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Abstract

The dissertation proposes contributions to graphical longitudinal data analysis and mod-
erated regression analysis, in form of three self-contained articles. Special emphasis is
placed on applications to longitudinal categorical data. For general use, the methods are
implemented in freely available packages for the statistical software environment R.

The first article proposes a decorated parallel coordinate plot for longitudinal cate-
gorical data, featuring a jitter mechanism revealing the diversity of observed longitudinal
patterns and allowing the tracking of each individual pattern, variable point and line
widths reflecting weighted pattern frequencies, the rendering of simultaneous events, and
different filter options for highlighting typical patterns. The proposed visual display has
been developed for describing and exploring the order of event occurrences, but it can
equally be applied to other types of longitudinal categorical data. Alongside the descrip-
tion of the principle of the plot, the scope of the plot is demonstrated by using data from
the European Social Survey to learn orders in which family life events typically occur.

The second and the third articles focus on semi-parametric methods for moderated
regression analysis. Linear regression models are combined with tree-based algorithms for
learning whether and how selected coefficients of the predictor function vary by moder-
ating variables. In particular, the developed algorithms partition the values spaces of the
moderators to model the selected varying coefficients as piecewise constant functions.

The second article implements an algorithm for tree-structured varying coefficients in
multivariate generalized linear mixed models for longitudinal data. As a special feature,
the algorithm allows partitioning by time-varying moderators while maintaining the ran-
dom effect component globally. The implementation includes an extension of a score-based
coefficient constancy test for mixed models, which allows for unbiased and computation-
ally efficient variable selection. Although the scope of the algorithm is quite general, the
article focuses on its usage in an ordinal longitudinal regression setting. The potential of
the algorithm is illustrated using data from the British Household Panel, to show how the
effect of unemployment on longitudinal ordinal happiness varies across life circumstances.

The third article implements coefficient-wise partitioning for varying coefficients in
generalized linear models. Coefficient-wise partitioning allows moderators to be selected
separately by coefficient and coefficient-specific sets of moderators to be specified. Empir-
ical evidence suggests that coefficient-wise partitioning potentially builds more accurate
and /or more parsimonious models than competing tree-based algorithms are able to build.
The article describes the developed algorithm and demonstrates the software implemen-
tation in R by applications on several real data sets.






Résumé

La these propose des contributions sous forme de trois articles autonomes portant sur
I’analyse graphique de données longitudinales et ’analyse de régression avec facteurs de
modération. Un accent particulier est mis sur 'application de ces développements a
des données longitudinales catégorielles. Les méthodes proposées sont implémentées sous
forme de librairies libres pour I’environment statistique R.

Le premier article propose un graphique a coordonnées paralleles pour données longitu-
dinales catégorielles enrichi par un mécanisme de décalage des lignes permettant de rendre
compte de la diversité des configurations des trajectoires tout en suivant les configura-
tions individuelles, des épaisseurs variables des lignes et des points reflétant les fréquences
pondérées des configurations séquentielles, la possibilité de visualiser des événements sur-
venant simultanément, et enfin différentes possibilités de filtrer les séquences pour mettre
en évidence les configurations séquentielles typiques. Le graphique a été développé dans
le but de décrire et explorer I'ordre d’occurrence d’événements, mais il s’applique tout
aussi bien a d’autres types de données longitudinales. En plus de décrire le principe du
graphique, 'article démontre sa portée avec une étude de l'ordre typique des événements
familiaux a partir de données de I’'Enquéte sociale européenne (ESS).

Les deuxieme et troisieme articles portent sur des méthodes semi-paramétriques pour
I’analyse de régression modérée. Le principe général consiste a combiner des modeles
de régression linéaire généralisé avec des algorithmes d’arbre de partitionnement pour
apprendre si et comment certains coefficients de la fonction prédictive varient avec les
variables de modération. En particulier, les algorithmes développés partitionnent I’espace
des valeurs des modérateurs pour modéliser la variation des coefficients sous forme de
fonctions constantes par morceaux.

Le deuxieme article introduit un algorithme pour des coefficients variant selon une
structure arborescente dans un modele multivarié linéaire mixte généralisé pour données
longitudinales. Une caractéristique importante de 1’algorithme est de permettre le partion-
nement selon des modérateurs variant dans le temps tout en maintenant la composante
aléatoire des coefficients globalement pour tout le modele. La méthode proposée com-
prend une extension d’un test de constance des coefficients pour modeles mixtes fondé sur
les scores. L’extension permet une sélection non biaisée et efficace sur le plan calculatoire.
Bien que la portée de 'algorithme soit plus générale, I’article se focalise sur son utilisation
dans le cadre de la régression longitudinale ordinale. Le potentiel de I’algorithme est il-
lustré par une étude de comment l'effet du chémage sur le sentiment (ordinal) de bonheur
varie selon les circonstances de vie. L’étude exploite des données du panel de ménages
britannique (British Household Panel).

Le troisieme article introduit une procédure avec un partitionnement propre a chaque
coefficient variable. Le partitionnement propre a chaque coefficient permet de spécifier
des modérateurs potentiels différents pour chaque coefficient et de sélectionner les plus
pertinents pour chaque coefficient. Les résultats empiriques tendent & montrer que le



vi

partitionnement propre a chaque coefficient génere des modeles plus précis et/ou plus
parcimonieux que ceux produits par des algorithmes d’arbre concurrents. L’article décrit
I’algorithme proposé et démontre 'utilisation du logiciel implémenté en R au travers de
plusieurs applications sur des données réelles.
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Introduction

Moderated regression involves modeling the dependence of selected relations on third
variables. Let me begin with an application from the literature on welfare reforms.

Empirical example In 1990, the Austrian government introduced a change for their
parental-leave (PL) system. In the former system, working women had the right to stay
off work after childbirth up to 12 months and, thereafter, return to the same (or similar)
job at the same employer. The 1990 PL reform extended the duration of this leave from
12 months to 24 months.

The question arises whether the extended leave discourages women to return to work.
Here, using the subset of 2,650 women living in the regions Vorarlberg, Salzburg and
Vienna, retrieved from the data prepared by Lalive and Zweimiiller (2009), I study the
impact of the reform on the proportions of women that did not return to work within the
ten years after giving birth. Vorarlberg lies at the far west of Austria, Salzburg in the
center and Vienna (the capital) at the far east.

Vorarlberg (N = 243)

Salzburg (N = 406) Vienna (N = 2001)
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Figure 1: Effect of the Austrian 1990 parental-leave system reform. The bars lengths
render the proportions of females that did not return to work in the 10 years
after giving birth, by system and region.

Figure 1 shows the proportions of females that did not return to work, by PL system
and region. In Vorarlberg, the PL reform increased the proportion by 17%, in Salzburg
by 5% and in Vienna by 1%.

In this application, the relation of interest is that between the variables PL system and
not returned to work. The relation may be studied by using a logistic regression model
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Figure 2: Path diagram of a model for the moderated effect of the 1990 Austrian
parental-leave (PL) reform.

for not returned to work with only PL system in the linear predictor function. However,
Figure 1 suggests to take account also of the moderation effect of region. This leads to
the model shown in Figure 2. The horizontal arrow defines the interesting effect of the PL
reform and the vertical arrow defines the moderation effect of region. With the diagonal
arrow I also incorporate the direct effect of region on not returned to work, in order to
take into account baseline differences between regions. However, you can see in Figure 1
that the baseline differences are not so crucial in this application. Specifically, in the old
system, the proportion of women that did not return to work was 11% in Vorarlberg, 12%
in Salzburg and 15% in Vienna. The model shown in Figure 2 could be implemented by
specifying a linear predictor function with main effects for PL system and region and an
interaction between the two predictors.

Main focus of research

The dissertation develops model building algorithms for regression problems including a
response variable, a set of predictor variables of interest and a set of third variables. For
instance, in the above example the response variable is not returned to work, the predictor
of interest is PL system and the third variable is region. The aim of the algorithms is
to incorporate the third variables into a given, parametric “basic” regression model that
reflects the relations between the predictors of interest and the response variable.

The basic model is, as such, specified by the analyst and it formalizes the relations
of interest. For the introductory example, it could be a logistic regression model for not
returned to work with PL system in the predictor function. In gender pay gap studies
(e.g. Arulampalam et al., 2007), it could be a Gaussian linear model for hourly wage with
gender in the predictor function, or, in longitudinal studies on long term consequences of
a hospital stay (e.g. Jeitziner et al., 2014), it could be a cumulative logit random intercept
model for pain with time elapsed since discharge and individual specific intercepts in the
predictor function. The dissertation focuses on generalized linear models and multivariate
generalized linear mixed models (e.g. Fahrmeir and Tutz, 2001), which cover many models
for cross-sectional and longitudinal data.

The third variables are not of primary importance, yet, their incorporation in the basic
model potentially improves the estimation of the relations of interest, or avoids an omitted
variable bias. Herein, I consider third variables to be potentially irrelevant (noisy) and
assume that the functional forms for incorporating them in the predictor function are
unknown. Therefore, to deal with third variables, I focus on statistical learning methods
(e.g. Hastie et al., 2001; Berk, 2008) that perform variable selection, in order to build
parsimonious models that can integrate nonlinearities and interactions while avoiding
collinearities or overfitting.

Among the potential effects of third variables, the focus herein is set on their direct ef-
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fects and particularly on their moderation effects (e.g. Hayes, 2013). Other effects of third
variables include mediation or confounding effects, e.g., see Hayes (2013); Montgomery
(2012). Moderation is a specific relational structure that describes how third variables af-
fect the impacts of predictors on the response variable. For instance, moderation includes
dynamic relations, e.g., how the effect of age on mortality has evolved over years (e.g.
Holford, 1991). Furthermore, moderation includes differential effects, e.g., how the gen-
der pay gap varies between industries or countries (e.g. Arulampalam et al., 2007), or how
the effect of age on mortality varies between social groups. Finally, moderation includes
spatial variation, e.g., how the effect of a welfare reform varies regionally. Because of the
focus on moderation effects, I will generally refer to third variables as “moderators”.

When using linear regression models, moderation effects can be implemented by mul-
tiplying the predictors of interest with the moderators and adding these product variables
to the predictor function. The corresponding coefficients are then be interpreted as the
variation of the coefficients of the predictors of interest across the values of the mod-
erators. Note that, considering instead that the predictors of interest interact with the
moderators, i.e., exhibit combination effects, may leads to the same model specification.
In consequence, modeling moderation in linear models can be technically equivalent to
modeling interaction, however, the way how the coefficients are interpreted is different.

While in linear regression it is assumed that the relevant moderators are known and
with it the functional form of their impacts, herein I consider that the relevant moder-
ators have to be selected from a set of potential moderators, and the functional forms
of the moderation have to be estimated nonparametrically. This leads to so-called local
regression models (e.g. Cleveland et al., 1992) or varying coefficient models (e.g. Hastie
and Tibshirani, 1993). I will generally use the latter term.

Zy Fx--—-o

\
/! \
NS 2 S

Figure 3: Path diagram for the considered model building problem. X, the predictor
of interest; Y the response variable; Z; and Z, the moderators, solid lines,
known relations; dashed lines, unknown relations.

Figure 3 illustrates the considered problem in situations with one predictor of interest,
X, and two moderators, Z; and Z;. The solid lines represent the basic model and the
dashed lines the potential direct effects and moderation effects of Z; and Z,. The problem
is to decide which impacts are relevant, i.e., which of the dashed lines can be dropped,
and to provide a functional description of the relevant impacts.

To tackle the described model building problem, I will consider tree-based algorithms
(e.g. Belson, 1959; Morgan and Sonquist, 1963; Breiman et al., 1984) and in particular
those variants combining regression trees with linear regression models (e.g. Quinlan,
1992; Chaudhuri et al., 1995; Alexander et al., 1996; Loh, 2002; Gama, 2004; Zeileis et al.,
2008; Strobl et al., 2013; Wang and Hastie, 2014). The considered tree-based algorithms
partition the value space of the moderators into strata such that the relations of interest
differ between the strata, but are fairly constant within the strata. Accordingly, the built
models fit the relations of interest separately by strata. While the tree-based approach



has certain drawbacks, particularly that it is a heuristic and may be instable regarding
perturbations to the data, it has several advantages for the considered regression setting.
It is scalable to many moderators, performs variable selection, can handle nonlinearities
and interactions, provides a uniform framework to handle mixed scaled sets of moderators
and yields easily readable outcomes in form of decision trees.

Data types

The dissertation considers three data types, among them two types of longitudinal data.
Chapter 1 focuses on event sequence data, Chapter 2 on repeated measurement data and
Chapter 3 on cross-sectional data.

Cross-sectional data

The simplest among the considered data types are cross-sectional data. Cross-sectional
data measure variables referring to a given time point or period on a sample of individuals
(or, more generally, sample units). Table 1 shows an extract of a fictitious cross-sectional
data set in a vertical tabular form. The observations are reported in the rows and the
variables returned to work, PL system and region in the columns.

Table 1: Extract of a fictitious cross-sectional data set.

Index Individual Returned to Work PL System Region

1 1 Yes Old Vienna
2 2 No New Vorarlberg
3 3

Cross-sectional data are commonly used for analyzing inter-individual differences. A
limitation is that they do not convey information about changes across time. For example,
one could compare the pain level of hospital patients with that of a reference group, but
not whether the pain level of the hospital patients is increasing or decreasing at the time
of measurement.

Longitudinal data

Longitudinal data are data that follow a sample of individuals over time. Two significant
advantages arise out of this: Longitudinal data record information about temporal changes
of inter-individual differences, but also about intra-individual changes. For example, one
could study whether the pain level of hospital patients approaches that of the reference
group as time elapses, but also typical individual trajectories, which may be characterized
as “quick recovery” or “long term pain”.

Repeated measurement data

Repeated measurement data (e.g. Raghavarao and Padgett, 2014) record the same vari-
ables for multiple time points. They can be collected, for example, by yearly panel surveys
where variables refer to the date of measurement. Special cases are cross-sectional data,
which are a subset of observations corresponding to a single time point, and time se-
ries data, which are a subset of observations corresponding to a single individual. It is
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generally desirable that the data record for each individual information from each mea-
surement time point. However, because of attrition or sample rotations, real data are
often unbalanced so that the number of observations varies between individuals.

Table 2: Extract of a fictitious, unbalanced repeated measurement data set.

Index Individual Year Happiness Employed Gender
(1,1) 1 1990 Very happy Yes Female
(1,2) 1 1992  Very happy Yes Female
(1,3) 1 1993 Moderately happy no Female
(2,1) 2 1991 Rather happy Yes Male
(2,2) 2 1992 ...

Table 2 reports a fictitious, unbalanced repeated measurements data set in a vertical
tabular form. It reports that individual 1 has participated three times, but not in the
year 1991. Individual 2 has participated in 1991, but not in 1990.

The analysis of repeated measurements data can, but does not have to, be focused on
temporal change. The time points can also refer to different conditions of measurement,
and the focus be on changes across these conditions. For example, Chapter 2 considers
how happiness changes at the transition to unemployment, using repeated measurement
data of individuals who were observed under employment and unemployment.

Event sequence data

Event sequences (e.g. Ritschard et al., 2009) are longitudinal data that record dates or
ages at which selected events occurred. Because events, such as getting married, do not
persist but occur at a unpredictable time point, they are often collected by retrospective
surveys. Table 3 shows a fictitious event sequence data set in the vertical tabular form,
considering the four events “Graduating university”, “First employment”, “First marriage”
and “First child”. It reports that individual 1 has graduated university at 25, found a first
employment and married at 27 and became mother with 30.

Table 3: Extract of a fictitious event sequence data set.

Index Individual Event Age Rank Gender
1 1 Graduating university 25 1 Female
2 1 First employment 27 2 Female
3 1 First marriage 27 2 Female
4 1 First child 30 3 Female
5 2

A specific aspect of event sequence analysis is the order in which events occurred. For
this, Chapter 1 will work with rank order of occurrences of events. The column “Rank” of
Table 3 presents a possible construction. For individual 1, it assigns rank 1 to the earliest
event “Graduating university”; rank 2 to the simultaneous events “First employment” and
“First marriage”, and rank 3 to the latest event “First child”. An alternative construction
would be to assign rank 0 to the latest event and numbering in the descending order.



Contents

The Chapters 1, 2 and 3 present the three proposed articles in their chronological order
of writing. The initial focus of research was on developing graphical methods for longi-
tudinal categorical data. The main result out of this research is the plot of Chapter 1.
When testing the plot, I found particularly interesting its usage for studying how lon-
gitudinal patterns vary across cohorts and countries, or, more generally speaking, how
intra-individual relations between time and the categorical target variable vary across so-
cial subgroups. This brought me to put the emphasis on moderated relations. Chapter 2
presents the first result from the explicit research in this direction, developing a tree-
based approach for moderated regression models to longitudinal ordinal categorical data.
Finally, the extensive work with tree-based methods brought me to the coefficient-wise
partitioning extension, which is presented in Chapter 3. The implementation refers to
cross-sectional data to simplify the presentation.

Table 4: Overview of the contents of the Chapters 1, 2 and 3 by keywords. Symbols: v/,
is a focus; (v'), is not a focus, but is related or a special case; *, in appendix.

Chapter

Aspect Keyword 1 2 3
Data Cross-sectional data W) (v) V

Repeated measurement data * v

Event sequence data v
Analysis Moderated relations V) v v

Descriptive statistics v

Exploratory data analysis v v v

Subgroup analysis v v v

Regression analysis v v
‘Methods Visualizations v ) )

Semi-parametric regression models v v

Tree-based algorithms v v
‘Evaluation  Real data applications ix oV

Simulations studies V/x o x
‘Application R-codes *x *x v /x

Table 4 overviews the contents of the Chapters 1, 2 and 3 by keywords, including
references to the corresponding Appendices A, B and C. In the following, I summarize
the main ideas and the contributions to the literature.

Chapter 1 The Chapter “A decorated parallel coordinate plot for categorical longitudi-
nal data” develops a parallel coordinate plot (e.g. Yang, 2003) for rendering longitudinal
categorical patterns. The contributions are jittering, line weighting and color filtering
techniques to allow identifying typical longitudinal patterns while rendering at the same
time the diversity of the observed patterns. The article focuses on the usage of the plot
for describing and exploring the order of event occurrences.

1Up to minor modifications, this chapter is the article: Biirgin, R. and G. Ritschard (2014). A
Decorated Parallel Coordinate Plot for Categorical Longitudinal Data. The American Statistician 68(2),
98-103.
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Ilustration Although Chapter 1 does not explicitly refer to moderated regression, the
decorated parallel coordinate plot proves useful as a tool for describing or exploring mod-
erated relations, or differences between subgroups, respectively. Figure 4 illustrates the
plot for the empirical example of Chapter 2. The focus of interest is on whether and how
the effect of a transition from employment to unemployment on happiness is moderated
by variables such as gender, age, etc. The used data are a subset including 1,487 respon-
dents from the British Household Panel survey (e.g. Taylor et al., 2010) who experienced
a switch from employment to unemployment between two consecutive waves.

Female Male

More than usual

Same as usual —

Less so —

Much less —

I I I I
-1 0 -1 0

Years since transition to unemployment

Figure 4: Happiness patterns at the transition from employment to unemployment, by
gender. Highlighted lines describe transition patterns with frequency above
5%. The y-axis gives the ordinal levels of happiness.

Figure 4 shows the observed happiness patterns at the transition to unemployment.
The plots split females and males to study whether gender moderates the effect of the
transition. It can be seen that respondents most often answer with category “Same as
usual” twice in succession. The most frequent intra-individual change presents the pattern
“Same as usual” to “Less so”. The moderation effect is that intra-individual changes are
more frequent for males than for females. For example, “Less so” to “Same as usual” is
more frequent for males than for females.

Chapter 2 The Chapter “Tree-based varying-coefficient regression for longitudinal or-
dinal responses™ proposes a tree-based algorithm for varying coefficients in multivariate
generalized linear mixed models for longitudinal responses. The contribution is to com-
bine and extend the technique for partitioning and tree size selection of Zeileis et al.
(2008); and the technique for incorporating a tree structure into a mixed model of Hajjem
et al. (2011) and Sela and Simonoff (2012); for general longitudinal varying coefficient
regression. Although the algorithm is quite general, the focus is placed on its usage in an
longitudinal ordinal categorical regression setting.

2Up to minor modifications, this chapter is the article: Biirgin, R. and G. Ritschard (2015). Tree-
Based Varying-Coefficient Regression for Longitudinal Ordinal Responses. Computational Statistics &
Data Analysis 86 65-80.



Figure 5: Chapter 2: Schematic representation of a mixed model with tree-structured
varying coefficients. x;, the predictor measured on individual ¢ at time t;
Yit, the longitudinal response; zy;; and z9;, the moderators; w;;, the predictor
corresponding to the random coefficient b;. B,,, m = 1,..., M, are strata from
a partition of the value space of Z; and Z,. 3, is the fixed effect of x; on y;
in stratum B,,,, and [y, the fixed effect of stratum B,, on y;,.

The idea is to partition the value space of the moderators into M strata, {Bi, ..., B},
and to estimate the fixed coefficients of the basic mixed model separately for each stratum.
Figure 5 shows a schematic representation of a fitted model in a setting with one fixed
coefficient predictor, X, one random coefficient predictor, W, and two moderators, Z;
and Z5. The tree component in the middle assigns the observations z; and z9; to a
stratum B,,, and, accordingly, the model determines the strata-specific fixed coefficient 5,
as the linear effect of x; on y;;. The direct effects of the moderators are incorporated by
the coefficients fy,,, which correspond to dummy variables for the strata {By,..., By}
The random coefficients, b;, are used to take into account intra-individual correlations
and could include individual-specific intercepts or slopes over time. Herein, they are
not considered as to be moderated, which is an simplifying assumption. Indeed, one
could consider to regress the random coefficients or their distributional parameters on the
moderators. However, such extensions would likely result in models which are difficult to
fit or interpret.

Chapter 3 The Chapter “Coefficient-wise tree-based varying coefficient regression with
verpart™ proposes building a separate partition for each varying coefficient. The algorithm
is implemented for generalized linear models and is based on the partitioning and tree size
selection techniques of Breiman et al. (1984) or Wang and Hastie (2014), respectively.

Figure 6 shows a schematic representation of a model with coefficient-specific partitions
in a setting with one predictor X, and two moderators, Z; and Z;. Unlike the model
shown in Figure 5, the one here incorporates two partitions, one for the coefficient of the
predictor X, {Bii,...,Bium, }, and a second for the direct effects, {Bai, ..., Baps }. This
allows moderators to be selected separately by coefficient and coefficient-specific sets of
moderators to be specified, which is the principal contribution of the article. For example,
Z may affects the response directly but does not moderate the effect of X. In this case,
the algorithm may selects both Z; and Z, to construct the partition for the direct effect,
but only Z; to construct the partition for the moderation effect on X.

3Up to minor modifications, this chapter is the article: Biirgin, R. and G. Ritschard (2015). Coefficient-
Wise Tree-Based Varying Coefficient Regression with verpart. Revised (from pre-screening stage)
manuscript submitted to Journal of Statistical software for publication.
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Figure 6: Chapter 3: Schematic representation of a fitted model with coefficient-wise
partitions. x;, the predictor measured on individual i; y; the measured re-
sponse; z1; and 2o; the measured moderators.

Introductory literature An introduction to graphical categorical data analysis is pro-
vided by Friendly (2000), and Gabadinho et al. (2011) propose a series of visualizations
for longitudinal categorical data. The Chapters 2 and 3 expect basic knowledge about re-
cursive partitioning, generalized linear models and mixed models. For an introduction to
recursive partitioning, see for example Loh (2008); Strobl et al. (2009); Loh (2014). Con-
sistency properties of recursive partitioning, which are not discussed herein, are found in
Breiman et al. (1984, Chap. 12), Devroye et al. (1996, Chap. 20) and Kim et al. (2007).
Generalized linear models are explained, for instance, by McCullagh and Nelder (1989)
and mixed models by Fahrmeir and Tutz (2001); Skrondal and Rabe-Hesketh (2004).
For specific information on ordinal mixed models, see for example Agresti (2010); Tutz
(2012). For a general overview of regression models for longitudinal data, see for example
Molenberghs and Verbeke (2005).

Software

The developed methods are implemented in the packages TraMineR* (Gabadinho et al.,
2011) and verpart® (Biirgin, 2015) for the freely available software environment R (R Core
Team, 2014).

Table 5: Overview of software implementations.

Chapter R Package Main function
1 TraMineR seqpcplot
2 verpart tvcolmm
3 verpart tveglm

Table 5 overviews the main functions. The seqpcplot function implements the dec-
orated parallel coordinate plot of Chapter 1, and the summary function allows to extract
the frequencies of unique sequence patterns from the output of the seqpcplot function.
tvcolmm allows fitting cumulative logit mixed models with tree-structured fixed effect
components, and tvcglm implements the coefficient-wise partitioning approach for gener-
alized linear models. The verpart provides for the output from these two functions several
methods, such as the summary function to read the fitted coefficients, the plot function

4See also http://cran.r-project.org/web/packages/TraMineR/ and http://mephisto.unige.ch/traminer/.
5See also http://cran.r-project.org/web/packages/vcrpart/.
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to draw decision trees and partial dependencies and the predict function for predicting
responses of new observations.

Connection with the LIVES project

The dissertation results from research work carried out within the framework of the Swiss
National Center of Competence in Research LIVES Overcoming Vulnerability: Life Course
Perspectives® and specifically within the individual project IP 14 Measuring Live Se-
quences and the Disorder of Lives. The LIVES project is financed by the Swiss National
Science Foundation.”

The proposed articles are intended to provide statistical methods for the research fields
of the LIVES project. Concretely, the illustrations on family life event histories (Sec. 1.3),
the effect of unemployment on happiness (Sec. 2.3.1, cf. Oesch and Lipps (2013)) and the
effect of parental leave duration on return to work (Sec. 3.4.3, cf. Lalive and Zweimiiller
(2009)) refer to the thematic scope or to research of members of LIVES. Moreover, in
connection with the illustration on family life event histories, I have also collaborated with
colleagues of the LIVES project to prepare the article “The transition of the sequencing
of family life events in Europe: a cross-regional perspective” (Biirgin et al., 2015).
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Chapter 1

A decorated parallel coordinate plot for cat-
egorical longitudinal data

Abstract This article proposes a decorated parallel coordinate plot for longitudinal
categorical data, featuring a jitter mechanism revealing the diversity of observed longitu-
dinal patterns and allowing the tracking of each individual pattern, variable point and line
widths reflecting weighted pattern frequencies, the rendering of simultaneous events, and
different filter options for highlighting typical patterns. The proposed visual display has
been developed for describing and exploring the order of event occurrences, but it can be
equally applied to other types of longitudinal categorical data. Alongside the description
of the principle of the plot, we demonstrate the scope of the plot with a real data set.!

1.1 Introduction

The article introduces an original way of plotting a set of event sequences such as the
successions of life events describing professional careers or family trajectories. The plot
is intended for identifying the typical order of occurrence of the events in the considered
sequences while rendering at the same time the diversity of the observed sequencing pat-
terns. Although the plot can be used for any kind of categorical sequences, it is specifically
designed for rendering events that, unlike states for example, do not have durations, can
simultaneously occur at the same time point, and whose position in the sequence does
not convey other time information than the order of occurrence.

As a first illustration of the proposed plot, Figure 1.1 renders the sequencings of
family life events up to 45 years old. The plotted sequences come from the FEuropean
Social Survey (2006) and concern 487 Scandinavians born between 1930 and 1939. In
the left panel, events are aligned on their order of occurrence in the sequence. Each line
represents a unique observed order pattern and the line width reflects the frequency of the
pattern. Looking at the thickest line, we learn that the most frequent pattern is to first
experience “Leaving home” (rank 1), later “First union” and “First marriage” the same
year (rank 2), and later again “First childbirth” (rank 3). The lines are jittered to avoid
overlapping and to help with identifying typical patterns; only patterns with a minimal
support — here 5% — are colored. The diversity of all observed patterns is rendered through
the remaining bleached out patterns. To facilitate the tracking of distinct patterns, there
are gray arrangement zones at the intersection of the x — rank order of occurrence — and
y — event label — coordinates, and the events in an order pattern are represented by solid

LA second application, descriptive statistics of the used data and R-codes are available in Appendix A.
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Event rank order Age

Figure 1.1: Parallel coordinate plot of Scandinavian family life events of the 1930-39
birth cohort. Left panel, alignment on rank orders of occurrence of the
events; right panel, alignment on event time stamps. Patterns with frequency
below the minimum support of 5% in the left panel and 1% in the right panel
are grayed out.

squares occupying the same position inside the successively crossed arrangement zones.
Simultaneous events, i.e., events occurring during the same year of age as “First union”
and “First marriage” in the most frequent pattern, share the same rank and are connected
by a vertical line.

The left panel only accounts for the order of the events. Therefore, each pattern may
represent people who experience the events in the corresponding order but not necessarily
at the same ages. As shown in the right panel of Figure 1.1, accounting for the timing
information dramatically increases the pattern diversity and makes it more difficult to
identify typical patterns. The three highlighted patterns are the only ones reaching a 1%
support.

The proposed graphical method has been developed to achieve three main objectives:
(i) identification of standard patterns with possible simultaneous events; (ii) ability to
render the entire diversity of the observed patterns; and (iii) suitability for group com-
parisons.

The three features of the proposed plot — its ability to render the diversity of observed
sequence patterns, to highlight standard patterns and to compare groups — can, for in-
stance, prove useful in life course studies on the de-standardization of life trajectories (e.g.
Elzinga and Liefbroer, 2007; Widmer and Ritschard, 2009). The diversity of sequence pat-
terns may be computed from pairwise dissimilarities by means of discrepancy measures,
as shown in Studer et al. (2011), and compared between cohorts to study changes over
time. The pairwise dissimilarities can be obtained for example with optimal matching for
state sequences, and a method as the one described in Ritschard et al. (2013) for event
sequences. By simultaneously rendering the diversity with the typical patterns and their
frequencies, our plot enriches the information provided by discrepancy measures. This is
demonstrated in Section 1.3, where our plot clearly exhibits an increase in diversity of
family life event sequence patterns across Scandinavian cohorts.

The literature proposes several methods for rendering categorical sequences. Bar,
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mosaic or association plots (Hartigan and Kleiner, 1984; Friendly, 2000) are helpful to
render distributions of categorical data and highlight the association between pairs of
categorical variables. For example, the barplots in Figure 1.2 render how the events
“Leaving home”, “First union”, “First marriage” and “First child” are distributed among
the rank orders of occurrence for the Scandinavian 1930-39 birth cohort. The drawback
of these plots is that they neither render individual sequence patterns nor their diversity.

