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ABSTRACT.  Measuring forces inside cells is particularly challenging.  With the development of quan-

titative microscopy, fluorophores which allow the measurement of forces became highly desirable.  We 

have previously introduced a mechanosensitive flipper probe, which responds to the change of plasma 

membrane tension by changing fluorescence lifetime and thus allows tension imaging by FLIM.  Herein, 

we describe the design, synthesis, and evaluation of flipper probes that selectively label intracellular or-

ganelles, i.e., lysosomes, mitochondria, and the endoplasmic reticulum.  The probes respond uniformly to 

osmotic shocks applied extracellularly, thus confirming sensitivity toward changes in membrane tension.  

At rest, different lifetimes found for different organelles relate to known differences in membrane organ-

ization rather than membrane tension and allow co-labeling in the same cells.  At the organelle scale, 

lifetime heterogeneity provides unprecedented insights on ER tubules and sheets, and nuclear membranes.  

Examples on endosomal trafficking or increase of tension at mitochondrial constriction sites outline the 

potential of intracellularly targeted fluorescent tension probes to address essential questions that were 

previously beyond reach. 

 

 The importance of mechanical forces in biological processes is only starting to emerge.1–3  Plasma mem-

brane tension is a topic of particular current interest because mounting evidence suggests its involvement 

in regulating various biochemical processes in cells.2  Although membrane tension should also regulate 

membranous organelles’ functions, standard techniques of force measurements, such as optical tweezers 

or force microscopes are difficult to apply inside of cells.3  Therefore, the role of membrane tension in 
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organelles is so far poorly explored and awaits the development of non-invasive measurement methods.1–

4 

 Responding to the need in mechanobiology, this study aimed at developing organelle-specific mech-

anophores based on the recently introduced fluorescent membrane tension reporter 1 (referred to as Flip-

per-TR® or FliptR, Figure 1).5  This planarizable push-pull probe is composed of two dithienothiophenes 

(DTTs)6 “flippers”.7  They are twisted out of co-planarity by repulsion between methyl groups and the s 

holes8 on the endocyclic sulfurs next to the bond connecting the DTTs.  Sulfides and sulfones in the DTT 

bridges supported by a chalcogen-bonding8 ether donor and a cyano acceptor serve as push and pull com-

ponents. 

 In lipid bilayers, Flipper-TR® 1 responds to the increasing membrane order by planarization in the 

ground state, which results in red-shifted excitation maxima and longer fluorescence lifetimes.5  Such 

properties are unique9 among the membrane probes, 

 

Figure 1. (A) Structure of Flipper-TR® 1, Lyso, ER, and Mito Flippers 2–4, and Mito control 5.  (B) With 

increasing membrane tension (right), the appearance of ordered domains (dark gray) causes an increase 

of fluorescence lifetimes, whereas the complementary domain disassembly (left) accounts for decreasing 

lifetimes with decreasing tension. 

that usually report off-equilibrium in the excited state on viscosity or polarity.9–16  In cellular membranes, 

the mechanophore 1 reports the increasing membrane order upon application of membrane tension s by 

increasing fluorescence lifetime t.  This change was attributed to the formation of more ordered micro-

domains under membrane tension, due to the increased line tension between the stretchable and un-

stretchable lipid phases (Figure 1B, dark gray).5,17  Roughly linear positive t-s correlations found with 

all tested cells demonstrated the applicability of 1 to measure membrane tension change by fluorescence 

lifetime imaging microscopy (FLIM).5,18 
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 The headgroup of flipper 1 contains an essential triazole and a carboxylate to target the plasma mem-

brane (PM; Figure 2C).19  We have shown that the carboxylate can be replaced without loss of function 

by a boronic acid20 and a biotin21 to target ganglioside-enriched lipid domains and biotinylated targets on 

cell surfaces, respectively.  Thus, probes 2–5 were designed incorporating established motifs from the 

respective trackers (Figure 1A).12-16  Namely, Lyso Flipper 2 was equipped with a basic morpholine (pKa 

8.4) and a short hydrophobic linker to produce membrane-binding cationic amphiphiles only after proto-

nation within the acidic late endosomes and lysosomes.13,14  In Mito Flipper 4, the same short linker is 

used to install a hydrophobic triphenylphosphonium cation for selective targeting of mitochondria with 

strong inside negative membrane potential.13,15  ER Flipper 3 contains a pentafluorophenyl group to react 

with thiols in ER-membrane proteins, and 

 

Figure 2.  (A) Excitation spectra (lem 570 nm) of 1 (dashed) and 3 (solid) in Ld (blue, 1,2-dioleoyl-sn-

glycero-3-phosphocholine: DOPC) and So LUVs (red, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine: 

DPPC).  (B) FLIM images of 4 in Ld (top) and Lo GUVs (bottom, sphingomyelin/cholesterol:  SM/CL).  

