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CHAPTER 13

Modelling Lorenz Curves:
robust and semi-parametric

issues
Frank A. Cowell† and Maria-Pia Victoria-Feser‡

Abstract

Modelling Lorenz curves (LC) for stochastic dominance comparisons is central to
the analysis of income distributions. It is conventional to use non-parametric statis-
tics based on empirical income cumulants which are used in the construction of
LC and other related second-order dominance criteria. However, although attrac-
tive because of its simplicity and its apparent flexibility, this approach suffers from
important drawbacks. While no assumptions need to be made regarding the data-
generating process (income distribution model), the empirical LC can be very sen-
sitive to data particularities, especially in the upper tail of the distribution. This
robustness problem can lead in practice to “wrong” interpretation of dominance or-
ders. A possible remedy for this problem is the use of parametric or semi-parametric
models for the data-generating process and robust estimators to obtain parameter es-
timates. In this paper, we focus on the robust estimation of semi-parametric LC and
investigate issues such as sensitivity of LC estimators to data contamination (Cowell
and Victoria-Feser, 2002), trimmed LC (Cowell and Victoria-Feser, 2006), and in-
ference for trimmed LC (Cowell and Victoria-Feser, 2003), robust semi-parametric
estimation for LC (Cowell and Victoria-Feser, 2007), selection of optimal thresh-
olds for (robust) semi-parametric modelling (Dupuis and Victoria-Feser, 2006), and
use both simulations and real data to illustrate these points.

† STICERD and Economics Department, London School of Economics and Political Science.
‡ HEC, Faculty of Economics and Social Sciences, University of Geneva. Partially supported by
Swiss National Science Foundation, grant # PP001-106465.
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2 Modelling Lorenz Curves: robust and semi-parametric issues

1 Introduction

The Lorenz curve is central to the analysis of income distributions, embodying
fundamental intuition about inequality comparisons ( Dagum (1985), Cowell and
Victoria-Feser (2007)). Ranking theorems based on Lorenz dominance and the as-
sociated concept of stochastic dominance are fundamental to the theoretical welfare
economics of distributions. But formal welfare propositions can only be satisfacto-
rily invoked for empirical constructs if sample data can be taken as a reasonable rep-
resentation of the underlying income distributions under consideration. In practice
income-distribution data may be contaminated by recording errors, measurement
errors and the like and, if the data cannot be purged of these, welfare conclusions
drawn from the data can be seriously misleading. Indeed, it has been formally shown
that Lorenz and stochastic dominance results are non-robust (Cowell and Victoria-
Feser, 2002). This means that small amounts of data contamination in the wrong
place can reverse unambiguous ranking orders: the “wrong place” usually means in
the upper tail of the distribution. This is of particular interest in view of a burgeon-
ing recent literature that has focused on empirical issues concerning the upper tail of
both income distributions and wealth distributions ( Atkinson (2004), Kopczuk and
Saez (2004), Moriguchi and Saez (1991), Piketty (2001), Piketty and Saez (2003),
Saez and Veall (2005)). So it is important to have an approach that enables one to
control for the distortionary effect of upper-tail contamination in a systematic fash-
ion. This paper addresses the problem by introducing a robust method of estimating
Lorenz curves and implementing stochastic-dominance criteria. To this end we have
assembled some recent research on this issue, mainly drawing on the results of Cow-
ell and Victoria-Feser (2007) and Cowell and Victoria-Feser (2006).

Our approach is organized as follows. We begin, in section 2, by setting out
the formal background to the Lorenz curve and the estimation problems associated
with extreme values. Section 3 develops the semi-parametric approach to modelling
Lorenz curves and section 4 discusses the practical problem of parameter choice in
implementing the method. Section 5 applies the method to UK data and section 6
concludes.

2 Background

We may set out the formal representation of the Lorenz Curve using the following
simple framework. Let F be the set of all univariate probability distributions and X
be a random variable with probability distribution F ∈ F and support X⊆ R. F can
be thought of as a parametric model Fθ . We shall write statistics of any distribution
F ∈ F as a functional T (F); in particular we write the mean as µ(F) :=

∫
xdF(x). A

key distributional concept derived from F is given by the qth cumulative functional
C : F× [0,1] 7→ X:

C(F ;q) :=
∫ Q(F ;q)

x
xdF(x) = cq. (2.1)
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where x := infX and

Q(F ;q) = inf{x|F(x)≥ q}= xq (2.2)

is the quantile functional. The importance of this concept is considerable in the
practical analysis of income distributions: for a given F ∈ F, the graph of C(F,q)
against q describes the generalized Lorenz curve (GLC); normalizing by the mean
functional µ(F) =C(F,1) one has the Relative Lorenz curve (RLC) ((Lorenz, 1905)
):

L(F ;q) :=
C(F ;q)
µ(F)

(2.3)

The GLC and RLC are fundamental to a number of theorems drawing welfare-
conclusions from income-distribution data and other types of data.

