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Abstract

Heterogeneous Preferences and Equilibrium Trading
Volume

The representative-agent Lucas model stresses aggregate risk, and hence, does
not allow to study the impact of agents’ heterogeneity on the dynamics of
equilibrium trading volume. In this paper, we investigate under what condi-
tions non-informational heterogeneity, i.e. differences in preferences and en-
dowments, leads to nontrivial trading volume in equilibrium. We present a
non-informational no-trade theorem that provides necessary and sufficient con-
ditions for zero-equilibrium trading volume in a continuous-time Lucas market
model with heterogenous agents, multiple goods and multiple securities. We
explain in detail how no-trade equilibria are related to autarky equilibria, port-
folio autarky equilibria and peculiar financial market equilibria, that play an
important role in the literature on international risk sharing.

JEL Classification: G12, G14.

Keywords: trading volume, no-trade equilibrium, portfolio autarky equilib-
rium, peculiar equilibrium, international finance.
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1 Introduction

The main focus of the representative-agent Lucas model (Lucas 1978) is on
equilibrium prices and returns. Agents in this model are identical by assumption.
As a consequence, the equilibrium sharing rule is linear and can be implemented
without trade in financial securities. The representative-agent Lucas model is
therefore valuable as a tool to study aggregate market risk, but at the same
time, does not provide any testable hypothesis for equilibrium trading volume.

In order to generate nontrivial trading volume in a Lucas type model, one
needs to model heterogeneity among agents. Heterogeneity can be introduced
in terms of either information1, preferences or endowments. While it is well
understood that in symmetric information models the degree of heterogeneity
of endowments, preferences and beliefs determines the equilibrium trading vol-
ume, necessary and sufficient conditions for trade in a dynamic model are still
unavailable. The main result of this paper fills this gap. It comes in the form of
a no-trade theorem which provides necessary and sufficient conditions for zero
trading volume in a Pareto efficient Lucas economy with multiple goods, mul-
tiple securities, symmetric information and homogeneous beliefs. We illustrate
this result in a number of examples which include most of the classical multi-
good utility functions used in financial economics. These examples show that
the existence of a no-trade equilibrium does not necessarily require that agents
have identical preferences. In particular, we show that such an equilibrium can
exist when agents have the same constant elasticity of substitution but assign
different weights to each good in their consumption bundle.

As shown by Cass and Pavlova (2004) in a continuous-time model with mul-
tiple stocks, markets are not necessarily complete in equilibrium even if the
number of risky securities equals the number of sources of risk. In order to cir-
cumvent the difficulties arising in the study of inefficient equilibria, we restrict
our attention to Pareto efficient equilibria and use the resulting proportionality
of the utility gradients to infer the characteristics of preferences and endowments
that do not generate trade in equilibrium. In contrast, in finite dimensional mod-
els, it is possible to choose the aggregate dividend in such a way that markets
are necessarily dynamically complete in equilibrium. Such a model is studied in
Judd et al. (2003), where the aggregate dividends are given as an irreducible,
stationary Markov chain. They show that in this case, the optimal consumption
policies inherit the time homogeneity of the aggregate dividend, and they con-
clude that no trading occurs after the initial period in equilibrium irrespective
of the agents’ preferences. Their result is striking, but one should bear in mind
that stationarity and irreducibility are strong assumptions. In particular, they

1See Pfleiderer (1984), Kyle (1985), Foster and Vishwanathan (1990) and Wang (1994) for
examples of models with asymmetric information. Note that to overcome the informational
no-trade theorems of Milgrom and Stokey (1982) and Holmström and Myerson (1983), these
models have to introduce exogenous liquidity traders or stochastic supply shocks.
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imply that all information about future dividends is revealed at the initial time
and prevent the introduction of dividend growth into the model. Furthermore,
Bossaerts and Zame (2005) show that the no-trade result of Judd et al. (2003)
fails to hold as soon as the individual endowments are non-stationary even if
stationarity is preserved at the aggregate level. Our study complements this
discussion by allowing for general arbitrarily growing dividend processes in con-
tinuous time. However, this generalization comes at a cost, as it then becomes
impossible to assume market completeness a priori.

A natural context in which our results can be applied is that of international
finance, where each agent is interpreted as being representative of a country and
the relative prices of goods represent the terms of trade. A very active area of
research in this field is the analysis of international capital flows. In particular,
Souriounis (2003) and Hau and Rey (2005) show that equity returns and port-
folio rebalancings are an important source of exchange rate dynamics. Given
these empirical findings, it is surprising that many of the theoretical asset pricing
models in the international finance literature2 consider preference specifications
that satisfy the conditions of our theorem and thus fail to produce realistic in-
ternational capital flows. Our result describes the structure of preferences for
which a no-trade equilibrium prevails, and thus characterizes the minimal level
of preference heterogeneity required to generate nontrivial portfolio rebalancings
in equilibrium.

The no-trade equilibria introduced in this paper are related to autarky and
portfolio autarky equilibria which are prominently featured in international fi-
nancial economics. A no-trade equilibrium is an autarky equilibrium, if initial
endowments are individually optimal. Lucas (1982) uses such equilibria to study
interest rates and currency prices in a general preference setting. He derives a
perfectly pooled equilibrium assuming that investors have identical preferences
and symmetric endowments. It follows from our main result and examples, that
such perfect pooling is not necessary: autarky equilibria are not necessarily
symmetric and can exist even if agents are not identical.

In a multi-good Lucas model, intertemporal risk sharing occurs through two
channels. First, as in a single good economy, agents can trade Arrow-Debreu
securities synthesized from risky assets to finance their consumption plans. At
the same time, relative price movements and the possibility of trade in the spot
market for goods provide additional means for consumption smoothing. The im-
portance of this second channel for international trade has been stressed in the
papers of Cole and Obstfeld (1991), Zapatero (1995), Serrat (2001) and Pavlova
and Rigobon (2003). In particular, Cole and Obstfeld (1991) study the welfare
gains associated with the existence of international financial markets and show

2Cole and Obstfeld (1991), Backus, Kehoe and Kydland (1992), Zapatero (1995), Baxter
and Crucini (1995), Arvantis and Mikkola (1996), Baxter and Jermann (1997), Kehoe and
Perri (2002), Heathcote and Perri (2002).
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that for identical Cobb-Douglas preferences, there exists a Pareto efficient equi-
librium for which optimal consumption plans can be financed without trades in
financial assets. Such an equilibrium is referred to as a portfolio autarky equi-
librium. Interestingly, and as demonstrated by our examples, for this class of
preferences there exists a no-trade equilibrium that yields the same consumption
allocation and prices. It turns out that, in general, the consumption allocation
of an efficient no-trade equilibrium can be implemented with portfolio autarky
if and only if all investors have unit elasticity of substitution.3 If the same allo-
cation can be achieved either by trading once in the financial markets and never
after that, or by trading continuously in the goods market, financial markets
are redundant and agents are indifferent with respect to their portfolio holdings.
We formalize this intuition by showing that when efficient no-trade equilibria
and efficient portfolio autarky equilibria coincide, the equilibrium is necessarily
peculiar in the sense that all but one of the risky assets are redundant. Cass and
Pavlova (2004) introduce peculiar equilibria and prove their existence in a model
with log-linear preferences. Our results show that the property of logarithmic
preferences that implies the existence of peculiar financial market equilibria is
their unit elasticity of substitution. This property implies that the terms of
trade are inversely proportional to the ratio of aggregate dividends, and thus,
stock prices are linearly dependent.

The rest of the paper is organized as follows. Section 2 introduces our
multi-good economy and defines the different types of equilibria to be studied
in the paper. Section 3 presents some simplifying notation and preliminary
results. Then, Section 4 contains our main result and shows its application in a
number of examples prominently featured in international asset pricing. Section
5 discusses the economic relevance of no-trade equilibria and their relation to
linear sharing rules, fund separation, and international risk sharing. Section
6 shows that no-trade equilibria are non-robust with regard to extensions of
the basic model that introduce heterogeneous beliefs and random endowments.
Proofs of all results are provided in Appendix 7.

2 The Economy

We consider a continuous-time, stochastic economy on the finite time interval
[0, T ] modelled as follows.

2.1 Information Structure

The uncertainty is represented by a filtered probability space (Ω,F ,F, P ) on
which is defined an n−dimensional Brownian motion B. The filtration F is the

3This condition is necessary and sufficient provided that the no-trade equilibrium is not
already an autarky equilibrium which by definition is also a portfolio autarky equilibrium.
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usual augmentation of the filtration generated by the Brownian motion and we
let F = FT so that the true state of nature is completely determined by the
paths of the Brownian motion up to the terminal date of the model. All agents
are endowed with the same information structure represented by F and the same
beliefs represented by the probability measure P .

All random processes to appear in the sequel are assumed to be progressively
measurable with respect to the filtration F, and all statements involving random
quantities are understood to hold either almost surely or almost everywhere
depending on the context.

2.2 Consumption Space and Goods Markets

There is a finite number of perishable consumption goods indexed by a ∈ A for
some finite set A with A := card(A) . The consumption space C is given by the
set of nonnegative and integrable consumption rate processes.

Each of the A available consumption goods can be traded in a perfect spot
market. We denote by p the A−dimensional vector process of relative prices
of consumption goods. The first consumption good is assumed to serve as
numéraire and therefore its relative price is normalized to one, i.e. p1

t = 1.