100% — Leaving home 100% — First union 100% — First marriage 100% — First child
80% —| 80% — 80% — 80% —
Iy
< 60% —| 60% — 60% — 60% —
=
o
“q; 40% 40% — 40% 40%
E
[
o 20% 20% |:| 20% —|:| 20% —
0%__D=_= O%— D_: 0%_ D:D 0%_D DD
1 2 3 4 NE 1 2 3 4 NE 1 2 3 4 NE 1 2 3 4 NE
Event rank order Event rank order Event rank order Event rank order

Figure 1.2: Barplots of the distributions of Scandinavian family life events of the 1930-30
birth cohort across the event rank orders. “NE” gives the relative frequency
of people who did not experience the corresponding event.

Alternatively, by considering the event occurring at each successive position as a cate-
gorical variable, a set of sequences can be seen as a series of categorical variables and the
successions of events at the successive positions rendered by means of parallel coordinate
plots. The plot consists of reporting the position in the sequence (or time point) on the
x-axis and assigning a vertical coordinate to each event-category. Each unique sequence
pattern is then visualized as a polyline connecting the successive events in the order they
appear in the sequence. Varying line widths can be used to visualize the support of each
event-to-event segment. Examples of categorical parallel coordinate plots are hammock
plots (Schonlau, 2003) and parallel sets (Kosara et al., 2006) and an explicit example of
parallel coordinate for sequential patterns can be found in Yang (2003).

The left panel of Figure 1.7 shows a basic version of the categorical parallel plot for the
famaly life event sequences of the Scandinavian 1950-59 birth cohort. It can be seen that
lines often overlap, which makes it impossible to track single patterns. Figure 1.3 imple-
ments the hammock plot and the parallel sets for the Scandinavian 1930-39 birth cohort,
by using the gparallel R package (Hofmann and Vendettuoli, 2013). We merged simulta-
neous events to new event categories, e.g., “FU+FM” reflects the simultaneous occurrence
of “First union” and “First marriage”. The vertical bars stack relative frequencies of event
occurrences at the successive event rank orders, which do not necessarily sum up to 100%
because the observed sequence patterns have different lengths. The line segments render
the frequency of event-to-event pairs, the implementation of which is the only difference
between the two plots. The parallel sets and the hammock plot are useful to visualize
the distribution of events at the successive positions and the frequency of event-to-event
pairs. However, both plots require a technique to deal with simultaneous events, such
as merging them to new event categories, and they not allow to unambiguously track
individual sequence patterns with more than two positions.

Among plots specifically designed for sequence data, there are various plots for state
sequences (Brzinsky-Fay et al., 2006; Gabadinho et al., 2011). These plots essentially
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Figure 1.3: Alternative categorical parallel coordinate plots for visualizing the Scandi-
navian family life event sequences of the 1930-39 birth cohort. Left, the
hammock plot; right, the parallel sets. Abbreviations: LH, “Leaving home”;
FU, “First union”; FM, “First marriage”; FC| “First child”.

render the duration of the states and do not apply for sequences made of elements such as
events that do not have durations. Alongside the already mentioned parallel coordinate
plot, there are two further types of graphics that can potentially be applied to any kind of
categorical sequences including event sequences. Graphics of the first type, known as life
lines or calendar plots, arrange color-coded event symbols along horizontal lines (Wang
et al., 2010; Wongsuphasawat et al., 2011).
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Figure 1.4: Calendar plot for five of the Scandinavian family life event sequences of the
1930-39 birth cohort.

Figure 1.4 shows the principle of calendar plots for five individuals of the Scandinavian
1930-39 birth cohort. Each line renders one sequence by placing symbols at the ages at
which events occured. Simultaneous events are rendered by vertically stacking up the
event symbols. A drawback of calendar plots is that the results become quickly unreadable
when many sequences have to be displayed.

The second type of plots are directed graphs (Hébrail and Cadalen, 2000; Huzurbazar,
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LH+FU+FM

FU+FM+FC

LH+FU+FC

Figure 1.5: Directed graph visualization of the Scandinavian family life event sequences
of the 1930-39 birth cohort. Nodes represent events or combinations of
simultaneous events. Widths of the directed line segments render the fre-
quencies of successions of (simultaneous) events. Experiencing no event or
experiencing all four events simultaneously is not illustrated.

2004), such as the graphical representation of a flowgraph, that connect event nodes
with directed line segments along the event order. Figure 1.5 implements a directed
graph for the Scandinavian 1930-39 birth cohort, by using the R igraph package (Csardi
and Nepusz, 2006). Each node represents an event or a combination of simultaneous
events, and the widths of the arrows render the frequency of directed event-to-event pairs.
For example, it can be seen that “Leaving home” (LH) is commonly followed by the
simultaneous occurence of “First union” and “First marriage” (FU+FM). The plot does
however leave open whether “Leaving home” is the first event in the sequence. Therefore,
a disadvantage of directed graphs is that they do not allow to unambiguously track entire
individual sequence patterns.

The decorated parallel coordinate plot proposed in this article extends the parallel
coordinate principle with the following main features: (i) algorithmically controlled jit-
tering; (ii) possibility to merge embeddable sequences; and (iii) filter instruments and
criteria to improve the exploratory power of the plot. The plot can also render weighted
frequencies of the sequence patterns and cases experiencing no event.

The article is organized as follows. In the upcoming section, we provide additional
details on the algorithmically controlled jittering and discuss options for improving plot
readability. Subsequently, we extend the family life event example to illustrate the plot
capacities including its suitability for comparison purposes. Finally, we address practical
issues regarding the plot usage, its scope and limits and conclude by summarizing our
findings.
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1.2 Jittering, embedding and filtering mechanisms

The basic principle of the proposed plot has been explained in the introduction. This
section gives additional details regarding the jittering arrangement, embeddable sequence
patterns and filtering criteria.

Jittering arrangement The jittering arrangement is defined within the light gray rect-
angular arrangement zone replicated at each grid point. A distinct location in this zone
is assigned to each sequence pattern. For example, the thickest line in the left panel of
Figure 1.1 goes through solid squares located at the bottom-center in each crossed ar-
rangement zone. The placing procedure first assigns a solid square of size proportional to
the (possibly weighted) sample frequency to each order pattern. Next, a random location
is successively assigned to the squares. Location is allocated in decreasing order of the size
of the squares and so that squares do not touch each other. In case the remaining space
is insufficient, the size of all solid squares are proportionally reduced to make them all fit
in the zone. The plot is then finalized by drawing connecting lines between the successive
squares belonging to the same pattern. The widths of the line segments are adjusted
to the pattern frequency but are slightly thinner than the event-squares for readability.
Simultaneous events appear as vertical segments. To maintain the line-continuity in these
cases, we connect the precedent event with the lowest event of the vertical segment and
the subsequent event with the highest one (or optionally conversely). In the exceptional
case where the same event would occur several times at the same position, the multiple
occurrence would be reflected by a “sunflower” inscribed in the concerned square. Finally,
zero-event sequences, i.e., empty sequences corresponding to cases that do not experience
any event, are reflected by a square outside the bottom-left arrangement zone.

Full-scaled real data sets will most often include a great number of distinct patterns
and additional tricks may be necessary to distinguish patterns of interest in the plot. We
propose two such adjustments.

Emphasizing interesting patterns The first option is to bleach out less interesting
patterns and lay them in the background. The level of interest will typically be measured
by the frequency of the pattern, but could as well be, for example, the inverse frequency
if we are interested in atypical patterns, or some measure of the strength of association
between the pattern and a target variable such as the sex, birth year or income of the
concerned individuals. In Figure 1.1 patterns with support of 5% or higher are colored
and all others are bleached out. Instead of the minimal support, we can also chose to
highlight the minimum number of patterns such that their cumulated frequency reaches
a given threshold. The latter would however only make sense for summable interest
measures, and would not make sense for example for association measures.

Plotting only non-embeddable sequence patterns The second option aims at re-
ducing the number of plotted lines without losing information and consists in drawing only
non-embeddable sequence patterns. A sequence pattern S is embeddable into a pattern
Sy if Sy can be transformed into the exact form of S; by cutting an ending — or starting
— substring from the sequence S;. The non-embeddable patterns are those unique event
order patterns which cannot be embedded into any other one.

The embedding is visualized by adjusting the line widths of shared partial line seg-
ments. For instance, in the right panel of Figure 1.7 where non-embeddable sequencing
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patterns are plotted, we observe that the ending segment and square of the thick ascending
diagonal line are slightly thinner than those at the start of the line, meaning that the line
also represents shorter embedded patterns. Compared with the right panel in Figure 1.6
that plots the same data, we see that embedding shorter patterns in longer ones permits
to reduce the number of drawn lines from 55 to 30.

The embedding trick raises two difficulties: first, the trick implies a technical ambigu-
ity. Short event order patterns can often be embedded into more than one non-embeddable
event order candidates. We suggest in that case to embed the patterns into the most fre-
quent pattern among the available candidates. Doing so, instead of distributing them
evenly over all candidates for example, will emphasize the commonness of the shared seg-
ments. Second, the interpretation becomes ambiguous when two or more event orders
with both different start and end positions are embedded in the same non-embeddable
event order pattern. For example, the three sequences A-B-B-*, *-B-B-C and A-B-B-C,
where a “*” indicates an empty position, can be merged into the single non-embeddable
sequence A-B-B-C with a weight of 2 for the paths A-B and B-C, and a weight of 3 for the
path B-B. The same non-embeddable sequence results from the three sequences A-B-B-C,
A-B-B-C and *-B-B-* and it is thus not possible to unambiguously retrieve the original
sequences from the non-embedded sequence; hence the ambiguity. We recommend to use
the embedding adjustment only with either left-aligned or right-aligned sequences.

Combining both adjustments Both tricks above can be applied together on the same
plot. In that case, when one or more patterns have been embedded in a longer one, the
entire non-embeddable event order pattern is highlighted whenever its most frequent seg-
ment fulfills the highlighting condition. As a consequence, some non-embeddable patterns
which do not themselves reach the minimum interest level may be highlighted just because
some other patterns were embedded in them.

1.3 An application: Family life event histories

In order to illustrate the practical scope of the proposed plot and especially its suitability
for group comparison, we consider again the 487 Scandinavian family life trajectories of the
1930-39 birth cohort rendered in Figure 1.1 and compare them with the 885 trajectories
collected for the 1950-59 cohort. All data come from the 2006 European Social Survey
Round 3.2

When analyzing life events, a question of interest is whether typical sequencing pat-
terns change or remain the same across age groups and an answer to this question is
obtained by plotting side-side the trajectories of the different groups as in Figure 1.6.
To facilitate the comparison, the same highlighting color and location in the arrangement
zone are used in each of the groups when a pattern is present in several groups. For exam-
ple, the pattern (Leaving home) — (First union, First marriage) — (First child) is displayed
in blue and jittered up-left in both panels® of Figure 1.6.

The two plots in Figure 1.6 differ widely. The number of highlighted event orders
with at least 5% support increases from four to eight and there are only two common
highlighted patterns. The most typical pattern for cohort 1930-39 becomes much less

2Further descriptive statistics of the data set can be found in Appendix A.2.1.
3Due to the random factor in location and color assignments, the location and colors in Figure 1.6
differ from those in Figure 1.1.
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1930-1939, n = 487 1950-1959, n = 885
colored: 4 of 53, cum. freq. = 62.5% colored: 8 of 55, cum. freq. = 68.8%
First child '
. . L
First marriage —
First union - &
Leaving home —
I I I I I I I I
1 2 3 4 1 2 3 4
Event rank order Event rank order

Figure 1.6: Cohort comparison of Scandinavian family life event orders. Highlighted
lines describe order patterns with weighted frequency above 5%. No embed-
ding.

frequent for the 1950-59 cohort where the most frequent pattern is the diagonal line, i.e.,
(Leaving home) — (First union) — (First marriage) — (First child). The cohort 1950-59
appears to be much less standardized. The number of frequent patterns increases from
four to eight, while the cumulative frequency of the frequent patterns slightly increases
from 62.5% to 68.8%. For the youngest cohort, there are also frequent patterns with “First
child” without marriage or before “First marriage”. In summary, the plot clearly exhibits
how norms in the organization of life trajectories changed across cohorts.

The superiority of our extension over the basic parallel coordinate plot appears clearly
when comparing the basic plot for the 1950-59 cohort shown in the left panel of Figure 1.7
with the plot in the right panel of Figure 1.6. In the basic plot, the plotted lines overlap,
which makes it impossible to track single patterns. Even worse, basic parallel coordinates
could be misleading regarding patterns actually not observed. For example, the pattern
(First union, First child) — (Leaving home, First marriage) is not present in the data set
while the plotted line segments may suggest it is. This problem does not occur with our
extension because, as can be seen in Figure 1.6, the distinct sequence patterns are jittered
and can be tracked by following up the corresponding event-squares similarly located in
the arrangement zones.

The plot for the Scandinavian 1950-59 cohort can be slightly simplified with the em-
bedding trick. The resulting plot is shown in the right panel of Figure 1.7. In that plot,
the pattern (Leaving home)—(First union), for example, has been embedded into the pat-
tern (Leaving home)—(First union)—(First marriage)—(First child), and both patterns
are visualized by the same single line. The method reduces the total number of lines from
55 to 37 and the number of highlighted patterns from 8 to 6. Due to these changes, the
square points within the gray zones have been rearranged, the widths of the event-squares
and line segments adjusted, and colors newly reassigned. All these characteristics are
therefore different from those in Figure 1.6.
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Basic categorical parallel coordinates Non—-embeddable sequences
colored: 6 of 37, cum. freq. = 79.1%

First child

First marriage —

First union —

Leaving home —

1 2 3 4 1 2 3 4
Event rank order Event rank order

Figure 1.7: Alternative plots of the 1950-59 cohort. Left panel, basic parallel coordinate
plot; right panel, non-embeddable event order patterns.

1.4 About the plot usage

The plot has been implemented in the TraMineR R package (Gabadinho et al., 2011).
The segpcplot function producing the plot offers a series of arguments for controlling,
among others, the widths of the square-points and lines as well as their coloring, the
filtering thresholds and position versus time alignment. The complete list of arguments
is documented in the online help file of the seqpcplot function where the user also finds
several examples.

The coordinate assignment for the event categories is basically arbitrary and could be
for instance the alphabetical order. The readability of the solution will, however, most
often depend on this coordinate order and could be improved by a suitable ordering. A
meaningful solution is for example to arrange the event categories in their most frequently
observed order of occurrence as in Section 1.3.

The default representation is obtained by aligning the successive elements in the se-
quences on their rank order of occurrence. A possible alternative is to align the states/events
on their time of occurrence. By using time alignment we can render transition times.
Practically, however, when the number of time positions increases the resulting graphic
may become very cluttered because of the variability in the timing of similarly sequenced
events. The right panel in Figure 1.1, for example, gives the time aligned representation
of the Scandinavian family life event sequences o cohort 1930-39. The time-aligned plot
exhibits a high diversity — essentially a timing diversity — of the trajectories which con-
trasts with the relatively low sequencing diversity shown in the left panel. We learn from
the time-aligned plot that leaving home starts at about 14 years old, and that events
“First union”, “First marriage” and “First child” occur since age 17 but become much
more frequent after 20 years old. Nevertheless, the plot looks cluttered and other plots
such as survival curves or life and calendar lines (Wang et al., 2010; Wongsuphasawat
et al., 2011) could be more appropriate for rendering the timing. By transforming event
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sequences into state sequences — as explained in Ritschard et al. (2009) for example —
we could also resort to plots for state sequences (Gabadinho et al.; 2011) that explicitly
render timing and durations.

Although there are no technical limitations to the scalability of the plot, increasing the
number and/or length of the sequences or the alphabet size may impair the plot interest.
The limitation is not that of the total number of sequences but that of the number of
unique sequences. The number of unique sequences is linked with the sequence length
and the size of the alphabet, i.e., the number of distinct events or states. The larger the
alphabet, the less chances we have to find out a significant proportion of sequences sharing
a common pattern. The same is true for the sequence length: the longer the sequence, the
lower the chances of two sequences following a common pattern. The solution to discover
regularities in case of a large alphabet would be to merge close elements of the alphabet.
In case of long sequences, the solution could be to use a rougher time granularity which
would transform the different sequencings of events occurring in a given window of time
into a unique set of simultaneous events. To give an order of magnitude, the alphabet
should not exceed about 10. Likewise, the plot may become hard to read when sequences
contain more than 10 distinct successive elements. With shorter sequences we could afford
a larger alphabet and reciprocally with a small alphabet we could afford longer sequences.

1.5 Conclusion

The decorated parallel coordinate plot proposed in this article and provided by the
TraMineR R package (Gabadinho et al., 2011) is a powerful tool for exploring how ele-
ments are typically ordered in a set of sequences. The filtering mechanisms that dim
out less interesting patterns together with the embedding trick, permit the most frequent
patterns to be highlighted clearly while still rendering the entire diversity of the observed
patterns. Moreover, replicated arrangement zones facilitate the tracking of individual jit-
tered patterns. Although the plot is primarily designed for event sequences where only
the rank order of occurrence of the events matters, the plot can also render time aligned
events and be used with other types of categorical longitudinal data such as categorical
panel data.
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Chapter 2

Tree-based varying coefficient regression for
longitudinal ordinal responses

Abstract A tree-based algorithm for longitudinal regression analysis that aims to learn
whether and how the effects of predictor variables depend on moderating variables is pre-
sented. The algorithm is based on multivariate generalized linear mixed models and it
builds piecewise constant coefficient functions. Moreover, it is scalable for many modera-
tors of possibly mixed scales, integrates interactions between moderators and can handle
nonlinearities. Although the scope of the algorithm is quite general, the focus is on its
usage in an ordinal longitudinal regression setting. The potential of the algorithm is il-
lustrated by using data derived from the British Household Panel Study, to show how
the effect of unemployment on self-reported happiness varies across individual life circum-
stances.

2.1 Introduction

Regression analysis for longitudinal responses addresses a wide range of applications,
particularly in medical and social sciences. Siddall et al. (2003), for example, analyze
long-term effects of injuries on repeatedly measured pain. Likewise, Oesch and Lipps
(2013) use repeatedly measured well-being to examine the impact of the transition from
employment to unemployment.

When carrying out longitudinal regression analysis, researchers are specifically inter-
ested in the impact of moderator variables on selected regression coefficients in order
to enhance insights on the studied relation and/or to control for confounding variables.
For example, the effect of an injury could depend on age, while that of unemployment
could vary across social groups. Herein, we propose a method to learn such moderation
in longitudinal data. The method combines a mixed model approach with a regression
tree approach. Although the proposed method applies generally in the multivariate gen-
eralized linear mixed model (MGLMM) setting, we focus on its usage with longitudinal
ordinally scaled responses such as pain or well-being.

The remainder of the article is organized as follows. The Sections 2.1.1 and 2.1.2 intro-
duce the framework used in the present study and related works. Section 2.2 explains the
method in detail. Section 2.3 illustrates its potential by using an empirical example and
simulation studies and, finally, Section 2.4 concludes, including addressing the limitations
of the proposed method and the software implementation.

! Auxiliary calculations, a discussion of a random forest extension, supplementary simulation studies,
descriptive statistics of the used data and R-codes are available in Appendix B.
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2.1.1 Framework

The proposed algorithm extends multivariate generalized linear mixed models (e.g. Tutz
and Hennevogl, 1996) by allowing the fixed coefficients to vary as nonparameterized func-
tions of some moderator variables 71, ..., Z;. Let y;; denote the Rx1 response vector of
individual ¢ at time ¢,7=1,...,N,t =1,..., N;. Denote by X;; and W;; the ) x Pz and
Q) x Py, design matrices associated with fixed coefficients 8 and (individual-specific) ran-
dom coefficients b;, respectively. Further, denote by z;; the Lx1 vector of moderators, also
called effect modifiers in the literature (e.g. Hastie and Tibshirani, 1993). MGLMMs link
the @ x 1 predictor vector n,, with the conditional expectation p,;, = E(yu|bi; Xy, Wi, Zit)
via p;, € RE — m,, = g(p,;,) € R9, where g is a known link function. We aim to fit pre-
dictor functions of form

My = XuB(za) + Wby, b N (0,5) (2.1)

The fixed coefficients B(-) = (B1(:),-..,8p,(-))" of M are varying coefficients that state
that the linear effects of the elements of matrix X;; on the expectation of y;; are non-
parameterized functions of z;. In the predictor function M, the intercept coefficients
are included in B(+). Such varying intercepts are functions of z; and estimate the direct
effects of z;; on E(y;|-). In contrast to fixed coefficients, the individual-specific random
coefficients b; do not depend on z;; in M. Such random coefficients are used to take into
account the correlation between repeated responses and could include individual-specific
intercepts or slopes over time. As stated in (Eq. 2.1), we assume here that the random
coefficients are normally, identically and independently distributed with E(b;) = 0 and
Var(b;) = X

MGLMMs include models with density functions of the multivariate exponential family
that, with random coefficients b;, have the general form

yz'TtOit - b(eit)
)

with ¢ the dispersion parameter and b(-) and ¢(-) family-specific functions. 6 is the so-
called vector of natural parameters. It is here defined as 8;; = d(u;,) = d(g™ " (XB(zi) +
W.:b;)), with d(-) a known, vector-valued function. MGLMMs include, for instance,
several univariate models such as the (Gaussian) linear mixed model or the Poisson mixed
model. Here, we restrict the consideration of specific models to that of the cumulative
logit mixed model, which really requires the multivariate form above.

Fyalbs B.0) — exp{ +c<yz-t,¢>} , (2.2

The cumulative logit mixed model (CLMM) The cumulative logit model (e.g. Mc-
Cullagh, 1980) is a popular and conceptually simple model for ordinal response variables
Y taking ordered categorical values r in {1,..., R}. It is motivated (e.g. Tutz, 2012) by
assuming that Y is a coarse version of a latent continuous variable Y* = f(-) 4 ¢, with

f(+) a function of predictors and ¢ the error with distribution e S Logistic(0,1). The
connection between the observed ordinal and the latent variable is defined as: Y =r <
0,1 <Y* <0,; with —oco=0y < 0, < ... < fg=00 the threshold coefficients.

The cumulative logit mixed model has been introduced by Hedeker and Gibbons
(1994), and Tutz and Hennevogl (1996) exemplified it as a special case of MGLMMs. Here,
the CLMM with varying coefficients is defined as follows: Let y;; = (Y1, - .-, %ir) ' be the
response vector of individual ¢ at time ¢, which is coded as y;;,, = 1if Y;; = r and vy, = 0 if
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Y # r. Assume that y;; is an outcome of a multinomial distribution with the conditional
probabilities E(y;;|bi; Xi, Wi, 2;) = 74, with x;; and wy; the predictor vectors to be incor-
porated into the design matrices X;; and W;;. The CLMM links the predictor n,, with the
conditional probabilities 7r;; via niy = g4(mi) = log((min+. . . ATig) /(1 —Ti1—. . . —Titg)) =
logit(P(Y;; < q)) for g =1,...,Q = R — 1. The predictor function is defined as

Nit1 1 X 1wy
Memm = | ¢ | = x| Blza) + |1 | bi, (2.3)
NitQ 1 XZ-Tt 1 wiTt

where the gth row determines the logits of responding with {1,..., ¢} rather than with
{q+1,..., R}. Thefirst Q) elements of B(-) are the varying intercepts, or varying thresholds
01(-),...,0r_1(:) in terms of the latent variable motivation, that take into account the
direct effects of the moderators z;;. In order to maintain the order P(Y; < 1) < ... <
P(Y;; < @), these intercepts must satisfy 81(zi:) < ... < Bg(zi) V (i,t). Further, stacking
the vectors x;; and (1,w,}) in the design matrices constraints the corresponding effects
to be identical for all () cumulative logits. This constraint, which considerably simplifies
the model, is commonly called the proportional odds assumption (e.g. McCullagh, 1980)
or parallelism. For the direct effects of z;;, the proportional odds assumption is relaxed in
M since the corresponding varying intercepts are logit-specific. Therefore, Mcpyvm
can be seen as a partial proportional odds model (e.g. Tutz, 2012, Chap. 9.1.3). Note that
if R =2, Mcpmu is equivalent to a logistic mixed model.

The unknown varying coefficients B(-) of the predictor function M (Eq. 2.1) are pro-
posed to be approximated by a piecewise constant function, based on model-based recursive
partitioning, which is conceptually similar to regression trees (e.g. Breiman et al., 1984).
These two approaches can be distinguished by their aims: regression trees attempt to dis-
cover differences in the mean, while model-based recursive partitioning aims to discover
differences in the model coefficients. While recursive partitioning has certain drawbacks,
particularly that it is a heuristic and may be instable regarding small changes in the data,
its advantages for statistical learning are hardly covered by the alternative methods to
date (cf. Hastie et al., 2001, Sec. 10.7). Recursive partitioning is conceptually simple,
can handle many inputs (moderators), nonlinearities and interactions, treats inputs of
different scales (nominal, continuous etc.) uniformly and yields easily readable outcomes
in the form of decision trees.

The algorithm proposed in this study builds on the model-based recursive partitioning
algorithm (MOB, Zeileis et al., 2008), which provides a unified design for splitting and
tree size selection based on M-estimation and which has been extended to various models
(e.g. Rusch and Zeileis, 2012; Strobl et al., 2013). We aim to redesign MOB to fit M
(Eq. 2.1) while preserving the algorithm’s statistical properties. This redesign involves
two adjustments relative to MOB. The first adjustment allows us to include time-varying
moderators while maintaining the random effect component. Because MOB fits a tree
with unconnected models at the terminal nodes, a split by a time-varying moderator can
render impossible the connection between observations of the same individual. Inspired
by the algorithms of Hajjem et al. (2011) and Sela and Simonoff (2012), our algorithm
builds a closed model that consists of a tree-structured fixed effect component and a global
random effect component. By doing so, the observations of an individual are connected
with the single set of corresponding random coefficients, regardless of in which nodes
these observations fall. The second adjustment tailors the coefficient constancy tests for
the variable and tree size selection of MOB to our algorithm.
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2.1.2 Related work

Literature on longitudinal varying coefficient regression refers primarily to spline or kernel
regression techniques for modeling the fixed coefficients as functions of time. For example,
Tutz and Kauermann (2003) and Zhang (2004) develop generalized linear mixed models
with time-varying fixed coefficients, based on local polynomial regression, and Kauer-
mann (2000) proposes an implementation for the marginal cumulative logit model. The
tree-based approach for varying coefficients originates from combining linear models and
regression trees, e.g., see Quinlan (1992) or Alexander et al. (1996). Wang and Hastie
(2014) formalize their tree-based algorithm most explicitly as an approach for varying co-
efficient regression and provide an in-depth comparison of the tree-based and spline/kernel
methods. One of the rare explicit tree-based techniques for longitudinal varying coefficient
regression is that of Su et al. (2011), focusing on moderation on a single predictor.

Our research also intersects with the recent discussion on longitudinal regression trees
based on mixed models. The first implementation may be that of Abdolell et al. (2002),
fitting unconnected linear mixed models for subspaces of a single variable. The mized
effects regression tree (MERT, Hajjem et al., 2011) and random effects/EM tree (RE-
EM Tree, Sela and Simonoff, 2012) algorithms aim to approximate general fixed effect
components by a piecewise constant function. Similar to our approach, these algorithms
fit closed models where only the fixed effect component is built algorithmically. Hajjem
(2010) extends MERT for generalized linear mixed models. Eo and Cho (2014) propose
with mized-effects longitudinal tree (MELT) an implementation focusing on trends over
time and building on the generalized, unbiased interaction detection and estimation al-
gorithn (GUIDE Loh, 2002). Specifically, they fit a tree with unconnected linear mixed
models that specify polynomials of time in the fixed effect component. Our contribution
is extending the scope of longitudinal regression trees based on mixed models to general
varying coefficient regression and proposing a new splitting procedure based on MOB
(Zeileis et al., 2008). MERT and RE-EM Tree focus, in our terminology, on the case
where only varying intercepts are specified and all covariates are assigned to vector z;.
MELT, in turn, focuses on the case where X;; represents a polynomial expansion of time
and the remaining covariates are assigned to vector z;;. Unlike the above tree approaches,
our algorithm does not include auto-correlated errors and, unlike MELT, it does not fit
separate random coefficients for every terminal node.

2.2 Method

2.2.1 Piecewise constant approximation for varying coefficients

The algorithm approximates the varying coefficients B(-) of M (Eq. 2.1) by using a vec-
torial piecewise constant function. Consider a partition of the value space Z;x ... x Zy, of
the L moderators Zi, ..., Zy into M (terminal) nodes {B;,...,By}. The approximating
predictor function is

M
M :my =Y Uz € Bp) X, + Wih; . (2.4)

m=1

The right-hand side of M is linear and states that the elements of B(:) may vary across
nodes B,,, but that they remain constant within nodes. The total vector of unknown
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coefficients of M is v := (87, vec(E}/*)T)7, with length P, := MPs + Py (Py, +1)/2.
For some MGLMMs, there is also an additional dispersion parameter ¢.