Now consider the problem of estimating Lorenz curves. There are broadly three
approaches.

1. Nonparametric methods. Cumulative functionals can obviously be estimated
by replacing F in (2.1) by the empirical distribution of a sample of incomes
x1, . . . ,xn

F(n)(y) =
1
n

n

∑
i=1

ι (y≤ xi)

where ι (·) is the indicator function. However, this can lead to misleading con-
clusions when it comes to comparing distributions in terms of their cumulative
functionals when there is data contamination (Cowell and Victoria-Feser, 2002).
One way of avoiding the potential bias induced by extreme data in the tails is to
rely on the concept of trimmed Lorenz curves: basically, F in (2.1) is replaced
by the trimmed distribution F̃α given by:

F̃α(x) :=


0 if x < Q(F,α)

F(x)−α

1−α
if Q(F,α)≤ x < Q(F,α)

1 if x≥ Q(F,α)

.

with α +α = α . Using F̃α instead of F(n) amounts to trimming the sample data
below Q(F,α) and above Q(F,α), and then compute empirical cumulants. The
theoretical aspects are handled in Cowell and Victoria-Feser (2006).

2. Parametric modelling. Alternatively, one can estimate F using a model (a func-
tional form) such as the one proposed by Dagum (1977).1 The parameters
should obviously be estimated in a robust fashion (see e.g. Victoria-Feser and
Ronchetti (1994), Victoria-Feser (1995)), but as has been discussed in Cowell

1 Other models can be found in Dagum (1980), Dagum (1983) and McDonald (1984) and an
excellent overview is provided by Kleiber and Kotz (2003).
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and Victoria-Feser (2007), a full parametric estimation forces the data into the
mould of a functional form that may not be suitable for comparisons.

3. Semi-parametric approach. The problem that a single, tractable functional form
may not be appropriate for the data motivates the use of an approach in which
the data above a threshold x0 are (robustly) fitted to a parametric distribution,
while the rest of the data are treated nonparametrically. The semi parametric ap-
proach is of particular interest because of its ad hoc use in practical treatment of
problems associated with the upper tails of distributions. For example a Pareto
tail is sometimes fitted to data in cases where data are sparse in order to provide
better estimates of upper tail probabilities or higher quantiles.

It is this third estimation method, the semiparametric approach, that forms the
focus of the present paper.

3 Semi-parametric robust estimation of Lorenz curves

If the range of X is bounded below – 0 is a typical value – the problems with con-
taminated data occur in the upper tail of the distribution (Cowell and Victoria-Feser,
2002). A case can therefore be made for using parametric modelling only in the up-
per tail and estimating the parameter of the upper-tail model robustly. The rest of the
distribution is estimated using the empirical distribution function. If no restriction is
imposed on the range of the random variable of interest, then the results below can
easily be extended accordingly.

Cowell and Victoria-Feser (2007) proposed an approach which is suitable for
any parametric model for the upper tail of the distribution. They however choose a
model that is of special relevance empirically, that is the Pareto distribution given
by

Fθ (x) = 1−
[

x
x0

]−θ

, x > x0 (3.1)

with density f (x;θ)= θx−(θ+1)xθ
0 . The parameter of interest is θ .2 A semi-parametric

approach will combine a non-parametric RLC for say the (1−α)% lower incomes
and a parametric RLC based on the Pareto distribution for the α% upper incomes.
Therefore x0 is determined by the 1−α quantile Q(F ;1−α) defined in (2.2). The
method for a suitable choice of x0 is given in section 4. The full semi-parametric
distribution F̃ of the income variable X is

F̃(x) =
{

F(x) x≤ x0
F(x0)+(1−F(x0))Fθ ,x0(x) x > x0

where F could be in principle any suitable parametric distribution, but in our case
will be estimated by the empirical distribution. With x0 = Q(F ;1−α), we have

2 θ is assumed to be greater than 2 for the variance to exist.
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F̃(x) =

{
F(x) x≤ Q(F ;1−α)

1−α

[
x

Q(F ;1−α)

]−θ

= x > Q(F ;1−α)
. (3.2)

For x > Q(F ;1−α), the density f̃ is

f̃ (x;θ) = αθQ(F ;1−α)θ x−θ−1 .