2.3 Securities

The financial market consists of a riskless savings account in zero net supply
and n risky stocks in positive net supply. Each stock represents a claim to an
exogenously specified stream of dividends denominated in one of the A available
consumption goods. More precisely, we assume that for each consumption good
a ∈ A there is a number na, with

n :=
∑
a∈A

na ≤ n, (1)

of traded securities whose dividends are paid in consumption good a. The col-
umn vector of dividend rate processes associated with these securities is denoted
by Da and is assumed to be a nonnegative Itô process of the form

Da
t = Da

0 +
∫ t

0

(
ρa

sds+ ϑa
sdBs

)
(2)

for some vector valued drift ρa and matrix valued volatility ϑa. In what follows,
we denote by D the n−dimensional column vector obtained by stacking up the
good-specific dividend vectors (Da)a∈A and assume that its volatility matrix ϑ
has full row rank.4

4This assumption appears natural given that the focus of this paper is to identify necessary
and sufficient conditions for the existence of no-trade equilibria. Indeed, it allows us to exclude
the non-generic cases where a no-trade equilibrium exists simply because the dividends are
designed to pay exactly the agents’ optimal consumption plans.
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The initial value of the savings account is normalized to one and we assume
that in equilibrium its price process is given by

S0
t = exp

(∫ t

0

rsds

)
(3)

for some instantaneous interest rate process r such that the above integral is
well defined. For each consumption good a ∈ A, we denote by Sa the vector of
prices of the stocks whose dividends are paid in good a and assume that

Sa
t +

∫ t

0

pa
sD

a
sds = Sa

0 +
∫ t

0

(
µa

sds+ σa
sdBs

)
(4)

for some vector valued drift µa and matrix valued volatility σa such that the
above integrals are well defined. The security price coefficients (r, {σa, µa}), or
equivalently the security price processes (S0, {Sa}) as well as the vector p of
relative goods prices are to be determined endogenously in equilibrium.

2.4 Trading Strategies

Trading takes place continuously and there are no frictions such as transaction
costs or taxes. Given the security prices, a trading strategy is a collection of
share holdings

θ := (θ0, {θa : a ∈ A}) (5)

where θ0 represents the number of shares of the savings account held in the
portfolio and, for each consumption good a ∈ A, the vector process θa represents
the number of shares held in the portfolio of each of the stocks paying dividends
in good a. A trading strategy θ is said to be admissible if the associated wealth
process, which is defined by

Wt := θ0tS
0
t +

∑
a∈A

(θa
t )>Sa

t , (6)

is uniformly bounded from below by a constant. In what follows, we denote by
Θ the set of all admissible trading strategies.5

2.5 Preferences and Endowments

The economy is populated by two price taking agents indexed by i ∈ {1, 2}. The
preferences of agent i over consumption plans in C are represented by a time
additive expected utility functional

Ui(c) := E

[∫ T

0

ui(t, ct)ds

]
. (7)

5The requirement that the wealth process of an admissible trading strategy be bounded
from below is standard in the literature. It rules out the possibility of doubling strategies and
thus implies that the set Θ is free of arbitrage opportunities. See Dybvig and Huang (1988).
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Throughout the paper we assume that the utility function ui satisfies textbook
regularity, monotonicity and concavity assumptions as well as a multiple goods
version of the Inada conditions.6 We note for later use that, as a result of the
above assumptions, the utility gradient ∇ui is a one-to-one mapping and hence
admits an inverse function which we denote by fi.

Agent i is initially endowed with a portfolio consisting of νak
i ≥ 0 shares of

each of the available stocks, where νak
i refers to the kth stock paying dividends in

good a. We assume, without loss of generality, that the agents’ initial portfolios
verify the identity

νak
1 + νak

2 = 1, (a, k) ∈ A× {1, . . . , na} (8)

so that the net supply of each of the stocks is normalized to one unit. For further
reference we also denote by νa

i the vector of the number shares of stocks paying
dividends in good a in the initial portfolio of agent i.7

2.6 Feasible Consumption Plans

A consumption plan c ∈ C is said to be feasible for agent i if there exists an
admissible trading strategy θ ∈ Θ whose associated wealth process satisfies
agent i’s dynamic budget constraint

W0 = θ00 +
∑
a∈A

(θa
0)>Sa

0 = W i
0 :=

∑
a∈A

(νa
i )>Sa

0 (9)

dWt = θ0t dS
0
t +

∑
a∈A

(
(θa

t )>
(
dSa

t + pa
tD

a
t dt
)
− pa

t c
a
t dt
)

(10)

and for which terminal wealth is nonnegative. We denote by Ci the set of
feasible consumption plans for agent i. Note that this set is not empty as agent
i is initially endowed with a long position in each of the stocks.

2.7 Definitions of Equilibrium

In what follows we denote by E := ((Ω,F ,F, P ), {ui, ν
a
i }, {Da}) the primitives

for the above continuous-time economy. The concept of equilibrium that we use
throughout this paper is similar to that of the equilibrium of plans, prices and
expectations introduced by Radner (1972) and is defined in the following:

Definition 1 (Equilibrium) An equilibrium for the continuous-time economy
E is a set of security prices (S0, {Sa}), a relative price process p and a set of
consumption plans and admissible trading strategies {ci, θi} such that,

6In order to guarantee that certain expectations can be differentiated under the integral
sign, we further assume that the utility function satisfies a rather weak technical condition
that is stated and discussed in the appendix.

7As observed by Cass and Pavlova (2004), agent i’s endowment can be negative in some
stocks as long as the initial market value of the portfolio is nonnegative. Given that our
prime interest is to establish the existence of no-trade equilibria, we restrict our analysis to
non-negative endowments.
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1. The consumption plan ci maximizes Ui over the feasible set Ci and is
financed by the admissible trading strategy θi ∈ Θ.

2. The securities and goods markets clear in the sense that

θ01t + θ02t = 0, (11)

θa
1t + θa

2t = 1a, (12)

ca1t + ca2t = 1>a D
a
t , (13)

hold for all a ∈ A and t ∈ [0, T ] where 1a denotes an na−dimensional
column vector of ones.

In our model the dividend processes of the traded securities are linearly
independent since their volatility matrix has full rank. However, because there
are fewer traded securities than there are Brownian motions, the equilibria for
the economy E have incomplete financial markets in general. Furthermore, and
as demonstrated by Cass and Pavlova (2004), the equilibrium can very well have
incomplete financial markets even if there are as many traded securities as there
are Brownian motions. Given this observation, and to facilitate our study, we
further restrict ourselves to equilibria that are efficient in the sense that they
yield Pareto optimal allocations given the asset structure.8 While the full set of
equilibria is in general very hard to characterize (see for example Cuoco and He
(1994)), that of efficient equilibria is more easily analyzed. Indeed, by the Pareto
optimality of equilibrium allocations, there exists a strictly positive constant λ
such that

∇u1(t, c1t) = λ∇u2(t, c2t) (14)

where ∇ui denotes the gradient of agent i’s utility function. Along with the
goods market clearing condition, the above restriction implies that the individual
consumption allocations solve the maximization problem

u(t, λ, δt) := max
c1+c2=δt

{
u1(t, c1) + λu2(t, c2)

}
(15)

where the process δ = (δa) with δa
t := 1>a D

a
t denotes the vector of good-specific

aggregate dividends. As a result, every efficient equilibrium can be supported
by a representative agent endowed with the aggregate supply of securities and
with utility function u(t, λ, ·) even though the resulting financial markets might
be incomplete. In order to facilitate the presentation of our main results, we
briefly review this characterization in the next section.

The main objective of this paper is to present necessary and sufficient con-
ditions for the existence of an efficient no-trade equilibrium. Therefore, we next
define the notion of no-trade equilibrium that we shall be using throughout the
paper.

8In static models this notion is also referred to as constrained Pareto optimality or Pareto
optimality in the Diamond sense, see Diamond (1967) or Magill and Quinzii (1996).
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Definition 2 (No-trade Equilibrium) An equilibrium for the economy E is
a no-trade equilibrium if it satisfies the following three conditions:

1. Portfolio shares of risky assets are constant over time: θa
it = θa

i0.

2. Agents do not hold the riskless asset: θ0i0 = θ0it = 0.

3. There is no activity in the spot market for goods: cait = (θa
i0)
>Da

t .

In a no-trade equilibrium, trading volume is zero after the initial period in any of
the financial assets. Furthermore, there is no activity in the spot markets in the
sense that the optimal consumption plans coincide with the dividend payments
that the agents receive from their portfolios. As the dividends in each good vary
stochastically over time, optimal consumption does vary as well. But in contrast
to the equilibria in Definition 1, the resulting fluctuations in consumptions are
not smoothed by trades in either of the open markets.

In the context of a multi-country Lucas model, where our results most natu-
rally apply, a no-trade equilibrium does not guarantee the absence of geograph-
ical trade. Indeed, if the domestic agent holds a fraction of a foreign asset, the
dividend paid in a foreign good must be shipped to the domestic country for con-
sumption9. We further discuss the implications of our results for international
finance models in Section 5.4.

3 Preliminary Results

3.1 A Useful Notation

In order to simplify the presentation of our results, we now introduce a vectorial
notation that will be used repeatedly in what follows. For an arbitrary collection
(xa)a∈A of vectors with xa ∈ Rna , we use the shorthand notation Φ(xa) to
denote the rectangular matrix

Φ(xa) :=



x1∗ 0 · · · · · · 0
0 · · · 0 x2∗ · · · 0
...