Estimation The predictor function M can be estimated by using the techniques for
generalized linear mixed models (e.g. Tutz, 2012, Chap. 14.3). We focus on the direct
maximization of the marginal log-likelihood equation by using numeric integration. To
snnphfy the integral of that equation, the random coefficients b, are standardized as

=3, Y2p, so that a; ~ N (0,Ip). As a consequence, the Choleski decomposition Eb
is estlmated instead of ;. The marginal likelihood with standardized random coefficients
is

N N N;
=2 logLi(v) = Zlog/]:[f(ymai;'y)cb(ai) da; (2.5)

where f(yi|a;;y) is the family-specific conditional density of y;; and ¢(+) is the multivari-
ate normal density function. To maximize ¢ () of (Eq. 2.5), we solve the score equations
>N M = YN u;(v) = 0 for v, where

th| za7 377717&
f Yi |aza7) (az) daz' (26)
yzt’aza’)l) tl_[l '

u( / Z a"
is a Py x1 vector. Our software solves these equations by using Fisher’s scoring algorithm
with Gauss-Hermite quadrature to approximate the integral in (Eq. 2.6). Note that the

score equations can be expressed as the sum of the observation-scores, SN w;(y) =
N N
i1 2¢=1 Wie(y), where

Hf yitlai; ¥)¢ (a;) da; . (2.7)

1 3 f(yilai; ) d it
uit<7) = )/ ! <

L; ('7 (th la;; )

Estimating CLMMs For the CLMM, the conditional density of y;; is f(yi|ai;vy) =

R ol = R_l(lﬁf,:” — 15{:;::: )it where 1,0 = —o0 and n;g = 0o. The used fitting
funct10n olmm of the R package verpart (Biirgin, 2015) solves the score equations (Eq. 2.6)
by using initial values that respect the order P(Y;; < 1) < ... < P(Yy; < Q). This
procedure generally works well, but problems could arise if some response categories occur
very rarely. Fahrmeir and Tutz (2001) mention that the procedure can fit inadmissible
thresholds if these are very similar. To avoid this, they propose a reparameterization
that could be considered to improve olmm. Further, Kosmidis (2014) points out that
coefficients can diverge to infinity and therefore proposes an improved estimator. Ad
hoc solutions for both problems could be to merge response categories or to specify a
sufficiently large minimum node size (see Sec. 2.2.4). Finally, the number of quadrature
points for approximating the integral in (Eq. 2.6) can impact the accuracy of the fit.
Higher numbers increase the accuracy, however, at the cost of computational time. olmm
allows to control the number of points manually and uses a default of seven.

2.2.2 Algorithm

The predictor function M (Eq. 2.4) is a good approximation for M (Eq. 2.1) if the true
coefficient functions are fairly constant within the nodes. To find such nodes, we propose a
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breath-first type algorithm (e.g. Russell and Norvig, 2003) that in each iteration splits one
of the current M nodes into two. Splitting requires three selections in each step: a node;
a moderator; and a split in the selected variable. The constraint is the maintenance of the
global random coefficients, on the basis of which a closed model including all observations
must be fitted at any stage.

Algorithm 1: Fitting tree-based varying coefficients in MGLMMs.
Input: a € [0,1], e.g., « = 0.05/L
Initialize By < Z1x ... x 2 and M + 1

repeat
1 Fit the MGLMM with the predictor function

M
MNit = Z Lz € Bn)XitB,, + Wirh; .

m=1
2 Test for the constancy of the coefficients 3,, separately for each variable Z;,
l=1,...,L,in each node B,,, m =1,..., M. This yields Lx M p-values,
P11, - - -, PLM, for rejecting coefficient constancy.
if ppin == min(p11,...,prm) < o then
3 Select the variable Z; and node B where p;s = pmin

foreach unique candidate split Ay in {zt : 2yt € Bs} dividing Bs into two nodes
Bs1 and Bgio do
4 Compute £, = max ¢y, (v) of the MGLMM

¥

M 2
M = Y 1zit € Bi)XuBy + Y 1(2it € Bagn)Xit By + Wi bi .

m#s m=1
end
5 Split B, by A = argmax,, £,, and set M < M + 1.
end

until pn > «

Algorithm 1 summarizes the proposed algorithm. Varying coefficients are fitted sepa-
rately on an increasing number of small nodes until the tests in Step 2 accept coefficient
constancy, for all moderators in all nodes. These tests are also used in each step to select
the node and variable simultaneously, while the split in the variable is selected by using
exhaustive search.

In Section 2.2.3 it turns out that the constancy tests for Step 2 must be adjusted,
while splitting entirely based on exhaustive search (e.g. Wang and Hastie, 2014) could
be applied straightforwardly. We implement these tests for statistical and computational
reasons. Statistically, the variable selection based on these tests is not biased towards
moderators with many splits, as it is with exhaustive search (cf. Hothorn et al., 2006).
Computationally, the advantage is that with such tests the algorithm must refit the model
for the splits in the selected variable and node only. By contrast, full exhaustive search
requires refitting the model for the splits in all moderators and all nodes, the number of
which increases in each iteration.
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2.2.3 Coefficient constancy tests for variable, node and tree size
selection

Coefficient constancy tests have been studied extensively in econometrics (e.g. Nyblom,
1989; Andrews, 1993). Although these tests, often called structural change tests, have
been developed to examine coefficient constancy over time, they naturally extend to other
variables. For our purposes, it is computationally convenient to focus on score-based
tests, such as the M-fluctuation tests of Zeileis and Hornik (2007), which merely require
us to estimate the model under the Hj hypothesis of coefficient constancy. Specifically,
we want to use the observation-scores i, := u(8) of (Eq. 2.7), which allows testing fixed
coefficient constancy with respect to both time-varying and time-invariant moderators.
Thereby, the remaining coefficients 3, and ¢ are treated as nuisance parameters. In
the following, we summarize the M-fluctuation tests for multivariate generalized linear
models (without random coefficients) and introduce two preparatory steps for their use in
Algorithm 1. The first step linearly transforms the observation-scores i;; to remove intra-
individual correlations. The second step extracts and mean-centers the subsets of these
scores to apply the tests nodewise. The aim of both steps is to ensure that the transformed
observation-scores have approximately the same first two moments and covariances as
have the scores of models without random coefficients. While asymptotic aspects are not
considered, a comprehensive simulation study is presented in Section 2.3.2.

2.2.3.1 Coefficient constancy tests for multivariate generalized linear models

For a complete description of these M-fluctuation tests, see Zeileis and Hornik (2007).
Here, we summarize the M-fluctuation for multivariate generalized linear models. Let
yi, @ = 1,..., N be the Rx1 response vectors and X; the corresponding ()x Pg design
matrices. Assume that y; given X; follows a distribution of the multivariate exponential
family, and that the conditional expectation is determined by g(E(y;|X;)) = X;3;, with g
a known link function. In particular, we test Hy : 8; = B, for all 7 against the alternative
that the coefficients B, change with the values of a variable Z. Using M-fluctuation
tests for this approach requires estimating the model under Hj, namely maximizing the
likelihood or solving the score equations 3N 4.(8;) = 0 for B,. By using the fitted
model, the cumulative process of the estimated scores along the values of Z,

L7N]

() = o 3 by O<r<1), (28)

is examined for divergences from its expectation 0. The 17)1 = wi(él) are the estimated
scores and o(z;) is the ordering permutation giving the antirank of observation z; in
vector (zi,...,zy). Wy is computed as a Pg-dimensional sequence of length N + 1
that starts and ends with zero. Assuming that under Hy: (i) E(h,) = 0V 4; (ii)
Var(ep;) = Var(¢p,) V i; and (iii) Cov(ep,, ;) = Cov(th,, ) V i # i'; which requires
that the predictors are stationary over the tested variable (cf. Hjort and Koning, 2002),
it can be derived (see B.1.1) that Cov(e;,,) = —ﬁ\far({bl) for ¢ # ¢ and, con-

sequently, Cov(®y(7), On(T)) = WVM

regularity conditions, Wy can be shown (e.g. Zeileis and Hornik, 2007) to converge un-
der Hy to a limit process ¥° as N tends to infinity. This limit process has covariance

Cov (W0 (1), ¥O(1y)) = 71(1 — 73)Var(ep(B,)), where Var(p(8,)) is the variance of scores

(,) for 71 < 5. Moreover, under
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at the true B,. In other words, ¥ converges to a linear transformation of Pg independent
Brownian bridges B?. Likewise, the standardized cumulative score process

Uy (1) = I V20 (7) 0<7r<1), (2.9)

4 a A AT
where J is an estimate for Var(¢(8;)), typically J = + YN 9,2, , can be shown to
converge to Pg independent Brownian bridges. To construct a test, a suitable scalar
statistic /\(\il ~) is applied, the Hy distribution of which is simply the limiting distribution
of A\(BY).

Test statistics Our algorithm adopts the statistics used in MOB (Zeileis et al., 2008).
For continuous variables, we use the Lagrange multiplier statistic “supLM” of Andrews

(1993), which is designed to capture coefficient shifts at a single, unknown cutpoint. It is
defined as

)\supLM (‘ilN) = maX (;[ NN ) H‘IJN Z/N)H y (210)

i.e., as the maximum of the squared L, norm of Wy in interval [i,7] (e.g., [[N/10], N —
[N/10]]). Asymptotically, Agpra is distributed as the supremum of a squared, Pg-
dimensional tied-down Bessel process sup. (7(1 — 7))~ ||B%(7) ||§

For categorical variables, we use the Y2-type statistic of Hjort and Koning (2002),
which is designed to capture overall between-category coefficient variation. For variables
with categories ¢ in {1,...,C}, it is defined as

c 2
he () =% v 8 (@) |2 (2.11)

where N, is the number of observations in category c and Ac(\if ~) is the increment of
Wy over the observations of category c. Under Hy, A2 is x*-distributed with Ps(C — 1)
degrees of freedom.

X

2.2.3.2 Pre-decorrelating the observation-scores of MGLMMs

Substituting the scores 1, in (Eq. 2.8) with the scores 1, of (Eq. 2.7) is misleading. While
the @i’s depend on each other only via the constraint >, 1?)1 = 0, the G;’s are additionally
intra-individually linked via (Eq. 2.7). Therefore, Cov (i, G;) for t # ¢’ is hardly equal
to Cov(ly, ) for @ # 4'. To illustrate an outcome from using the raw scores w;; in M-
fluctuation tests and to motivate the pre-decorrelation transformation below, we consider
the following case example: We repeatedly (5,000 times) generated responses y;; with
i=1,...,50 and t = 1,...,10, from the logistic mixed model: M., : logit(P(Y;; = 1)) =
Bo + bz, with Sy = 0 and b; “d N(0,1); fitted the true model M., on these data; and
computed U of (Eq. 2.9) from the raw scores u; () and from the pre-decorrelated scores
Zt(ﬁo) Specifically, to compute \IJ we first cumulated scores with indices t = 1,...,5,
and then scores with indices ¢t = 6,...,10. Since we fit the true model on the data, the
computed processes U should be distributed as a Brownian bridge.
Figure 2.1 compares the variance of a Brownian bridge with the variance of the simu-
lated processes W, based on the raw scores (left) and the pre-decorrelated scores (right).
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raw scores pre—decorrelated scores

Var(standardized W)
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Figure 2.1: Case example: variance of standardized cumulative score processes 0. Solid
lines, variance of simulated processes based on the raw scores (left panel)
and based on the pre-decorrelated scores (right panel); dashed lines, the
variance of a Brownian bridge. In the right panel the lines cover each other.

The plots suggest that the processes based on the pre-decorrelated scores are distributed
as a Brownian bridge, but not the processes based on the raw scores. Further experiments
revealed that the variance pattern of processes from raw scores depends on the cumulative
order, and that the triangular pattern above is a special case.?

The need for adjusting coefficient constancy tests based on standardized cumulative
score processes Uy (Eq. 2.9) has previously been discussed in connection with misspeci-
fied models or estimation techniques that do not require a fully specified likelihood (e.g.,
generalized estimating equations, Liang and Zeger, 1986). For example, Chan et al. (2013)
discuss the “supLM” test of Andrews (1993) for (misspecified) probit models when the re-
sponses are serially correlated. A solution for both cases (e.g. Zeileis and Hornik, 2007)
is to use an adjusted estimator for the covariance matrix of scores J in (Eq. 2.9). For
example, for time series data the heteroskedasticity and autocorrelation consistent covari-
ance estimator of Andrews and Monahan (1992) may be used. However, adjusting J will
not solve our problem of intra-individual correlation between the scores w;; of (Eq. 2.7).
Adjusting J will merely scale the variance of the process Y ~, Whereas our problem is, as
demonstrated in Figure 2.1, that the shape of the variance of ' ~ from the scores 11;; can
be different than that of a Brownian bridge.

The proposed pre-decorrelated scores 0}, are computed by using the linear within-
individual transformation

N;
ﬁ;kt - ﬁit + T Z ﬁit’ 5 (212)

t=1,t'#t

where T is the M P3x M Py transformation matrix, such that under H,

E(fl;) = 0Vit, (2.13)
Var(a}) = Var(aj,) Vi, t and (2.14)

1
COV(ﬁ:t, ﬁ;-kt/) = COV(ﬁ:t, ﬁfltll) = —m\/ar(ﬁh) , (215)

2Appendix B.4.1 shows the variance of standardized cumulative score processes of further scenarios.
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for all (i,t) # (i,t') and (i,t) # (¢/,t"). The transformation forces the expectation, the
variance and the covariance of u},’s to comply with those of the 1,’s, see assumptions (i)—
(iii) on page 33. Therefore, if such a matrix T exists, we can assume that the covariance
of processes Wy (Eq. 2.9) based on the u}’s is the same as that based on the ,’s.

Balanced data For balanced data where N; = N; V i, the scores are symmetrical in
the sense that every score 0, relates to Ny — 1 “internal” counterparts {;y : t # t'}
via (Eq. 2.7) and the constraint >, G;; = 0; and to (N — 1)N; “external” counterparts
only via 37,0 = 0. Therefore, we assume that under Hy: (iv) E(a;) = 0V (4,1);
(v) Var(a;) = Var(ty) V (i,t); (vi) Cov(Qy, ) = Cov(liyy, tyo) Vi, t # t'; and (vii)
Cov(Qy, 0 ) = Cov(liyy, Q1) V ¢,t', @ # 7. Under these assumptions, T is found by
solving Cov (@}, },) — Cov(@i},, 03,) = 0, see B.1.2 for details. The resulting multiple
quadratic equation depends on Ny, \7a\r(ﬁ11), C/(;/(ﬁn, U2) and (fo\v(ﬁn, Uy1) and can be
solved numerically, e.g., with Newton’s method.

Unbalanced data For unbalanced data, the scores G;; are not symmetrical in the sense
above. Therefore, the assumptions (v)—(vii) would hardly hold. To use the solution for
T for balanced data, we construct a balanced score matrix by recomputing the scores
of individuals 7 with N; < N,,q. = max; Ny under the inclusion of N,,., — N; imputed
values. The imputation procedure is described in B.1.3, where the crucial point is the
generation of response values by means of the model under Hy. Denote by ﬁil, . ,ﬁi N,
the recomputed scores for individual i and by @; .41, - - -, Wsn;,,,, the scores corresponding
to the imputed observations. The pre-decorrelation (Eq. 2.12) for incomplete individuals
yields

N; Nmaz
ﬁ;:ﬁitJrT( Z Wy + Z ﬁit/> . (2.16)

=1t/ £t Y=N,;+1

Matrix T is based on the raw scores u; of individuals with N; = maxy Ny and the
recomputed scores u;; of individuals with N; < max; Ny.

The proposed solution for unbalanced data perturbs the tests because of the random-
ness involved in the imputation. To account for this, we repeat the entire test procedure
(e.g., five times) and use the average of the resulting p-values.

2.2.3.3 Nodewise tests

Step 2 in Algorithm 1 processes the coefficient constancy tests separately for each variable
Z1,..., 2y in each node By, ..., By;. The nodewise implementation has two advantages:
(i) it is a computationally convenient to select the node to split, and (ii) it eliminates the
dependency between the node predictor “1(z; € B,,)” and the variables Z1,..., 7 that
violates the stationarity assumption of page 33.

The procedure for testing coefficient constancy regarding a variable Z; in a node B,,
involves five steps. First, we compute the N = >N, N; pre-decorrelated scores .
Second, we extract from the obtained Npx M Pg score matrix U* and the Nrx1 vector z;
the N,, observations corresponding to node B,,. Third, to ensure that the sum of scores
is zero and that the tests are independent across nodes (see B.1.4), we mean-center the
score matrix by column. Fourth, we compute W N,, of (Eq. 2.9) by substituting the 'gAbi’s
of Section 2.2.3.1 with the elements of the column-centered node score matrix. Finally,



2.3. Results 37

we extract the Pg columns of Y N,, corresponding to 3,, and compute the test statistic
and the p-value.

2.2.4 Further details

Splitting Step 4 of Algorithm 1 cycles through the unique candidate splits in the values
of the selected moderator Z; in the selected node B,. Splits for ordinal or continuous
moderators are based on rules of the form {is z;; < (7}, with (; the unique values in the
set {z1 : zi € Bs}. For nominal moderators, we use rules of the form {is z;; € (7} where
the (}’s are groupings of the categories in {z;; : z; € Bs}. Thereby, to have sufficient
observations to estimate the nodewise coefficients, we evaluate by default only those splits
that yield nodes with a minimum size of 50 observations. For computational efficiency,
our software also implements the split reduction techniques of Wang and Hastie (2014)
that provide control on the maximum number of evaluated splits at each iteration.

Tree size The significance threshold « is the principal tuning parameter to control the
tree size. Conventionally, this parameter is interpreted as the probability of a type I
error, i.e., the probability of falsely rejecting coefficient constancy in a node. To account
for the multiple test setting, a nodewise Bonferroni correction is applied, and for a 5%
value probability a value of 0.05 divided by the number of moderators would be used. An
alternative to determine «, which is not investigated in more detail here, is the use of
cross-validation (e.g. Hastie et al., 2001, Sec. 7).

Alternative specifications Alternative fixed effect components to those in M (Eq. 2.1)
can be specified by means of simple modifications. For instance, single fixed coeffi-
cients — without moderation — can be integrated by omitting them from the splitting
procedure. In the latter case, the component X;;3(z;) of M would be decomposed as
X1itB1(zit) + XaitB5. This approach can be useful to define a non-zero mean for a random
slope.

Time-varying moderators Time-varying covariates such as the education level are
common in longitudinal studies, e.g., see the empirical example below (Table 2.1). To
allow such time-varying covariates, we use a closed model approach that ensures that
the random effect component is maintained when splitting by time-varying moderators.
However, the inclusion of time-varying moderators may raise interpretability problems.
For example, when focusing on varying trends over time as do Eo and Cho (2014), splits in
time-varying variables mean that individuals can switch between different static trends,
which could be difficult to communicate. In such cases, it may be better to omit the

time-varying moderators, or to summarize them as time-invariant variables, e.g., see Eo
and Cho (2014, Sec. 2.5).

2.3 Results

2.3.1 Empirical example

To illustrate the scope of the method, we study the effect of the transition from employ-
ment to unemployment on self-reported happiness (on a scale of 1=“Much less”, 2=“Less
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so”, 3=“Same as usual” and 4=“More than usual”) by using data derived from the British
Household Panel Survey (Taylor et al., 2010). Specifically, we extracted a subset of cases
from the first 18 yearly waves (1991-2008). This subset includes those respondents who
experienced at least one switch from (self-) employment to unemployment between two
consecutive waves. To isolate the effect of the transition, we consider for each retained
respondent a single trajectory formed by the up-to-three-year employment period before
the unemployment spell and the up-to-three-year unemployment spell that followed em-
ployment. The individual periods therefore include between two and six observations.
For example, the period of a respondent who was first a student, then worked for two
years, then was unemployed for a year, and then found another job would consist of the
two years of employment and the year of unemployment. Alternatively, the period of a
respondent that worked for 12 years before being unemployed for five would consist of
the last three years of employment and the first three of unemployment. If a respondent
experienced multiple transitions, only the first was retained.® The used data include 1,487
respondents and a total of 5,054 observations.

To estimate the effect of the transition to unemployment, we use cumulative logit
mixed models for happiness, Y, including the dummy coded fixed coefficient predictor
unemployed, UE, and, to take into account intra-individual correlation, respondent-specific
random intercepts.

Table 2.1: Moderator variables for the analysis of the effect of unemployment on happi-
ness. Abbreviations: ti = time-invariant; tv = time-varying.

Variable Label Characteristics
1  Gender GENDER ti 0, Female; 1, Male
2 Age AGE tv 16, ..., 64 years
3 Education EDU tv 0, Lower; 1, Upper; 2, Tertiary
4 Lives with spouse SPINHH tv 0, No; 1, Yes
5 Household income HHINC tv  0.55...,4.65 (equivalence scale)
6 Regional unemp. UEREG tv 0.05,...,10.2%
7 Sectoral unemp. UESEC tv 0,...,13.6%
8 Financial situation FISIT tv 0, Finding it very difficult; ...;
4, Living comfortably
9 spouse has job SPJB tv 0, No partner; 1, No; 2, Yes
10 Marital status MASTAT tv 0, Never married; 1, Married;
...; b, Separated
11 Head of household HOH tv 0, No, 1; Yes

12 Number of children NCHILD tv O0,...,7
13  Resp. for child < 16 RACH16 tv 0, No; 1, Yes
14 Time unemployed TUE tv -3, ..., 2 years

We use our algorithm to select and incorporate variables that moderate the effect of
unemployed and/or have a direct effect on happiness. Following Oesch and Lipps (2013,
see below) and own considerations, we retained the 14 variables listed in Table 2.1.* First,
we consider that the variables 1-13 potentially moderate the effect of unemployed and/or
affect happiness directly. This leads us to the varying coefficients CLMM

My :logit(P(Yi < q)) = By(2it) + UEqBa(zir) + bs, bi "~ N(0, %) (2.17)

3 Appendix B.6.1 shows a couple of observed trajectories.
4Descriptive univariate statistics of these variables can be found in Appendix B.6.2.
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for g =1,2,3, where z;; = (GENDERy,;, ..., RACH16;) " is the 14x 1 vector of moderators.
In My, the direct effects of the moderators are estimated by the varying intercepts [31(+),
Pa(+) and B3(+) and the moderation effects by the varying coefficient 5,(-). We fitted M
by using a = 0.05 plus the Bonferroni correction. The computation time was 45 seconds
with a 3.5GHz processor.

E <37 >37
Female Male @
Female Male
3:n=616 4:n =356 7:n=1184 8:n=871 9: n =2027
coef. z coef. z coef. z coef. z coef. z
1]2:(In) -3.42 -15.3 -2.96 -12.0 -4.83 -19.7 -4.05 -18.8 -4.56 -26.8
2|3:(In) -1.39 -8.0 -050 -2.6 -2.47 -20.3 -1.61 -13.5 -2.20 -23.9
3l4:(In) 2.14 11.3 215 9.0 1.68 16.2 1.74 135 2.35 24.4
UE 0.80 4.0 0.10 0.5 0.43 3.1 0.05 0.4 0.44 3.9
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Figure 2.2: Top fitted tree structure; middle, nodewise coefficients (3,,; to B4 With
the corresponding z-values; bottom, relative differences between nodewise

coefficients and the associated node-size weighted average coefficients B =
(—4.28,-1.95,2.05,0.39) . The selected moderators are financial situation
(FISIT), gender and age.

Figure 2.2 shows the fitted tree structure and the nodewise coefficients of the fit for
model M;. The node panels report the nodewise estimates for the varying coefficients and
the corresponding z-values, where z = /3 / Sd(ﬁmp). The estimated standard errors Sd([;’mp)
are based on the expected Fisher information matrix and do not account for the error of
the model selection procedure. The plots on the bottom show the relative difference
between the nodewise coefficients and the corresponding sample-average coefficients. The
estimated variance of the random intercepts, which is not shown in Figure 2.2, is 35, = 1.31.
The algorithm selects 3 of the 13 considered variables and partitions the data into 5
nodes. After the root node, it splits successively the nodes 5, 6, and 2. In the root node,
all variables except regional unemployment, sectoral unemployment, head of household
and number of childs show Bonferroni-corrected p-values below 0.05 in the coefficient
constancy tests.
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Node 3 Node 4 Node 7 Node 8 Node 9

More than usual

Same as usual

Less so
Much less N [

UE=0 UE=1 UE=0 UE=1 UE=0 UE=1 UE=0 UE=1 UE=0 UE=1

Figure 2.3: Fitted model for M;: Predicted conditional distributions (with b; = 0) of
happiness during employment (UE = 0) and unemployment (UE = 1).

The fitted model for M; can be analyzed by using Figure 2.2 or the predicted distribu-
tions (conditional on b; = 0) in Figure 2.3. Here, we focus on Nodes 3 and 4 that include
respondents in awkward financial situations and where the effect of unemployed is con-
siderably moderated by gender. For females (Node 3), the cumulative logits are estimated
to increase by 0.8 at the transition (corresponding to an odds ratio of €’® = 2.2), while
for males (Node 4) the cumulative logits are estimated to increase by 0.1 (odds ratio of
e%! = 1.1). This finding does not mean that the male respondents are happier than fe-
males; rather, the high intercepts in Node 4 indicate that the corresponding respondents
are generally less happy than others, whether employed or not (direct effect).

The fitted model can also be expressed by an explicit formula. For example, let us
consider the logits for whether Respondent 1 replies with one of the two lower happiness
categories “Much less” and “Less so”. The estimated fixed coefficients are shown in Fig-
ure 2.2, and the posterior mean estimate (e.g. Tutz, 2012, Chap. 14.3.2) for the random
effect of Respondent 1 is by = —0.10. The predictor function can then be written as

logit(P(Yi < 2)) =

—1.394+0.80- UE;; — 0.10 if FISIT < 1 and Female

—0.50 4+ 0.10 - UE;; — 0.10  if FISIT < 1 and Male

—2.47+0.43 - UE; — 0.10  if FISIT > 1 and AGE < 37 and Female (2.18)
—1.61+0.05-UE;; —0.10 if FISIT > 1 and AGE < 37 and Male
—2.20+4+0.44-UE; —0.10 if FISIT > 1 and AGE > 37.

The predictor functions for the first and the third logit are obtained by substituting the
intercepts of (Eq. 2.18). The considered Respondent 1 is a female person, is over 50 years
old and evaluates her financial situation with either 0 and 1. Therefore, empirically, only
the first equation applies to this person.

Predictive performance To evaluate the performance of the algorithm in this appli-
cation, we compare the negative log-likelihood prediction errors of fits of M; and fits of
two reference cumulative logit random intercept models: Ms, a basis model and M3, a
sophisticated model. The prediction errors of fits for My, My and M3 were estimated
by using cluster bootstrap (Field and Welsh, 2007). We generated 250 bootstrap samples
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(Di,...,Dss,) from the total data D, and fitted each model on each bootstrap sample.
The bootstrap samples were drawn by randomly selecting 1,487 respondents with repli-
cation from D, and retaining the repeated observations corresponding to the selected
respondents. Let /ﬂjk be a fit for model M, j = 1,2, 3, based on the bootstrap sam-

ple D;, k = 1,...,250. Let f. (yu|b; = 0) be the conditional density of y; in M\jk
ik

with b; set to its expected value 0. The negative log-likelihood prediction error of M\;k is
computed as

.y 1
err(Mjk) o m Zi,tG{D\DI’;} - log f//VT]k (th|bz - 0) ) (219)
where {D \ D;} is the set of observations of D that does not appear in Dj and Nip\pr}
is the size of this set of observations. Below, we will examine the pairwise differences

err(M,) — err(M3,) and err(M,) — err(M3).

M. The basis model First we compare the prediction error of fits for M; and fits
for the simple cumulative logit model

My logit(P(Yi < q)) = By + UEyfs + b; .

M keeps the varying coefficients of M; constant and, thus, ignores the variables of
Table 2.1. Therefore, the comparison of My with M evaluates the ability of our algorithm
to learn moderation or direct effects.
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Figure 2.4: Boxplot for 250 pairwise differences err(M3,) — err(M3,) comparing the
prediction error of fits for M; and Ma.

—

Figure 2.4 shows the boxplot of the computed differences err(M7, ) —err( Azk) in a boxplot.
It can be seen that fits for M, outperform, without exception, fits for M5, indicating that
the algorithm significantly improves the model in this application.

Ms: A linear CLMM with direct and moderation effects We also wanted to
compare fits for model M; with fits for a more sophisticated model. Inspired by the
study of Oesch and Lipps (2013), we consider the CLMM
Ms : logit(P(Yi¢ < q)) = B, + GENDER;f; + Z;ZO 1(GENDER ;=) x
[AGEf5,; + AGE;,fis; + 1(EDUy=1)8r ; + 1(EDU;=2) s ; + SPINHH, 8 ;+
log HHINC;; 810,; + UEi#f11,; + 1(TUE;;=—1)512,; + UEREG; 813+
(UBuxUEREGi/)B14; + UESECitBi5,; + (UBi x UESECit)B16 5| + bi -

In their study of the effect of unemployment on well-being, Oesch and Lipps estimate sepa-
rate models for females and males. Equivalently, we specify in M3 the interaction between
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gender and all included covariates. For age (standardized, linear and squared), education
(dummies for levels 1 and 2), lives with spouse (SPINHH) and the logarithm of household
income we include only direct effects. Because Oesch and Lipps assume that well-being
is different in the year before becoming unemployed, we add the dummy “1(TUE;=-1)".
For regional unemployment (UEREG) and sectoral unemployment (UESEC), we specify
direct and interaction effects with unemployment (UE). Doing so integrates the hypoth-
esis of Oesch and Lipps that suggests that “unemployment hurts less if there is more of
it around”. Although there remain differences between M3 and the model of Oesch and
Lipps, the predictor functions of the two models are fairly comparable.
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Figure 2.5: Boxplot for 250 pairwise differences err( Al*k) —err( A?fk) comparing the pre-
diction error of fits for M; and Msj.
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The 250 computed differences err(M?,) —err(Mz, ) shown in Figure 2.5 demonstrate that
fits for M outperform fits for M3. The median of —0.017 is here lower than the median
(—0.029) observed for the difference between M; and Msy. Moreover, when measuring
the complexity of M; by the median of the number of coefficients plus the number of
splits, and that for M3 by the (constant) number of coefficients, M; is with 25 vs 29
also less complex. The superiority of M over M3 can be explained as follows: first, the
(subjective) financial situation, which is a good predictor (cf. Figure 2.2), is not included
in Mj3. Second, our algorithm can benefit from technical differences, e.g., it incorporates
the direct effects of moderators via the logit-specific varying intercepts rather than via
the proportional odds effects. When incorporating the financial situation variable into
M3 as a predictor with logit-specific effects, the median difference changes to 0.007 in
favor of M3, the latter being however much more complex with a total of 41 coefficients.
Anyway, the comparison made here does in no way invalidate hypothesis-driven model
building, it just demonstrates that our algorithm is able to select relevant variables and
builds parsimonious, understandable and competitive models.

Comparison with MOB Since our algorithm is a redesign of MOB (Zeileis et al.,
2008), it is interesting to compare the results of the two algorithms. In Appendix B.3
we therefore use MOB to fit model M, without random intercepts. The resulting tree
structure is similar to that of Figure 2.2 from Algorithm 1. Specifically, the tree structure
from MOB also includes as terminal nodes the nodes 3, 4 and 9, but node 6 is partitioned
into seven terminal nodes instead of into two.