(C-F) Confocal images of HeLa Kyoto cells stained with PM 1 (C), Lyso 2 (D), ER 3 (E) and Mito Flipper 

4 (F) (top), the respective trackers (middle), and the merged images (bottom); scale bars:  10 µm.  (G) 

Fluorescence lifetime of 2–4 in HeLa Kyoto cells before (black) and after hypertonic osmotic shock (red).  

a different, long and hydrophilic linker to enable the partitioning of the protein anchored probe in the 

membrane.13,16  The synthesis of all probes is described in the SI (Schemes S1–S4). 

 Consistent with increasing planarization in the ground state, flippers 2–4 gave the expected red-shifted 

excitation maxima in solid-ordered (So) compared to liquid-disordered (Ld) membranes of large unilamel-

lar vesicles (LUVs, Figures 2A, S1–S9, Table 1).7,9,19–21  Also as expected were the higher average life-

times t of 2–4 in liquid-ordered (Lo) compared to Ld membranes in FLIM images of giant unilamellar 

vesicles (GUVs, Figures 2B, S11, Table 1).5,19  Compared to the meticulously optimized original 119 in 

ordered membranes (lSo 490 nm, tLo 6.4 ns), the new probes 2-4 showed overall smaller red shift of the 

excitation wavelength (lSo 475 nm) and the lifetime (tLo 5.5–5.8 ns), presumably due to less perfect po-

sitioning along the lipid tails in the membrane (Table 1).7,22  These results confirmed that substitution of 
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the carboxylate in the new probes 2–4 is well tolerated without significant losses in mechanosensitiv-

ity.20,21  

 Intracellular targeting by probes 2–4 was studied using confocal microscopy.  Co-localization of tar-

geted flippers with their specific trackers12–16 were excellent in both HeLa Kyoto (Figures 2D–2F, S12–

S13, Table 1) and COS7 cells (Figures S14–S15).  Characteristic staining patterns of organelles were also 

visible in FLIM images of probes 2–4 in standard HeLa (Figure S16) and more clearly in COS7 cells 

(Figure 3).  COS7 cells treated with 3 revealed dense staining around the nucleus attributed to ER sheets, 

a thin meshwork attributed to tubular ER, and also the nuclear envelope (Figures 3B, S14, S19, S20).  The 

average lifetimes were different for all probes in HeLa Kyoto cells (PM 1 > Lyso 2 > ER 3 > Mito 4, 

Table 1, Figure 2G, black) and COS7 cells (Figure 3, black histograms, Table 1).  All values were in-

between the extremes measured in pure single-component model Ld and Lo membranes in GUVs.  The 

variations in lifetimes originate mainly from differences in membrane organization (including contribu-

tions from lipid composition, microdomains, maybe also proteins, viscosity, etc),5,9,10,23 and from the dif-

ferent mechanosensitivity of probes 1-4 (Figure 2A, Table 1).  Thus, lifetimes in organelles at rest cannot 

be directly correlated to possible differences in membrane tension.  However, the reduction of membrane 

tension by hypertonic shocks uniformly reduced lifetimes of probes in HeLa Kyoto cells (Figure 2G, red) 

and in COS7 cells (Figure 3, red histograms, Table 1).  Decreasing lifetimes with decreasing tension was 

as with Flipper-TR® 15 and thus consistent with operational probes reporting on tension-induced lipid 

reorganization in the membranes of the respective organelles (Figure 1B).  Increasing counts in FLIM 

histograms with decreasing tension might originate from the increased amount of folded membrane in the 

focal plane upon cell shrinkage.  Nevertheless, such intensity changes do not affect the fluorescence life-

time. 

 Hydrophilic Mito control 5 equipped with a mitochondria targeting unit co-localized with MitoTracker 

Red in HeLa cells, but failed to respond to the membrane tension change (Table 1, Figure S18).  These 

results are consistent with the accumulation of this probe in the mitochondrial lumen.  Further, viscosity-

sensitive molecular rotors halo-tagged into the lumen responded to the osmotic shock in the opposite way 

to those of probes 2-4.12  These differences provided corroborative evidence that flippers 2-4 indeed lo-

calize in the organellar membranes and respond to changes in membrane tension with changes in fluores-

cence lifetime. 

 All organelles showed heterogeneous lifetime distributions.  For instance, membranes of the tubular ER 

appeared more ordered (t = 4.1 ns) than those of the ER sheets (t = 3.5 ns) but responded equally to 

tension (Dt ≈ 0.4 ns, Figures 3B, S17).  The lifetime of 3 in the nuclear membrane (t ≈3.4 ns) was similar 

to that in the ER sheets, consistent with their continuous nature (Figure S20).   
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 Selected experiments beyond probe characterization were performed to outline the potential of intracel-

lular tension probes in promoting new discoveries.  For instance, co-labeling of Lyso Flipper 2 with flu-

orescently labeled epidermal growth factor24 provided insights on endosomal trafficking (Alexa Fluorâ 

647 EGF, Figures 4A, S13).25  After ten minutes, poor colocalization (around 20%) of the internalized 

EGF receptor (EGFR) in endosomes with probe 2 was observed.  After two hours, the fluorescent EGF 

was mainly located in late-endosomes and lysosomes and showed increased overlapping with the Lyso 

Flipper 2.  This experiment indicated that probe 2 selectively accumulates in late endosomes and lyso-

somes.  Replacement of morpholine in 2 by a more basic amine can be envisaged to allow targeting of 

less acidic compartments such as early endosomes.  