...
...

...
...

... 0 · · · 0
0 · · · 0 · · · xA∗

 ∈ RA×n. (1)

The linear operator Φ enables us to transform a collection of good-specific vec-
tors into a matrix, and therefore, simplifies the notation in consumption and

9Basak and Croitoru (2004) have recently shown that this kind of financial shipping can
relieve market imperfections causing segmentations of good markets, as it serves as a substitute
for physical shipping of consumption goods. It is important to note that the substitutability
of physical and financial shipping is an idiosyncratic feature of the Lucas tree model. As
emphasized by Cass and Pavlova (2004), initial endowments in Lucas tree models are given
in terms of property rights on the dividend streams risky assets pay in the future and not in
terms of commodities as in the benchmark real asset model from financial equilibrium theory,
introduced by Magill and Shafer (1990).
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portfolio computations. In particular, the vector of good-specific aggregate div-
idend processes is given by δt = IDt where I := Φ(1a).

3.2 Individual Optimality

Let the security and goods prices be given and assume that there are no arbitrage
opportunities, for otherwise the market could not be in equilibrium. As is well
known (see e.g. Karatzas and Shreve (1998)), this assumption implies that
there exists an n−dimensional process κ, which is referred to as a relative risk
premium, such that

µa
t − rtS

a
t = σa

t κt, a ∈ A. (2)

Let K denote the set of relative risk premiums, and for every such process
consider the nonnegative process defined by

ξκ
t := exp

(
−
∫ t

0

rsds−
∫ t

0

κ>s dBs −
1
2

∫ t

0

‖κs‖2ds
)
. (3)

The following proposition shows that the set S := {ξκ : κ ∈ K} coincides with
the set of arbitrage-free state price densities and provides a convenient necessary
and sufficient condition for the optimality of a given consumption plan.

Proposition 1 Assume that the security and goods prices are given, then the
following assertions hold:

1. A consumption plan is feasible for agent i if and only if it satisfies the
static budget constraint

E

[∫ T

0

ξκ
t p
>
t ctdt

]
≤W i

0 (4)

for all market price of risk processes κ ∈ K where the initial wealth W i
0 is

defined as in equation (9).

2. A feasible consumption plan is optimal for agent i if and only if

ct = fi

(
t, yiptξ

κi
t

)
(5)

for some strictly positive constant yi and some process κi ∈ K such that
equation (4) holds as an equality.

The results of the proposition can be summarized as follows. The first part
shows that a consumption plan is feasible if and only if it satisfies a static budget
constraint with respect to each of the arbitrage-free state price densities. The
second part establishes that a feasible consumption plan is optimal if and only
if its marginal utility defines an arbitrage-free state price density process for
which the static budget is saturated.
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3.3 A Characterization of Efficient Equilibria

Assume that there exists an efficient equilibrium for the economy E , denote by
{ci} the corresponding consumption allocations and let the representative-agent
utility function be defined as in (15).

Since consuming the good-specific aggregate dividends must be optimal for
the representative-agent, it follows from the second part of Proposition 1 that
the process of marginal rates of substitution

ptξt :=
∇u(t, λ, δt)
∇1u(0, λ, δ0)

=
∇ui(t, cit)
∇1ui(0, ci0)

(6)

identifies the vector of good-specific equilibrium state prices. Moreover, Pareto
optimality implies that the consumption allocations solve the representative
agent’s optimization problem and it follows that

c1t := f1

(
t,∇u(t, λ, δt)

)
, c2t := δt − c1t = f2

(
t,∇u(t, λ, δt)/λ

)
, (7)

where fi(t, ·) denotes the inverse of agent i’s gradient mapping. On the other
hand, the definition of the set of state price densities and the absence of arbitrage
opportunities imply that the process

Na
t := ξtS

a
t +

∫ t

0

ξsp
a
sD

a
sds (8)

is a martingale under the objective probability measure.10 It follows that in any
efficient equilibrium the security prices satisfy

Sa
t = E

[∫ T

t

ξsp
a
sD

a
sds

ξt

∣∣∣∣∣Ft

]
, a ∈ A, (9)

where the good-specific state price paξ is defined as in (6) for some strictly
positive λ such that the first agent’s budget constraints holds as an equality.

As the financial market is in general incomplete, it is very difficult to check
directly that equation (7) defines a pair of feasible consumption plans given the
security prices in equation (9). As a result, the above characterization cannot
be used to construct an efficient equilibrium unless we can verify a priori that
equation (9) defines a complete financial market. However, if we restrict our
attention to efficient equilibria that have no trade, then the situation becomes
much simpler. Indeed, for such equilibria the consumption plans in equation
(7) are linear functions of the dividends and are thus feasible by construction.
In the next section, we use this argument to obtain sufficient conditions on the
primitives of the economy for the existence of an efficient no-trade equilibrium.

10Strictly speaking, the absence of arbitrage opportunities and the definition of S only imply
that the process Na is a local martingale. The technical argument required to show that this
process is a real martingale is provided in the Appendix after the proof of Proposition 1.
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4 Equilibrium Trading Volume

4.1 The No-Trade Theorem

We now turn to this paper’s main topic and investigate conditions under which
an efficient equilibrium generates trade. While it is well understood that hetero-
geneity among agents should generate trade in both goods and financial markets,
necessary and sufficient conditions for trade in a dynamic model are lacking. Our
main result fills this gap and comes in the form of a no-trade theorem.

Theorem 1 The following assertions are equivalent:

1. There exists an efficient no-trade equilibrium.

2. There exists an efficient equilibrium in which the individual consumption
allocation satisfies

cait
cai0

=
1>a D

a
t

1>a Da
0

=
δa
t

δa
0

, (a, t, i) ∈ A× [0, T ]× {1, 2} (1)

where δa
t denotes the aggregate output of good a ∈ A at time t ∈ [0, T ].

3. There exists a diagonal matrix w with strictly positive, constant diagonal
elements wa ∈ (0, 1) such that

∇u1(t, wδt)
∇1u1(0, wδ0)

=
∇u2(t, δt − wδt)
∇1u2(0, δ0 − wδ0)

, t ∈ [0, T ] (2)

and

E

[∫ T

0

∇u1(t, wδt)>
(
wI− Φ(νa

1 )
)
Dtdt

]
= 0, (3)

where I is the rectangular matrix defined in Section 3.1 and δ = ID denotes
the vector of good-specific aggregate dividends.

The results of the above theorem can be summarized as follows. Assertion
2 shows that in an efficient no-trade equilibrium, the consumption policies of
each of the agents must exhibit the same growth rate as the corresponding good-
specific aggregate output and that, given the existence of an efficient equilibrium,
this property is also sufficient for the existence of a no-trade equilibrium. The
third assertion states that a no-trade equilibrium exists if and only if the utility
gradients of the agents can be aligned along a linear sharing rule that satisfies
either of the static budget constraints. From a practical point of view the
third assertion is the most important as it provides necessary and sufficient
conditions for the existence of an efficient no-trade equilibrium in terms of the
model primitives. In the next section we review most of the classic forms of
multi-goods utility functions and use the third assertion to determine what is
the minimal level of heterogeneity needed to generate nontrivial trading volume.
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The conclusions of Theorem 1 share some close connections with classical
results on linear sharing rules and fund separation. These connections, as well
as the implications of Theorem 1 for international finance models, are discussed
in Section 5.

4.2 Examples

In this section, we illustrate the implications of Theorem 1 for some common
classes of utility functions. For simplicity of exposition we assume throughout
this section that there are only two consumption goods (A = 2) and that there
is only one security paying out in each of the two available consumption goods
(n1 = n2 = 1).

4.2.1 Constant Elasticity of Substitution

As a first example, we consider the class of CES utility functions. Agents’ utility
functions display constant elasticity of substitution if they take the parametric
form

ui(t, c) := e−kt
[
αi1

(
c1
)ρi + αi2

(
c2
)ρi
] γi

ρi (4)

where k is a nonnegative constant subjective discount rate which we assume
equal across agents. The preference parameters, ρi ∈ (0, 1), γi < 1 and αia > 0
are fixed constants. As is easily seen, such preferences have constant relative
risk aversion γi and constant elasticity of substitution 1/(1− ρi) determined by
the parameter ρi.

Using the equivalent assertions of Theorem 1 we now show that, given such
preferences, an efficient no-trade equilibrium exists if and only if the agents have
the same elasticity of substitution and relative risk aversion.

Corollary 1 Assume that agents have constant elasticity of substitution utility
functions (4). Then an efficient no-trade equilibrium exists if and only if ρ1 = ρ2

and γ1 = γ2.

Note that in this example the existence of an efficient no-trade equilibrium does
not require that the agents have the same utility function. In particular, an
efficient no-trade equilibrium can exist even though the agents attribute different
weights to consumption in each of the available goods (α1a 6= α2a). Existence
only requires common elasticity of substitution among consumption goods and
common relative risk aversion.

For the class of CES preferences, it follows from the arguments in the proof of
Corollary 1 that the consumption share and portfolio weights (w1, w2) depend on
distributional properties of the dividends, and thus cannot be obtained in closed
form without further assumptions. Next, we consider two classes of preferences

12



for which a closed form characterization of an efficient no-trade equilibrium can
be obtained for general dynamics of dividends.