2.3.2 Simulation studies

The following simulation studies focus exclusively on the implemented coefficient con-
stancy tests. Because the remaining parts of the algorithm, including the likelihood-based
exhaustive search, do not fundamentally differ from other tree-based algorithms such as
MOB, they are not studied here. The most important conclusions from the simulation
studies are as follows:
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e Under coefficient constancy, the implemented tests achieve fairly accurate type I
errors. Specifically, the type I errors obtained with pre-decorrelation are more accu-
rate than those without. This finding indicates that the variable selection process
of the algorithm is approximately unbiased.

e As expected, the power of the implemented tests increases with increasing moder-
ation strengths and number of observations. The imputation for unbalanced data
slightly deteriorates the power of the tests.

e The power for variable selection of the implemented tests seems to be lower than
that of the (slower) likelihood-based grid search approach. By contrast, they are
more powerful than the M-fluctuation tests for a model that ignores intra-individual
correlation.

The examined scenarios consider the coefficient constancy tests for six moderators, namely
Z1, ..., Zs, that can be distinguished by their degree of intra-individual correlation (uncor-
related vs correlated vs time-invariant) and their scale (continuous vs categorical). Each
scenario was repeated 2,000 times. As explained in Section 2.2.3.1, the testing procedure
is based on the “supLM” statistic of Andrews (1993) for continuous moderators and on
the y2-type statistic of Hjort and Koning (2002) for categorical moderators.

Generating the simulation data First, the values of the six moderators are generated
by Zlit = 91(51z' + 22@), where Zli Z.fz\‘Jd. N(O, 0'1) and Zgit zfz\Jd N(O, 0'2). For Zl, Zg, and Z5,
g; is the identity function, while for Z,, Z4, and Zg, g; divides the values into four nominal
categories {A, B,C, D} based on their sample quartiles. For Z; and Z,, we use o1 =
0, 02 = 1, (time-varying, uncorrelated); for Z3 and Z,, we use o1 = 1, 09 = 1/2 (time-
varying, correlated); and for Z5 and Zg, we use o1 = 1, 09 = 0 (time-invariant). Second,
the values x;; are generated by X ESY (0,1). Finally, the generated predictor and
moderators are used to draw responses y;; with values in {1, 2, 3} by using the model Mg,

Mim = logit(P(Yy < q)) = By + 20 - Lizem] + bis bi = N(0,1)

with 8y = —1 and fy = 1. Model My, states that the coefficient of z;; is an indicator
function with an amplitude 0 for one of the six moderators. The node B; is defined as
B, = R* for the continuous moderators 77, Z3, and Z5 and as B, = {C, D} for the nominal
moderators Zy, Z4, and Zg.

2.3.2.1 Typel errors

Root node tests First, we set § = 0 (no moderation) and use M, : logit(P(Yy <
q)) = B, +xid +b; as the model under Hy. Table 2.2 reports the resulting type I errors for
a nominal level of 5%, for different numbers of individuals and observations per individual,
with and without pre-decorrelation.’

The test errors based on these decorrelated scores are close to the theoretical 5%,
particularly for large N’s. By comparison, the errors of the naive tests based on the raw
scores (values in brackets) are systematically too small for moderators that have high
intra-individual correlation.

5Q-Q plots of the p-values are shown in Appendix B.5. Results of the analogous simulation study for
models with random slopes and unbalanced data are given in the Appendices B.4.2 and B.4.3.
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Table 2.2: Relative frequencies of Type I errors in coefficient constancy tests for a
nominal level of 5%. Values in brackets correspond to tests without pre-

decorrelating the scores. Abbreviations: ii-cor = intra-individual correlation;
cont = continuous, cat = categorical.

N/N; A Zo Z3 Zy Zs Zg
ii-cor 0 0 ~2/3 ~2/3 1 1
Scale cont cat cont cat cont cat
50/5 .042 (.042) .051 (.054) .038 (.027) .044 (.038) .036 (.018) .039 (.020)
50/10 .050 (.050) .042 (.041) .042 (.024) .044 (.030) .036 (.014) .040 (.010)
100/5 .039 (.039) .056 (.054) .046 (.032) .053 (.038) .039 (.018) .050 (.020)
100/10 .050 (.047) .050 (.048) .054 (.024) .047 (.027) .046 (.018) .041 (.010)
500/5 .054 (.054) .044 (.044) .057 (.036) .050 (.036) .054 (.024) .056 (.018)
500/10 .053 (.052) .042 (.044) .052 (.030) .045 (.028) .061 (.023) .052 (.012)

Nodewise tests Now, we set 6 = 1 and test the influencing variable Z; within node B,
by using Mg, as the model under Hy. The simulation is performed for 7y, ..., Zg as the
influencing variable in Mgy,,. The tests should accept H, because the coefficient of z is
constantly 6 = 1 within B;.

Table 2.3: Type I errors for the nodewise coefficient constancy tests for a nominal level of
5%. Values within brackets correspond to the tests without pre-decorrelating

the scores.
N/N; 7 7 7 7 7 7
50/5 038 (.040) .048 (.047) .036 (.033) .041 (.038) .020 (.023) .042 (.036)
100/5 .050 (.049) .048 (.048) .045 (.038) .038 (.037) .044 (.028) .040 (.029)
500/5 040 (.040) .050 (.048) .054 (.042) .049 (.042) .052 (.028) .063 (.036)

Table 2.3 shows the observed type I errors for a nominal level of 5%, for varying N’s and
a fixed N; = 5V i. The results are similar to those in Table 2.2, confirming that nodewise
testing works. The effect of the small N’s is more pronounced than that in Table 2.2
because the nodes B; enclose only about half the data.

2.3.2.2 Power and comparisons

To evaluate the power of our test implementation, we generate data from Mg, for varying
moderation strengths § = {0,0.1,...,0.5}. All tests use Moot : logit(P(Yy < q)) =
By + 46 + b; as the model under Hy.

Power for balanced and unbalanced data First, we use Z3 (correlated, continuous)
as the influencing variable to generate the data and as a moderator in the tests. The power
is evaluated for scenarios (a) and (b). (a) uses balanced data where N; = 5V ¢ and N
varies between (a.1) N = 50, (a.2) N = 100, and (a.3) N = 150. (b) uses unbalanced data
where (b.1) N = 140 with N; = 5 for individuals i = 1,...,40 and N; = 3 for individuals
i =41,...,140, and (b.2) N = 242 with N; = 10 for individuals ¢ = 1,2 and N; = 2
for individuals ¢ = 3,...,242. Therewidth, the imputation will increase the number of
observations in (b.1) from 500 to 700 and in (b.2) from 500 to 2420 observations. For
both (b.1) and (b.2), a single imputation is used to adjust the pre-decorrelation.

Figure 2.6 shows the moderation strength § against the relative frequency of p-values
below 0.05. As expected, the power of the tests increases as 0 increases and as the
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Figure 2.6: Power of tests on Z3 for increasing moderation strengths 6. The figure shows
the relative frequencies for p-values below 0.05 for scenarios (a) and (b); (a)
uses balanced data where N; = 5 and (a.1) N = 50, (a.2) N = 100, and
(a.3) and N = 150; (b) uses unbalanced data, where in (b.1) N; is 3 or 5
and N = 140 and in (b.2) N; is 2 or 10 and N = 242.

number of individuals N increases. The unbalanced scenarios (b.1) and (b.2) can be
compared with (a.2), which also includes 500 observations. It can be seen that the power
slightly decreases with increasing numbers of imputed observations. Considering that in
scenario (b.2) the imputation enlarges the score matrix from 500 to 2420 entries, the loss
of power is surprisingly low. A plausible explanation for this is that the imputed scores are
dropped after the pre-decorrelation transformation and therefore their impact is limited.
Nevertheless, in practice, the data may manually be balanced out to avoid the power of
the tests to be deterioted by the imputation.

Variable selection In this last scenario, we use our tests to select between the modera-
tors Zy, Zy, and Zg, where (alternately) one of these moderates 3. For the comparison, we
also use the likelihood-based exhaustive search and M-fluctuation tests with the cumula-
tive logit model without random coefficients to select My, : logit(P(Yir < q)) = By + i
under Hy. In all scenarios, N = 100 and N; =5V 4.

Figure 2.7 shows the frequencies of selecting the true moderator. Both selection schemes
based on CLMMs are unbiased. The exhaustive search is unbiased because all three mod-
erators have the same number of splits. This selection method performs best, followed by
our test implementation. The tests based on the model M, without random coefficients

have lower power and they are biased towards the intra-individually correlated moderator
Zg.

2.4 Conclusion

The present study proposed a new tree-based algorithm for learning moderated relations
in longitudinal (ordinal) regression analysis, by building on MGLMMs and the MOB
algorithm of Zeileis et al. (2008). The main innovations relative to MOB are (i) similar
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Figure 2.7: Relative frequencies for selecting the true moderator among Z,, Z4, and Zg
for varying moderation strengths §. This selection is based on: solid line,
circle, our test implementation; solid line, triangle, exhaustive search; and
dotted line, circle, M-fluctuation tests with a model without random effects.

to the approaches of Hajjem et al. (2011) and Sela and Simonoff (2012), the proposed
algorithm can maintain random coefficients across nodes, meaning that observations of
the same individual falling into different nodes are not treated as independent, and (ii)
the coefficient constancy tests used to select the moderators and tree size are extended
for testing based on observation scores. In addition, our algorithm extends the scope
of longitudinal regression trees based on mixed models, which include the algorithms
of Hajjem et al. (2011) and Sela and Simonoff (2012), to general longitudinal varying
coefficient regression. As exemplified by examining the varying effect of unemployment,
the resulting models are simple to read and therefore easily accessible to practitioners.

Although this study focused on CLMMs, the algorithm can be implemented more or
less straightforwardly for other models of the MGLMM family. Further research could
be directed towards improving the numerically challenging components of the algorithm.
For example, alternative ways to direct marginal maximum likelihood estimation com-
bined with Gauss-Hermite quadrature could be considered (e.g. Tutz, 2012, Chap. 14.3).
Moreover, optimization by using Newton’s method for the pre-decorrelation matrix has
a tendency to fail for high dimensions and therefore this could be improved. Finally, the
statistical power of the coefficient constancy tests could be enhanced by deriving the dis-
tribution of the partial sum processes of the raw rather than the pre-decorrelated scores.
At present, we investigate the extension of building for each varying coefficient an individ-
ual tree. Such an extension allows to deduce which variable moderates which coefficient
from the fitted tree structures, instead of from comparing the nodewise coefficients.

To overcome the instability and inaccuracy problems of tree-based algorithms (cf.
Section 2.1), we may consider ensemble techniques such as boosting (Freund, 1995) or
random forests (Breiman, 2001). Appendix B.2 discusses and evaluates an implementation
of random forest, which is available with the fvcolmm function of the R verpart package.
In particular, it is shown that this extension improves the predictive performace of our
algorithm for the happiness data of Section 2.3.1. A disadvantage of random forest is
the complexity of the results. While coefficient functions from tree-based algorithms are
fully traceable and easily readable by means of the decision tree representation, those
resulting from random forest can often only be approximately understood, e.g., with the
help of partial dependency plots (cf. Hastie et al., 2001, Chap. 10) or variable importance
measures (e.g. Breiman, 2001; Strobl et al., 2008).
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The tree-based algorithm proposed in this article was implemented in the R (R Core
Team, 2014) package verpart. The function tvcolmm fits tree-based varying coefficient
CLMMs, with the presented methodology and corresponding methods, such as plot or
predict, thereby allowing the diagnosis of the fitted model.
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Chapter 3

Coefficient-wise tree-based varying coeflicient
regression with vcrpart

Abstract The tree-based TVCM algorithm and its implementation in the R package
verpart is introduced for generalized linear models. The purpose of TVCM is to learn
whether and how the coefficients of a regression model vary by moderating variables. A
separate partition is built for each varying coefficient, allowing moderators to be selected
individually by coefficient and coefficient-specific sets of moderators to be specified. In ad-
dition to describing the algorithm, the TVCM is evaluated using a benchmark comparison
and the R commands are demonstrated by means of empirical applications.!

3.1 Introduction

When carrying out a regression analysis, researchers often wish to know whether and how
moderating variables affect the coefficients of predictor variables. For example, medical
scientists may be interested in how age or past illnesses moderate the effect of a clinical
trial (e.g. Yusuf et al.; 1991), and social scientists may examine the wage gap between
genders separately for different labor sectors and countries (e.g. Arulampalam et al., 2007).

Varying coefficient models (e.g. Hastie and Tibshirani, 1993) provide a semi-parametric
approach for such moderated relations. Consider a response variable Y, where g(E(Y|-)) =
n, with ¢ a known link function and n a predictor function of form:

Me i =X101(Z1) + ... + XpPp(Zp) | (3.1)

where X,, p = 1,..., P, are predictor variables and Z, are the corresponding L,x1
vectors of moderator variables, sometimes called effect modifiers. Model M., defines
the coefficients f, ..., Bp as multivariate, nonparameterized functions of the associated
moderators. For example, if X, is an indicator for some treatment and Z,, indicates age,
the term (3,(Z,) states that the treatment effect changes as a function of age. In principle,
the moderator vectors Z1,...,Zp, can be intersected or can include some of X1,..., Xp.
Model M, also covers two simplifications. First, defining Z, = 1 yields a non-varying
coefficient for predictor X,. Second, terms with X, = 1 provide a nonparametric estimate
of the direct effects of Z,, on E(Y|-), henceforth referred to as varying intercept.

Various approaches have been considered to fit varying coefficient models, in particular
with spline or kernel regression methods. See Fan and Zhang (2008) for an overview and

LA supplementary simulation study, details on approximate models, descriptive statistics of the used
data sets and R-codes are available in Appendix C.
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the R (R Core Team, 2014) packages mgev (Wood, 2006), svem (Heim, 2007), mboost
(Hothorn et al., 2015), and np (Hayfield and Racine, 2008) for software implementations.
The tree-based approach considered here is a combination of linear models and recur-
sive partitioning (e.g. Quinlan, 1992; Alexander et al., 1996; Loh, 2002), where Zeileis
et al. (2008) and Wang and Hastie (2014) refer explicitly to the use of recursive parti-
tioning to fit models of the form M. (Eq. 3.1). Thus, it approximates the unknown
varying coefficients with piecewise constant functions using recursive partitioning. The
tree-based approach has certain drawbacks, particularly being a heuristic, and can be
unstable for small changes in the data. However, it does have several advantages for sta-
tistical learning. Among others, the approach can handle many moderators, interactions
between moderators, nonlinearities, treats moderators of different scales uniformly, and
yields easily readable outcomes in the form of decision trees.

Both Zeileis et al. (2008) and Wang and Hastie (2014) propose approximating M. as
follows: let X = (X1,...,Xp)", Z ={Z,U...UZp}, and {By,..., By} be a partition
of the value space of the Z into M strata. Then, their piecewise constant approximation
has the form

M
Myee :n=> 1(Z € B,)X'B,, . (3.2)

m=1

Model M\tree (Eq. 3.2) is linear and, consequently, standard estimation methods ap-
ply. The nonparametric task is to find a partition such that the varying coefficients
Bi(Z), ..., Bp(Z) vary between the strata {Bi, ..., By}, but are relatively constant within
the strata. Since global partitioning is computationally too challenging, forward-stepwise
algorithms are used that, in each iteration, split one of the current strata into two. The
resulting partition can be visualized as a decision tree and, therefore, the strata B, are
referred to as terminal nodes, or simply to as nodes.

Here, we introduce the tree-based varying coefficient model (TVCM) algorithm of the
R package verpart (Biirgin, 2015). The TVCM algorithm allows us to approximate M,
in a coefficient-wise manner. First, we let Xy be the vector of the P — K predictors that
correspond to moderators Z, = 1, and Xj,..., X} denote the remaining predictors with
corresponding moderator vectors Zy,...,Zg. Further, denote the value space of Z, as
2y = Ziax...x2Z, and denote a partition of Zj into My nodes as {Bg1, ..., B, }-
Then, the proposed approximation is:

K My

M\tvcm ‘= XJIBO + Z Z 1 (Zk € Bkm) Xkﬁkm . (33)

k=1m=1

Compared with M\tree, the TVCM approximation M\tvcm assigns each varying coefficient
a partition and includes non-varying coefficients. This allows us to specify parametrically
known relations (the first term) and coefficient-specific sets of moderators (the second
term). In addition, Mivem allows us to select moderators individually by varying co-
efficient. Furthermore, empirical evidence suggests (Sec. 3.4.1) that My, can build
more accurate and more parsimonious ﬁts than ./\/ltree is able to do. A technical dlffer—
ence between the two approximations ./\/ltree and ./\/ltvcm is that the coefficients of Mtree
are commonly estimated by means of M unconnected models, while the approximation
/\qmm must be fitted as a closed model.
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The remainder of this paper is organized as follows. In Section 3.2, we describe the
basic algorithm that we apply to generalized linear models. In Section 3.3, we provide more
detail and extend the basic algorithm. Then, in Section 3.4, we present three applications,
including a performance comparison with competing algorithms. Finally, Section 3.5
concludes the paper, and includes a discussion on issues for the further development.

3.2 The TVCM algorithm

Similar to classification and regression trees (CART, Breiman et al., 1984), TVCM in-
volves two stages: the first stage (Sec. 3.2.2) builds K overly fine partitions; the second
stage (Sec. 3.2.3) selects the final partitions by pruning.

To provide a consistent formulation, we restrict our consideration of TVCM to gener-
alized linear models (GLMs). Therefore, Section 3.2.1 summarizes GLMs and introduces
an illustrative example. Extensions to other model families are discussed in Section 3.3.3.

3.2.1 Generalized linear models

GLMs cover regression models for various types of responses, such as continuous data (the
Gaussian model), count data (the Poisson model), and binary data (the logistic model).
Denote the ith response of the training data D as y;, with observations i =1,..., N, and
the ith Px1 predictor vector as x;. Simple GLMs have densities of the form

yit; — b(0;)
o

where 6; is the natural parameter of the family, ¢ is the dispersion parameter, and b(-)
and c(-) are family-specific functions. For example, the Poisson distribution has density
f(y;) = Mie7 /k! and it can be derived that 6; = log\;, b(6;) = €% = X\;, ¢ = 1, and
c(yi, ) = logy;. The predictor vector x; is incorporated by defining the linear predictor

ﬂwwh@:ump{ +c@u@} | (3.4)

M i =% B, (3.5)

where B is the vector of unknown coefficients. This linear predictor 7; is linked with
the conditional mean y; = E(y;]x;) via g(u;) = n; = x; 8. The choice of g(-) depends
on the specific model. A mathematically motivated choice is to specify g(-), such that
0; = n;, usually called canonical link. For example, for the Poisson model, the canonical
is log(p;) = n;. Further details on GLMs can be found, for instance, in McCullagh and
Nelder (1989).

Generalized linear models are generally fitted using maximum likelihood estimation
(MLE), in other words, by maximizing the total log-likelihood of the training data w.r.t.

B and ¢:

N N
yithi — b(0;
15.6) = 3 uog J(ulf0) = Yo (140
i=1 i=1
where w; is the weight for observation i. The coefficients 8 enter into (Eq. 3.6) via
0; = d(u;) = d(g~'(x;B)), with d(-) a known function. To fit GLMs, we use the glm
function of the stats package (see Chambers and Hastie, 1992).

+wm0, (3.6)
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Gender gap in university admissions To illustrate R syntax and explanations, we
consider the admission data of the UC Berkeley from 1973. The data consist of 4, 526 ob-
servations on the response variable Admit (0 = rejected, 1 = admitted) and the covariates
Female (0 = male, 1 = female) and Dept (departments A to F). The training data UCBA
are prepared by

R> UCBA <- as.data.frame(UCBAdmissions)

R> UCBA$Admit <- 1 * (UCBA$Admit == "Admitted")
R> UCBA$Female <- 1 * (UCBA$Gender == "Female")
R> head(UCBA, 3)

Admit Gender Dept Freq Female

1 1 Male A 512 0
2 0 Male A 313 0
3 1 Female A 89 1

Each row of the data UCBA represents one combination of values in Admit, Female,
and Dept. The column Freq gives the frequency for the combinations.?

The UCB admission data are a popular application to illustrate Simpson’s paradox
(see Bickel et al., 1975). The primary interest is the gender gap in the chance to be
admitted. Let us first study this gap using the logistic regression model:

R> glmS.UCBA <- glm(formula = Admit ~ Female, data = UCBA,
+ family = binomial(), weights = UCBA$Freq)

The estimated coefficients,

Estimate Std. Error z value
(Intercept) -0.220134 0.038788 -5.6753
Female -0.610352 0.063891 -9.5530

suggest that being female decreases (z value > 2) the logit to be admitted signifi-
cantly. Now, let us extend the basis model glmS.UCBA with the Dept covariate by defin-
ing department-specific intercepts and department-specific gender gaps (without a global
intercept):

R> glmL.UCBA <- glm(formula = Admit ~ -1 + Dept + Dept:Female,
+ data = UCBA, family = binomial(),
+ weights = UCBA$Freq)

Estimate Std. Error =z value

DeptA 0.492121  0.071750 6.8589
DeptB 0.533749 0.087543 6.0970
DeptC -0.5355618 0.114941 -4.6591
DeptD -0.7039568 0.104070 -6.7643
DeptE -0.956962 0.161599 -5.9218
DeptF -2.769744  0.219781 -12.6023
DeptA:Female 1.052076  0.262708 4.0047
DeptB:Female 0.220023 0.437593 0.5028

2Descriptive statistics of this data set can be found in Table C.2.
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DeptC:Female -0.124922 0.143942 -0.8679
DeptD:Female 0.081987 0.150208 0.5458
DeptE:Female -0.200187 0.200243 -0.9997
DeptF:Female 0.188896 0.305163 0.6190

In this second fit, the disadvantage for females disappears, and, in the case of de-
partment A, the gender gap is significantly positive (DeptA:Female: Estimate = 1.05,
z value > 2). The apparent disadvantage for females in glmS.UCBA arises, as the reader
may know, from the tendency of females to apply to departments where the chances to
be admitted are low.

The model glmL.UCBA, which uncovers the problem, can be seen as a full parametric
varying coefficient model that defines the intercept and the gender gap as functions of
the department. We will return to this example to investigate whether and how TVCM
solves this problem.

3.2.2 Partitioning

The first stage to fit the approximate varying coefficient model M\tvcm (Eq. 3.3) involves
building a partition for each of the value spaces Z;, k = 1,..., K corresponding to the K
varying coefficients. The resulting K partitions should be overly fine so that the best-sized
partitions can be found in the subsequent pruning stage.

To partition the value spaces Zi,...,Zx, TVCM uses a breadth-first search (e.g.
Russell and Norvig, 2003) that in each iteration fits the current model and splits one of
the current terminal nodes into two. Splitting requires four selections in each iteration:
the partition k; the node m; the moderator variable [; and the cutpoint ;7 in the selected
moderator. Following CART, we employ an exhaustive search over all candidate splits
and select the split that reduces the total —2-log-likelihood training error the most.® The
algorithm iterates until (i) no candidate split provides daughter nodes with more than NV
observations or (ii) the best split increases the —2 - log-likelihood training error by less
than D,,;,. Algorithm 2 provides a more formal summary of the partitioning algorithm.

When searching for a split, there can be differences in the number of candidate splits
between partitions, nodes, and moderators. The —2 - log-likelihood reduction statistic is
not “standardized” to such differences and, therefore, Algorithm 2 tends to select parti-
tions, nodes, and variables with many candidate splits (cf. Hothorn et al., 2006). As the
main consequence, the order in which variables appear in the trees should be interpreted
carefully. Reducing this bias is desirable and, therefore, is a potential focus for further
investigations.

The tvcglm function The tvcglm function implements Algorithm 2. For illustration,
we fit a logistic TVCM to the UCB admission data. The following command specifies
that both the intercept and the gender gap vary across departments.

R> library("vcrpart")

R> vcmL.UCBA <-

+ tvcglm(formula = Admit ~ -1 + vc(Dept) + vc(Dept, by = Female),

+ data = UCBA, family = binomial(), weights = UCBA$Freq,

+ control = tvcglm_control(minsize = 30, mindev = 0.0, cv = FALSE))

3In other words, we maximize the likelihood-ratio statistic compared to the current model.
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Algorithm 2: The TVCM partitioning algorithm for generalized linear models.

Ny minimum node size, e.g., Ny = 30
D,pin - minimum —2 - log-likelihood reduction, e.g., D, = 2
Initialize By <= Zp1 X ... X2y, and My < 1forall k=1,..., K.

Parameters:

repeat
1 Compute {— = max {— , ¢) of the current model
pute {37 = max (5(8, )
e K M,
M :n; = XiToﬁo + Z Z 1 (zix € Bim) TikBrm - (3.7)
k=1m=1

for partitions k =1 to K do

for nodes m =1 to M, and moderator variables | =1 to L;, do

foreach unique candidate split Aypuj in {2k © Zi € Brm} that divides
B into two nodes Bypiji and Bipijn with

ming >, w;1(zik € Brmijs) > No do

2 Compute fﬂkm” = {Brlr}gfq&} Eﬂkmu (B1, B2, @) of the search model
v (5) -
Mimij = 0" =0 + Y 1(Zir € Bronijs) Tirs (3-8)
s=1
and compute the training error reduction Dy,,;; = —2¢ T 20 Rty
end
end
end
3 Split node Bk;’m’ by Ak’m’l’j’ where Dk:’m’l’j’ = max kalj and increase
My — My + 1.

until no candidate split satisfies Ny o1 Dyrmyjr < Diin,

The syntax for tvcglm is quite similar to that of glm. The varying coefficient terms
“vc” in the model formula are new. The vc terms treat unnamed arguments as moder-
ators and the by argument specifies the predictor. Correspondingly, vc terms without a
by argument are interpreted as varying intercepts. The predictors assigned to by must
be numeric in the current implementation. This is why we have defined (pg. 54) the Fe-
male variable for the UCBA data as UCBA$Female <- 1 * (UCBA$Gender == "Female").
The control parameters are set by the tvcglm_control() function. Here, minsize = 30
specifies Ny = 30 and mindev = 0 specifies D,,;, = 0. We set D,,;,, = 0 to obtain the
largest possible tree and cv = FALSE to disable cross-validation (Sec. 3.2.3).

The two fitted partitions are shown in Figure 3.1, along with the nodewise coeffi-
cients and the corresponding 95% confidence intervals. These plots were produced by the
following commands:

R> plot(vcmL.UCBA, type = "coef", part = "A")
R> plot(vcmL.UCBA, type = "coef", part = "B")

The shown confidence intervals are extracted from the underlying glm object and do
not account for the model selection procedure. Both partitions separate the departments
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Figure 3.1: vcmL.UCBA: fitted tree structures, nodewise coefficients and corresponding
95% confidence intervals. Left panel, the varying intercept; right panel, the
varying gender gap.

fully and, therefore, the fits (fitted models) for vemL.UCBA and glmL.UCBA of page 54 are
equivalent. The partitioning process can be backtracked using the splitpath function.
The following command summarizes the first iteration.

R> splitpath(vcemL.UCBA, steps = 1, details = TRUE)

Step: 1

Selected Split:
Partition: A

Node:
Variable: Dept
Cutpoint: {F}, {A, B, C, D, E}

1

Loss Reduction Statistics:
Partition: A Node: 1 Variable: Dept

A

g W
O O O © O

Partition:

B

» O O O O
= = O O O
= = = O O

C

D

ABCD
10000
20000
30010

= = ==, O M
e i e |

B Node:

EF

0 1 130.
11 124.
11 76.

443.
409.
384.
416.
226.

dev npar
5131 1
2954 1
1886 1
2448 1
4871 1
1 Variable: Dept
dev npar
59742 1
65130 1
78492 1
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4001111 99.26478 1
5011111 120.99035 1

Based on the training error reduction statistic Dy, (column dev), the algorithm
selects the split {F} vs. {A,B,C,D, E} for the varying intercept (partition A). The
evaluated splits, listed in the lower part, show that only a subset of possible splits was
evaluated. For example, the split {A, F'} vs. {B,C, D} was excluded from the search.
This relates to the implemented acceleration technique that orders the six categories A
to F' and treats the Dept as ordinal (details follow).

3.2.2.1 Computational details

A breadth-first search can be computationally burdensome because it cycles in each iter-
ation through all current nodes. Even so, we do not consider a depth-first search, which
is more common for recursive partitioning and which evaluates only one node in each
iteration, because it seems unclear whether the search sequence has consequences on the
resulting partitions. To speed up the search, we use the approximate search model M kemlj
(Eq. 3.8) to compute the training error reduction of split A, , instead of using the
following accurate search model

M\Zmlj : TIES) = X0+ D 1(zwi € Bomy) Trwivim+ > 1 (Zik € Bramijs) TaxYs -
(K" ,m/)#(k,m) s=1,2

(3.9)

In particular, the approximate search model M rmij incorporates as offsets the fitted val-
ues 7}; of the current model M (Eq. 3.7). Therewith, as derived in Appendix C.2.1, M\kmlj
estimates the coefficients v,, s = 1,2 of /(/l\;;mlj by vs = Bkm + BS. The approximation
reduces the optimization to the three unknown parameters i, S and ¢. In our expe-
rience, the approximation is reliable, although it does not necessarily result in the same
partitions that the accurate search would produce. More specifically, the approximation
will tend to neglect splits that improve the fit through interplays with the temporarily
fixed coefficients.

Eliminating split candidates and cleverly choosing the stopping parameters are further
efficient acceleration techniques. We describe these techniques in more detail here.

Splits for ordered scales In Algorithm 2, the splits Agy; for continuous and ordi-
nal moderators are defined as rules of the form {Is zy; < (umi; 7} The candidate cut-
points, {Cxmi1,-- -}, are the unique values in set {zy; : 2z € B} Note that splits at
boundaries may be omitted to respect the minimum node size criterion. To reduce the
computational burden, we allow the set of candidate cutpoints to shrink to a prespeci-
fied cardinality Ng, which is Ng = 9 by default.* Specifically, the unique values of the
(non-interpolated) quantiles of {zy; : Zi € Brm} are extracted at the Ng equidistant
probabilities (1,..., Ng)/(Ng—+1). In cases of tied data, where this procedure potentially
yields fewer than Ng splits, the number of equidistant probabilities is increased until the
set of candidate splits has the desired size.