In particular

f̃ (x1−α ;θ) =
αθ

x1−α

. (3.3)

The quantile functional is then obtained using (3.2) and is given by

Q(F̃ ,q) =

{
Q(F,q) q≤ 1−α

Q(F ;1−α)
(

1−q
α

)−1/θ

q > 1−α

Hence the cumulative income functional defining the semi-parametric GLC be-
comes

C(F̃ ;q) =
∫ Q(F̃ ,q)

x
xdF̃(x) (3.4)

=



∫ Q(F,q)
x xdF(x) q≤ 1−α

∫ Q(F,1−α)
x xdF(x)

+α
∫ Q(F ;1−α)

(
1−q

α

)−1/θ

Q(F,1−α) xdFθ q > 1−α

(3.5)

=



∫ Q(F,q)
x xdF(x) q≤ 1−α

∫ Q(F,1−α)
x xdF(x)

+α
θ

1−θ
Q(F ;1−α)

[(
1−q

α

) θ−1
θ −1

]
q > 1−α

(3.6)

where x := infX. The mean of the semi-parametric distribution is given by:

C(F̃ ;1) =
∫ Q(F,1−α)

x
xdF(x)−αQ(F ;1−α)

θ

1−θ

= c1−α −αx1−α

θ

1−θ
(3.7)

= µ(F̃)

The semi-parametric RLC is simply
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L(F̃ ;q) =
C(F̃ ;q))

µ(F̃)
(3.8)

The cumulative income function (3.6) obviously needs to be estimated. The (un-
known) distribution F is replaced by the empirical distribution F(n) and an estimate
for α will be discussed in Section 4. To estimate the Pareto model, hence θ , for
the upper tail of the distribution, one can use the maximum likelihood estimator
(MLE). Unfortunately, the MLE for the Pareto model is known to be very sensitive
to data contamination (Victoria-Feser and Ronchetti, 1994). This is also the case for
other models such as Dagum (1977) model (see Victoria-Feser (1995)). Cowell and
Victoria-Feser (2007) propose using a robust estimator in the class of M -estimators
(Huber (1981)). For a sample of n observations xi, a general M-estimator is defined
as the solution in θ of

1
n

k

∑
i=1

ψ (xi;θ) = 0

with some (mild) conditions on the function ψ . This function is chosen so that the
resulting estimator is consistent at the model Fθ and also that it is robust to slight
model deviations (for a discussion, see e.g. Hampel et al. (1986)). The latter condi-
tion is satisfied if the ψ-function is bounded, which is the case for so-called weighted
MLE (WMLE), i.e.

1
n

k

∑
i=1

w(xi;θ) [s(zi;θ)−a(θ)] = 0 (3.9)

where w(x;θ) is a weight function with value in [0,1] insuring the robustness of the
estimator, s(x;θ) = ∂/∂θ log f (x;θ) is the score function and a(θ) is a consistency
correction factor3. Cowell and Victoria-Feser (2007) choose the optimal B-robust
estimators (OBRE) (Hampel et al., 1986), a robust estimator with minimal asymp-
totic covariance matrix (see e.g. Cowell and Victoria-Feser (2007) for details).

The resulting semi-parametric GLC (and RLC) estimates are hence robust to data
contamination. They are based on the Pareto model for the upper tail and robustness
is sought against deviations from the Pareto model. If the Pareto model is believed
not to be suitable, then it can be changed (like e.g. to a generalized version of it) but
the method remains the same. Cowell and Victoria-Feser (2007) also provide the
asymptotic covariances of the estimators for inference with semi-parametric GLC
(and RLC) which can be used for robust welfare comparison.

In section 5, an example will illustrate the performance of robust semi-parametric
estimators of RLC and GLC.