4.2.2 Non-Separable Cobb-Douglas Preferences

Agents have non-separable Cobb-Douglas preferences, if their utility functions
take the parametric form

ui(t, c) := e−ktai

(
c1
)αi1 (

c2
)αi2 (5)

where k is a nonnegative constant subjective discount rate which we assume
equal across agents, ai is a positive constant and αia ∈ (0, 1) are constants such
that αi1 + αi2 < 1. Note that this parametric form is the limit of the constant
elasticity of substitution specification as the coefficient ρi goes to zero. Thus,
non-separable Cobb-Douglas preferences are homogeneous of degree αi1 + αi2

and have unit elasticity of substitution.

Corollary 2 Assume that agents have non-separable Cobb-Douglas preferences
(5). Then an efficient no-trade equilibrium exists if and only if α1a = α2a. In
this case, the equity holdings and consumption shares of the first agent satisfy

θa
1t =

ca1t

Da
t

= w :=
α11ν

1
1 + α12ν

2
1

α11 + α12
, a ∈ A, (6)

where νa
1 ∈ [0, 1] is the number of shares of the stock paying in good a in the

initial portfolio of the first agent.

Corollary 2 shows that a necessary and sufficient condition for the existence of an
efficient no-trade equilibrium is that all agents have equal preference weights for
consumption goods in the non-separable Cobb-Douglas utility function. Even
though agents with such preferences have identical elasticities of substitution by
definition, an efficient no-trade equilibrium only exists if the weights for each
good are the same. The only heterogeneity allowed is given by the constant
ai. As von-Neumann-Morgenstern preferences are unique up to affine trans-
formations, it follows that an efficient no-trade equilibrium with non separable
Cobb-Douglas preferences exists if and only if agents have cardinally identical
preference orderings.

The results of Section 3.3 and Corollary 2 allow us to bring to light a striking
property of efficient equilibria with non-separable Cobb-Douglas preferences.
Indeed, using equation (6) we obtain that in any such equilibrium the relative
price is proportional to the ratio of aggregate dividends and given by

p2
t =

α12D
1
t

α11D2
t

. (7)

This implies that the dividends of the two stocks are linearly dependent when
expressed in units of the numéraire consumption good and it now follows from
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equation (9) that the equilibrium stock prices satisfy

S2
t =

α12

α11
S1

t . (8)

As a consequence, the volatility matrix of the risky assets is singular and it fol-
lows that, in any efficient equilibrium, both stocks represent the same investment
opportunity. This feature provides an intuitive explanation for the existence of
a no-trade equilibrium with cardinally equivalent Cobb-Douglas preferences. As
the volatility matrix of the risky assets is singular in any efficient equilibrium,
the trading strategies which implement the equilibrium consumption allocation
are not uniquely defined. The special form of the relative price process then
implies that these strategies can be chosen in such a way that there is no trade
on the financial markets after the initial period as well as no activity on the
goods markets and it follows that an efficient no-trade equilibrium exists.

Cass and Pavlova (2004) show that if the agents have log-linear preferences,
then the stock prices will be linearly dependent in any efficient equilibrium, and
they label this situation Peculiar Financial Equilibrium. The result of Corollary
2 and the above discussion show that this type of equilibrium also occurs if the
agents have identical Cobb-Douglas utility functions.

4.2.3 Log-Linear Preferences

Agents have log-linear preferences if their utility functions take the parametric
form

ui(t, c) := e−kt
(
αi1 log(c1) + αi2 log(c2)

)
(9)

where k is a non-negative constant subjective discount rate which we assume
equal across agents and αia are strictly positive, agent specific constants. This
specification of preferences is popular for its tractability and has been used in
numerous studies including Zapatero (1995) and Cass and Pavlova (2004).

Corollary 3 Assume that agents have log–linear preferences (9). Then an effi-
cient no-trade equilibrium exists for all (αia) ∈ (0,∞)4. In this equilibrium the
equity holdings and consumption shares of the first agent satisfy

θ11t =
c11t

D1
t

= w1 :=
α11

(
α21ν

1
1 + α22ν

2
1

)
α12α21(1− ν2

1) + α11 (α21 + α22ν2
1)
,

θ21t =
c21t

D2
t

= w2 :=
α12

(
α21ν

1
1 + α22ν

2
1

)
α11α22(1− ν1

1) + α12 (α22 + α21ν1
1)

where νa
i ∈ [0, 1] is the number of shares of the stock paying in good a in agent’s

i initial portfolio.

As in the previous example, we can recover the relative price and stock prices
from the results of Section 3.3. Indeed, equation (6) identifies the vector of
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good-specific state prices as

ptξt =
∇ui(t, cit)
∇1ui(0, ci0)

=
[
e−ktD

1
0

D1
t

,
α12w

1D1
t

α11w2D2
t

]>
(10)

and plugging this back into the pricing relations (9) shows that the equilibrium
prices of the risky securities satisfy

S1
t =

1
k

(
1− e−k(T−t)

)
D1

t =
α11w

2

α12w1
S2

t . (11)

With this particular form of utility function the price of the first stock is a lin-
ear function of the first dividend, and as the relative price of the second good
is inversely proportional to the ratio of dividends, the price of the second stock
is also a linear function of the first dividend. It follows that the stock volatil-
ity matrix is degenerate and hence that the no-trade equilibrium is a peculiar
financial equilibrium as was the case for identical Cobb-Douglas preferences in
the previous example.

While efficient no-trade equilibria and peculiar financial equilibria coincide
for log-linear and Cobb-Douglas preferences, it is important to note that this is
not the case in general. In Section 5.4 we establish that a sufficient condition for
an efficient no-trade equilibrium to be of the peculiar type is that agents have
unit elastic utility functions. This condition is in turn equivalent to the fact
that the relative price is proportional to the ratio of dividends and we provide
an example to show that if this property fails the efficient no-trade equilibrium
need not be of the peculiar type.

4.2.4 Separable Cobb-Douglas Preferences

Agents have separable Cobb-Douglas preferences, if their utility function take
the parametric form

ui(t, c) :=
∑
a∈A

e−kt 1
αia

(ca)αia (12)

where k is a nonnegative constant subjective discount rate which we assume
equal across agents and αia ∈ (−∞, 1) are nonzero constants which determine
the agent’s relative risk aversion in each of the goods. Note that, contrary to
the three other examples of this section, separable Cobb-Douglas preferences
have a non-constant elasticity of substitution between goods.

Using the equivalent assertions of Theorem 1, we now show that an efficient
no-trade equilibrium exists if and only if the agents preferences exhibit the same
relative risk aversion for consumption in each of the two goods.

Corollary 4 Assume that agents have separable Cobb-Douglas preferences (12).
Then an efficient no-trade equilibrium exists if and only if α1a = α2a for all
a ∈ A.
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In the absence of non-traded goods, this specification of the utility functions is
a special case, with identical discount rates, of that employed in Serrat (2001).
In his Section 3.2 the author claims that in the absence of non-traded goods
agents follow buy and hold strategies in equilibrium. Using the above results,
we note that this claim is only valid provided that the subjective discount rate
is the same for the two agents.

5 The Relevance of No-Trade Equilibria

In this section we discuss the link between the existence of no-trade equilibria
and linear risk tolerance, elasticities of substitution, fund separation, discrete-
time stationary Markov equilibria, and international asset pricing.

5.1 No-trade Equilibria and Linear Sharing Rules

Borch (1962), Wilson (1968) and Huang and Litzenberger (1985) have shown
that a necessary and sufficient condition for the generic optimality of linear
sharing rules in single good, static economies is that all agents have linear risk
tolerance with identical cautiousness parameters. Our results can be viewed
as a generalization of theirs to the case of dynamic economies with multiple
consumption goods.

To see this, consider the single good case with time independent utility
functions. We start by observing that, since consumption must be positive at
all times, market clearing implies that any linear sharing rule must have a zero
intercept to be feasible. Thus, it follows from the second assertion of Theorem
1 that given the existence of an efficient equilibrium, the generic optimality of
linear sharing rules is equivalent to the generic existence of an efficient no-trade
equilibrium. Using Assertion 3, this is in turn equivalent to the fact that for
any aggregate dividend process and any initial allocation the budget constraint
(3) holds, and in addition, there exists a constant w ∈ (0, 1) such that

τ1(wD) = τ2((1− w)D), D ∈ (0,∞), (1)

where τi denotes the relative risk tolerance of agent i. For these equations to
admit a solution in (0, 1) regardless of the aggregate dividend and of the initial
allocations, it is necessary and sufficient that both agents have the same con-
stant relative risk tolerance parameter. We thus conclude that in a single good,
continuous-time economy a necessary and sufficient condition for the generic
optimality of linear sharing rules is that both agents have the same constant
relative risk aversion utility function.