4See the maxnumsplit and maxordsplit arguments in tvcglm_control.
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Splits for nominal scales The splits A,,;; for nominal moderators are rules of the form
{Is zkii € Ckmi; 7}, where Cppuj are merged categories from the set {zy; : 2 € Bm}. The
number of unique candidate merges for C' categories is 2¢~!, which increases exponentially
with C'. An approximation that restricts the number of splits to be linearly increasing
with C deduces a category order and then treats the moderator as ordinal. For CART,
Breiman et al. (1984) propose using the category-wise averages in the current node to
deduce such an order. Following this idea, we propose ordering the categories by the
category-wise estimated coefficients. This reduces the computational expenses to fitting
the model that provides the category-wise coefficients, and fitting the (maximally) C' — 1
models that evaluate the ordinal splits. By default, the approximation is applied for
C>55

On page 57, we referred to the category ordering technique when demonstrating the
splitpath function for the first iteration of partitioning. For instance, for partition B
(the gender gap), we used the order FF < E < C < D < B < A. The rank of a category
can be deduced from the row where first “1” appears. The category-wise coefficients can
be estimated by using the model:

R> glmCW.UCBA <-
+ glm(formula = Admit ~ 1 + Dept:Female, family = binomial(),
+ data = UCBA, weights = UCBA$Freq)

The model glmCW.UCBA substitutes the effect of Female of the current model, which
is just the model glmS.UCBA (pg. 54), by an interaction term with Dept and Female. The
category ordering is then obtained by ordering the estimated department-specific gender
effects.

R> round(sort(coef (glmCW.UCBA) [-1]1), 2)

DeptF:Female DeptE:Female DeptC:Female DeptD:Female DeptB:Female

-2.36 -0.94 -0.44 -0.40 0.97
DeptA:Female
1.76

Internally, our implementation uses an approximation technique to estimate category-
wise coefficients, which is analogous to the technique used for approximating the search
model Mj,;; (Eq. 3.9). See Appendix C.2.2 for the details.

Stopping criteria Algorithm 2 applies two stopping criteria. First, to have sufficient
observations to estimate the coefficients nodewise, we require a minimum node size Nj.
Here, Ny = 30 seems a reasonable rule of thumb value, but can be modified according to
the model. Second, to reduce the computational burden, we stop partitioning as soon as
the maximal training error reduction falls below D,,;,. Large values of D,,;, yield rougher
partitions and require less computation, and vice versa. Therefore, it is crucial to choose
D,,in to be small enough so that the best-sized partitions are not overlooked. The default
Dypin = 2 was selected based on the forward-stepwise AIC algorithm (e.g. Venables and
Ripley, 2002), which also requires the total —2 - log-likelihood training error to decrease
by at least 2 to continue. In our experience, D,,;, = 2 is small enough to capture the

5See the maxnomsplit argument in tvcglm_control. After the transformation to the ordinal scale,
the argument maxordsplit controls the effective number of evaluated splits.
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best-sized partition, yet reduces the computational burden considerably. In Section 3.4.1,
we evaluate the impact of Ny and D,,;, on a real data application.

The tvecglm_control function also allows us to control classic tree growth parameters.
These parameters, which can include the maximum number of terminal nodes and the
maximal depth of the trees, can restrict the complexity of the final model.

3.2.3 Pruning

The pruning stage selects the final model by collapsing the inner nodes of the overly fine
partitions produced by Algorithm 2. In other words, it cuts branches stemming from the
same node. Here, we broadly follow the minimal cost-complexity pruning approach of
Breiman et al. (1984, Chap. 8). Let M be a fitted model of form (Eq. 3.3), where the
nodes By, result from Algorithm 2. Define the cost-complexity error criterion by

—~

K
erry(M) == =205 + AZ(M,&M) —1), A>0. (3.10)
k=1

In other words, we define the criterion as the total —2 - log-likelihood training error
plus a tuning constant A multiplied by the total number of splits. Here, A trades off the
in-sample performance and the complexity (i.e., the number of splits) of the model. When
minimizing erry (M), small choices of A yield models with many splits, and vice versa. In
general, A\ is unknown and must be chosen adaptively from the data.

Pruning algorithm Pruning hierarchically collapses inner nodes of the initially overly
fine partition to find the model that minimizes erry(M), given . A global search that
collapses multiple inner nodes simultaneously would be too computationally expensive
and, therefore, we adopt the weakest link pruning algorithm of (Breiman et al., 1984).

Algorithm 3 summarizes the implemented algorithm.

Algorithm 3: The TVCM weakest-link pruning algorithm for generalized linear
models.
Input: A fitted model M from Algorithm 2
Parameters: \: the cost-complexity penalty, A > 0
repeat
forall the inner nodes By ofj\//\l, k=1,....Kandj=1,..., M —1do
Fit the model ./\//\lkj that collapses the inner node By of M.
Compute the per-split increase of the training error
_ 20~ 420
Dy = ki M
Zk MIEM)_Zk MliMkj)
if any ij < A then
L Set M + M\k/j/ with {£, '} = argminy,; ij

until all Dy; > A

Each iteration in Algorithm 3 collapses the inner node that yields the smallest per-
split increase in the total —2 - log-likelihood training error. The procedure starts with the
model from the partitioning stage and continues until the smallest per-split increase is
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larger than A (i.e., all remaining collapses would increase erry(M)). The prune function
implements Algorithm 3. For example, the fit for vemL.UCBA on page 56 is pruned with
A = 6, as follows.

R> vcm.UCBA <- prune(vcmL.UCBA, cp = 6)
The pruning algorithm can be backtracked with the prunepath function.

R> prunepath(vcm.UCBA, steps = 1)

Step: 1
part node loss npar nsplit dev

<none> 5167.284 12 10

1 A 1 5682.041 7 5 102.9512893
2 A 3 5364.078 8 6 49.1984990
3 A 4 5171.914 10 8 2.3149860
4 A 5 5168.463 11 9 1.1789649
5 A 9 5167.420 11 9 0.1353552
6 B 1 5187.488 7 5 4.0408551
7 B 3 5184.859 8 6 4.3938080
8 B 4 5168.969 9 7 0.5614854
9 B 5 5168.272 11 9 0.9878986
10 B 8 5167.288 11 9 0.0034093

The above R output provides various information about the first iteration of Algo-
rithm 3, applied on the fit for vemL.UCBA. The columns part and node identify the
collapsed inner node, and dev shows the per-split increase of the training error. In the
first iteration, the inner node 8 of partition B (the gender gap) yields the smallest Dy
and is therefore collapsed.

Choosing A The per-split penalty A is generally unknown and, hence, must be chosen
adaptively from the data. To do so, the validation-set or cross-validation methods are
suitable. The validation-set method works as follows. First, divide the training data D
randomly into a subtraining set D; and a validation set D,, e.g., with a ratio of 3 : 1.
Second, replicate the fit with Algorithm 2 based on D;. Third, repeatedly prune the new
fit with increasing A values and compute the validation error each time an inner node is
collapsed. This yields two sequences, {\; = 0,..., s, As11 = oo} and {&rT,?,...,eTs>},

where erT2? = 2772 Siep, wilog f(yilxi, z:) is the average® prediction error on Dj of

ieDy Wi
the new model pruned by A values in interval [As, As11). We retain the estimate for A,

As' + Ay . .
+2+1 with s’ = arg L in eITL? (3.11)

\ =
This is the center of the interval [Ay, Ay; 1) that minimizes the validation error err?2. The
estimation potentially yields A= 00, in which case no split is necessary. Cross-validation
methods repeat the validation-set method to include the entire data. In particular, cross-
validation combines the obtained sequences {\1,...,Ag.1} to a finer grid and averages
the errors err2? accordingly.

6We use the average to avoid having the validation error depend on the number of observations in Ds.
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The cvloss function implements the validation-set and the cross-validation methods
to estimate A\. By default, 5-fold cross-validation is used. To estimate A\ for the UCBA data,
we use the commands:

R> cv.UCBA <- cvloss(vcmL.UCBA,

+ folds = folds_control(weights = "freq", seed = 13))
The argument “weights = "freq"” indicates that the weights of vcmL.UCBA represent
counts rather than unit-specific weights (default). The seed argument is used to control
the random generator when creating the cross-validation folds, which allows the results to
be replicated. If available, the cvloss function processes the validation sets parallelized.

Validation error
1.15 1.20 1.25 1.30

T T T T T
0 100 200 300 400
5.13 A

Figure 3.2: cv.UCBA: validation errors in function of A from 5-fold cross-validating fits
for vemL . UCBA. Black solid line, the cross-validated error; gray solid lines,
the validation errors on individual validation sets; vertical dotted line, the
estimated value for \.

The black solid line in Figure 3.2 shows the per-split penalty A against the cross-
validated error of fits for vemL.UCBA, which is minimal with ertgg = 1.148 at A = 5.1. The
original fit for vem.UCBA can be pruned by A = 5.1 with the command:

R> vcm.UCBA <- prune(vcmL.UCBA, cp = cv.UCBA$cp.hat)

The varying coefficients of the model obtained from pruning with A\ = 5.1 are shown
in Figure 3.3. Both the varying intercept and the varying gender gap are split into three
strata. The final model collapses several departments. For example, in the right panel,
we see that the departments B, C'; D, and F' share the same gender gap. In contrast,
the large negative intercept in department F' and the large gender gap in department A
remain detached.

Alternatives to A (Eq. 3.11) could be considered. For example, Breiman et al. (1984,
Chap. 3) propose the 1-SE rule to decrease the variance of X, We prefer A for its simple
form, but with cvloss and prune, we provide the tools to use these alternative rules.

3.3 Details and extensions

In Section 3.2, we explained the basic parts of the TVCM algorithm. This section describes
the algorithm in more detail and explains how TVCM can be extended to other model
classes.
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Figure 3.3: vcm.UCBA: pruned tree structures and nodewise coefficient plots. Left panel,
the varying intercept; right panel, the varying gender gap

3.3.1 Mean-centering the predictors of the search model

A useful technique to improve the split selection with the search model M\km[j (Eq. 3.8)
is to mean-center its predictors. That is, we substitute the values z;, in (Eq. 3.8) with
the values Z;;, = x; — 1/N Zij\;l zik. Consider Figure 3.4. Both panels show the same
scenario where the slope of a predictor x varies between two groups, A and B. In the
left panel, the TVCM partitioning algorithm tries to uncover this moderation when x is
not centered and the current model specifies a global intercept and a global slope for x.
The search model uses the fitted values of the current model (solid line) as offsets and
incorporates separate slopes for each group. This restricts the slopes to pass through the
origin, and hence the fit (dotted and dashed lines) do not really identify the moderation
pattern. The right panel shows that, in this scenario, the moderation pattern is perfectly
identified by using the same search procedure, but when z is mean-centered.

The centering trick is applied by default, but can be disabled with the control argument
center. Note that the output model is not affected by the mean-centering technique,
because it is applied only to the search model M\kmlj (Eq. 3.8).

3.3.2 Additive expansion of multivariate varying coefficients

So far, we have implicitly assumed that the predictors X7, ..., Xp of model M., (Eq. 3.1)
differ from one another. Here, we expand the multivariate varying coefficients into addi-
tive, moderator-wise components, in which case predictors appear repeatedly and identi-
fication issues arise. First, consider a multivariate varying coefficient term x;,05,(z;,) =
TipBp(Zipt, - - - » ZipL, ), Possibly x;, = 1 for all i. The additive expansion is

TipB(Zip) —> TipBpo + Tipfp1 (Zip1) + ... + xz’pﬁipr(Zz'pr) . (3.12)

Here, we decompose ;,3(z,) into the “isolated” contributions of the individual moder-
ators, including a global term x;,8,0. In this expansion, the individual varying coef-
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Figure 3.4: (Artificial) scenario where the slope of a predictor x with £ = 10 varies
between two groups: circles, group A; crosses, group B; left panel, z in
original scale; right panel,  mean-centered; solid line, the slope of the global
model; dashed and dotted lines, the group specific slopes where the intercept
is fixated on that of the global model.

ficients Bu(zip), | = 1,...,L, act as local contributions to the global coefficient [y.
To identify the additive expansion (Eq. 3.12), we mean-center the approximations for
Bp1(+)s - - Bpr, () using node-weighted sum contrasts that restrict the sample-average of
the coefficient functions to zero. That is, we approximate [3,;(-) with the piecewise constant

function Zf\n@l 1(zipt € Bpim)Bpim, and estimate the coefficients By1, . .., Bpa, subject to

My,

1(Zip1 - Bplm)wiﬁplm =0 . (313)

i=1 m=1

The nodewise-weighted sum contrasts are computed with the contr.wsum function of
verpart. We also considered extending the additive expansion with second- and higher-
order interactions between moderators. However, such an extension likely needs further
considerations for the partitioning algorithm.

3.3.3 Extension to other model classes

To extend the scope of the algorithm, the TVCM requires functions to extract the training
and validation errors from fitted models of the considered model class. The training error
is required for partitioning (Algorithm 2) and pruning (Algorithm 3), and the need for
extracting validation errors arises from cross-validating A. Both errors refer to loss func-
tions, which can (but must not) be the same as the one for estimating the coefficients. For
GLMs, we use as the training error the total —2-log-likelihood loss on the training sample,
which can be extracted from the coefficient estimation. Then, as the validation error, we
use the average —2 - log-likelihood loss of predictions on validation sets, which can be
extracted using the predict and family functions. Using the —2 - log-likelihood loss for
both the training and validation errors synchronizes the criteria for estimating the coeffi-
cients, selecting the split, pruning, and choosing A. The same, or similar implementation
could be considered for other likelihood-based regression models.

The verpart package also provides implementations for the baseline-category and the
cumulative-link models to allow for regression with nominal and ordinal responses. Both
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these models are multivariate extensions of GLMs (cf. Fahrmeir and Tutz, 2001, Chap. 3).
Therefore, we can adopt the definitions for the training and validation errors for GLMs.

3.4 Applications

In this section, we investigate three real data applications. Section 3.4.1 evaluates the

TVCM on performance and sensitivities to changed stopping parameters, and Sections 3.4.2
and 3.4.3 illustrate moderated regression problems in social science research. All three ap-

plications use the default control parameters and a fixed seed for creating cross-validation

folds.

R> control <- tvcglm_control(folds = folds_control(seed = 13))

For the presentation, we use the multivariate varying coefficient specification in Sec-
tion 3.4.2 and the additive expansion in Section 3.4.3. A performance comparison between
the two specifications is provided in Section 3.4.1.

3.4.1 Benchmark application: Pima Indians diabetes data

To evaluate the TVCM algorithm, we consider the pima indians diabetes data of Smith
et al. (1988). These data are available from the UC Irvine machine learning repository
(Bache and Lichman, 2013) and record diabetes tests of 768 Pima Indian women, along
with eight covariates. Here, we use the PimaIndiansDiabetes2 data of the R package
mlbench (Leisch and Dimitriadou, 2010) containing a version of the original data corrected
for physical impossibilities, such as zero values for blood pressure. We exclude the two
variables tricepts and insulin and omit cases with missing values of the remaining
data to avoid expanding the discussion to the missing value problem. The Pima data,
prepared by the following commands, include 724 observations on the seven variables
listed in Table 3.1.7

R> library("mlbench")
R> data("PimaIndiansDiabetes2")
R> Pima <- na.omit(PimaIndiansDiabetes2[, -c(4, 5)])

Table 3.1: Variables of the Pima data.

Variable Label Scale (Unit) Range
1 Diabetes diabetes Binary Negative, Positive
2 Plasma glucose concentration glucose  Continuous [44,199]
3 Number of times pregnant pregnant Continuous [0,17]
4 Diastolic blood pressure pressure Cont. (mmHg) [24,122]
5 Body mass index mass Cont. (kg/m?) [18.2,67.1]
6 Diabetes pedigree function pedigree Continuous [0.08,2.42]
7 Age age Cont. (years) [21, 81]

For this illustration, we follow Zeileis et al. (2006) and model the response variable
diabetes with a logistic model with a varying intercept and a varying slope for glucose in
the predictor function. The remaining covariates 3—7 of Table 3.1 are used as moderators
for both varying coefficients. The described model can be fitted with the command

"Descriptive statistics of these variables can be found in the Tables C.3 and C.4.
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R> vem.Pima.1 <-

+ tvcglm(diabetes ~ -1 + vc(pregnant, pressure, mass, pedigree, age) +
+ vc(pregnant, pressure, mass, pedigree, age, by = glucose),
+ data = Pima, family = binomial(), control = control)

where the first vc term specifies the varying intercept and the second term specifies the
varying slope for glucose. We use “~1” to remove the global intercept so that the fitted
varying intercepts represent local intercepts. Keeping the global intercept would produce
the same fit. However, the fitted varying intercepts would represent local contributions
to the global intercept. The alternative additive expansion introduced in Section 3.3.2 is
fitted using the command:

R> vcm.Pima.2 <-
tvcglm(diabetes ~ 1 + glucose +

vc(pregnant) + vc(pregnant, by = glucose) +
vc(pressure) + vc(pressure, by = glucose) +
vc(pedigree) + vc(pedigree, by = glucose) +

vc(age) + vc(age, by = glucose),

+
+
+
+ vc(mass) + vc(mass, by = glucose) +
+
+
+ data = Pima, family = binomial(), control = control)

The additive expansion includes a global intercept and a global slope for glucose,
which implies that the remaining varying coefficients, which consist of moderator-wise
varying intercepts and varying slopes for glucose, represent local contributions.

Zeileis et al. (2006) fit the same varying coefficient model using the model-based recur-
sive partitioning algorithm (MOB, Zeileis et al., 2008), which is based on the single-tree
approximation M,e. (Eq. 3.2). First, we compare the fit for vem.Pima. 1 with the fit based
on MOB to discuss the structural differences between the two approximations M. and
Mtvcm'

On the left, Figure 3.5 shows the fit for vem.Pima. 1, and on the right, the fit based on
the MOB algorithm. The structural difference between the approaches is that the TVCM
fits separate partitions for the varying intercept and the varying slope for glucose, while
MOB algorithm fits a common partition for the two varying coefficients. Interestingly,
the tree of the varying intercept from the TVCM is identical to the tree from the MOB
algorithm. In contrast, the TVCM does not retain splits for the slope of glucose. This
illustrates the flexibility of the TVCM in adapting to situations in which coefficient func-
tions differ. If a single partition for all varying coefficients is accurate, then the TVCM can
fit the same partition multiple times. Otherwise, it can tailor the partition individually for
each varying coefficient. As a result, the TVCM potentially produces more parsimonious
and/or more accurate fits than does the M, approximation.

To evaluate the performance of the TVCM, we extend the benchmark study of Zeileis
et al. (2006) for the Pima data, comparing MOB with the conditional inference tree (CTree,
Hothorn et al., 2006), CART (Breiman et al., 1984), logistic model tree (LMT, Landwehr
et al., 2005), and C4.5 (Quinlan, 1993) algorithms.® The MOB and CTree algorithms are
implemented in the Rpartykit package (Hothorn and Zeileis, 2014) (and party), CART
in rpart (Therneau et al., 2014), and LMT and C4.5 in RWeka (Hornik et al., 2009). We

87eileis et al. (2006) also include the quick, unbiased, efficient, statistical tree algorithm (QUEST Loh
and Shih, 1997).
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Figure 3.5: Fitted tree structures and nodewise coefficient plots. Left panel, the varying
intercept (left) and the varying slope for glucose (right, no split) of the fit
for vem.Pima. 1; right panel, the fit based on MOB (cf. Zeileis et al., 2006).

denote CART as RPART and C4.5 as J4.8 because the corresponding R implementations
are slightly modified.

The performance comparison relies on 250 bootstrap samples (with replacement) us-
ing the Pima data. For each bootstrap sample, we fit a model with each algorithm to
predict the excluded observations. In the case of the TVCM, we fit five models on each
bootstrap sample to compare the fits for tvem.Pima.1 and tvem.Pima.2 and to evaluate
the sensitivity of fits for tvem.Pima. 1 to changes from the defaults for Ny (the minimum
node size), D, (the minimum training error reduction), and Ng (the maximum number
of splits). For the competitors, we employ the default control parameters. Three com-
parison measures are considered: misclassification, the median 0-1 loss on excluded data;
complexity, the median of the number of coefficients plus the number of splits; and time,
the median computation time. Furthermore, with each algorithm, we fit a model on the
original data. To run the simulation, we use a computer with an Intel Xeon 3.50GHz
processor.

Table 3.2 shows that the TVCM outperforms the competitors in terms of performance
and complexity. That is, it builds smaller models with better predictive performance than
the other algorithms. In contrast, the TVCM performs worst in terms of computational
time because it evaluates far more candidate models than do the competitors. Increasing
Ny and D,,;, accelerates the burden significantly, with surprisingly little effect on the
performance. Apparently, in this application, it is not necessary to grow very large trees
in the partitioning stage to produce an accurate fit. Furthermore, the difference between
the multivariate varying coefficient specification and the additive expansion is negligibly
small in this application.

Figure 3.6 shows averages of 250 pairwise differences between the competitors and the
TVCM. The confidence intervals for the averages are based on the Student’s t-distribution.
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Table 3.2: Performances for the Pima data: Boot, results from fits on 250 bootstrap
samples; Orig, results on the original data; Misclassification, misclassification
error; Complexity, the number of coefficients plus the number of splits; Time,
computation time in seconds.

Misclassification ~ Complexity Time
Boot Orig Boot Orig  Boot Orig
TVCM 0.245 0.232 10 6 120.00 96.39
TVCM (additive) 0.245 0.231 14 6 159.14  52.75
TVCM (N = 50) 0.242 0.232 12 6 4226  33.58
TVCM (Dyin, = 50)  0.250 0.250 2 2 1.84 1.06
TVCM (Ng = 19) 0.245 0.232 10 6 143.79 126.19
MOB 0.254 0.238 23 8 2.57 1.67
CTree 0.256 0.222 19 5 0.07 0.03
RPART 0.258 0.211 27 11 0.02 0.02
LMT 0.279 0.222 63 1 0.22 1.10
J4.8 0.279 0.213 89 11 0.07 0.09
TVCM (additive) - —] TVCM (additive) —| |
TVCM (Ng= 50) | |—'—| TVCM (Ng= 50) | H
TVCM (D= 50) — [—.—|' TVCM (Dyin= 50) —{}+4
TVCM (Ns=19) - F——] TVCM (Ns=19) - K
MOB - | MOB - |
CTree — F— CTree — H
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Figure 3.6: Performances for the Pima data relative to TVCM with default control pa-
rameters. Left, average difference in misclassification errors; right, average
difference in complexity.
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Several average differences are significant in favor of the TVCM. It may be that the CTree,
RPART, LMT, and J4.8 algorithms perform worse because they merely use piecewise
constant regression functions, whereas the TVCM and the MOB algorithm include a
(prespecified) slope for glucose.

3.4.2 The racial wage gap

As the second application, we examine the racial wage gap and, specifically, whether the
wage gap varies across strata. A suitable data set to examine the issue are the Schooling
data of the R package Ecdat (Croissant, 2014). The Schooling data are a cross-section of
3,010 men prepared by Card (1993) from the 1976 wave of the US National Longitudinal
Survey of Young Men (NLSYM).? Table 3.3 describes the variables of the Schooling
data, where 1wage76 represents the response variable and the dummy black represents
the predictor of interest.!® The data were prepared as follows.

R> library("Ecdat")

R> data("Schooling")

R> Schooling <- Schooling[c(19, 21, 7, 28, 9, 14, 17, 18, 20, 23, 2, 4)]
R> Schooling$black <- 1 * (Schooling$black == "yes")

Table 3.3: The subset of used variables of the Schooling data.

Variable Label Scale (Unit)  Values
1 Logarithm wage per hour 1976 lwage76  Cont. (¢/h) [4.6,9]
2 Is person black? black Binary 0=No, 1=Yes
3 Education in 1976 ed76 Continuous 1,18]
4  Working experience in 1976 exp76 Continuous [0, 23]
5 Age in 1976 age76 Cont. (years) [24,34]
6 Lived with mom/ dad at age 147 momdadi14 Binary No, Yes
7 Lived in south in 19667 south66  Binary No, Yes
8 Lived in south in 19767 south76  Binary No, Yes
9 Mother-father education class famed Continuous [1,9]
10 Enrolled in 19767 enroll76 Binary No, Yes
11 Lived in smsa in 19767 smsa76 Binary No, Yes
12 Grew up near 4-yr college? nearc4 Binary No, Yes

A standard model for wage is provided by the Mincer equation (Mincer, 1974), stating
that schooling and working experience are the principal predictors for wage. Therefore, a
(Gaussian) linear model that predicts 1wage76 by ed76, exp76 (linear and squared), and
black seems a suitable basis model for the examination of the racial wage gap.

Since the literature (e.g. Ashenfelter and Card, 1999) has widely discussed the endo-
geneity problem in regressing wages on schooling, we implement an instrumental variable
(IV) approach using college prozimity (nearc4) as the instrument for schooling (ed76).
This instrument, which we computed with

R> Schooling$ed76.IV <- fitted(1lm(ed76 ~ nearc4, Schooling))

9See http://davidcard.berkeley.edu/data_sets.html.
0Descriptive statistics of these variables can be found in the Tables C.5 and C.6.
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has been proposed and evaluated by Card (1993). We rely on their evaluation and do
not go into detail, because the endogeneity problem is not the point of this illustration.

With the instrument ed76. IV for ed76, the intended basis model, including the Mincer
equation and the interesting black dummy in the predictor function, is fitted by

R> 1m.School <- 1m(lwage76 ~ ed76.IV + exp76 + I(exp7672) + black,
+ data = Schooling)

Estimate Std. Error t value
(Intercept) 3.90434300 0.26330621 14.8281

ed76.1IV 0.16421990 0.01964518  8.3593
exp76 0.05483130 0.00718382 7.6326
I(exp76~2) -0.00243190 0.00035145 -6.9197
black -0.31594171 0.01806455 -17.4896

The fit reveals that black has a significantly (¢ value > 2) negative impact on lwage76.

The aim of this application is to illustrate how the TVCM could be used to study
moderations on the effect of black. To do this, we consider the covariates of 3-11 of
Table 3.3 as potential moderators. Furthermore, we want to account for the direct effects
of the covariates 5—11 on wage, which are those covariates not included in 1m.School.
To integrate these two extensions, we replace the constant coefficient of black with a
varying coefficient and we replace the global intercept with a varying intercept. However,
we continue to assume the Mincer equation and, therefore, use the same specification for
the direct effects of ed76.IV and exp76 as in 1m.School. To fit the described extended
model, we use the following formula.

R> f.School <- lwage76 ~ -1 + ed76.IV + exp76 + I(exp7672) +

+ vc(age76, momdadl4, south66, south76, famed, enroll76, smsa76) +
+ vc(ed76.1V, exp76, age76, momdadl4d, south66,

+ south76, famed, enroll76, smsa76, by = black)

Then, we fit the varying coefficient model using

R> vcm.School <- tvcglm(formula = f.School, data = Schooling,
+ family = gaussian(), control = control)
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Figure 3.7: vcm.School: 5-fold cross-validated error in function of .

Figure 3.7 shows the 5-fold cross-validated error as a function of A\. The estimated
A = 5.58 is situated in a clear dump. Hence, its selection is unanimous.
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Figure 3.8: vcm.School: fitted tree structures and nodewise coefficient plots. Left
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The fitted varying intercept and varying wage gap are shown in Figure 3.8. The varying
intercept on the left consists of 15 terminal nodes. The tree structure suggests that, in
particular, age76 and smsa76 (standard metropolitan statistical area) have strong direct
effects on wage. We do not study the varying intercept in detail because it was mainly
implemented to allow the study of the racial wage gap while controlling for the direct
effects of the considered variables.

The interesting varying racial wage gap, shown in the right panel of Figure 3.8, includes
three strata. It turns out that the gap is particularly negative for people that live in a
southern state and have high working experience. For people that live in the north or
that live in the south and have low working experience (equal or less than 9 years), the
gap is smaller. However, the negative gap remains.

The estimated non-varying coefficients for ed76.IV and exp76 (linear, squared) can
be extracted using the summary or the coef functions, for example, with

R> coef(vcm.School)$fe

ed76.1IV exp76  I(exp7672)
0.042089677 0.006525149 -0.001878967

3.4.3 The effect of parental leave duration on return to work

As the last application, we consider an example from the literature on the effects of
welfare reforms. Specifically, we investigate the effect of the 1990 reform of the Austrian
parental-leave (PL) system. Before 1990, working women had the right to stay off work
after childbirth up to 12 months and, thereafter, return to the same (or similar) job at
the same employer. The 1990 reform extended the duration of this leave from 12 months
to 24 months. Lalive and Zweimiiller (2009) investigated the effect of the 1990 PL reform
on various fertility and labor marked outcomes, based on linear regression models and
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using the Austrian Social Security Database (ASSD). They provide a background to the
Austrian PL system and describe the data subset.!! Here, using the same data, we
reanalyze the effect of the reform on whether women returned to work at least once in
the 10 years after childbirth.

The subset of the ASSD data includes 6, 180 women who gave birth in June or July
1990 and were eligible to access the Austrian PL system. With verpart, the data are
loaded by

R> data("PL")

The interesting PL reform dummy is july. A “0” in july means childbirth in June
1990, which is the last month under the old PL system, and a “1” indicates a birth in July
1990, which is the first month under the new PL system. The response variable uncj10 is
binary, where “1” refers to women who returned to work at least once in the 10 years after
the considered childbirth. Both july and uncj10 are summarized in Table 3.4, along with
eight further covariates used as moderators.'?

Table 3.4: The subset of used variables of the PL data.

Variable Label Scale Range

1 Whether returned to work 0- wuncj10 Binary 0 = No, 1 = Yes
120 months after childbirth

2 Whether childbirth was in july Binary 0 = June, 1 = July
July

3 Years employed before birth ~ workExp Continuous [0, 17.5]

4 Years unemployed before unEmpl Continuous [0, 5.8]
birth

5 Daily earnings at birth laborEarnings Cont. (€/d) [0,1510.7]

6 Whether white collar worker =~ whiteCollar Binary no, yes

7 Daily earnings 1989 wage Cont. (€/d) 10,98.6]

8 Age age Ordinal 1, [15=19]; ...; 5,

[35—44]
9 Industry industry.SL Nominal 20 categories
10 Region region.SL Nominal 9 categories

First, we consider a basis logistic model for uncj10 with only july in the predictor
function.

R> glm.PL <- glm(uncj10 ~ july, data = PL, family = binomial)

Estimate Std. Error z value
(Intercept) 1.8399616 0.05349103 34.397575
july -0.2338688 0.07133637 -3.278394

The estimated effect of july is —0.23 (corresponding to an odds ratio of %23 = (.79)
and is significant (z value > 2). This means that the 1990 PL reform decreases the logit
for returning to work.