3 The correction factor does not need to be estimated simultaneously, see below.
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4 Choosing α

The choice of the proportion α of data in the upper tail to be fitted to the Pareto
model, or equivalently the threshold x0 above which the data are fitted to a Pareto
model, is not a problem specific to income distribution analysis. It has attracted and
still attracts the attention of researchers in domains such as finance, insurance, en-
gineering, or environmental sciences. This problem falls within the general heading
of extreme value distributions (for a general reference, see e.g. Embrechts et al.
(1997)). To estimate the threshold, a compromise should be sought between bias
and variance: choosing a threshold too close to the central data will cause bias in the
Pareto model estimator since only the tail can be assumed to be Pareto distributed,
and selecting too extreme a threshold will yield large variances for the estimator
since it will be based on a small sample. A common practice is to use the Pareto
quantile plot (see e.g. Beirlant et al. (1996)). Indeed, rearranging (3.1) one gets

log
(

x
x0

)
=− 1

θ
log(1−Fθ (x)) , x > x0 (4.1)

showing that there is a linear relationship between the log of the x > x0 and the log
of the survival function. This relationship was actually found empirically by Pareto
(1896) and led him to the construction of his model (see also Dagum (1983)). Let x∗[i],

i = 1, . . . ,k, be the ordered largest k observations, so that x∗[i] = Q(F∗(n); i/(k + 1)),

with F∗(n) the empirical distribution of x∗[i]. The empirical counterpart of (4.1) is the
Pareto quantile plot

log

(
Q(F∗(n); i/(k +1))

x0

)
=− 1

θ
log
(

k +1− i
k +1

)
, i = 1, . . . ,k. (4.2)

Therefore, given a sample of n income data xi,1, . . . ,n and by letting x[i] denote the
ith order statistic, the plot of log

(
x[i]
)

versus− log((n+1− i)/(n+1)), i = 1, . . . ,n
is the Pareto quantile plot that is used to detect graphically the quantile x[i] above
which the Pareto relationship is valid, i.e. the point above which the plot yields
a straight line. We note that there is a clear relationship between x0 and k in that
k = ∑

n
i=1 ι(x[i] ≥ x0).

More formally, a general approach in determining k is the minimization of an
estimate of the asymptotic mean squared error (AMSE) of the estimator of θ . If a
classical estimator such as the MLE is chosen, then the determination of k can be
influenced by extreme data in the upper tail (see Dupuis and Victoria-Feser (2006)).
Note that here extreme is used relatively to the Pareto model: if it is assumed to fit
the upper tail, then extreme data represent deviations for this assumption that can
appear in the Pareto quantile plot as data that do not fit the straight line.

In order to choose k, or equivalently x0 in a robust fashion, Dupuis and Victoria-
Feser (2006) use another criterion, namely a prediction error criterion that is es-
timated robustly (see also Ronchetti and Staudte (1994)), named the RC-criterion.
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Let Yi = log
(

x∗[i]/x0

)
, i = 1, . . . ,k, Ŷi = −1/θ̂ log [(k +1− i)/(k +1)] , i = 1, . . . ,k

where θ̂ is an estimator of θ , and

σ̂
2
i =var(Y i) =

i

∑
j=1

1

θ̂ 2(k− i+ j)2

the (estimated) RC-criterion is given by

CR (x0) =
1
n

n

∑
i=1

ŵ2
i

(
Yi− Ŷi

σi

)2

+
2
n

n

∑
i=1

1
σ2

i
cov
[
ŵiYi, ŵiŶi

]
− 1

n

n

∑
i=1

1
σ2

i
var [ŵiYi] (4.3)

where each ŵi,0≤ ŵi ≤ 1, is the fitted weight of the ith observation, provided by a
robust fit of the Pareto model, using a WMLE given in (3.9). For suitable estimates
of cov

[
ŵiYi, ŵiŶi

]
and var[ŵiYi], see Dupuis and Victoria-Feser (2006). The effect of

extreme observations on the calculation of CR (x0) is controlled by the weights ŵi.
The criterion is minimized over possible values for x0. Obviously, at the minimum,
we have that Yi ≈ Ŷi, hence log

(
x∗[i]/x0

)
≈−1/θ̂ log [(k +1− i)/(k +1)].

For the choice of the WMLE, Dupuis and Victoria-Feser (2006) propose an es-
timator which downweights observations that are “far” from the Pareto model in
terms of the size of the residuals with respect to the Pareto regression model, i.e.

w(x∗[i];θ) =
{

1 if |ri| ≤ c
c/|ri| if |ri|> c (4.4)

with ri = (Yi− Ŷi)/σi and c is a constant regulating the amount of robustness (for
more details, see Dupuis and Victoria-Feser (2006)).

In the following section, an empirical example will illustrate the method.

