses
The sentinel SNPs from the liver marker GWAS were tested for association with gene
expression in 603 adipose and 745 peripheral blood samples from Icelandic subjects25,
peripheral blood lymphocytes from 206 families of European descent (830 parents and
offspring)23 and 960 human liver samples24. Sentinel SNPs were tested for association with
transcript levels of genes within 1 Mb; significance was inferred at P < 0.05 after Bonferroni
correction for number of SNP-transcript combinations tested. We then used the whole-
genome genotype data to identify which SNP from the liver locus was most closely
associated with the transcript of interest; we defined this as the transcript SNP. We tested
whether the sentinel SNP and transcript SNP were coincident, defined as in LD at r2 > 0.5,
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with no evidence for heterogeneity of effect between the SNPs on transcript expression or
liver marker phenotype.

GRAIL
We carried out a PubMed literature analysis using GRAIL (see URLs)65 including all 42
sentinel SNPs simultaneously. We used the 2006 PubMed data set as the primary analysis
(Supplementary Table 15) but repeated the analysis using the 2010 PubMed data set.

Network analyses
Network analyses were carried out using the Ingenuity Pathway Analysis tool66. P values for
canonical pathways and functions were calculated from the observed number of candidate
genes in the gene set, compared with the number expected under the null hypothesis and
corrected (Bonferroni) for the number of pathways tested.

Overlap with other GWAS
We used the NHGRI30 catalog (see URLs) to identify other phenotypic associations (P < 5 ×
10−8) located within 1 Mb of a the SNPs we identified as associated with liver enzymes
(Supplementary Table 16). Previous studies reporting genetic variants influencing
concentrations of liver enzymes in plasma were excluded. Pairwise LD with the sentinel
liver marker SNP was determined using HapMap 2 CEU genotype data.

Phenotypic pleiotropy
Relationships of the selected 42 sentinel SNPs with anthropometric and metabolic traits
relevant to liver function were tested in the following genome-wide meta-analyses
(Supplementary Table 17): AlcGen Consortium, alcohol consumption67; ICBP-GWAS,
systolic and diastolic blood pressure68; the Genetics of C-reactive Protein Study (CRP-Gen),
C-reactive protein19; MAGIC, fasting glucose and related glycemic traits16; DIAGRAM+
Study, type 2 diabetes17; GIANT Consortium, body mass index69 and the Global Lipids
Genetics Consortium, total cholesterol, LDL cholesterol, HDL cholesterol and triglyceride
concentrations70. Associations were tested in silico using results from the genome-wide
association phase and adopting the phenotypic definitions applied in each study. We inferred
association of SNP with phenotype at P < 0.0012, corresponding to P < 0.05 after
Bonferroni correction for 42 loci. We tested whether phenotypes were enriched for
association with liver marker SNPs using a binomial probability test.

Metabonomic analyses
We carried out quantitative NMR spectroscopy on serum samples from 2,269 LOLIPOP and
4,247 NFBC1966 participants with genome-wide data to investigate the relationships of the
identified loci with lipoprotein and intermediary metabolism. NMR assays were carried out
using a Bruker AVANCE III spectrometer operating at 500.36 MHz (1H observation
frequency; 11.74 T) and equipped with an inverse selective SEI probe-head including an
automatic tuning and matching unit and a z-axis gradient coil for automated shimming71,72.
A BTO-2000 thermocouple was used for temperature stabilization of the sample at ~0.01
°C. The high-performance electronics enabled metabolite quantification without per-sample
chemical referencing or double-tube systems. The NMR methodology provides information
on lipoprotein subclass distribution and lipoprotein particle concentrations, low-molecular-
mass metabolites such as amino acids, 3-hydroxybutyrate and creatinine, and detailed
molecular information on serum lipids including free and esterified cholesterol,
sphingomyelin, saturation, unsaturation, polyunsaturation and omega-3 fatty acids73.
Associations of SNPs with metabolic measures were tested in each cohort separately using
an additive genetic model and were adjusted for age, gender and principal components.
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Results for LOLIPOP and NFBC1966 were combined by inverse variance meta-analysis,
and significance was inferred at P < 1 × 10−5 (corresponding to P < 0.05 after Bonferroni
correction for the 42 independent SNPs tested and for 69 primary NMR measures).

Contribution of genetic loci identified to population variation in liver enzymes
This was investigated in the LifeLines Cohort Study35, a prospective population-based
cohort study of 165,000 persons aged 18–90 living in The Netherlands, and independent of
the genome-wide association discovery cohorts. Genotyping was carried out in
representative samples of 8,112 participants (aged 47.8 ± 11.2, body mass index 26.2 ± 4.3
kg/m2 (mean ± s.d.), 43% male) using the Illumina CytoSNP12 array, and imputation of
missing HapMap2 genotypes was done using Beagle 3.1.0. Liver markers were measured on
a Roche/Hitachi Modular System (Roche Diagnostics). Mean ± s.d. concentrations of liver
markers were 23.8 ± 16.8, 62.8 ± 18.4 and 26.3 ± 24.5 IU/l for ALT, ALP and GGT,
respectively. The contribution of SNPs to population variation in liver markers was
examined individually and in aggregate (Supplementary Tables 18 and 19). For the latter,
SNP scores were calculated for each individual on the basis of the sum of effect (trait-
raising) alleles present at each of the genetic loci identified.

Liver imaging for hepatic steatosis
Hepatic steatosis was assessed by CT scanning in 9,610 participants from four population
cohorts primarily designed for investigation of cardiovascular disease and its risk factors, (i)
AGES-Reykjavik (n = 4,772), (ii) the Amish study (n = 541), (iii) the Family Heart Study (n
= 886) and (iv) the Framingham Study (n = 3,411)36. CT measurements, blind to participant
characteristics, were calibrated against phantoms and inverse normally transformed.
Genome-wide SNP data were available in each cohort with imputation of missing
genotypes. SNP association with hepatic steatosis was tested in each cohort separately by
linear regression with age, with age2 and gender as covariates and taking relatedness into
account. Results were combined by fixed-effect inverse-variance meta-analysis
(Supplementary Table 20).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Summary of study desing
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Figure 2.
Manhattan plots of association of SNPs with ALT, ALP and GGT in the GWAS. SNPs
reaching genome-wide significance (P < 1 × 10−8) are red; SNPs with P > 1 × 10−8 and P <
1 × 10−7 are green.
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Figure 3.
Association of FADS1, FADS2, GCKR, HNF1A, TRIB1 and PPP1R3B loci with NMR
metabonome. Bars are for –log10 P value, signed for direction of effect.
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