The aim of this application is to investigate whether and how the effect of the PL reform
is moderated by covariates 3-10 of Table 3.4, which include for example age and region.

"The data subset is available from https://sites.google.com /site/rafaellalive/research.
12Descriptive statistics of these variables can be found in the Tables C.7 and C.8.
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Furthermore, we want to study such moderation by considering the direct effects of the
moderators. To implement this, we use the additive expansion for multivariate varying
coefficients introduced in Section 3.3.2. The additive expansion is restrictive because
it ignores interactions between moderators. However, in applied regression analysis it is
common to limit the scope on first-order interactions between the predictor of interest and
further covariates (e.g. Cox, 1984). For each considered moderator, the intended model
adds varying intercepts and varying coefficients for july to the basis model glm.PL, and
is specified by the formula

R> £.PL <- uncj10 ~ 1 + july +

+ vc(age) + vc(age, by = july) +

+ vc(workExp) + vc(workExp, by = july) +

+ vc(unEmpl) + vc(unEmpl, by = july) +

+ vc(laborEarnings) + vc(laborEarnings, by = july) +
+ vc(whiteCollar) + vc(whiteCollar, by = july) +

+ vc(wage) + vc(wage, by = july) +

+ vc(industry.SL) + vc(industry.SL, by = july) +

+ vc(region.SL) + vc(region.SL, by = july)

Note that we keep the global intercept and the global effect of july as global references
for the individual varying coefficients. The model is fitted with

R> vem.PL <- tvcglm(formula = f.PL, family = binomial(),
+ data = PL, control = control)
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Figure 3.9: vcm.PL: 5-fold cross-validated error in function of \.

Figure 3.9 shows that the 5-fold cross-validated error is smallest at A = 15.47. The
error curve is relatively flat on the right of the minimum. Hence, the selection of A is a
little less evident compared to the selection based on Figure 3.7.

Figure 3.10 renders the fitted varying coefficients with at least one split. The top row
shows the varying intercepts, which are contributions to the global intercept [3(Intercept) —
1.93, and are interpreted as direct effects on the logits for return to work. The result
suggests that women with low working experience (< 2.2 years) and a high wage (>
45.8€/d) have increased logits to return to work, and that there are also differences
between industries. Specifically, working in an industry corresponding to Node 3, which
includes service industries such as social insurance, education and bank industries, has a
positive direct effect on return to work.
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Figure 3.10: vcm.PL: fitted varying coefficients with at least one split. Top row, the
varying intercepts; bottom row, the varying PL reform effects. The coeffi-
cients are contributions to the global intercept EA(I“e“ept) = 1.93 resp. the
global PL reform effect 33 = —0.23.

The global effect of the PL reform on the logits for return to work is estimated to be
33“13’ = —0.23. The moderation effects of the two selected variables, working experience
and region, are shown in the bottom row of Figure 3.10. From the nodewise coefficient
plots, we learn that low working experience (< 5.3 years) increases [3iu1y by 0.22, and
living in Vienna (W) or Lower Austria (NOe) increases 59" by 0.27. These positive
contributions imply that the effect of the PL reform locally surpasses zero, especially for
those women who combine the two characteristics low working experience and living in
Vienna or Lower Austria.

3.5 Discussion and outlook

In this study, we showed how to use the TVCM algorithm for varying coefficient regres-
sion, as well as its implementation in the R package verpart. Unlike alternative tree-based
algorithms, the TVCM can build a separate partition for each varying coefficient. Thus,
it allows us to select moderators individually by varying the coefficient and to specify
coefficient-specific sets of moderators. Furthermore, empirical evidence (Sec. 3.4.1) sug-
gests that the TVCM potentially builds more accurate and/or more parsimonious models
than competing tree-based algorithms. In addition to the description of the TVCM, we
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discussed the model specification, provided R commands, and evaluated the performance
by applying the algorithm to real data.

Further research could investigate the theoretical properties of the TVCM in more
detail. This could include simulation studies and/or comparisons with smoothing splines

and /or kernel regression techniques, in line with the comparison study of Wang and Hastie
(2014).

There is also potential for improving the TVCM. This could include: (i) developing
an unbiased selection procedure for partitioning; (i) decreasing the computational time;
(iii) refining the pruning criterion; and (iv) stabilizing the algorithm.

Improvement (i) requires finding an alternative criterion that does not tend to select
partitions, nodes, and moderators with many split candidates (cf. Sec. 3.2.2). At the out-
set, we considered implementing the score-based coefficient constancy tests of Zeileis and
Hornik (2007), used in the MOB algorithm. We were particularly interested into these
tests because they would have allowed to select the partition, the node and the moder-
ator based on the scores of the current model M (Eq. 3.7), without estimating search
models. However, we discarded the idea because the tests work under the condition that
the predictors of the model are stationary and ergodic (cf. Andrews, 1993) with respect
to the tested moderator, which seems difficult to control when partitioning coefficient-
wise. Another adjustment would be to derive the distribution of the maximally selected
likelihood ratio statistics Dy of Algorithm 2. This would allow us to select the split
based on p-values, which eliminates the dependence of the selection on the number of
splits in the moderator variable. Andrews (1993) developes the distribution of maximally
selected likelihood ratio statistics, however, again under the stationarity assumption. In-
deed, the stationarity assumption could be resolved by using bootstrap techniques (e.g.
Jouini, 2008), but such techniques are computationally complex. Finally, F- or x*-type
tests, such as those proposed in Loh and Shih (1997), could be implemented. For ex-
ample, Brandmaier et al. (2012) implement such tests for building structural equation
model trees, and they show that their implementation reduces the variable selection bias
substantially.

With regard to point (ii), the TVCM seems more time consuming than the alternative
algorithms (cf. Sec. 3.4.1), although we integrated several acceleration techniques and
parallelized the cross-validation. This hindrance, which might be relevant for big data
applications, could be partly solved by rewriting the bottleneck functions in a low-level
programming language. With regard to improvement (iii), we could consider refining the
cost-complexity criterion (Eq. 3.10), which assumes that the “optimism” of the training
error linearly increases with each split. Ye (1998) showed that this assumption is violated
for CART, and the same probably applies to the TVCM. Ye (1998) and Efron (2004)
provide more accurate solutions using resampling techniques, though these solutions are
highly time consuming. Finally, with regard to improvement (iv), to stabilize the algo-
rithm regarding perturbations to the data and to improve the accuracy, we provide with
the fvcglm function an implementation of the random forest (Breiman, 2001) ensemble
algorithm for the TVCM. However, we have not addressed this implementation so that
we could focus on the original parts of our work.

Along with tvcglm, tvcglm_control, splitpath, prunepath, and plot, this study
introduced the main functions for the fitting and diagnosis of coefficient-wise tree-based
varying coefficient models. Additional diagnosis functions, such as summary and predict,
are easily found in the manual.
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Conclusion

The present dissertation proposed contributions to graphical longitudinal data analysis
and moderated regression analysis, in form of three self-contained articles. Chapter 1
developed the decorated parallel coordinate plot and the Chapters 2 and 3 developed two
tree-based algorithms for moderated regression analysis.

The decorated parallel coordinate plot is an exploratory tool for identifying typical
categorical longitudinal patterns. Although the article placed the focus on rendering
chronological orders of event occurrences, the plot equally applies to other types of cate-
gorical longitudinal data, see for example Appendix A.1 for an application of the plot on
ordinally scaled repeated measurements data. The main strength of the plot is its ability
to highlight typical patterns (e.g., the frequent ones) while rendering at the same time the
diversity of the observed longitudinal patterns. While there are no technical limitations
on the scalability of the plot, increasing the number and/or the length of the sequences or
the number of response categories may impair the plot interest. Hence, further research
could be on advanced filtering methods or techniques for merging similar patterns.

The Chapters 2 and 3 developed tree-based algorithms for building moderated regres-
sion models, for settings with many potential moderators. The algorithm of Chapter 2
allows fitting tree-structured varying coefficients in mixed models while maintaining the
random effect component globally. It combines and extends the technique for splitting and
tree size selection of Zeileis et al. (2008) and the technique for incorporating a regression
tree into a mixed model of Hajjem et al. (2011) and Sela and Simonoff (2012).

A key development for the algorithm of Chapter 2 is the adjustment of the score-based
coefficient constancy tests of Zeileis and Hornik (2007) for mixed models of Section 2.2.3.
This adjustment entails an additional pre-decorrelation step that aims to remove intra-
individual correlations between observation scores. With regard to the algorithm, the
adjustment is required to ensure that the variable selection is unbiased and that the
stopping rule is statistically interpretable. Besides their usage in the algorithm, the im-
plemented constancy tests could be used as a diagnosis tool for evaluating coefficient
instabilities regarding omitted third variables of a given mixed model. The presentation
leaves certain room for rigidifying the proposed adjustment. Therefore, Appendix B.4
provides a supplementary simulation study that demonstrates that the accuracy of the
tests is maintained for models with random slopes und for unbalanced data. Further
research could include analytic investigations on (a) the validity of the assumptions (v)
to (vii) of Section 2.2.3, which state that the variance, the intra-individual covariance
and the inter-individual covariance of observation scores are constant under coefficient
constancy, and (b) asymptotic aspects of the test implementation. Moreover, extensions
of the constancy tests to other longitudinal regression models, such as marginal models
(e.g. Bergsma et al., 2009), could be considered. Although such extensions may not be
straightforward, the insights gained here on how to deal with intra-individually correlated
observation scores are presumably a useful basis.
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Chapter 3 introduced a coefficient-wise partitioning algorithm for varying coefficients
in generalized linear models, and its implementation in R. Building individual partitions
for each varying coefficient allows moderators to be selected individually by coefficient and
coefficient-specific sets of moderators to be specified. Furthermore, empirical evidence
suggests that the algorithm can build more accurate and/or more parsimonious models
than alternative single-tree approaches are able to do. The algorithm could also be applied
in a mixed model setting, however, it might be computationally too expensive compared to
single partition approaches such as that of Chapter 2. Chapter 3 focused primarily on real
data applications. Therefore, I provide in Appendix C.1 a supplementary simulation study.
Specifically, I show that the performance of the proposed coefficient-wise algorithm for
identifying an underlying data model improves with increasing numbers of observations,
and that it is more powerful than the single-partition approach if the coefficient functions
differ from each other.

The coefficient-wise partitioning algorithm is entirely based on exhaustive search, in
line with the algorithms of Breiman et al. (1984) and Wang and Hastie (2014). The
advantage out of this is easy extensibility, but, it can be computationally costly and biased
towards selecting variables with many splits. Consequently, the order in which variables
are selected should be interpreted carefully. At the outset, I considered implementing
the score-based constancy tests of Chapter 2, for simultaneously selecting the partition,
the node and the variable. However, as mentioned above, I have discarded this idea
because these tests work only under certain conditions, which seem hard to control in
coeflicient-wise partitioning. Thus, further research could be on a (further) adjustment of
the score-based constancy tests or on identifying or developing a suitable alternative.

The two algorithms of the Chapters 2 and 3 are, in a certain respect, opposed to each
other. While the algorithm of Chapter 2 groups all varying coefficients to approximate
them with a single partition, the algorithm of Chapter 3 treats each varying coefficient
individually. In specific situations, it might be desirable to mix the two approaches.
For example, grouping the coefficients of dummy variables corresponding to a common
categorical predictor is such a case, e.g., see Yuan et al. (2006) for a related discussion in
penalized linear regression. Assigning groups of coefficients to a partition is implemented
in the provided software. The problem is, due to differences in the degree of freedom, the
partitioning algorithm will tend to select the partitions associated with many coefficients.

The two algorithms of the Chapters 2 and 3 also distinguish by their in-built tree size
selection criteria. The algorithm of Chapter 2 selects the tree size by continuing parti-
tioning until the p-values of the constancy tests indicate coefficient constancy regarding
all moderators in all nodes. By contrast, the algorithm of Chapter 3 attempts minimiz-
ing the cost-complexity criterion of (Eq. 3.10) by pruning. It is controversial whether
to use one or the other criterion. The constancy tests require less computational efforts
and are easier to interpret. However, the algorithm controls merely locally the statistical
error for not stopping iterating. Furthermore, by selecting the tree size by stopping, the
algorithm remains a simple forward-stepwise procedure that potentially overlooks rele-
vant splits that appear only after poor splits (e.g. Breiman et al., 1984). Pruning is a
stepwise-backward procedure that collapses inner nodes to find the globally optimal trade-
off between model complexity and in-sample performance. By starting with overly fine
partitions that include the relevant splits with high certainty, pruning should avoid over-
looking important splits that appear only after poor splits. However, pruning requires the
estimation of the cost-complexity parameter by using validation set techniques, which can
be time consuming and/or introduce perturbations because of the randomness involved
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in selecting validation sets. Moreover, pruning requires a complexity measure for a fitted
tree-structured model, which is difficult to derive analytically (cf. Ritschard, 2006). The
number of splits, which I defined as the complexity measure in Chapter 3, is indeed a
heuristic and may be refined in the future development, e.g., by pursuing the techniques
of Ye (1998) and Efron (2004). In the regression tree literature, p-value based tree size
selection is standard for algorithms that employ statistical tests for variable selection (e.g.
Hothorn et al., 2006; Zeileis et al., 2008). An exception is the algorithm of Loh (2002)
that performs tests for variable selection and cost-complexity pruning for tree size selec-
tion. Pruning is standard for algorithms that are entirely based on exhaustive search (e.g.
Breiman et al., 1984; Wang and Hastie, 2014). Comparisons are usually made between
algorithms (e.g. Lim, 2000; Hothorn et al., 2006), so that the performance of the tree size
selection criteria cannot be separated from the performance of the partitioning procedure.
Hence, although the choice of the criterion is also a philosophical and computational ques-
tion, an isolated evaluation of the performance of these two tree size criteria — by keeping
fixed the partitioning procedure — could be a topic for future investigations.

The Chapters 2 and 3 focused on binary partitioning. Extensions, such as multiway
partitioning (e.g. Kim and Loh, 2001) or partitioning by linear combinations of variables
(e.g. Breiman et al., 1984), can provide substantial merits and could be implemented in the
further development. Furthermore, the handling of missing values could be investigated.
Such investigations would have to differentiate between missing values in the response
variable, in the predictor variables and in the moderator variables. Missing values in
the response or in the predictors may be handled with the corresponding methods for
parametric models, which include expectation-maximization algorithms and imputation
techniques, see for example Little and Rubin (2002). Missing values in the moderators
may be handled with the corresponding methods for recursive partitioning, which include
surrogate splitting (e.g. Breiman et al., 1984) or probability splitting, see for example the
in-depth discussion of Quinlan (1989) on this topic.

The common thread of the Chapters 2 and 3 is that both proposed algorithms are
based on a closed model approach. In particular, while most approaches that combine
recursive partitioning and linear regression models fit a multitude of linear models on
disjoint subsets of the training data (e.g. Zeileis et al., 2008; Wang and Hastie, 2014), the
approaches presented herein fit a single linear model that incorporates one or multiple
tree-structures in the predictor function. This idea was initially inspired by Hajjem et al.
(2011); Sela and Simonoff (2012), and the motivation for the closed model approach was
in Chapter 2 to maintain the random effect component globally, and in Chapter 3 to
allow for coefficient-wise partitions. Thus, the contribution of the Chapters 2 and 3 is
also to promote the closed model approach for combining recursive partitioning and linear
models, including identifying situations where using a closed model approach is necessary.

The dissertation focused on tree-based approaches for incorporating moderated rela-
tions into a predictor function. The linear approach, which is more common in applied
moderated regression, was considered for the purpose of comparison, see for example the
Sections 2.3.1 and 3.2.1. The popularity of the linear approach is certainly due to its avail-
ability in most statistical software environments, its well understood statistical properties
and its allowance for statistically powerful conclusions. However, the linearity assumption
may be inappropriate, in particular if it is neither clear whether nor how the moderators
should be incorporated. Therefore, nonparametric alternatives, such as those proposed
herein, seem qualified for considerably many situations in applied moderated regression.

For linear moderated regression, there are many techniques for variable selection.
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These include, amongst others, stepwise Akaike information criterion search (AIC, e.g.
Akaike, 1974; Venables and Ripley, 2002), sparse regression, such as least absolute shrink-
age and selection operator regression (LASSO, e.g. Tibshirani, 1996; Biithlmann and Van
De Geer, 2011) or smoothly clipped absolute deviation penalty regression (SCAD, e.g. Fan
and Li, 2001), and model-based boosting (e.g. Bithlmann and Hothorn, 2007). The basic
aim of these techniques is to discover and incorporate the variables that directly affect
the response variable. Their application in moderated regression analysis, which also (or
principally) aims to discover and incorporate the variables that affect the coefficients of
predictors of interest, requires additional considerations. For example, it should be en-
sured that the relations of interest are not dropped from the predictor function during the
selection process. Often, constraints are specified that ensure the interpretability of the
finally selected model. For example, dummy coded variables corresponding to a common
categorical moderator may be selected as a group (e.g. Meier et al., 2008), or interactions
terms may be selected hierarchically, e.g., a first order interaction is only included if both
involved variables have an important direct effect (e.g. Bien et al., 2013).

The literature on nonparametric moderated regression has primarily been focused on
smoothing spline and kernel regression techniques. Both approaches have their own mer-
its and can be more accurate than the tree-based approach, see for example Wang and
Hastie (2014) for an in-depth comparison. The potential of kernel and spline regression
techniques has hardly been exploited. For example, Li and Racine (2008) and Li et al.
(2013) have elaborated kernel regression varying coefficient techniques for mixed scaled
sets of moderators. Wang et al. (2008) and Xue and Qu (2012) combine smoothing spline
with sparse regression techniques to fit time-varying coefficients for many predictors. The
R package mboost (Hothorn et al., 2015) implements a boosted spline approach that allows
to include many moderators. Smoothing spline techniques combined with sparse regres-
sion or model-based boosting is scalable to many moderators and, therewith, is promising
for the moderation problem considered herein. However, such approaches are focused on
continuous moderators and require prespecified basis functions and knots. Thus, their
application often requires much specification work, while tree-based approaches can gen-
erally be applied without excessive tuning.

The principal disadvantages of the developed tree-based algorithms are their insta-
bility regarding data perturbations and their inaccuracy in approximating smooth co-
efficient functions. Ensemble techniques, such as boosting (Freund, 1995) and random
forest (Breiman, 2001), have proven to improve the algorithms regarding these two as-
pects, however, at the expense of the comprehensibility of the built models. Appendix B.2
implements a random forest extension for the algorithm of Chapter 2, which is demon-
strated to improve the predictive performance by means of an empirical evaluation. This
result motivates a comprehensive implementation of the random forest technique for the
provided algorithms as a project for the further development. Fitting routines for the ran-
dom forest extensions are already available in the R verpart package, see in the manual
for the functions fvcolmm (random forest for Algorithm 1) and fvcglm (random forest
for Algorithm 2). The package also provides partial dependency plots (e.g. Hastie et al.,
2001, Chap. 10) for the diagnosis, and variable importance measures (e.g. Breiman, 2001;
Strobl et al., 2008) may be implemented in the next revision. Herein, I did not focus on
these extensions because I consider the implementation of the two modeling techniques —
tree-structured fixed effect components in mixed models and coefficient-wise partitioning
— as the principal contributions of the dissertation.

The dissertation also placed special emphasis on practical aspects. The presented
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articles include various real data applications that could prove instructive for practitioners
to identify the utility of the presented methods for their specific problem. Moreover, the
software implementations in the TraMiner and verpart packages allow for easy access
to these methods. Beside the main functions (Table 5), the packages provide various
diagnosis functions which are easily found in the manual. The R codes for the real data
applications are found in the Appendices A.3, B.7 and C.4.
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Appendix A

Supplementary materials: Chapter 1

A.1 Marijuana use among U.S. teenagers

The aim of this second illustrative application is to demonstrate the potential of our plot
for rendering state sequences. The difference with event sequences is that the position in
a state sequence conveys time information and that simultaneous states cannot occur. In
this application the x-axis reports ages.

We consider data about the use of marijuana taken from Lang et al. (1999) and based
on the first five annual waves (1976-1980) of the U.S. National Youth Survey (Elliott
et al., 1989). The data concern adolescents aged 13 at the first wave (1976) and report
adolescents’ marijunana-use state at the successive ages between 13 and 17 years old. The
marijuana-use is a categorical ordinal variable with three levels (“never”, “no more than
once a month”, “more than once a month”) obtained by Lang et al. (1999) by collapsing

the nine levels of the original marijuana-use scale.!

Female, n =120 Male, n =117
colored: 4 of 29, cum. freq. = 70% colored: 6 of 40, cum. freq. = 62.4%
> 1 amonth —
<=1 amonth —
never | mpe = =} - il - |
T T T T T T T T T T
13 14 15 16 17 13 14 15 16 17
Age Age

Figure A.1: Marijuana use of U.S. teenagers between ages 13 to 17. The trajectories
shared by at least three adolescents in the group are highlighted in different
colors.

IFurther descriptive statistics of this data set can be found in Appendix A.2.2.
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Figure A.3 exhibits the evolution of marigjuana use by females and males. Colored
patterns are the unique patterns shared by at least three adolescents (3%) in each group.
The most frequent trajectory is to never use marijuana between ages 13 to 17 for both
genders. Looking at the other patterns including the greyed lines we observe a higher
diversity among trajectories followed by males. There are 40 unique trajectories for males
versus 29 for females. The plots also reveal, for both groups, a tendency to increasing
marijuana with age. Focusing on the colored lines — most frequent patterns, we observe
what is the main conclusion found by Lang et al. (1999), i.e., a higher risk for males to use
marijuana. More specifically the plots reveal a tendency for males to start with marijuana
use earlier than females.

In this example, all sequences are complete and, therefore, right- and left-aligned.
When all sequences are complete, no unique sequence can be embedded in another unique
sequence. Plotting only non embeddable sequences would thus produce the same plot.
Shifting sequences of different length in order to left or right align them would result in
loss of the time alignment. Thus, the embedding trick is useful for time-aligned sequences
of different length only when all of them either start or end at the same time.

A.2 Descriptive statistics of the used data sets

A.2.1 Family life event history data set

The family life event history data set concern 1,372 Scandinavians (Danes, Norwegians
and Swedes) born between 1930 and 1959. The data set is available online from the
supplementary materials of Biirgin and Ritschard (2014).

Cohort Country Gender
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Figure A.2: Weighted univariate distributions of Scandinavians included in the family
life event history data set.

Figure A.2 shows the weighted distributions of the included Scandinavians regarding
cohort, country and gender. In the far left panel it is striking that the older cohort
(1930-1939) includes much less people than the younger cohort (1950-1959).

A.2.2 DMarijuana data set

The marijuana data of Section A.1 are available from the R drm package (Jokinen, 2012).
They record yearly marijuana-use measurements of 237 adolescents between 13 and 17.
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Figure A.3: Descriptive statistics of the marijuana data set. Left, cross-sectional distri-
butions of marijuana-use across age; right, the gender distribution.

The left panel of Figure A.3 shows the cross-sectional distributions of the marijuana-
use variable across age. The right panel shows the gender distribution, which is the only
additional covariate in the data set.
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A.3 R-codes

BH —m oo oo #

## Date: 2015-03-20

## Authors: Reto Buergin and Gilbert Ritschard

## Institution: Swiss National Centre of Competence in

## Research LIVES (http://www.lives-nccr.ch/)

##

## Contents:

## R-code for generating the plots in "A decorated parallel
## coordinate plot for categorical longitudinal data. Code
## requires TraMineR (>= 1.8-7) and drm (>= 0.5-8).

##

## Contents:

## - Family life event histories
## - Marijuana use among U.S. teenagers
##

## We cannot garantuee that the functions work with future
## versions of R and the indicated packages.

##

## Copyright R. Buergin and G. Ritschard, 2015

## distributed under license Creative Commons BY-NC-SA

## http://creativecommons.org/licenses/by-nc-sa/3.0/

## install.packages (c("TraMineR", "drm"))
library ("TraMineR")
library ("drm")

e et

## Family life event histories

A e et

## prepare the data

## family.LONG: one row per event

family.LONG <- read.csv("family-LONG.csv")

levs <- c("Leaving Home", "First Union", "First Marriage",
"First Child", "_end")

family .LONG$event <- factor (family.LONG$event, levels = levs)

## family.WIDE: one row per case (covariates)
family .WIDE <- read.csv("family-WIDE.csv")

## create a ’seqelist’ object with one sequence per row

family.seqe <- seqecreate(family.LONG[, c("time", "id", "event")])

par(mar = c(4,8,3,1))

## Left plot of Figure 1
#H# -

## select subset

subs <- family.WIDE$cohort == "1930-1939"
w <- family.WIDE$weights [subs]

w <- w / sum(w) * sum(subs)



A.3. R-codes 95

## set filter
filter <- list(type="function", value="minfreq", level = 0.05)

## plot
seqpcplot (family.seqe [subs], weights = w, filter = filter)

## Right plot of Figure 1
## -

## set filter
filter <- list(type="function", value="minfreq", level = 0.01)

## plot

seqpcplot (family.seqe [subs], weights = w, filter = filter,
grid.scale = 0.5, 1lwd = 2.5, order.align = "time",
xlim = c(12,32), title = "")

## Figure 2
I

## set weights
w <- family.WIDE$weights / sum(family.WIDE$weights) * nrow(family.WIDE)

## set filter
filter <- list(type="function", value="minfreq", level = 0.05)

## plot
par (mar = ¢(0,0,3,0), oma = c(4,8,0,1))
seqpcplot (family.seqe, group = family.WIDE$cohort,
weights = w, filter = filter, main = "")
## note: here the number of observations refers to the sum
## of weights

## Left plot of Figure 3
B# —mmmmmmm o

## extract subset
subs <- family.WIDE$cohort == "1950-1959"

par (mfrow = c(1,1))

p <- segpcplot(family.seqe[subs], grid.scale = 0,
cpal = "black", plot = FALSE)

p$lns$lwd.1 <- 0.15

plot (p)

## Right plot of Figure 3
## - -

## extract subset

subs <- family.WIDE$cohort == "1950-1959"
w <- family.WIDE$weights [subs]

w <- w / sum(w) * sum(subs)

## set filter
filter <- list(type="function", value="minfreq", level = 0.05)

## plot
seqpcplot (family.seqe [subs], weights = w, filter = filter,
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ltype = "non-embeddable")
A e e #
## Marijuana use among U.S. teenagers
## -—-mm oo #

## data preparation
data("marijuana")

## convert data from long into wide format
mar <- reshape(marijuana, idvar = "id", timevar = "age",

direction = "wide", v.names = "y")

## create a ’stslist’ object

states <- c("never", "<= 1 a month", "> 1 a month")

mar.seq <- seqdef (mar, var = 3:7, alphabet = 1:3,
states = states, cnames = 13:17)

## plot

par (mar = ¢(0,0,3,1), oma = c(4,6,0,1))

seqpcplot (mar.seq, group = mar$sex,

filter = list(type="function",value="minfreq",level = 0.03),
order.align = "time", xlab = "Age", ylim = c(0.75,3.25))
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Supplementary materials: Chapter 2

B.1 Additional details on coefficient constancy tests

B.1.1 Covariance of ¥y(-) (Sec. 2.2.3.1)

The constraint S, 9,(8,) = =M, ¢, = 0, implies that

N
= Zvar({ﬂi) + Z Z 1(i;«éi’)COV({bia'{bi’) : (B.1)

i=1 i=14'=1

Under Hy, we assume that (i) Var(¢,) = Var(ep,) and (i) Cov(®;,,) = Cov(eh,, ),
Vi #i'. Based on these two assumption and (Eq. B.1),

A

COV(’(T[)i, ¢z/)

N Var( W, Vi£id . (B.2)

In consequence, the covariance of the process ¥y (7) (Eq. 2.8) is

|[NT1] 1 | N72] .
Cov(¥n(71), ¥n(72)) = Cov Z %(vz Wei > Vo)
i'=1
1 [N7] [N71] LNnJ [N71]  [N72]

M= Z Var(1);) + Z Z Cov(th;, i) + Z Z Cov(th;, i)

i=1 =1 i=1 i/=|Nr|+1
INT[INT1] — 1] INT1[[NT2) — [N71]]

- = [LNTlJVar(IZH) - PRI Dar(hy) - T = (g
N7 (N = [Nl
= IN[N my 2 Var(h,) - (B.3)

B.1.2 Pre-decorrelation of scores (Sec. 2.2.3.2)

Here we derive the pre-decorrelated observations scores G}, and the computation of the
transformation matrix T of Section 2.2.3.2. First, we consider balanced data where N; =
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N1 V i. In these cases, we assume that

Var(t;) =  Var(ap) =4, Vit, (B.4)
Cov(ly, ) = Cov(lyg,ty2) =9, Vi and t #¢ and (B.5)
Cov(l, Gyy) = Cov(lyy,Gpy) =0, Viandi#i (B.6)

where Ny = 32X, N;. Since E(i;) = 0 and Var(Y;, ;) = 0, these matrices can be
estimated by

R | N M .