5 Data analysis

Let us put the semiparametric method into practice using a typical income distribu-
tion. The data for our illustration are for household disposable incomes in the UK,
1981 (n = 7470)4.

A Pareto quantile plot of the data together with fitted regression lines are given
in Figure 1. The fits are provided by WMLE estimates with residual weights (4.4)
for two values of c as well as the classical MLE. The optimal values for x0 are ob-
tained using CR (x0) in which the weights ŵi and Ŷi are obtained using the different
estimators. For the MLE, ŵi = 1,∀i. The fit for the MLE (and hence the correspond-
ing optimal value for x0) are not adequate, probably because of a few very extreme

4 The data set is Households Below Average Income which, despite its name, actually provides
a representative sample of households over the whole income range – see Department of Social
Security (1992) for details.
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Figure 1: Pareto regression plot. Fitted regression line based on classical and robust $RC-$ criteria
added. Only incomes above 600 are shown for clarity.

observations. Both robust fits seem on the other hand appropriate. For the latter, the
optimal value of x0 corresponds to k = 22 selected upper incomes (k = 32 for the
MLE). Figure 2 shows observations above the robustly selected threshold x0 = 803.3
and arrows indicate the downweighted observations. The striking feature is that not
only the largest observations are downweighted, but also the smallest.

To estimate the Pareto parameter, we hence choose k = 22. The value for the
MLE is θ̂ = 17.5 (with standard error 3.73) and the one for the OBRE with c = 25

is θ̂ = 76.65 (17.62). We use these two estimates to build estimated RLC (see (3.6)
and (3.7)). These curves (corresponding to the 0.5% top incomes) are presented in
Figure 3 together with the empirical RLC estimate. Even if it is small, one can see a
difference between the three estimates, in that the MLE follows the empirical RLC
up to roughly the 0.1% of the top distribution, while the OBRE leads to an estimated
RLC showing less inequality on the entire 0.5% top range.

5 One can note that a different robust estimator is used to estimate the Pareto parameter. For the
choice of k a WMLE based on residual weigths is a reasonnable choice, whereas the more efficient
robust estimator (OBRE) for the Pareto parameter given a value for k is also a reasonnable choice.
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Figure 2: Pareto quantile plot of income data above robustly chosen threshold. Downweighted
observations (with WMLE, c = 1.25) are identified.

Figure 3: RLC (top 0.5%) estimates (empirical and semi-parametric with MLE and OBRE with
c = 2) of the UK income data
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6 Conclusion

Using ranking criteria to compare distributions is of immense theoretical advantage
and practical convenience. In welfare economics they provide a connection between
the philosophical basis of welfare judgments and elementary statistical tools for de-
scribing distributions. In practical applications they suggest useful ways in which
simple computational procedures may be used to draw inferences from collections
of empirical distributions. However, since it has been shown that second order rank-
ings are not robust to data contamination, especially in the upper tail of the distribu-
tion, it is important to provide the empirical researcher with computational devices
which can be used to draw inferences about the properties of distributional compar-
isons in a robust fashion.

One way forward might be to estimate Lorenz curves through an appropriately
specified parametric model and to estimate the model parameters robustly. However,
this approach is too restrictive because tractable parametric models are unlikely to be
sufficiently flexible to capture some of the essential nuances of Lorenz comparisons.
For example, in order for Lorenz curves to be able to cross, a parametric model
would usually need to incorporate at least three parameters, which itself may lead
to serious estimation complications.

The method proposed here is a semi-parametric approach in that the upper tail
of the distribution is robustly fitted using the Pareto model and a semi-parametric
Lorenz curve is then built which combines non-parametric cumulative functionals
and estimated ones. Simulated examples have proved not only that a few extreme
data can reverse the ranking order, but also that the robust parametric Lorenz curve
restores the initial ordering. Inference can be made for comparing two distributions
even in the semi-parametric setting, by extending the general setting provided in
Cowell and Victoria-Feser (2007). For variances too, a robust approach provides
reasonable estimates when there is contamination. Note however, that inference has
been developed for a fixed value for the proportion α of data in the upper tail, and
when it is estimated as is done in this paper, inference that takes into account the
variability of an estimator of α is still an open question.

Finally note that although we took the Pareto distribution as a suitable parametric
model for the upper tail, and although we considered the (most common) case of a
range of definition for the variable bounded below, our results can be extended to
other models and to two-tail modelling in a relatively straightforward manner.
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