In the multi-good setting, the situation is less simple. The generic optimality
of linear sharing rules is still equivalent to the generic existence of an efficient no-
trade equilibrium. However, the latter property can no longer be characterized
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explicitly in terms of the agents’ utility functions unless we assume that agents
have separable utility functions of the form

ui(t, c) =
∑
a∈A

e−ktua
i (ca) (2)

for some nonnegative subjective discount rate which is common to both agents.
In this case, it follows from the third assertion of Theorem 1 that the generic ex-
istence of an efficient no-trade equilibrium is equivalent to the generic existence
of strictly positive constants wa < 1 such that

τa
1 (wax) = τa

2 ((1− wa)x), (x, a) ∈ (0,∞)×A, (3)

and the budget constraint (3) holds where τa
i denotes the relative risk tolerance

of agent i for consumption in good a. For these equations to admit a solution
for all aggregate dividends and initial allocations, it is necessary and sufficient
that both agents have the same constant relative risk tolerance parameter for
consumption in each of the goods. We thus conclude that in a multiple good,
continuous-time economy with separable preferences a necessary and sufficient
condition for the generic optimality of linear sharing rules is that agents have
identical separable Cobb-Douglas preferences.

5.2 No-trade Equilibria and Fund Separation

In the single good case, it is well known from Hakansson (1969) and Cass and
Stiglitz (1970), that the optimality of linear sharing rules, and hence also the
existence of an efficient no-trade equilibrium, is related to fund separation. In
order to explore this connection, assume first that an efficient no-trade equi-
librium exists. By the second assertion of Theorem 1, this implies that the
equilibrium sharing rule is linear and since there is no activity on the goods
market, it follows that the wealth of the agents are given by

W 1
t =

∑
a∈A

waMa
t and W 2

t =
∑
a∈A

(1− wa)Ma
t (4)

for some strictly positive constants wa where the process Ma := 1>a S
a denotes

the value of the market portfolio of assets that pay their dividends in good a.
Thus, we conclude that a sufficient condition for A−fund separation to hold in
a continuous-time economy with A consumption goods is that there exists an
efficient no-trade equilibrium.

If there is a single consumption good, then this condition is also necessary.
To see this, consider the single good case and assume that one fund separation
holds so that each agent holds a constant fraction of the market portfolio. This
implies that there is no trading on the financial market and, since consumption
cannot be smoothed by any other means, it follows that the equilibrium sharing
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rule is linear. The second assertion of Theorem 1 then implies that there exists
a no-trade equilibrium and we conclude that one fund separation is necessary
and sufficient for the existence of an efficient no-trade equilibrium.

In the multiple goods setting the situation is less simple and it is no longer
possible to show that the existence of an efficient no-trade equilibrium is neces-
sary for A−fund separation to hold. The reason for this impossibility is twofold.
First, nothing guarantees that the mutual funds correspond to static portfolios
of the underlying risky assets. Second, even if the mutual funds do correspond
to buy-and-hold portfolios this does not imply that the equilibrium sharing rule
is linear because of the possibility of trading on the spot market for goods.

5.3 No-trade Equilibria in Discrete Time Economies

A careful inspection of the proof of Theorem 1 reveals that the only place where
the assumptions of continuous time and Itô process dynamics are used is in the
proof of the fact that Assertion 1 implies Assertion 2. It follows that, after
suitable modifications of the basic model, the conditions of Assertion 3 are still
sufficient for the existence of an efficient no-trade equilibrium in a discrete time
economy with multiple goods and finite or infinite horizon.

While sufficient for the existence of an efficient no-trade equilibrium, As-
sertion 3 is far from being necessary in a discrete time economy with multiple
goods. Indeed, it can easily be shown that the conditions of Assertion 3 remain
sufficient if we replace (2) by the weaker requirement that

∇u1(t,Φ(βa)Dt) = λ∇u2(t, (I− Φ(βa))Dt) (5)

for some collection of nonnegative vectors (βa)a∈A and some strictly positive
constant λ that represents the weight of the second agent in the construction of
the representative agent’s utility function.

In a recent paper, Judd et al. (2003) show that trading volume is generically
zero in a discrete time, single good economy populated by heterogeneous agents.
Their finding seems to contradict our theorem. As they remark, however, their
result relies on the strong distributional assumption of a time homogeneous
stationary Markov chain for the aggregate dividend. In that case, equilibrium
consumption allocations inherit the time homogeneity properties of the dividend
process and it follows that there always exists a solution to equation (5) irre-
spective of the choice of the utility functions. To illustrate this let us consider
a single good economy with N states of the world and N stocks paying lin-
early independent dividends modelled as a time homogenous stationary Markov
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chain.11 In such a model, equation (5) can be rewritten as

u′1(t, β
>Dn) = λu′2(t, (1− β)>Dn), n ∈ {1, . . . , N}, (6)

for some β ∈ [0, 1]N and some strictly positive constant λ where Dn denotes
the vector of dividends of the risky assets in state n. When utility functions are
time separable and discount rates are identical across agents, as in Judd et al.
(2003), this system can be rewritten without the time dependency as

u′1(β
>Dn) = λu′2((1− β)>Dn), n ∈ {1, , . . . , N}. (7)

The linear independence of the dividends and the fact that the marginal utilities
are strictly decreasing imply that, for each strictly positive λ, this system admits
a unique solution β(λ) with β(∞) = 0 and β(0) = 1. As a result, the constant
λ can be chosen in such a way that the budget constraint (3) holds and it
follows that an efficient no-trade equilibrium can be constructed irrespective of
the choice of the agents’ utility functions.

5.4 International Risk Sharing

A natural context in which to apply our general results is that of international
finance, where each agent is interpreted as being representative of a country and
the relative prices of goods define the terms of trade.

Examples of studies that analyze the properties of international equilibria
include Lucas (1982), Cole and Obstfeld (1991) and Zapatero (1995) who all
use models with two countries, two consumption goods, one risky asset in each
country and time separable utility functions of the form

ui(t, c) = e−ktvi(c) (8)

for some nonnegative subjective discount rate k which is assumed to be equal
across agents.12 In order to facilitate comparison we use a similar setting
throughout this section. In our notations, such a model corresponds to A = 2,
n1 = n2 = 1 and hence coincides with the two goods model underlying the
examples of the previous section.

In order to connect the results of this paper to those of the international
finance literature, we start by defining two concepts of equilibrium which are
commonly used in that literature.

11The financial market in this discrete time economy does not include a locally riskless
savings account. To replace it we assume, as in Judd et al. (2003), that one of the risky assets
is a fixed income security such as a coupon bond.

12More sophisticated models have been studied by, among others, Serrat (2001) who uses a
two country model with two traded goods and two non-traded goods, Pavlova and Rigobon
(2003) who analyze a two country model with log-linear utilities and agent specific stochastic
discount rates, and Pavlova and Rigobon (2005) who consider a similar model with three
countries, three goods, three risky assets and portfolio constraints.
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Definition 3 (Autarky Equilibrium) An autarky equilibrium for E is an
equilibrium with no activity in goods markets and financial markets, that is,
a no-trade equilibrium with θa

it = νa
i for all (a, t, i) ∈ A× [0, T ]× {1, 2}.

In a classic paper, Lucas (1982) shows that an efficient autarky equilibrium exists
for the model of this section if both investors are identical in terms of preferences
and endowments. The intuition for this result is straightforward: because agents
are identical, each of them consumes half of the aggregate output in the two
goods and no trade on either of the open markets is necessary as the initial
portfolios of the agents produce exactly the equilibrium allocation.

The results of Theorem 1 show that efficient autarky equilibria can exist even
if the agents are not identical in preferences and endowments. Indeed, it easily
follows from the third assertion of Theorem 1 that if a no-trade equilibrium exists
for a given preference structure, then an autarky equilibrium can be constructed
by defining νa

1 = wa to be the initial endowment of the first agent. As illustrated
in the first example of the previous section, this requires neither v1 = v2 nor
that the agents be endowed with half of the risky assets.

Definition 4 (Portfolio Autarky Equilibrium) A portfolio autarky equilib-
rium is an equilibrium in which there is no activity in the financial markets:
agents hold on to their initial stock allocations and optimal consumptions are
attained by trading only in the spot market for goods.

In contrast to a no-trade equilibrium where there is no activity in the goods
markets and where dividend payments from equity holding finance the optimal
consumption plans, in a portfolio autarky equilibrium, agents exclusively use
the spot markets to smooth their consumptions. As can be seen from the defini-
tion, an efficient autarky equilibrium is an efficient no-trade equilibrium since it
entails no trading in either of the open markets. On the other hand, the concept
of no-trade equilibrium introduced in this paper is very different from that of
portfolio autarky since it requires that there be no activity on the spot market
for goods.

Cole and Obstfeld (1991) study the welfare gains from international risk
sharing by analyzing conditions under which a portfolio autarky equilibrium is
efficient. They start from an economy where agents are restricted to hold their
domestic financial assets but can trade on the goods market. They show that
if the agents have identical Cobb-Douglas utility then there exists an efficient
portfolio autarky equilibrium. In other words, for some specific preference struc-
ture, international financial markets do not improve welfare in their model.13

Surprisingly, and as can be seen from Corollary 2, for this preference structure
an efficient no-trade equilibrium also exists and yields the same consumption

13They show, however, that simple perturbations such as non-tradable goods, restore the
need for international financial markets in reaching an efficient allocation.
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allocation. In order to reconcile these findings, one needs to think in terms of
the risk spanned by the domestic and foreign financial markets. If the same
allocation can be achieved either by trading once in the financial markets and
never after that, or by trading continuously in the goods market, this suggest
that financial markets are somewhat redundant and that agents are indifferent
with respect to their portfolios. In other words, we expect that in this situa-
tion the domestic and foreign financial markets represent identical investment
opportunities and thus that the equilibrium is peculiar in the sense of Cass and
Pavlova (2004). The following result formalizes this intuition and clarifies the
relations between no-trade and portfolio autarky equilibria.