A — 72 ﬁztﬁzta (B 7)
Nr i=1t=1

R 1 N [M Ny T A

Q= — ;s G| — NrA| and (B.8)
NG =) |2 | 2% |2

N | N

-
. 1 ) N X
v = _N% — Np — NNy(N; — 1) ZZ [; uzt] Lz:; u,t] ) (B.9)

=1

*

It follows that the intra-individual covariance of the Gj},’s is

Ny Ny
Ak Ak t?ét/ ~ A ~ ~
Cov(uz-t, uz-t/) = Cov ;¢ + T Z Uy, Wy + T Z W
tﬁil,t”#t tﬁzl,t”#t/
N1 Nl
= COV(flit, flit/) + Z COV(ﬁZ‘t, flit//)TT + T Z COV(ﬁitN, ﬁit’)
t”:].,t”;ét/ t//:].,t//?ét

Ny N
+T Z Z COV(ﬁitu y ﬁ,’t/// ) TT
t//:17t//¢t tl”:17tl”§£t/

= AT+ TAT + [N, —2]TAT" +Q + [N, —2]QT "+
[Ny = 2]TQ" + [Ny — 1] — [N, — 2]TQT" | (B.10)

and the inter-individual covariance of the 0},’s is

. Ny Ny
Cov(aj, 4jy) iz Cov [ Gy + T Z Q;r, Oy +T Z Qg
tﬁzl,t”#t t//zl,t//;étl
N1 Nl
= Cov(l, app) + Y. Cov(ly, typ )TN +T > Cov(fyr, tyy)
t”:l,t”;ﬁt/ t”:l,t”;ﬁt

N1 N1
+T Z Z COV(ﬁit//, ﬁi/t///)TT
t// :1 ,t” ;ét t///:1 ,t”’;étl

= \Il+ [Ny —1]®T" 4 [Ny — 1JT®" + [Ny — 1][N; — 1]T®T' . (B.11)

The goal is to determine the M Pg x M Pz matrix T such that

1

—m\@r(ﬁh) s (B12)

COV(ﬁ:t, ﬁ:t’) = COV(ﬁ:t, ﬁ;t”) =
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for all (z,t) # (¢,t') and (i,t) # (i',t"). T is found by solving

0 —_— COV(uZt, ult/) COV(ﬁ;kt, ﬁ;/'k/t//)
= [ATT + TAT + [N - JTAT" + Q + [N, - QT+

[N = TQT + ([N — 1) = [Ny — 2| TQTT| — [@ + [Ny — 1]9T "+
[N = JT®T + [Ny — 1][N;, — JTeTT| (B.13)

for T, using A, Q and U. Either, this equation system is solved with respect to all
(M Pg)? components, or T is assumed to be symmetric, which reduces the number of
unknowns to (M Pg(MPg + 1))/2. The symmetry assumption is natural because T is
used for a decorrelation transformation. Note that, because of the sum of scores remains
zero after the transformation,

N1 N N

i+ Ni(N1—1)T ZZ (B.14)

i=11t=1 i=11t=1 t=1

M=
£
I
™=
§>

and the variance of the pre-decorrelated scores remains constant,

Ny
Val“(ﬁ:‘t) == Var(ﬁit + T Z ﬁ’it/)
t'=1,t'#t

=A+ [N —-1TQ" + [N, —1)QT"

+T [[ ]A+(N1_1)2(N1_2

)n} TTV (i,1) | (B.15)

the equality with the third term in (Eq. B.12) holds automatically if the equality between
the first two terms holds.

B.1.3 Imputation procedure for unbalanced data (Sec. 2.2.3.2)

The imputation for a missing observation ¢ of individual 7 in model M (Eq. 2.1) requires
values for the design matrices X;; and W;; and the moderator z;;. We propose to randomly
draw these data from the N; sets of observed predictor vectors of individual i. Next, y;; is
randomly drawn from the conditional distribution f (ylt]f)z, Xit, Wi, z;) of the estimated
model under Hy, in order to control the type I error of the test. To estimate the random
coefficients b; we use the posterior mean estimate, see Tutz (2012, Chap. 14.3.2).

B.1.4 Nodewise tests (Sec. 2.2.3.3)

This appendix specifies the properties of the nodewise, mean centered scores. Let IAan
be the N, x M Pg matrix of pre-decorrelated scores (Sec. 2.2.3.2) corresponding to ob-
servations z; € B,,. Let IAJ’;;“ be the Ij:‘n minus its column means. In Section 2.2.3.2,
we established that Cov(a},Gf,) = —ﬁ\/ar(ﬁ’fl) V (i,t) # (i',t'). It follows that the

covariance between the rows of U¥,
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// t// // t//

COV( mzt? ui:i/t/) COV (u E umlut// A;u/t/ — E umlut//)

Np—1  (Npy —1)2
- COV( Upip, 0 m21) [1 —2 N, + N2

m

2 Ny,
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m

takes the required covariance structure (cf. Sec. 2.2.3.2). Further, the covariance between
mean-centered scores of different nodes, say, B,, and B,,,

COV( mlt,ﬁ::uyy) COV (u E um,L//t// * mlilt T T E l]. 17 ”t”)

// tl/ /l t//

Cov(itl,, i3, {1 Nm Ny, NmNm/}
= ... = u u —_ == —
ov 11> 21 Nm Nm’ NmNm’

-0, (B.17)

which implies that the tests on B,, are independent from tests on B,

B.2 Random forest extension

Tree-based algorithms have become popular in particular because they can capture com-
plex interactions and nonlinearities in high-dimensional settings and thus build models
with low bias. By contrast, they involve hard decisions with indicators (Bithlmann and Yu,
2002) and, therefore, they can be “instable” regarding small data perturbations. Moreover,
their piecewise constant approximation can be inaccurate if relationships are smooth.

Ensemble techniques have proved quite successful to improve the stability and the pre-
dictive performance of tree-based algorithms. To date, the standard ensemble techniques
may be random forest (Breiman, 2001) and boosting (Freund, 1995). Which technique
to use is controversial, empirical comparisons (e.g. Hastie et al., 2001, Chap. 15) suggest
that the performance of boosting and random forest is data dependent. For tree-based
varying coefficient regression, boosting has been considered by Wang and Hastie (2014).

This supplementary section introduces an implementation of random forest for Algo-
rithm 1. The goal is to demonstrate the potential of the extension to improve the predictive
performance of Algorithm 1, which would motivate its comprehensive development.

The section is organized as follows. First, we explain the implementation of random
forest for Algorithm 1 and in particular its modifications relative to the implementation of
Breiman (2001) for regression trees. Afterwards, we compare the predictive performance
of the extension with that of its integrated algorithm, by using the happiness data of Sec-
tion 2.3.1. The extension is available with the fvcolmm function of the R verpart package
(Biirgin, 2015), and the R-code for the empirical evaluation is shown in Appendix B.7.

B.2.1 Method

Random forest for tree-based algorithms combines two techniques: Bootstrap aggregation
(or variants of) and random split selection. Bootstrap aggregation (bagging, Breiman,
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1996) is an aggregation technique that first fits a collection of models by employing the
algorithm on random subsets of the original data, and then aggregates the prediction
functions of these fitted models. The aggregated prediction function will stabilize from a
sufficiently large number of models, thus, it will have lower variance than individual pre-
diction functions. Moreover, the aggregation will smooth the prediction function without
introducing a bias, which often improves their accuracy. For an in-depth study of bag-
ging, see for example Biithlmann and Yu (2002). The technique can be used for various
procedures, including linear models, but its variance reduction effect seems particularly
strong for instable procedures such as tree-based algorithms.

The second technique, random split selection, modifies the splitting procedure of the
tree algorithm in the following way: In each iteration, the set of candidate splits is reduced
to the splits corresponding to a randomly selected subset of the partitioning variables.
The motivation is the following (cf. Hastie et al.; 2001, Chap. 15): The variance of the
aggregated prediction function depends on the correlation between the individual models.
In cases where the individual models (and their tree structures) are very similar, this
correlation is large and, therefore, the variance reduction effect of the aggregation is
limited. Random split selection is a proven technique to decrease the correlation between
models, which in turn decreases variance of the aggregated prediction functions.

The implementation of random forest for Algorithm 1 requires modifications relative
to the implementation for regression trees, which we overview in the following.

Resampling scheme for data subsets Random forest for regression trees generally
uses bootstrapping, i.e., observations are randomly selected with replication so that the
subsets have the same size as the original data. More recent studies (e.g. Bithlmann and
Yu, 2002; Strobl et al., 2007) use subsampling, i.e., a prespecified number of observations
is selected by chance and without replication. Biihlmann and Yu (2002) argument that
subsampling is computationally cheaper but maintains the accuracy. Our software imple-
mentation uses by default subsampling with a selection probability of 0.632, which is the
expected percentage of non-replicated observations in bootstrap samples.

Resampling for longitudinal data requires additional considerations. Here, we assume
that the data were collected with a simple random sampling scheme on the individual
level. Hence, our default scheme randomly selects individuals and then includes all the
observations corresponding to the selected individuals. For practical applications, one
may has to modify the resampling scheme according to the data collection.

Random split selection Random forest for regression trees performs random split se-
lection by retaining splits corresponding to a randomly selected subset of the partitioning
variables. Because Algorithm 1 additionally requires to select a node in each iteration,
the random split selection is slightly modified. Specifically, in each iteration, we first in-
vestigate for each node the partitioning variables (here moderators) with at least one split
that satisfies the minimum node size criterion, and then retain the splits corresponding
to a randomly selected subset of the found combinations of nodes and moderators. For
example, suppose the current tree structure has three terminal nodes and each terminal
node could be splitted by two moderators. In this case, there are six combinations from
which to choose, namely moderator one in node one, moderator two in node one, modera-
tor one in node two, and so on. Then, we randomly select a subset of these combinations,
e.g., we select moderator two in node one and moderator two in node three.
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Aggregating coefficient functions Random forest for regression trees uses the indi-
vidual models to predict the response, and then takes the average of these predictions. In
varying coefficient regression, however, the focus is set on the shape of coefficient func-
tions. To study such shapes, we aggregate the fixed coefficients of the individual models
by (Eq. B.18). The variance coefficients of the random effect component, which does not
depend on the moderators, are aggregated by using (Eq. B.19). The two aggregations
provide estimates for the unknown coefficients of the original target model M (Eq. 2.1).

Algorithm 4 summarizes the proposed random forest extension for Algorithm 1. The
technique first applies a modified version of Algorithm 1 on B random subsets of the
data, and then aggregates the coefficient functions to build the varying coefficient model
M (Eq. 2.1). The extension requires three tuning parameters: B , the number of trees
(i.e., the number of data subsets); Ny the minimum node size and; my,,,, the number of
randomly selected combinations of nodes and moderators.

Algorithm 4: Fitting random forest varying coefficients in MGLMMs.

B number of trees, e.g., B = 100

Ny minimum node size, e.g., Ng = 50

My, number of randomly selected combinations of nodes and mod-
erators

Parameters:

for b+ 1 to B do
Draw a random data subset D, from the total data D by using cluster-wise

subsampling

Fit a tree-based varying coefficient MGLMM of form M (Eq. 2.4) on D, by
using Algorithm 1 and the following adjustments:
e Set the stopping parameter o of Algorithm 1 to a + 1.

e In each iteration, evaluate only the splits corresponding to 7, randomly
selected combinations of nodes and moderators, {B,,, Z;}, that include at
least one split that satisfies V.

e Stop if no candidate splits remain.

end
Aggregate the coefficients of the B fitted MGLMMs to form a model by

I} M§

1(zi € Byn) and (B.18)

‘O>

(B.19)

fo

= =l

Number of trees B The number of trees should be chosen such that the aggregated
predictor function is approximately stable, a value which is generally unknown. Oshiro
et al. (2012) evaluated this number on random forest for regression trees, and conclude
that B = 128 is often sufficient. Such a rule of thumb should however be verified for our
extension. Our software implementation uses a default of B = 100.
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Minimum node size N, To have sufficient observations to fit the fixed coefficients
nodewise, we require a minimum number of observations. For multivariate generalized
linear mixed models, Ny = 50 may be a reasonable rule of thumb. Note that, a common
default for random forest is Ny = 5. The reason for our larger default value is that the
estimation of nodewise fixed coefficients is much more complex than the computation
of averages. Moreover, our experiments showed that fitting models with many terminal
nodes is often challenging. Hence, for practical reasons, Ny may be set even larger than
Ny = 50. Alternatively, a maximal number of terminal nodes may be set to control the
complexity of the resulting models.

Number of randomly selected combinations of nodes and moderators m,, The
number of randomly selected combinations of nodes and moderators also requires rule of
thumbs. For regression trees, such a rule of thumb is the integer number of a third of the
number of partitioning variables. This rule could also be applied to our algorithm. The
default value of our software implementation is arbitrarily set to my,, = 5.

B.2.2 Performance study

We evaluated the implemented random forest extension by comparing its predictive per-
formance with that of the integrated Algorithm 1. Specifically, we fitted with both algo-
rithms 250 times the model M; (Eq. 2.17) on the happiness data, following the bootstrap
scheme of Section 2.3.1. These computations resulted in 250 pairs of negative-likelihood
prediction errors for comparison.

For the random forest extension we used the default tuning parameters, that is, B =
100, Ny = 50 and my,, = 5. Additionally we restricted the maximal number of terminal
nodes to ten because the estimation often failed when the models became complex. This
practical issue may also appear in other applications, and should be discussed in more
detail in a comprehensive description of the extension. Thus, the chosen tuning parameters
may not be optimal. Even so, the random forest extension outperforms its integrated tree-
based algorithm.
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Figure B.1: Boxplot for 250 pairwise differences err(M;,) — err(Myy ;) comparing the
prediction error of fits for M; (Eq. 2.17) with the tree-based algorithm
(Algorithm 1, M;;) and its random forest extension (Algorithm 4, My, ).

Figure B.1 shows the boxplot of the differences between the 250 computed pairs of
prediction errors. It can be seen that fits from Algorithm 1 have, without exception,
higher prediction errors than its random forest extension. The median difference of 0.011
is however rather small, a possible reason being the arbitrarily chosen tuning parameters.
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B.3 Comparison with MOB

Since our algorithm is a redesign of the model-based recursive partitioning algorithm
(MOB, Zeileis et al., 2008), it is interesting to compare results of the two algorithms.
For this purpose, we compare the tree structure from our Algorithm 1 for the happiness
data with the corresponding tree structure from MOB.

The fitting with Algorithm 1 is described in Section 2.3.1, and the resulting tree
structure is shown in Figure 2.2 and below in Figure B.2. For the fitting with MOB, we
specify as target model the varying coefficient cumulative logit model

My 2 logit(P (Y < q)) = By(zit) + UEwSa(zs) - (B.20)

By comparison, the target model deployed for Algorithm 1 (Mj, Eq. 2.17) has the same
varying coefficient specification as My, but it does not include random intercepts. For
fitting My with MOB we used the mob function of the R partykit package (Hothorn
and Zeileis, 2014) combined with the polr function of the MASS package (Venables and
Ripley, 2002). The R-code for the fitting is provided in Appendix B.7. We have also
considered to include random intercepts by combining mob with the olmm function of the
verpart package. However, we dropped this idea because the use of mixed models with
mob seems experimental and has not yet been documented.

Figure B.2 shows in the left panel the tree structure from Algorithm 1 for model M,
(Eq. 2.17), and in the right panel the tree structure from MOB for model M, (Eq. B.20).
The principal difference between the two tree structures are the splits for node 6. With
our algorithm, node 6 is splitted by gender, while MOB uses the moderators age, financial
situation (FISIT), gender, regional unemployment (UEREG), household income (HHINC)
and marital status (MASTAT) to split node 6 into 7 terminal nodes.

Possible reasons for the differences include the following two: First, we used different
target models (model M; vs My) because of the technical issue explained above. Sec-
ond, Algorithm 1 integrates the pre-decorrelation transformation of Section 2.2.3.2, and
therefore the moderator selection of the two algorithms is technically different.
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Figure B.2: Comparison of fitted tree structures from Algorithm 1 and MOB for the
happiness data. Left, the result from Algorithm 1 (pg. 32); right, the result

from MOB.
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B.4 Supplementary simulations

The following considerations extend the simulation studies of the Sections 2.2.3.2 and
2.3.2.1. The most important conclusions are as follows:

e Under coefficient constancy, the variance of standardized cumulative score processes
U from raw scores depends on the intra-individual correlations in the tested vari-
able. In particular, the deviation from a Brownian bridge increases with the degree
of intra-individual correlation. By contrast, the variances of the s from pre-
decorrelated scores are fairly close to that of a Brownian bridge.

e Under coefficient constancy, the implemented tests applied on data from random
slope models and unbalanced data achieve fairly accurate type I errors.

B.4.1 Variance of standardized cumulative score process

Section 2.2.3.2 motivates the pre-decorrelation adjustment for the score-based coefficient
constancy tests for mixed models by considering the variance of computed processes U of
(Eq. 2.9) for a case example. Here, I extend this study in order to show that the variance of
processes from raw scores depends on intra-individual correlations in the tested variable.

In line with Section 2.2.3.2; I repeatedly (5,000 times) generated responses y;; with
t=1,...,50and t =1,...,10, from the logistic mixed model:

Mgy logit(P(Yy = 1)) = o+ b;, b "= N(0,1),

with 8y = 0; fitted the true model Mq,; on these data; and computed U from the raw
scores () and from the pre-decorrelated scores u%(fy). In each iteration, I computed
U regarding the three variables Z;, Z3 and Z5, which are described in Section 2.3.2. The
three variables are continuous and they can be distinguished by their degree of intra-
individual correlations (uncorrelated vs correlated vs time-invariant).

Figure B.3 compares the variance of a Brownian bridge with variances of computed
processes W (7). The red solid lines (those closer to the Brownian bridge) correspond to
processes from pre-decorrelated scores, and the blue lines to processes from raw scores.
The difference between the raw scores and the Brownian bridge increases with the degree
of the intra-individual correlations in the variable over which the scores were cumulated.
Specifically, for the uncorrelated variable Z; (top left), the variance from raw scores and
pre-decorrelated scores cover each other. For the time-invariant variable Z5 (bottom left),
the variance is smallest. By looking closely at the plot for Zs, it can be seen that the
variance from raw scores comprises 50 zigzags corresponding to the 50 individuals.

I repeated the simulation study above under the inclusion of random slopes. Specifi-
cally, to generate the responses and as the model under Hy, I used the model

Mg o 2 logit(P(Y;, = 1)) = Bo + b1 + wirbay, b; R N(0,1,),
with 8y = 0. The random slope predictor W consists of intra-individual equidistant
sequences between —0.5 and 0.5 of length 10 (the used number of observations per indi-
vidual). Figure B.4 shows the variances of the computed W (7). No irregularities appear.



B.4. Supplementary simulations 107

Z, Z3
3o 3o
- N o N
8 e 8 e
s s
3 3
S 3 - 9 -
n © n ©
S 7 S 7
o o
S - S -
o I I I I I I o I I I I I I
00 02 04 06 08 10 00 02 04 06 08 10
T T
Zs
3o
S N
© o
o ]
3
53 -
\L
§ _
o
O_ —
o I I I I I I
00 02 04 06 08 10
T
Figure B.3: Variance of standardized cumulative score processes ¥ from a logistic ran-

dom intercept model for the variables Z;, Z3 and Z5 of Section 2.3.2. Solid
lines, the variance of simulated processes based on the raw scores (blue)
and based on the pre-decorrelated scores (red); dashed lines, the variance
of a Brownian bridge.



108 Appendix B. Supplementary materials: Chapter 2

Zl Z3
5o y 5o
© N ] \Y ° N ] \
0 o 0 o
S S
3 3
S < S 9
@ ® °
S 7 S 7
o o
o o
S T T T T T S T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
T T
Zs
3o
o N
Qo
5
3
53 -
\L
g
o
O_ —
S T T T T T

00 02 04 06 08 10
T
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B.4.2 Type I errors on random slope models

An aspect that was left unconsidered in Section 2.3.2.1 is whether the accuracy of the
constancy tests carries over to models with random slopes. Therefore, I replicated the
simulation study with responses from the random slope cumulative logit mixed model

Mim  10git(P(Yie < q)) = Bg + @t[6 - 1(z,e8))] + b1i + wirhai, by S N(0,1,).

As in Section B.4.1, the predictor variable W consists of intra-individual equidistant
sequences between —0.5 and 0.5 of NV; elements. Each scenario was repeated 5,000 times.
Table B.1 reports the resulting type I errors for a nominal level of 5% when using the
correctly specified model Migor1 : logit(P (Y < q)) = B, + ©id + biy + witbiz under Hy
(i.e., d = 0). The results are similar to those in Table 2.2.

Table B.1: Evaluation on random slope models. Relative frequencies of Type I errors
in coefficient constancy tests for a nominal level of 5%. Values in brackets
correspond to tests without pre-decorrelating the scores.

N/N; 71 Zo Z3 Zy Zs Zg
ii-cor 0 0 ~2/3 ~2/3 1 1
Scale cont cat cont cat cont cat
50/5 .046 (.048) .052 (.052) .039 (.027) .044 (.034) .033 (.023) .039 (.019)
50/10 .054 (.051) .047 (.048) .045 (.026) .045 (.027) .037 (.018) .040 (.012)
100/5 .048 (.048) .051 (.052) .051 (.032) .055 (.038) .043 (.022) .044 (.019)
100/10 .056 (.057) .052 (.053) .052 (.028) .046 (.028) .049 (.018) .041 (.012)
500/5 .052 (.056) .051 (.050) .061 (.038) .045 (.033) .048 (.022) .052 (.019)
500/10 .054 (.053) .049 (.048) .059 (.031) .051 (.030) .054 (.021) .051 (.013)

I also computed the tests using the misspecified random intercept model Mop12 :
logit(P (Y < q)) = By + 16 + by under Hy. Table B.2 reports the resulting type I errors.
The results are fairly comparable with those in Table B.1. This insight does however
not mean that a misspecified random coefficient component has no impact on the tests.
In particular, here, the random coefficient predictor W is uncorrelated with the tested
variables 71, Z3 and Zs, which may not be realistic. Further research would be necessary
to provide deeper insights.

Table B.2: Evaluation on misspecified random intercept models. Relative frequencies of
Type I errors in coefficient constancy tests for a nominal level of 5%. Values
in brackets correspond to tests without pre-decorrelating the scores.

N/N; 71 Zo 73 Zy Zs Zg
ii-cor 0 0 ~2/3 ~2/3 1 1
Scale cont cat cont cat cont cat
50/5 .045 (.045) .048 (.051) .037 (.027) .050 (.035) .034 (.021) .041 (.017)
50/10 .049 (.050) .051 (.050) .045 (.026) .046 (.029) .039 (.019) .038 (.014)
100/5 .047 (.046) .049 (.048) .045 (.031) .049 (.037) .050 (.028) .044 (.018)
100/10 .049 (.049) .051 (.050) .051 (.029) .049 (.033) .037 (.015) .046 (.010)
500/5 .054 (.051) .042 (.045) .053 (.034) .049 (.034) .051 (.024) .048 (.018)
500/10 .057 (.057) .048 (.048) .056 (.027) .048 (.030) .054 (.020) .049 (.012)
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B.4.3 Type I errors on unbalanced data

Another aspect that deserves to be studied is the accuracy of the constancy tests applied
to unbalanced data. I replicated the simulation study of Section 2.3.2.1 by generating data
in which 50% of the individuals have twice as many observations as have the other 50%.
Table B.3 reports the resulting type I errors for a nominal level of 5%, when using the
correct model under Hy. The values in brackets corresponds to tests without imputation,
but with pre-decorrelation. The numbers of observations per individual are indicated in
the first column. For example, the results in the first row are based on 25 individuals with
3 observations and further 25 individuals with 6 observations.

The resulting type I errors are fairly close to 5% in most scenarios. For larger numbers
of observations the errors tend to exceed the 5% by about 1%. By comparison, the errors
with imputation are more accurate than those without.

Table B.3: Evaluation on unbalanced data. Relative frequencies of Type I errors in
coefficient constancy tests for a nominal level of 5%. Values in brackets
correspond to tests without imputation.

N/N; Z1 Zo Z3 Zy Zs Zg
ii-cor 0 0 ~2/3 ~2/3 1 1
Scale cont cat cont cat cont cat
50/(3,6) .044 (.044) .047 (.047) .042 (.045) .047 (.050) .036 (.040) .055 (.062)
50/(6,12) .051 (.050) .047 (. 049) .054 (.055) .044 (.045) .044 (.050) .050 (.054)
100/(3,6) .056 (.058) .053 (.053) .050 (.053) .046 (.050) .060 (.063) .053 (.061)
100(6,12) .048 (.048) .051 (.053) .051 (.041) .058 (.047) .045 (.037) .046 (.040)
500/(3,6) .053 (.054) .051 (.050) .066 (.057) .051 (.043) .050 (.046) .059 (.056)
500/(6,12) .051 (.051) .051 (.052) .061 (.064) .051 (.051) .061 (.074) .065 (.071)

B.5 Q-Q plots of p-values (Sec. 2.3.2.1)

The simulation studies in Section 2.3.2.1 focused on the accuracy of the implemented
coefficient constancy tests for the (practically important) nominal level of 5%. For com-
pletion, Figure B.5 shows the quantile-quantile (Q-Q) plots for the resulting p-values from
simulations with N; = 5 (the number of observations per individual) and on the continu-
ous moderators Zy, Z3 and Z5. The theoretical distribution of the p-values is the uniform
distribution for the range zero to one. The figure shows in blue the p-values from the raw
scores, and in red the p-values from the pre-decorrelated scores.

It can be seen that the p-values from raw scores are generally to conservative, in
particular for the highly intra-individually correlated variable Zs. The p-values from the
pre-decorrelated scores are fairly accurate. The tests are slightly too liberal, which can
be seen from the tendency of the red lines to run below the dashed black lines.

The corresponding Q-Q plots for the remaining scenarios, which include results from
N; = 10, the variables Z,, Z, and Zg, the nodewise tests, and the tests in Sections B.4.2
and B.4.3, do not substantially differ from Figure B.5 and are therefore omitted.
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Figure B.5: Q-Q plots for the p-values from the first part of the simulation study of
Section 2.3.2.1. Black, dashed lines, the theoretical uniform distribution;
blue, solid lines, the Q-Q lines for p-values from raw scores; red, solid lines,
the Q-Q lines for p-values from pre-decorrelated scores.
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B.6 Details on the happiness data set

B.6.1 Data subset and happiness variable

The happiness data set considered in Section 2.3.1 is a subset of the British Household
Panel Survey (Taylor et al., 2010) and it is available online from the supplementary
materials of Biirgin and Ritschard (2015). The subset includes those respondents who
experienced at least one switch from (self-) employment to unemployment between two
consecutive waves. More specifically, for each included respondent, we retained a single
trajectory formed by the up-to-three-year employment period before the unemployment
spell and the up-to-three-year unemployment spell that followed employment.

Respondent 1 Respondent 2 Respondent 6

More than usual

Same as usual

Less sO — ._\_'

Much less

I I I I I [ I I I I [ I I I I I
-3 -2 -1 0 1 23 -2-1 0 1 23 -2 -1 0 1 2

Years since transition to unemployment

Figure B.6: Happiness trajectories of three respondents. z-axis, the number of years
elapsed since the transition to unemployment; y-axis, the happiness level.

Figure B.6 shows the happiness trajectories of three of the 1,487 included respondents.
The trajectories are aligned with the transition to unemployment. They may include
gaps. For example, for Respondent 1 there is no observation at one and two years after
the transition to unemployment. Either, this respondent has changed the employment
status (e.g., found a job), or he or she did not respond to the survey in these years.
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Figure B.7: Cross-sectional distributions of happiness across years since unemployed.

Figure B.7 shows the cross-sectional distributions of happiness (missing values are
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ignored). It can be seen that the frequencies of lower happiness levels (“Much less”, “Less
s0”) increase already in the year before the transition to unemployment.

B.6.2 Univariate descriptive statistics

The Tables B.4 and B.5 give univariate summary statistics of the variables of the happiness
data set. The variables refer to the first year in unemployment.

Table B.4: Descriptive statistics of the nominal and ordinal variables of the happiness
data. The variables refer to the first year of the respondents unemployment

period.

Variable Levels n % > %

Happiness Much less 72 4.8 4.8
Less so 323 21.7  26.6
Same as usual 885 59.5  86.1
More than usual 207 13.9 100.0
all 1487 100.0

Gender Female 884  59.5  59.5
Male 603  40.5 100.0
all 1487 100.0

Education Lower Secondary 417 28.0  28.0
Upper Secondary 690 464 744
Tertiary 380  25.6 100.0
all 1487 100.0

Lives with spouse No 497 334 334
Yes 990  66.6 100.0
all 1487 100.0

Financial situation Finding it very difficult 200 134 134
Finding it quite difficult 250  16.8  30.3
Just abt getting by 497 334  63.7
Doing alright 362 24.3  88.0
Living comfortably 178  12.0 100.0
all 1487 100.0

Spouse has job No 329 221 221
No spouse/partner 497 334 555
Yes 661 44.5 100.0
all 1487 100.0

Marital status Divorced 75 5.0 5.0
Living as couple 275 18.5 23.5
Married 723 48.6 72.1
Never married 356 239 96.1
Separated 47 3.2 99.2
Widowed 11 0.7 100.0
all 1487 100.0

Head of household Head of household 751  50.5  50.5
Not head 736 49.5 100.0
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all 1487 100.0

Resp. for child < 16 No 1262  84.9 849
Yes 225 15.1 100.0
all 1487 100.0

Table B.5: Descriptive statistics of the continuous variables of the happiness data. The
variables refer to the first year of the respondents’ unemployment period.

