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One-dimensional ring in the presence of Rashba spin-orbit interaction:
Derivation of the correct Hamiltonian
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We describe in detail the procedure for obtaining the correct one-dimensional Hamiltonian of electrons
moving on a ring in the presence of Rashba spin-orbit interaction. The subtlety of this seemingly trivial
problem has not been fully appreciated so far and it has led to some ambiguities in the existing literature. Our
work illustrates the origin of these ambiguities and solves them.
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The effect of Rashba spin-orbit~SO! interaction1 on elec-
trons moving in a mesoscopic ring has been studied in sev-
eral contexts, such as magnetoconductance oscillations,2,3

Peierls transition,4,5 and persistent current.6,7 Essentially all
these theoretical studies have employed one-dimensional
~1D! model Hamiltonians. Since different Hamiltonians have
been used by different authors some ambiguity currently ex-
ists with regard to the correct form of the 1D Hamiltonian.
For instance, Aronov and Lyanda-Geller, who studied the
effect of Rashba SO interaction on the Aharonov-Bohm con-
ductance oscillations,2 used a non-Hermitean operator as
Hamiltonian.8 Zhou, Li, and Xue9 noticed this fact and de-
rived a different ~Hermitean! Hamiltonian operator. How-
ever, in their Hamiltonian the Rashba SO term originates
from an electric field pointing in the radial direction and not
in the direction perpendicular to the plane of the ring. This is
physically not correct. Subsequently others3,5,7,10 have em-
ployed a now commonly used 1D Hamiltonian for electrons
on a ring, without explicitly discussing its derivation.

The purpose of this short paper is to identify the origin of
the existing ambiguity and to discuss in detail the procedure
to obtain the correct 1D Hamiltonian operator for electrons
moving on a ring in the presence of Rashba SO interaction.
We will show that the subtlety of this seemingly trivial prob-
lem has not been fully appreciated so far.

The ‘‘conventional’’ way to obtain the Hamiltonian for a
1D ring from the Hamiltonian in two dimensions consists of
two steps. First the Hamiltonian operator is transformed into
cylindrical coordinatesr and f. Then r is set to a constant
and all terms proportional to derivatives with respect tor are
discarded~i.e., set to 0!. This procedure works correctly in
simple cases, such as free electrons or electrons in the pres-
ence of a~uniform or textured11! magnetic field. However, it
does not work in the presence of Rashba SO interaction, as
we will illustrate below.

The ~2D! Hamiltonian for a~single! electron in the pres-
ence of Rashba spin-orbit interaction and a magnetic field is
given by

Ĥ5
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whereA is the vector potential,a is the SO constant,E and
B are pointing in theẑ direction~perpendicular to the plane!.
In cylindrical coordinates, withx5r cosf and y5r sinf,
this operator reads
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with F is the magnetic flux through the ring,F05h/e, and
ŝx,y,z are the usual Pauli spin matrices. Notice also that we
have redefineda (a→\Eza). If we now setr to a constant
value (r 5a) and neglect the derivative terms, we obtain
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This operator, used by Aronov and Lyanda Geller,2 is not
Hermitean, as can be easily shown by calculating its matrix
elements in any complete basis~i.e., the ‘‘conventional’’ pro-
cedure fails!.

In order to find the correct form for the 1D Hamiltonian
we go back to the full~2D! Hamiltonian @Eq. ~2!#. To this
Hamiltonian we add a potentialV(r ), which forces the elec-
tron wave functions to be localized on the ring in the radial
direction. SpecificallyV(r ) is small in a narrow region
aroundr 5a and large outside this region. For a narrow ring
~steep confining potential! the confining energy in the radial
direction is much larger than the SO energy, the Zeeman
energy, and the kinetic energy in the azimuthal direction.
This allows us to solve the Hamiltonian for the radial wave
function first and treatĤSO, ĤZeeman, andĤkin(f) as a per-
turbation. Specifically we writeĤ5Ĥ01Ĥ1 , where
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and the perturbation HamiltonianĤ1 is given by
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The eigenfunctions ofĤ0 are separable inr and f, i.e.,
C(r ,f)5R(r )F(f), sinceĤ0 does not depend onf. In the
limit of a very narrow~1D! ring all electrons will be in the
lowest radial modeR0(r ). We then have an infinitely degen-
erate set of statesCn(r ,f)5R0(r )Fn(f) over which we
have to diagonalizeĤ1 @here, theFn(f) denote a complete
set of spinors in thef direction#.