Proposition 2 Assume that an efficient no-trade equilibrium exists. Then its
consumption allocation can be implemented in portfolio autarky if and only if
one of the following conditions holds:

1. It is an autarky equilibrium.

2. Agents have utility functions with unit elasticity of substitution.

In the latter case, one of the two stocks is redundant and it follows that the
equilibrium is peculiar in the sense of Cass and Pavlova (2004).

The conclusions of the above proposition are twofold. First, it shows that
an efficient no-trade equilibrium which is not an autarky equilibrium can be
implemented in portfolio autarky if and only if both agents have unit elasticity
of substitution. In particular, and as illustrated in the first and last examples
of Section 4.2, the economy can admit an efficient no-trade equilibrium even if
it does not admit an efficient portfolio autarky equilibrium.

Second, it shows that whenever the two types of equilibrium coexist for a
given economy, then the equilibrium is necessarily peculiar in the sense that
one of the stocks is redundant. Interestingly, most of the tractable international
models in the literature assume unit elastic preferences and admit an efficient
no-trade equilibrium. For example, Cole and Obstfeld (1991) consider the case
of identical nonseparable Cobb-Douglas utility functions and Zapatero (1995)
assumes log-linear preferences. Such models do not provide a role for interna-
tional financial markets since the domestic and foreign assets span the same
risk. Therefore, while tractable, these models may not be economically relevant
except to demonstrate the existence of efficient portfolio autarky equilibria.

Different approaches have been proposed to circumvent this difficulty while
maintaining tractability. For example, Pavlova and Rigobon (2003) introduce
individual specific preference shocks in an equilibrium model with log-linear
preferences; and Cole and Obstfeld (1991) suggest introducing country specific
non-traded goods while maintaining the assumptions of Cobb-Douglas utility
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for the traded goods.14 Another way to maintain tractability while relaxing the
conditions of Proposition 2 is to use the concept of no-trade equilibrium. In-
deed, since no-trade equilibria can exist without the restriction of unit elasticity
of substitution, Theorem 1 makes it possible to build tractable international
equilibrium models where the financial markets are not perfectly correlated. In
order to construct an example of such a model, consider the case where the two
agents have identical utility functions of the form

vi(c) =
∑
a∈A

1
αa

(ca)αa (9)

for some non zero constants αa < 1 and assume that the dividend processes of
the two risky securities are independent Markov processes. As the agents have
identical separable Cobb-Douglas utility functions, it follows from Corollary 3
that an efficient no-trade equilibrium exists. In this equilibrium, the optimal
consumption of the first agent is given by c1t = wDt for some diagonal matrix
w with coordinates in (0, 1) and it follows that

p2
t =

(
w2D2

t

)α2−1

(w1D2
t )α1−1 (10)

identifies the relative price process. In particular, the corresponding allocation
cannot be implemented in portfolio autarky since none of the conditions in
Proposition 2 are satisfied. In order to show that this equilibrium does not
have perfectly correlated financial markets, let us now turn to the stock prices.
Given that the utility function is separable in the two goods and the dividends
are Markov, the price of stock one does not involve the relative price process
and is thus a function

S1
t = ϕ(t,D1

t ) (11)

of time and the first dividend process. On the other hand, the price of the
second stock involves the relative price process and is thus a function

S2
t := ψ(t,D1

t , D
2
t ) (12)

of time and the two dividend processes. Under our assumptions, this implies
that the volatility matrix of the stock price process is invertible and hence that
international financial markets are not perfectly correlated.

Cole and Obstfeld (1991) numerically assess the importance of international
financial markets for risk sharing, by calculating the welfare loss induced by
forcing portfolio autarky when agents have identical CES utility function. It is
of interest to note that the efficient equilibrium that they numerically compute

14This suggestion was studied further by Serrat (2001) who considered a continuous-time
model with two countries, two traded goods, two stocks and one non-traded good in each
country.
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is a no-trade equilibrium and that no particular restriction on the dividend
processes are needed to ensure analytical tractability. In fact, it follows from
Corollary 1 that for non-identical CES utility functions a no-trade equilibrium
exists as soon as the elasticity of substitution is equal across agents. This
provides another class of analytically tractable international models that admit
a no-trade equilibrium and for which the resulting financial markets are not
perfectly correlated.

6 Extensions

As demonstrated in Section 4.2, an efficient no-trade equilibrium can exist even
if the agents do not have identical preferences. Given this result, one naturally
wonders what other sources of heterogeneity could generate nontrivial equilib-
rium trading volume. In order to partially answer this question, we now briefly
discuss two extensions of the basic model: one incorporating heterogeneous be-
liefs and one where the agents receive random flows of endowments through
time.

To accommodate such extensions of the model we assume throughout this
section that there are multiple goods but only one traded security per good.
This is sufficient to illustrate that no-trade equilibria are generically not robust
to the introduction of heterogenous beliefs or to the addition of other income.

6.1 Heterogeneous Beliefs

Throughout the paper we have maintained the assumption that agents differ
only through their utility functions and initial portfolios. In particular, we
have assumed that the two agents share the same beliefs. Standard economic
intuition suggests that heterogeneity in beliefs is likely to increase exchanges
among agents. To clarify this point, assume that agent i’s beliefs are fully
described by the density process Zi of his subjective probability measure P i

relative to P and that his preferences are represented by a time additive expected
utility functional

Ui(c) := Ei

[∫ T

0

ui(t, ct)dt

]
= E

[∫ T

0

Zi
tui(t, ct)dt

]
. (1)

where Ei is the expectation operator under P i. Now assume that there exists
an efficient no-trade equilibrium. In any such equilibrium, the Pareto optimality
of the consumption allocations and the necessity of linear sharing rules for no
trade, implies that

∇u1(t, wδt)Z1
t = λ∇u2(t, δt − wδt)Z2

t (2)
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holds for some strictly positive constant λ and diagonal matrix w with strictly
positive, constant diagonal elements wa < 1. For this relation to hold, the diver-
gence in beliefs must exactly compensate the potential divergence in marginal
utilities. While it might be possible to construct such beliefs structures, they
are non-generic and their economic relevance seems doubtful.15

6.2 Random Endowments

Let us now assume that, in addition to an initial portfolio of the traded securities,
agents receive a random flow of endowment in each of the available goods.
Denote by ea

i the rate at which agent i receives his endowment in good a and
assume that the corresponding vector of good-specific endowments is a bounded
Itô process of the form

ea
it = ea

i0 +
∫ t

0

(
ςaisds+ (τa

is)
>dBs

)
(3)

for some exogenously given drift process ςi and volatility matrix τi. In such a
setting, a consumption plan is said to be feasible for agent i if there exists an
admissible trading strategy θ which implies a wealth process that satisfies the
dynamic budget constraint

W0 = θ00 +
∑
a∈A

θa
0S

a
0 = W i

0 :=
∑
a∈A

νa
i S

a
0

dWt = θ0t dS
0
t +

∑
a∈A

(
θa

t

(
dSa

t + pa
tD

a
t dt
)
− pa

t (cat − ea
t ) dt

)
,

with a nonnegative terminal value. In the following corollary we provide neces-
sary and sufficient conditions for the existence of a no-trade equilibrium for the
above continuous-time economy with random endowments. We state the results
without proof, as they are simply obtained by replacing cai by cai − ea

i in the
proof of Theorem 1.

Corollary 5 The following assertions are equivalent

1. There exists an efficient no-trade equilibrium.

2. There exists an efficient equilibrium in which the individual consumption
policies satisfy

cait − ea
it

cai0 − ea
i0

=
Da

t

Da
0

, i ∈ {1, 2}. (4)

where Da is the dividend process associated with the only security paying
out in good a ∈ A.

15Pavlova and Rigobon (2003) consider an economy with multiple goods, log-linear pref-
erences and heterogenous beliefs. For this economy, they show the existence of a complete
markets equilibrium in which the optimal portfolio strategies are buy-and-hold. The asso-
ciated consumption shares, which depend on the divergence in beliefs, are stochastic and
time varying. Therefore, the implementation of the equilibrium allocation requires continuous
trading in the spot market for goods.
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3. There exists a diagonal matrix φ with strictly positive, constant diagonal
elements (φa)a∈A such that

∇u1(t, φDt + e1t)
∇1u1(0, φD0 + e10)

=
∇u2(t,Dt − φDt + e2t)
∇1u2(0, D0 − φD0 + e20)

, (5)

and

E

[∫ T

0

∇u1(t, φDt + e1t)>
(
(φ− Φ(νa

1 ))Dt − e1t

)
dt

]
= 0, (6)

where D denotes the vector of good-specific dividend processes and Φ is
the linear operator defined in Section 3.1.

Note that it is always possible to construct the agents’ endowment processes
in such a way that, given the other primitives of the economy, there exists an
efficient no-trade equilibrium.16 However, and as already observed for pecu-
liar financial equilibria by Cass and Pavlova (2004), the resulting endowment
processes generally lie in a set of measure zero.

7 Conclusion

In this paper we investigate under what conditions non-informational hetero-
geneity among agents leads to positive trading volume in equilibrium. We pro-
vide necessary and sufficient conditions for the existence of an efficient no-trade
equilibrium in a continuous-time economy with multiple goods, multiple securi-
ties, symmetric information and homogeneous beliefs. We illustrate our results
with numerous examples which include most of the classic multi-good utility
functions. Relations with linear sharing rules, fund separation, autarky and
portfolio autarky equilibria are also addressed.