Variable n Min Q1 Med Mean Q3 Max SD IQR
Age 1487 17.000 26.000 37.000 37.335 48.000 64.000 12.605 22.000
Household income 1487  0.550  1.000 1.230 1.284  1.560  4.650 0.488  0.560

Regional unemployment 1487  0.010 0.031  0.040 0.043 0.051 0.102 0.016  0.020
Sectoral unemployment 1487  0.007  0.027  0.031 0.040 0.052 0.136  0.020 0.025
Number of children 1487  0.000  0.000  0.000  0.643 1.000 6.000 1.034  1.000
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B.7 R-codes

BH —mm oo #
## Date: 2015-03-20

## Authors: Reto Buergin and Gilbert Ritschard

## Institution: Swiss National Centre of Competence in

## Research LIVES (http://www.lives-nccr.ch/)

##

## R-code for the real data application in "Tree-based

## varying coefficient regression for ordinal longitudinal
## responses". Code requires vcrpart (>= 0.2-3).

#i#

## Contents:

## - Data preparation

## - Fitting

## - Bootstrap evaluation

##

## We cannot garantuee that the functions work with future
## versions of R and the indicated packages.

##

## Copyright R. Buergin and G. Ritschard, 2015

## distributed under license Creative Commons BY-NC-SA

## http://creativecommons.org/licenses/by-nc-sa/3.0/

## install.packages ("vcrpart")

library("vcrpart")

library ("partykit")

library ("MASS")

## load ("varcoef-applications.RData") # load pre-runned results

#H# ——mmmmmm oo #
## Data preparation
#H# —mmmmm #

## read the *.csv file
bhps <- read.csv("bhps.csv")

## codings for nominal and ordinal variabls
bhps$PID <- factor (bhps$PID)

levs <-

c("Much less", "Less so", "Same as usual", "More than usual")
bhps$GHQL <- ordered (bhps$GHQL, levels = levs)
levs <-

c("Finding it very difficult", "Finding it quite difficult",

"Just abt getting by", "Doing alright", "Living comfortably")

bhps$FISIT <- ordered(bhps$FISIT, levels = levs)
levs <- c("LowerSecondary", "UpperSecondary", "Tertiary")

bhps$EDU <- ordered (bhps$EDU, levels = levs)

## code ordinal variables with numbers for the labeling
levels (bhps$GHQL) <- 1:nlevels(bhps$GHQL)

levels (bhps$EDU) <- 0:(nlevels (bhps$EDU) - 1)

levels (bhps$FISIT) <- 0:(nlevels(bhps$FISIT) - 1)

e e e e #
## Fitting
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## estimate model M1
#H# ————————————————

## define the vector moderator variables

z <- c("GENDER", "AGE", "EDU", "SPINHH", "HHINC",
"UEREG", "UESEC", "FISIT", "SPJB", "MASTAT", "HOH",
"NCHILD", "RACH16")

## set the formula using a ’vc’ term
ff.M1 <- GHQL ~ -1 + vc(z, by = UE, intercept = TRUE) + re(1|PID)

## set control argument (here we just enable verbose output)
ctrl.M1 <- tvcolmm_control(seed = 13)

## fit the model
t.M1 <- system.time(

M1 <- tvcolmm(formula = ff.M1, data = bhps,
ctrl.M1))[3]

control

## estimate model M2
#H# - ———————————

## set the formula
ff.M2 <- GHQL ~ UE + re(1|PID)

## fit the model
M2 <- olmm(formula = ff.M2, data = bhps)

## estimate model M3

## data preparation

bhps$AGES <- (bhps$AGE - mean(bhps$AGE)) / sd(bhps$AGE)
bhps$AGES.SQ <- bhps$AGES~2

bhps$BUE <- 1 * (bhps$TUE == -1)

bhps$HHINC.LOG <- log(bhps$HHINC)

## set the formula

ff.M3 <- GHQL ~ GENDER +
GENDER: (AGES + AGES.SQ + EDU + SPINHH +
HHINC.LOG + UEREG + UESEC +
BUE + UE + UE:UEREG + UE:UESEC) + re(1|PID)

con <- 1list(EDU = contr.treatment(levels (bhps$EDU)))

## fit the model

M3 <- olmm(formula = ff.M3, data = bhps, contrasts = con)
## estimate model M4

## -—-—-—-—-——-—————————-

bhps$FISIT.C <- factor (bhps$FISIT, ordered = FALSE)

## set the formula
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ff.M4 <- GHQL ~ ce(FISIT.C) + GENDER +
GENDER: (AGES + AGES.SQ + EDU + SPINHH +
HHINC.LOG + UEREG + UESEC +
BUE + UE + UE:UEREG + UE:UESEC) + re(1|PID)

con <- 1list(EDU = contr.treatment(levels (bhps$EDU)))

## fit the model
M4 <- olmm(formula = ff.M4, data = bhps, contrasts = con)

## estimate model M5 (M1 without random effects, by using MOB)
B —— e m e m e m e

## set the formula
ff.M5 <- GHQL ~ UE | GENDER + AGE + EDU + SPINHH + HHINC +
UEREG + UESEC + FISIT + SPJB + MASTAT + HOH + NCHILD + RACH16

## set control argument (here we just enable verbose output)
ctrl.M5 <- mob_control(verbose = FALSE)

## ’fit’ function for ’mob’ of partykit package

polr2 <- function(y, x, start, weights, offset, ...) {
xNames <- colnames (x)
y <- as.ordered(y)

xNames <- xNames [xNames != "(Intercept)"]
formula <-
as.formula(paste(paste("y ~", paste(xNames, collapse = " + "))))

data <- data.frame(x[, xNames, drop = FALSE])
data$y <- y
call <- list(as.name("polr"),

formula = formula,

data = data,

weights = weights)
if ('is.null(start)) call$start <- start
if (!is.null(offset)) call$offset <- offset
if (length(list(...)) > 0) call <- append(call, list(...))
mode (call) <- "call"
rval <- eval(call)
return(rval)

## fit the model
M5 <- mob(formula = ff.M5, data = bhps, control = ctrl.M5, fit = polr2)

## estimate model M6 (random forests)
#H ——— e

## set the formula using a ’vc’ term
ff.M6 <- GHQL ~ -1 + vc(z, by = UE, intercept = TRUE) + re(1|PID)

## set control argument (here we just enable verbose output)
ctrl.M6 <- fvcolmm_control(vtry = 5, maxwidth = 10, minsize = 50,
folds = folds_control("subsampling",
K = 100, prob = 0.632),
papply.args = list(mc.cores = 12))

## fit the model
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M6 <- fvcolmm(formula ff.M6, data = bhps,

control = ctrl.M6)
#H# - #
## Bootstrap evaluation
#H# ——mmmmm #

## functions
## —--—--—-—----

## function to extract the negative likelihood prediction error
mce <- function(object, newdata) {
if (inherits(object, "try-error")) return(NA) # error handling
ids <- levels(droplevels (newdata$PID))
ranef <- matrix (0, length(ids), 1)
rownames (ranef) <- ids

colnames (ranef) <- "(Intercept)"
if (inherits(object, "tvcm") |
inherits (object, "olmm") |
inherits (object, "fvcm")) {
pred <- predict(object, newdata, ranef = ranef, type = "response")
}

return(-sum(log(t(pred) [t (model.matrix(~ -1 + GHQL, newdata)) > 0])))

## function to compute the complexity of the model

npar <- function(object) {
if (inherits(object, "try-error")) return(NA) # error handling
if (inherits(object, "tvcm")) {

## tree-model: number of coefficients + number of splits
return (extractAIC(extract (object, "model"))[1] +
sum (sapply (object$info$node, width) - 1))

} else {

## linear models: number of coefficients
return (extractAIC (object) [1])

## function to define repeatedly selected individuals as different
rel <- function(PID, folds) {
PID <- as.character (PID)

PID <-
paste (PID,
unlist (sapply(folds, function(x) seq(l, x, length.out = x))),
sep = n_n)

PID <- factor (PID)
return (PID)

## evaluation
#H#t -—-—-—-—-————

nsim <- 250
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## create individual -wise bootstrap folds
folds <- folds_control(type = "bootstrap", K = nsim, seed = 11)
folds <- vcrpart:::tvcm_folds(M1i, folds)

e.boot <- c.boot <- matrix(, nsim, 5)

for (i in 1:ncol(folds)) {
cat ("\n\tfold", i, "...")

## create training sample
training <- bhps[rep(l:nrow(bhps), folds[, il), ]
training$PID <- rel(training$PID, folds[, i])

## create validation sample
validation <- bhps[folds[, i] == 0, ]

ctrl.M1$seed <- i

## fit the models
Miboot <- try(tvcolmm(ff.M1, bhps, control = ctrl.M1))
M2boot <- try(olmm(formula = ff.M2, data = bhps))
M3boot <- try(olmm(formula ff.M3, data = bhps, contrasts = con))
M4boot <- try(olmm(formula ff.M4, data bhps, contrasts con))
M6boot <- try(fvcolmm(formula = ff.M6, data = bhps,

control = ctrl.M6))

## negative log-likelihood prediction error

e.boot[i, ] <- c(mce(Milboot, validation),
mce (M2boot , validation),
mce (M3boot, validation),
mce (M4boot, validation),
mce (M6boot, validation))

## complexity of model

c.boot[i, ] <- c(mnpar(Miboot),
npar (M2boot) ,
npar (M3boot),
npar (M4boot),
NA)

cat (" OK")
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Supplementary materials: Chapter 3

C.1 Simulation study

The purpose of this supplementary simulation study is to evaluate the coefficient-wise
partitioning algorithm on its ability to identify an underlying, data generating varying
coefficient model. Two simplifications are made. First, the data generating models are
identifiable by recursive partitioning, that is, the considered varying coefficients are all
tree-structured. Second, only binary moderators are included so that the model building
problem reduces to a variable selection problem. For the evaluation, the coefficient-wise
partitioning approach ﬂmm (Eq. 3.3) is compared with the single partition approach
Miee (Eq. 3.2), using for both approaches the in Chapter 3 proposed partitioning and
tree size selection criteria. The main conclusions of the studies are as follows:

e The performance of coefficient-wise partitioning improves with increasing numbers
of observations. Specifically, the chances of identifying the underlying model increase
and the chances of selecting “noisy” moderators decrease.

e The results indicate a certain tendency towards overfitting. For sufficiently large
numbers of observations, the fitted models practically always include the underlying
model as a nested model, but, in about one of five cases, they incorporate at least
one noisy moderator.

e Coefficient-wise partitioning outperforms single partitioning if the coefficient func-
tions differ one from another, and (vice versa) the single partition approach outper-
forms coefficient-wise partitioning if all coefficient functions have the equivalent tree
structure.

Generating the simulation data The responses are generated from Gaussian varying
coefficient models of form

My = Bo(zuy - oy 250) + xi1(200s - - - 2510) + €0y & RS N(0,1),

fori = 1,..., N, and (tree-structured) coefficient functions Gy(-) and S;(-), as specified
below. The predictor, X, is drawn from a standard normal distribution and the six
moderators, Zy, ..., Zs, are drawn from a binomial distribution with success probability
0.5. The number of observations, NN, is varied between 50 and 500, and each scenario was
repeated 2,000 times.
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Specification of the algorithm Two models are fitted on each generated data set, a
first that fits separate partitions for each of Fy(-) and f;(+), and a second that incorporates
a single partition for the two varying coefficients. Models with coefficient-wise partitions
are fitted with the command:

R> z <- C("ZO", “Zl”, "22", "23", "24", IIZ5II)

R> M1 <- tvcglm(y ~ - 1 + vc(z) + ve(z, by = x),
+ family = gaussian(), data = dat,
+ control = control)

with “z” a character vector that includes the names of Z; to Z5 in the generated data
“dat”. The single partition approach is fitted with the command:

R> M2 <- tvcglm(y ~ - 1 + vc(z, by = x, intercept = TRUE),
+ family = gaussian(), data = dat,
+ control = control)

The control argument is adjusted according to the sample size. For scenarios includ-
ing more than 300 observations, the default parameters are used. In scenarios with less
than 300 observations, the default parameters would stop the partitioning stage too early.
Stopping too early is a disadvantage for finding the true model, but an advantage for not
selecting noisy variables. Thus, the principal partitioning parameters (cf. Algorithm 2)
Ny (minimum node size) and D,,;, (minimum training error reduction) are decreased.
Specifically, for N < 100, I used Ny = 5 and D,,;, = 0.5, for 100 < N < 200, I used
Ny =10 and D,,;,, = 1 and for 200 < N < 300, I used Ny = 20 and D,,,;,, = 2.

Performance measures Four measures are considered: (i) identified underlying model,
the relative frequency of identifying the underlying model exactly; (ii) model is nested,
the relative frequency of including the underlying model as a nested model, possibly (not
necessarily) with additional noisy variables; (iii) selected the true moderators, the relative
frequency of identifying all moderators that determine the coefficient functions; and (iv)
false variable selections, the average number of selected noisy moderators.

C.1.1 Coefficient-wise different moderation

In this first scenario, the varying intercept, (5y(-), is an indicator function of Zy; and
the varying coefficient of X, f51(-), is an indicator function of Z;. Z,, ..., Zs are noisy
variables. The data generating model is

/\/l1y,:—1+21(zm:1)—|—xz—xl1(21,:1)+5,, €lNN(O,1)

The scenario is tailored for the coefficient-wise partitioning approach. The single
partition approach is not able to identify the structure exactly. Therefore, single partition
fits are defined to identify the underlying model exactly if the terminal nodes divide
the data into the four strata By = {Z; = 0N Zy = 0}, By = {Z; = 0N Zy, = 1},
Bs={Z1=1NZy =0} and By ={Z1 =1NZy = 1}.

Figure C.1 shows the results on the four performance measures. It can be seen that the
relative frequency of identifying the true model increases with larger N’s, but stagnates
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Figure C.1: Coefficient-wise different moderation: Solid lines, results for coefficient-wise
partitioning; dashed lines results for single partitioning.

at about 85%. By contrast, the relative frequencies of including the underlying model as
a nested model and of identifying all moderators that determine the coefficient functions
reach 100% from about 300 resp. 200 observations. Furthermore, the average number
of selected noisy moderators decreases by the number of observations, but stagnates at
about 0.2 variables. By comparison, the coefficient-wise partitioning approach (solid lines)
outperforms the single partition approach for small N’s, but is very similar for large N’s.

C.1.2 Single partition moderation

The second scenario is tailored for the single partitioning approach. The varying intercept,
Bo(+), and the varying coefficient of X, f;(-), are based on a common tree structure.
Specifically, I consider the three strata By = {Zy = 0} with (5, 51) = (—1,—1); By =
{Zo = 1ﬂZl = 0} with (50,61) = (0,0), and Bg = {Z() = 1ﬂZl = 1} with (Bo,ﬁl) = (1, 1)
Again, Z,, ..., Z5 are noisy variables. The model can be written as

MQ Y = _1(201‘ = 0) — 1(ZOZ =1Nz; = 1)+
2;(1(z1; =0) = L(zos = 1Nz, = 1))+, & ~N(0,1)

The resulting performances are shown in Figure C.2. Like in the first scenario, the
performance of both partitioning approaches improves with increasing N’s. By contrast,
here, the single partition approach outperforms the coefficient-wise partitioning approach.
The reason may be the following. The coefficient-wise partitioning approach must find
two times the identical tree-structure, which is apparently more challenging than finding
it only once as must the single partition approach. A consequence is also that, for small
N’s, the false selection rate of the coefficient-wise approach is with 0.74 quite high.
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Figure C.2: Single-partition moderation: Solid lines, results for coefficient-wise parti-
tioning; dashed lines results for single partitioning.

C.2 Details to approximate models of Algorithm 2

C.2.1 Relation between the accurate and the approximate search
model

This supplementary section derives and discusses the relation between the accurate search
model M; iy (Eq. 3.9) and the corresponding approximate model Mkml] (Eq. 3.8). It is
shown that M3, , ; and Mkmzj have an equivalent structure and with it how the coefficients
of the two models relate to each other.

By way of reminder, the “current” model M (Eq. 3.7) of Algorithm 2 has the form

K My

M i =x0B0+ > Y Wz € Bom)TitBom - (C.1)

k=1m=1
Now, consider that we search for a binary split for some node By,,, by using Z; as the
partitioning variable. We defined in (Eq. 3.9) the accurate search model for the jth split
in Z; as

Mkng i o= =XVt O, L(zZwi € Buw) xwiVim+ Y 1(Zik € Brmijs) TirVs -
(k" ,m/)#(k,m) s=1,2
(C.2)

The model fazng‘ simply augments the current model M by replacing the terms for node
By by terms for its subnodes Byyj1 and Bypje. To simplify the estimation, Algorithm 2

substitutes the accurate model ./\//\lzmlj by the approximate model

2
M 771(3) =i+ Y 1z € Brmijs)Taw Bs - (C.3)
s=1
The approximate model /(/l\kmlj incorporates as offsets the fitted values 7); of the current
model M. This reduces the complexity of the estimation to the three unknown coefficients
p1, B2 and ¢ (the dispersion parameter).
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From the following decomposition of M kernlj s

2
0 = > Uzik € Branijs)ins (C4)
s=1
R K Mg R 2
= X;B,@O + Z Z 1(Zik’ € Bk/m/)xiklﬂklm/ + Z 1<Z1k < Bkmljs)xikﬁs (05)
k'=1m'=1 s=1
= x0B, + S Uz € Buw)Tiw B +
(k' ,m”)#(k,m)
2 A
> Uzik € Bromijs)Tin(Brm + Bs) (C.6)
s=1

it can be seen that the accurate model M\Zmlj and the approximate model M\kmlj have an
equivalent structure. It becomes also apparent that the only differences between the two
models are the contrasts for the coefficients of the predictor variable X, which relate to
each other as

Vs = Bkm +08, fors=12. (C.7)

Note that, generally, 4, # Bkm + BS because /ﬂzng‘ includes with the coefficients «, and
Yerme for (K',m’) # (k,m) more free parameters.

C.2.2 Approximate model for ordering nominal categories

The technique for ordering the categories of nominal moderators of Section 3.2.2.1 requires
us to estimate a model with category-specific coefficients. To simplify the estimation of
this model, we use an analogous approximation technique to that used for the search
model /ﬁzmlj (Eq. 3.9) in Algorithm 2. The goal of this supplementary section is to
explain the details of this approximation technique.

Consider that we dispose of the model M (Eq. 3.7),

K My

M: U XiToﬂo + Z Z L(Zi € Bim)TitBrm - (C.8)

k=1m=1
The aim is to estimate the category-specific coefficients of a nominal moderator Z; with
categories 1,...,C in some node By,,. The accurate model would be

Mkml i ) 1070 + Z 1 (Zk’i € Bkz’m’) Trti Vi'me 1

(k' m/)#(k,m)
c
Z 1 Zi, € Bkm (Zikl = C) TikYe (Cg)
c=1
where 71, ..., 7¢ are the category-specific coefficients. Now, analogous to the approxima-

tion of model Mj,;; (Eq. 3.9) by the model M\kmlj (Eq. 3.8), we approximate the model
M, by the model

C
Mkml . 7]2(0) == TA]Z + Z 1(Zik c Bkm)l(zikl = C)Iik/ﬁc . (ClO)

c=1
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In model M\kmly 7; are the fitted values of the current model M. The category-specific
coefficients ~., c =1,...,C, can then approximately be estimated by

Ye = Bem + Be, forc=1,...,C .

(C.11)

This can easily be seen from the derivation shown in (Eq. C.4)-(Eq. C.6).

C.3 Descriptive statistics of the used data sets

The following Tables C.2-C.8 provide univariate descriptive statistics of the variables of
the data sets used in Chapter 3. Table C.1 overviews these tables and links them with
the corresponding sections.

Table C.1: Overview of tables with descriptive statistics of the used data sets.

Table Name Section Types of variables
C.2 UCBA data set 3.2.1 Binary, nominal
C.3 Pima data set 3.4.1 Binary
C.4 Pima data set 3.4.1 Continuous
C.5 Schooling data set 3.4.2 Binary
C.6 Schooling data set 3.4.2  Continuous
C.7 PL (parental-leave) data 3.4.3 Binary, nominal
C.8 PL (parental-leave) data 3.4.3 Continuous

Table C.2: Descriptive statistics of variables of the UCBA data set.

Variable Levels n % > %

Admitted No 2771 61.2 61.2
Yes 1755  38.8 100.0
all 4526  100.0

Gender Male 2691  59.5  59.5
Female 1835  40.5 100.0
all 4526  100.0

Department A 933 20.6 20.6
B 585 12.9 33.5
C 918 20.3 53.8
D 792 175 T71.3
E 584 12.9 84.2
F 714 15.8 100.0
all 4526  100.0
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Table C.3: Descriptive statistics of the binary variables of the Pima data set.

Variable Levels n % > %

Diabetes  Negative 475 65.6  65.6
Positive 249  34.4 100.0
all 724 100.0

Table C.4: Descriptive statistics of the continuous variables of the Pima data set.

Variable n Min @; Med Mean Q3 Max SD IQR
Plasma glucose concentration 724 44.0 99.8 117.0 121.9 142.0 199.0 30.8 42.2
Number of times pregnant 724 0.0 1.0 3.0 3.9 6.0 170 34 5.0
Diastolic blood pressure 724 240 64.0 720 72.4  80.0 1220 124 16.0
Body mass index 724 182 275 324 325  36.6 671 6.9 9.1
Diabetes pedigree function 724 0.1 0.2 0.4 0.5 0.6 24 03 0.4
Age 724 21.0 24.0 29.0 33.4 41.0 81.0 11.8 17.0
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Table C.5: Descriptive statistics of the binary variables of the Schooling data set.

Variable Levels n % > %

Is person black? No 2307  76.6 76.6
Yes 703 234 100.0
all 3010 100.0

Lived with mom/ dad at age 14?7 No 634 211 21.1
Yes 2376 78.9 100.0
all 3010 100.0

Lived in south in 19667 No 1763  58.6  58.6
Yes 1247 41.4 100.0
all 3010 100.0

Lived in south in 19767 No 1795  59.6  59.6
Yes 1215 40.4 100.0
all 3010 100.0

Enrolled in 1976 No 2732 90.8 90.8
Yes 278 9.2 100.0
all 3010 100.0

Lived in smsa in 19767 No 864  28.7  28.7
Yes 2146 71.3  100.0
all 3010 100.0

Grew up near 4-yr college? No 957 31.8 31.8
Yes 2053 68.2 100.0
all 3010 100.0

Table C.6: Descriptive statistics of the continuous variables of the Schooling data set.

Variable n Min @1 Med Mean s Max SD IQR
Logarithm of wage per hour 1976 3010 46 6.0 6.3 6.3 6.6 7.8 04 0.6
Education in 1976 3010 1.0 12.0 13.0 13.3 16.0 18.0 2.7 4.0
Working experience in 1976 3010 0.0 6.0 8.0 89 11.0 23.0 4.1 5.0
Age in 1976 3010 24.0 25.0 28.0 28.1 31.0 34.0 3.1 6.0

Mother-father education class 3010 1.0 3.0 6.0 5.9 8.0 9.0 2.6 5.0
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Table C.7: Descriptive statistics of the binary and nominal variables of the PL data.

Variable Levels n % > %

Returned to work No 944 15.3 15.3
Yes 5236 84.7 100.0
all 6180 100.0

Whether childbirth was in July  June 2955  47.8  47.8
July 3225 52.2 100.0
all 6180 100.0

Whether white collar worker No 3475 56.2 56.2
Yes 2705 43.8 100.0
all 6180 100.0

Age 15-19 601 9.7 9.7
20-24 2675 43.3 53.0
25-29 2130 34.5 87.5
30-34 607 9.8 97.3
35-44 167 2.7 100.0
all 6180 100.0

Industry Other 1329  21.5 21.5
Retail 7T 12.6 34.1
Social Insurance 743 12.0 46.1
Hotels 547 8.8 54.9
Health 395 6.4 61.3
‘Wholesale 385 6.2 67.6
Clothes 248 4.0 71.6
Hygiene 244 4.0 75.5
Food 213 3.5 79.0
Banks 189 3.1 82.0
Law 175 2.8 84.9
Education 153 2.5 87.3
Electrical 139 2.2 89.6
Construction 114 1.8 91.4
Metal 106 1.7 93.2
Text 102 1.6 94.8
PaperPrint 87 14 96.2
Wood 85 1.4 97.6
Chemicals 80 1.3 98.9
Leather 69 1.1 100.0
all 6180 100.0

Region Vienna 2001 324 324

Upper Austria 977 15.8  48.2
Lower Austria 802 13.0 61.2

Styria 727 11.8 729
Tyrol 478 7.7 80.7
Carinthia 428 6.9 876
Salzburg 406 6.6 94.2
Voralberg 243 3.9 981
Burgenland 118 1.9 100.0

all 6180 100.0
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Table C.8: Descriptive statistics of the continuous variables of the PL data set.

Variable n Min @1 Med Mean Qs Max SD IQR
Years employed before birth 6180 0 29 5.3 5.8 8.2 176 3.9 5.3
Years unemployed before birth 6180 0 0.0 0.0 03 0.3 5.8 0.5 0.3
Daily earnings at birth 6180 0 232 305 33.9 40.2 1510.7 405 17.0

Daily earnings 1989 6180 0 267 37.1 36.5 48.9 98.6 20.7 22.1
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C.4 R-codes

A e e #
## Date: 2015-03-20

## Authors: Reto Buergin and Gilbert Ritschard

## Institution: Swiss National Centre of Competence in

## Research LIVES (http://www.lives-nccr.ch/)

##

## R-code real data applications in "Coefficient-wise

## tree-based varying coefficient regression with

## R-package ’vcrpart’. Code requires vcrpart (>= 0.2-3),
## mlbench (>= 2.1-1) and Ecdat (>= 0.2-7). Running the
## entire code will take about two hours.

##

## Contents:

## - Load required packages

## - UCBA data

## - Pima data

## - Schooling data

## - Parental -leave data

##

## We cannot garantuee that the functions work with future
## versions of R and the indicated packages.

##

## Copyright R. Buergin and G. Ritschard, 2015

## distributed under license Creative Commons BY-NC-SA
## http://creativecommons.org/licenses/by-nc-sa/3.0/

B m e mmm e #
B# — e mmm e #
## Load required packages

BB mmm e m e #
## install.packages(c("vcrpart", "mlbench", "Ecdat"))

library("vcrpart") # fitting functions

library("mlbench") # Pima data

library("Ecdat") # Schooling data

## load ("vcrpart-applications.RData") # load pre-runned results

B —— e - #
## UCBA data
#H ——————mmmmm e #

## load the data

data("UCBAdmissions")

UCBA <- as.data.frame (UCBAdmissions)
UCBA$Admit <- 1 * (UCBA$Admit == "Admitted")
UCBA$Female <- 1 * (UCBA$Gender == "Female")
head (UCBA, 3)

## fit the two linear models
#H ——— -

## fit the basis model with only ’Female’ in the predictor
glmS.UCBA <- glm(formula = Admit ~ Female, data = UCBA,

family = binomial (), weights = UCBA$Freq)
summary (glmS.UCBA)
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## fit the extended model with Department-wise effects
glmL.UCBA <- glm(formula = Admit ~ -1 + Dept + Dept:Female,
data = UCBA, family = binomial (),
weights = UCBA$Freq)
summary (glmL.UCBA)

## partitioning
#H -

vemL.UCBA <- tvcglm(Admit ~ -1 + vc(Dept) + vc(Dept, by = Female),
data = UCBA, family = binomial(),
weights = UCBA$Freq,
control = tvcglm_control(minsize = 30,
mindev = 0.0, cv = FALSE))

## decision tree plots
plot(vemL.UCBA, type = "coef", part "A", tnex
plot (vecmL.UCBA, type = "coef", part = "B", tnex

3)
3)

## split path (first iteration)
splitpath(vcmL.UCBA, steps = 1, details = TRUE)

## computational details: splits in nominal moderators
glmCW.UCBA <- glm(formula = Admit ~ - 1 + Dept:Female,
family = binomial (),
data = UCBA,
weights = UCBA$Freq,
offset = predict(glmS.UCBA))
coef (glmCW.UCBA)

## pruning
## ----——-

## prune with lambda = 6 (fixed)
vcm.UCBA <- prune(vcmL.UCBA, cp = 6)

## show the prune path (first iteration)
prunepath(vcm.UCBA, steps = 1)

## cross-validation
cv.UCBA <- cvloss(vcmL.UCBA,
folds = folds_control (weights = "freq",
seed = 13))
plot (cv.UCBA)

## prune with ’lambda’ from cross-validation
vcm.UCBA <- prune(vcmL.UCBA, cp = cv.UCBA$cp.hat)

## decision tree plots

plot (vcm.UCBA, type = "coef", part = "A")
plot(vcm.UCBA, type = "coef", part = "B")
B mm e #

## Pima data
## - - - - - ———— - #
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## the gemneral control parameter object
control <- tvcglm_control(folds = folds_control(seed = 13))

## load and prepare the data
data("PimaIndiansDiabetes2")
Pima <- na.omit(PimalIndiansDiabetes2[, -c(4, 5)1)

## model with multivariate coefficient functions (slow)
vem.Pima.1 <-
tvcglm (diabetes -1 + vc(pregnant, pressure, mass, pedigree, age) +
vc (pregnant, pressure, mass, pedigree, age, by = glucose),
data = Pima, family = binomial(), control = control)

summary (vcm.Pima.1)
plot(vcm.Pima.1, type "coef", part = "A")
plot(vcm.Pima.1, type = "coef", part = "B")

## model with additive coefficient functions (slow)
vcm.Pima.2 <-
tvcglm (diabetes

1 + glucose +

vc (pregnant) + vc(pregnant, by = glucose) +
vc (pressure) + vc(pressure, by = glucose) +
vc(mass) + vc(mass, by = glucose) +
vc(pedigree) + vc(pedigree, by = glucose) +
vc(age) + vc(age, by = glucose),
data = Pima, family = binomial(), control = control)
summary (vcm.Pima.2)
## model from MOB algorithm
mob.Pima.1 <-
glmtree(diabetes ~ glucose | pregnant + pressure + mass +
pedigree + age, data = Pima, family = binomial ())

summary (mob.Pima.1)
plot (mob.Pima.1)
## note: the plot in the article was constructed manually

## -—-mm oo #
## Schooling data
#H —mmm #

## load and prepare the data
data("Schooling")
Schooling <- Schoolingl[c(19, 21, 7, 28

, 14, 17, 18, 20, 23, 2, 4)]
Schooling$black <- 1 * (Schooling$black

= "yes")

I ©

## construct the instrumental variable
Schooling$ed76.IV <- fitted(lm(ed76 ~ nearc4, Schooling))

## fit the basis model
lm.School <- Im(lwage76 ~ ed76.IV + exp76 + I(exp76°2) + black,
data = Schooling)

## fit the TVCM model (slow)
f.School <- lwage76 ~ -1 + ed76.IV + exp76 + I(exp7672) +
vc(age76, momdadl4, south66, south76, famed, enroll76, smsa76) +
vc(ed76.IV, exp76, age76, momdadl4, south66,
south76, famed, enroll76, smsa76, by = black)
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vem.School <- tvcglm(formula = f.School, data = Schooling,
family = gaussian(), control = control)
summary (vcm.School)

## plot the cross-validated error
plot(vcm.School, "cv")

## plot the tree-structure

plot(vcm.School, "coef", part = "A", tnex = 3)
plot(vcm.School, "coef", part = "B", tnex = 3)

## show all coefficients

coef (vem.School)

Bf o mmm e m e m e #
## Parental -leave data

B# o m oo o e o #
data ("PL")

## fit the basic model
glm.PL <- glm(uncjl0 ~ july, data = PL, family = binomial)
summary (glm.PL)

## specify the formula

f.PL <- uncj1i0 ~ 1 + july +
vc(age) + vc(age, by = july) +
vc(workExp) + vc(workExp, by = july) +
vc (unEmpl) + vc(unEmpl, by = july) +
vc(laborEarnings) + vc(laborEarnings, by = july) +
vc(whiteCollar) + vc(whiteCollar, by july) +
vc(wage) + vc(wage, by = july) +
vc(industry.SL) + vc(industry.SL, by = july) +
vc(region.SL) + vc(region.SL, by = july)

## fit the TVCM model (slow)
vem.PL <- tvcglm(formula = f.PL, family = binomial(),
data = PL, control = control)

summary (vcm.PL)
plot(vem.PL, "cv")

## plot the tree-structures with at least one split

par (ask = TRUE)

which <- which(sapply(vcm.PL$info$node, width) > 1)

for (i in which) plot(vcm.PL, "coef", tnex = 2, part = i)
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