 

Table 1.  Mechanophore Characteristics.a  

C
b 

lSo
c 

(nm) 

λLd
d 

 (nm) 

τLo
e 

(ns) 

τLd
f 

(ns) 

PCCg 

 

τih 

(ns) 

τhi 

(ns) 

 τih 

(ns) 

 τhi 

(ns) 
S LUVs    GUVs  HeLa   COS7  
1j 490 435 6.4 3.8 - 4.8 4.2 - - 
2 475 437 5.6 3.1 0.9 3.7 3.3 3.9 3.6 
3 475 436 5.8 3.0 0.9 3.4 3.0 3.5k 3.3 
4 475 439 5.5 2.9 0.9 3.2 3.0 3.3 3.1 
5 brl brl - - 0.8 3.2 3.2 - - 

aExpanded version:  Table S1.  bConditions;  probes 1-5:  Figure 1; S:  Systems.  cExcitation maxima in 

So DPPC LUVs.  dSame in Ld DOPC.  eAverage fluorescence lifetime in SM/CL 7:3 GUVs.  fSame in 

DOPC.  gPearson’s correlation coefficients determined using CLSM against LysoTracker (2), ER-Tracker 

(3), MitoTracker Red (4, 5).  hAverage t under isotonic conditions.  iSame under hypertonic conditions.  
jData from refs. 5 and 19; average t re-calculated.  kExamples for suborganellar heterogeneity ignored in 

average lifetimes:  tubular ER:  4.1 ns, ER sheets:  3.5 ns, nuclear membrane:  3.4 ns.  lBroad signals 

without distinct maxima. 

 

 As another example, the different lifetimes of probes 1-4 were exploited to simultaneously detect dif-

ferent organelles.  Co-incubation of ER Flipper 3 and Mito Flipper 4 revealed their targets by the different 

fluorescence lifetime and intensity contrast:  Mitochondria yielded higher signal intensity, whereas fluo-

rescence lifetime of tension probes was higher in the tubular ER (Figures 4B, S19).  Other cross-sections 

revealed different fluorescence lifetimes for the nuclear envelope, the ER and lysosomes (Figure S20). 
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Figure 3.  FLIM images of Lyso 2 (A), ER 3 (B, arrow: sheets, framed:  tubules) and Mito 4 (C) in COS7 

cells (1 µM, 20 min incubation) before (top) and after (middle) hypertonic osmotic shock, with corre-

sponding lifetime histograms before (black) and after shock (red, bottom); scale bars: 10 µM.   

 

Figure 4. (A) Confocal image of Hela MZ cells incubated for 10 min with far red EGF (red) and Lyso 

flipper 2 (green; arrows indicate lack of co-localization, top) and of cells rinsed and chased for 2 h (arrows 

indicate co-localization, bottom), scale bar: 10 µm.  (B) FLIM images of COS7 cells co-incubated with 

ER 3 and Mito flipper 4 (top), with lifetime along the indicated cross-section (bottom).  (C) FLIM (top) 

and intensity images (middle) of COS7 cells incubated with Mito flipper 3, with fluorescence intensity 

(black) and lifetime (red) along the indicated cross-section (bottom). 

 A striking example for a long-standing question that could not be answered without the new tension 

probes was provided by Mito Flipper 4 in COS7 cells (Figure 4C).  Measurements of fluorescence inten-
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sity and lifetime along sites of mitochondrial constrictions that precede fission26 revealed that in the con-

stricted area, the intensity decreases due to lower probe concentration, but lifetime increases, thus provid-

ing direct experimental evidence of the increased membrane tension during mitochondrial constriction.  

A complementary analysis on the role of membrane tension in mitochondrial fission using Mito Flipper 

4 will be reported elsewhere.27 

 In conclusion, three organelle-selective fluorescent membrane tension probes were designed, synthe-

sized and characterized both in vesicles and living cells.  As proven by the sensitivity of their lifetime to 

osmotic shock, they report on changes in membrane tension and reveal different lifetimes for each target.  

These preliminary results promise important discoveries in future toward understanding of the intracellu-

lar membrane dynamics during biological events.  
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Notes 

Flipper-TR® is commercially available from Spirochrome, through the NCCR Store (https://nccr-chem-

bio.ch/technologies/nccr-store/). 
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