The matrix elements ofĤ1 are

amn5ŠFm~f!u^R0~r !uĤ1~r ,f!uR0~r !&uFn~f!‹, ~6!

from which we can read the correct 1D HamiltonianĤ(f)
directly

Ĥ1D~f!5^R0~r !uĤ1~r ,f!uR0~r !&. ~7!

In order to obtain the 1D Hamiltonian explicitly, we have
to calculate the lowest radial mode for a given confining
potential. If we assume without loss of generality~since we
will consider the limit of a truly 1D ring! a harmonic con-
fining potential@V(r )51/2K(r 2a)2#, we have to solve
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In the limit of a 1D ring we may neglect the (1/r )
3(]/]r ) term in comparison to the]2/]r 2 term and obtain
the harmonic-oscillator equation.12 The lowest energy nor-
malized solutions is then given by

R0~r !5S g

aAp
D 1/2

e2~1/2!g2~r 2a!2
, ~9!

whereg45mK/\2 ~the 1D limit is achieved by lettingg go
to infinity!.

From Eqs.~5! and ~7! we can now derive the 1D Hamil-
tonian explicitly. SinceĤ1 contains terms dependent orr and
derivatives with respect tor we have to calculate their ex-
pectation value. We obtain
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and the expectation value of]/]r is given by
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From this we conclude that we cannot safely disregard the
]/]r term in order to obtain the correct 1D Hamiltonian.

It is worth stressing that it is not essential to choose a
harmonic potential, nor to make any approximation as we
have done above for simplicity, in order to obtain these re-
sults. To show this, letur0(r )& be the lowest radial mode for
an arbitrarily given confining potential. We define
ur08(r )&5(1/Ar )ur0(r )&. From direct calculations it
follows that ^r0u(1/2r )1(]/]r )ur0&5^r08u(1/r )(]/]r )ur08&
51/2r08

2u0
`51/2rr0

2u0
`50. We then obtain ^r0u]/]r ur0&

52^r0u1/2r ur0&. Therefore for the lowest radial mode in
the 1D limit we always get̂ r0u]/]r ur0&52(1/2a), inde-
pendent of the precise form ofur0(r )& and thus of the precise
shape of the radial confining potential that is used in the
calculation.

Having established the generality of our result, we can
now write the 1D Hamiltonian explicitly. From Eqs.~7! and
~10! we get
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This is the correct form of the 1D Hamiltonian for electrons
on a ring, in the presence of Rashba SO interaction.

The last term in Eq.~12! is neglected if we follow the
‘‘conventional’’ procedure. It is only recovered by following
the procedure described above. In the simple cases men-
tioned earlier~e.g., free electrons!, there are no terms present
in the Hamiltonian proportional to both]/]r and some func-
tion of f ~i.e., the two-dimensional Hamiltonian is sepa-
rable!. In these cases the ‘‘conventional’’ procedure produces
the correct result. In all other cases it is necessary to take into
account properly the confinement of the wave function in the
radial direction as we have shown in this paper in order to
obtain the correct 1D Hamiltonian on a ring.

In short, what we have described in this paper is a for-
mally correct procedure to project the original Hamiltonian
@Eq. ~1!# defined on the Hilbert space of spinors in two di-
mensions on a restricted Hilbert subspace, spanned by the
complete set of spinorsFn(f), which are function of thef
coordinate only.
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