No-trade equilibria are computationally tractable and thus attractive for fu-
ture empirical studies of the connections between financial markets, exchange
rates and spot markets for goods. In contrast to portfolio autarky equilibria
they cannot necessarily be implemented by trades only in the spot market of
consumption goods. Financial markets are non-redundant and, contrary to pe-
culiar financial market equilibria, asset volatilities are non-degenerate in general.
If extended to an overlapping generation setting where one cohort of investors is
always in their initial period, these equilibria can potentially be used to derive
tractable efficient equilibria with trade in both the spot market for the con-
sumption goods and the financial markets. The study of such a model would
overcome some of the deficiencies of the classic international asset pricing models
and is left for future research.

16An example of such a construction, albeit in a slightly different setup, can be found in
Constantinides and Duffie (1996).

25



Appendix A: Proofs

Proof of Proposition 1. The first assertion follows directly from Theorem 8.5 in
Karatzas et al. (1991) after some straightforward modifications to accommodate
the presence of multiple goods and intermediate consumption.

The second assertion can be established in the same way as Theorem 9.3. of
Karatzas et al. (1991) provided that the utility functional can be differentiated
under the integral sign. To guarantee that this is indeed the case we assume
that the utility function satisfy the growth condition

lim sup
b→∞

sup
c∈C(b)

c>∇aui(t, c)
ui(t, c)

< 1, (a, t) ∈ A× [0, T ], (1)

where C(b) denotes the set of nonnegative vectors whose lowest coordinate is
larger than the nonnegative constant b. This condition is referred to as reason-
able asymptotic elasticity and has proved crucial in the resolution of incomplete
markets portfolio and consumption choice problems, see Kramkov and Schacher-
mayer (1999) for the single good case and Kamizono (2001) for the multiple
goods case. �

Characterization of Efficient Equilibria. All there is to prove is that for each
consumption good a ∈ A the local martingale Na defined in (8) is a martingale.
To this end, we start by observing that the wealth process of agent i along the
equilibrium path is given by

W i
t := E

[∫ T

t

ξsp
>
s cisds

ξt

∣∣∣∣∣Ft

]
(2)

where the vector pξ of good-specific state prices is defined as in (6). Summing
the above expressions over i and using the goods market clearing conditions, we
deduce that the aggregate wealth in the economy is given by

Mt = W 1
t +W 2

t = E

[∫ T

t

ξsp
>
s δsds

ξt

∣∣∣∣∣Ft

]
(3)

and it follows that the nonnegative process defined by

Qt = ξtMt +
∫ t

0

ξsp
>
s δsds (4)

is a martingale of class D under the objective probability measure. Now let
a ∈ A be given fix an arbitrary k ∈ {1, · · · , na}. The absence of arbitrage
opportunities and the definition of the vector of aggregate dividends imply that
we have 0 ≤ Nak ≤ Q. It follows that the local martingale Nak is of class D,
and hence that it is a martingale. �
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Proof of Theorem 1. To establish the implication 1 ⇒ 2 , assume that there
exists an efficient no-trade equilibrium. First note that the optimal holding of
the money market account must be zero. Indeed, as in the absence of arbitrage
opportunities Sa

T = 0na , it follows from the individual optimality that

0 = W i
T = θ0iTS

0
T +

∑
a∈A

(θa
iT )>Sa

T = θ0iTS
0
T . (5)

Observing that S0
T is strictly positive, we conclude that θ0i0 = θ0iT = 0. On

the other hand, applying Itô’s lemma to (6) and using the dynamic budget
constraint we obtain

p>t

(
Φ(βa)Dt − c1t

)
= 0, (6)

where βa := θa
10 ∈ (0, 1)na . As by definition of a no-trade equilibrium, there

is no activity on the goods markets, the above identity and the goods market
clearing conditions imply that the equilibrium consumption policies are linear
in the dividends and given by

c1t = Φ(βa)Dt, c2t =
(
I− Φ(βa)

)
Dt. (7)

Now, Pareto optimality of the equilibrium consumption allocations implies that
the marginal utilities of the two agents are aligned in the sense that there exists
a strictly positive constant λ such that

∇u1

(
t,Φ(βa)Dt

)
= λ∇u2

(
t,
(
I− Φ(βa)

)
Dt

)
. (8)

Applying Itô’s lemma to both sides of the above equation and identifying the
volatility coefficients, we obtain that(

Hu1

(
t,Φ(βa)Dt

)
Φ(βa)− λHu2

(
t,
(
I− Φ(βa)

)
Dt

)(
I− Φ(βa)

))
ϑt = 0 (9)

almost surely for all t ∈ [0, T ] where H denotes the Hessian matrix of second
derivatives and ϑ is the volatility matrix of the dividend processes. As the
volatility matrix of the dividend processes has full row rank by assumption, this
in turn implies

Hu1

(
t,Φ(βa)Dt

)
Φ(βa) = λHu2

(
t,
(
I− Φ(βa)

)
Dt

)(
I− Φ(βa)

)
. (10)

Using the definition of the mapping Φ in conjunction with the fact that the
above equation holds almost everywhere, we easily deduce that

W1
aβa = W2

a1a, a ∈ A, (11)

where the constants Wi
a denote the diagonal elements of the A−dimensional,

negative definite square matrices defined by

W2 := Hu2

(
0,
(
I− Φ(βa)

)
D0

)
, (12)

W1 := Hu1

(
0,Φ(βa)D0

)
+ λW2 (13)
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Using the fact that the agents’ utility functions are strictly concave it is then
easily deduced that the constants Wi

a satisfy W1
a < W2

a < 0 and it follows
that we have βa = wa1a for some strictly positive constant in (0, 1). Plugging
this result back into equation (7) gives the condition in Assertion 2 after some
straightforward simplifications.

To establish the implication 2 ⇒ 3, assume that there exists an efficient
equilibrium satisfying the conditions of Assertion 2 and let w denote the diagonal
matrix with strictly positive diagonal elements defined by

wa :=
ca10

1>a Da
0

, a ∈ A. (14)

Using the Pareto optimality of the equilibrium allocations in conjunction with
the assumed form of the consumption plans we obtain that there exists a strictly
positive constant λ such that

∇u1(t, wδt) = λ∇u2(t, δt − wδt). (15)

Writing the first coordinate of this vectorial identity at time zero, then allows
us to identify the Negishi weight as

λ =
∇1u1(0, wδ0)

∇1u2(0, δ0 − wδ0)
(16)

and plugging this expression back into equation (15) gives the first condition in
Assertion 3. On the other hand, the assumed form of the equilibrium allocations
and the second part of Proposition 1 imply that

∇ui(t, cit) = yiptξ
i
t (17)

for some strictly positive constant yi and some arbitrage-free state price density
process ξi := ξκi ∈ S such that

W i
0 = Φ(νa

i )S0 = E

[∫ T

0

ξi
tp
>
t wδtdt

]
(18)

where S denotes the n−dimensional column vector obtained by stacking up the
good-specific securities price vectors (Sa)a∈A. Using (17) in conjunction with
the Pareto optimality of the equilibrium allocations we deduce that

ptξ
1
t = ptξ

2
t =

1
y1
∇u1(t, wδt) =

1
y2
∇u2(t, δt − wδt). (19)

Using the first coordinate of the above equation at time zero to identify the
constant y1 and plugging the result into (18) with i = 1 then gives

Φ(νa
1 )S0 = E

[∫ T

0

∇u1(t, wδt)>wδt
∇1u1(0, wδ0)

dt

]
. (20)
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As it is efficient, the equilibrium can be supported by a representative agent
with utility function u(t, λ, ·) as in equation (15) even if the resulting markets
are incomplete. Thus, it follows from the definition of the representative agent’s
marginal utility and the results of Section 3.3 that the equilibrium securities
prices satisfy

Sa
0 = E

[∫ T

0

∇au1(s, wδt)Da
t

∇1u1(0, wδ0)
dt

]
. (21)

Plugging this expression back into equation (20) and rearranging the terms gives
the second condition in Assertion 3.

In order to establish the implication 3 ⇒ 1, and thus complete the proof of
the theorem, we have to show that given a matrix w satisfying the conditions
of Assertion 3 we can construct an efficient no-trade equilibrium. To this end,
consider the trading strategies and consumption rates defined by

θ01t = θ02t = 0, (22)

θa
1t = wa1a = 1a − θa

2t, (23)

ca1t = waδa
t = wa1>a D

a
t = δa

t − ca2t, (24)

and let the securities and relative goods prices be given by

pt :=
∇u1(t, c1t)
∇1u1(t, c1t)

=
∇u2(t, c2t)
∇1u2(t, c2t)

, (25)

Sa
t := E

[ ∫ T

t

∇1u1(s, c1s)
∇1u1(t, c1t)

pa
tD

a
t dt

∣∣∣∣∣Ft

]
. (26)

As (i) all markets clear, (ii) there is no trading volume on any of the open markets
and (iii) the marginal utilities of the two agents are aligned, to establish that
the collection (p, {Sa}, {ci, θi}) constitutes an efficient no-trade equilibrium, all
there is to prove is that the consumption allocations are optimal given the
security prices. To this end, let ξ be the process defined by

ξt :=
∇1u1(t, c1t)
∇1u1(0, c10)

=
∇1u2(t, c2t)
∇1u2(0, c20)

≥ 0. (27)

Using the definition of ci in conjunction with the definition of the securities
prices and the second condition in Assertion 3 we have that

E

[∫ T

0

ξtp
>
t

{
cit − Φ(νa

i )Dt

}
dt

]
= 0. (28)

On the other hand, using the fact that for each a ∈ A the process

ξtS
a
t +

∫ t

0

ξsp
a
sD

a
sds (29)

is a martingale we deduce that the process ξ belongs to the set S of state price
densities and since ci is feasible by construction, it follows from the second part
of Proposition 1 that the consumption plan ci is optimal for agent i. �
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Proof of Corollary 1. According to the third assertion of Theorem 1, we have
that an efficient no-trade equilibrium exists if and only if there are strictly
positive constants wa ∈ (0, 1) such that(

α11(w
1D1

t )ρ1+α12(w
2D2

t )ρ1

α11(w1D1
0)ρ1+α12(w2D2

0)ρ1

) γ1
ρ1
−1

(
α21((1−w1)D1

t )ρ2+α22((1−w2)D2
t )ρ2

α21((1−w1)D1
0)ρ2+α22((1−w2)D2

0)ρ2

) γ2
ρ2
−1

=
(
D1

t

Da
0

)ρ2−ρ1

=
(
D2

t

Da
0

)ρ2−ρ1

(30)

and the static budget constraint (3) holds true. The dividend processes being
linearly independent by assumption, we have that the above equation holds if
and only if ρ1 = ρ2 = ρ and(

α11(w
1D1

t )ρ+α12(w
2D2

t )ρ

α11(w1D1
0)ρ+α12(w2D2

0)ρ

) γ1
ρ −1

(
α21((1−w1)D1

t )ρ+α22((1−w2)D2
t )ρ

α21((1−w1)D1
0)ρ+α22((1−w2)D2

0)ρ

) γ2
ρ −1

= 1 (31)

Using once again the linear independence of the dividends, we deduce that the
above equation admits a solution if and only if γ1 = γ2 = γ in which case the
family of its solutions is given by

w1 = g(w2) :=

(
1 +

1− w2

w2

(
α11α22

α12α21

) 1
ρ1

)−1

. (32)

Plugging this relation back into the static budget constraint (3), we obtain
that an efficient no-trade equilibrium exists if and only if there exists a strictly
positive constant φ ∈ (0, 1) such that

h(φ) := E

[∫ T

0

∇u1 (t, GDt)
>
(
G− Φ (νa

1 )
)
Dtdt

]
= 0 (33)

where G denotes the diagonal matrix with elements g(φ) and φ. Using well-
known analytic arguments arguments, as found for example in Detemple and
Serrat (2003), it can be shown that under our assumptions the function h is
continuous on the interval (0, 1) with

h(0+) := lim
φ→0

h(φ) < 0 < h(1−) := lim
φ→1

h(φ). (34)

This implies the existence of a point φ such that h(φ) = 0 and it follows that
there exists an efficient no-trade equilibrium. �

Proof of Corollary 2. According to the third assertion of Theorem 1, we have
that an efficient no-trade equilibrium exists if and only if there are strictly
positive constants wa ∈ (0, 1) such that

α11

(
D1

t

D1
0

)α11−α21

= α21

(
D2

t

D2
0

)α22−α12

, (35)

α12w
1

α11w2

(
D1

t

D1
0

)α11−α21

=
α22(1− w1)
α21(1− w2)

(
D2

t

D2
0

)α22−α12

(36)
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and the static budget constraint (3) holds true. The dividend processes being
linearly independent by assumption, we can deduce that the above equation
holds if and only if α1a = α2a and thus w1 = w2 = w. The static budget
constraint (3) then gives

α11(w − ν1
1) + α12(w − ν2

1)
w

= 0. (37)

Solving this linear equation we conclude that

w =
α11ν

1
1 + α12ν

2
1

α11 + α12
. (38)

As νa
1 ∈ (0, 1) we have by assumption that w ∈ (0, 1), and thus, it follows that

an efficient no-trade equilibrium exists. �

Proof of Corollary 3. Using the equivalent assertions of Theorem 1 and the log-
linear structure of the utility functions, we deduce that an efficient no-trade
equilibrium exists if and only if the two-dimensional system(

1 +
α12α21

α11α22

(
1− w2

w2

))−1

= w1 (39)

α11
w1 − ν1

1

w1
+ α12

w2 − ν2
1

w2
= 0, (40)

admits a solution in (0, 1)2. Using the first equation to express w1 as a function
of w2 and plugging the result in the second equation we obtain that the above
system admits a unique solution, which is explicitly given by

w1 =
α11

(
α21ν

1
1 + α22ν

2
1

)
α12α21(1− ν2

1) + α11 (α21 + α22ν2
1)
, (41)

w2 =
α12

(
α21ν

1
1 + α22ν

2
1

)
α11α22(1− ν1

1) + α12 (α22 + α21ν1
1)
. (42)

As νa
1 ∈ (0, 1) by assumption, we obtain that this solution lies in (0, 1)2 and it

follows that an efficient no-trade equilibrium exists. �

Proof of Corollary 4. According to the third assertion of Theorem 1, we have
that there exists an efficient no-trade equilibrium if and only if there are strictly
positive constants wa ∈ (0, 1) such that

(D1
t )α11−α21 = (D1

0)
α11−α21 , (43)

(w2D2
t )α12−1

((1− w2)D2
t )α22−1

=
(w1D1

t )α11−1

((1− w1)D1
t )α21−1

, (44)

and the static budget constraint (3) holds. The dividend processes being stochas-
tic and linearly independent, we have that the above equations admit a solution
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if and only if α1a = α2a. Assuming that this is the case and solving the second
equation for the nonnegative constant w1 we find

w1 = g(w2) :=

1 +
(

1− w2

w2

)α12−1
α11−1

−1

. (45)

Plugging this relation back into the static budget constraint of agent 1 and
invoking an argument similar to that used in the proof of Corollary 1 then gives
the existence of an efficient no-trade equilibrium. �

The following easy lemma provides a characterization of the class of unit
elastic utility function and will be useful in the proof of Proposition 2.

Lemma 1 Assume that there are two consumption goods so that A = 2. Then
the utility function vi has unit elasticity of substitution if and only if

vi(c) = Fi

(
c2

(
c

1
mi
1

))
(46)

for some constant mi ∈ (0,∞) and some strictly increasing, strictly concave and
continuously differentiable function Fi which satisfies the Inada conditions.

Proof of Proposition 2. Assume that there exists an efficient no-trade equilib-
rium which is not an autarky equilibrium and denote by

c1t =
(
w1D1

t

w2D2
t

)
(47)

the optimal consumption of the first agent. As is easily seen from the definition,
it is possible to implement this consumption allocation in portfolio autarky if
and only if the required net transfers of goods have value zero in the sense that

(w1 − ν1
1)D1

t + (w2 − ν1
2)p2

tD
2
t = 0 (48)

where νa
1 denotes the initial portfolio of the first agent. This is in turn equivalent

to the fact that the equilibrium spot price is given by

p2
t =

w1 − ν1
1

ν1
2 − w2

(
D1

t

D2
t

)
= m

(
D1

t

D2
t

)
. (49)

In order to complete the first part the proof, we need to show that this condition
is equivalent to that of unit-elastic utility functions. To this end, assume that
equation (49) holds. The equilibrium allocation being efficient, we have

∇2v1(w1D1
t , w

2D2
t )

∇1v1(w1D1
t , w

2D2
t )

=
∇2v2((1− w1)D1

t , (1− w2)D2
t )

∇1v2((1− w1)D1
t , (1− w2)D2

t )
= m

D1
t

D2
t

. (50)

These equations and the fact that the dividend processes are unbounded imply
that the agents’ utility functions satisfy

∇2vi(c)
∇1vi(c)

= mi
c1

c2
, c ∈ (0,∞)2, (51)
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for some strictly positive constants mi. Solving this differential equation shows
that the iso-utility curves of the utility functions are given by c2 = Bi

(
c1
)− 1

mi

for some nonnegative constants Bi and it follows that

vi(c) = vi

(
1, c2

((
c1
) 1

mi

))
. (52)

In particular, the utility functions satisfy the conditions of Lemma 1 with the
functions Fi(x) = vi(1, x) and hence have unit elasticity of substitution.

Conversely, assume that the utility function ui satisfies equation (46) for
some (mi, Fi) such that an efficient no-trade equilibrium exists and let the op-
timal consumption of the first agent be given by equation (47). The allocation
being efficient we have that the relative price process is given by

p2
t = m1

w1D1
t

w2D2
t

= m2
(1− w1)D1

t

(1− w2)D2
t

. (53)

Plugging this back into the static budget constraint (3) and using the definition
of the agent’s consumption allocation we obtain that

m1
w1

w2
=
w1 − ν1

1

ν1
2 − w2

. (54)

In particular, equation (49) holds and it follows that the efficient allocation can
be implemented in portfolio autarky.

To complete the proof, we now need to show that for unit elastic preferences,
one of the stocks is redundant but this easily follows from the expression of the
equilibrium stock prices and equation (49). �
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