
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Rapport technique 1993 Open Access

This version of the publication is provided by the author(s) and made available in accordance with the

copyright holder(s).

CHASSIS - A Platform for Constructing Open Information Systems

Nierstrasz, Oscar; Konstantas, Dimitri; Dittrich, Klaus; Jonscher, Dirk

How to cite

NIERSTRASZ, Oscar et al. CHASSIS - A Platform for Constructing Open Information Systems. 1993

This publication URL: https://archive-ouverte.unige.ch/unige:72612

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:72612

CHASSIS — A Platform for Constructing Open
Information Systems *

Oscar Nierstrasz†, Dimitri Konstantas‡

Klaus Dittrich, Dirk Jonscher**

Abstract
Present-day computer-based information systems are increasingly required to be open systems. This means that they must
cope with open networks, heterogeneous interoperable hardware and software systems, and, above all, evolving and chang-
ing requirements. The CHASSIS project aims to develop a software and methodology framework for (i) the security- and
reliability-oriented systematic design and construction of heterogeneous information systems from individual existing and
newly developed application software components and database systems, and (ii) their secure and reliable interoperation.
In CHASSIS, object-orientation is the key technology for the construction of such a system as its uniform interface is real-
ized by an object-oriented data model and the homogenization layer is realized by object-oriented software. CHASSIS in-
cludes object models for database and language integration, software to support system integration, specification methods
to support the design process and advanced security mechanisms to provide the resulting information system with a high
degree of security. CHASSIS is a joint Swiss project between the University of Zürich, the University of Geneva, and the
Asea Brown Boveri Research Centre (Baden).
Keywords: open systems, security, federated databases, object-orientation.

*.A French version of this paper has appeared as: “CHASSIS — Une Plate-forme pour la Construction de Systèmes d’Information
Ouverts,” in Proceedings, AFCET ’93 — Vers des Systèmes d’Information Flexibles, Versailles, June 8-10, 1993, pp. 153-161.

†.Author’s current address: Institut für Informatik und angewandte Mathematik (IAM), University of Berne , Länggassstrasse 51,
CH-3012 Berne, Switzerland. Tel: +41 (31) 631.4618. E-mail: oscar@iam.unibe.ch. WWW: http://iamwww.unibe.ch/~oscar.

‡.Université de Genève, Centre Universitaire d’Informatique, 24 rue Général Dufour, CH-1211 Genève 4, Switzerland.
E-mail: {oscar,dimitri}@cui.unige.ch. Tel: +41 (22) 705.7664/7647. Fax: +41 (22) 320.2927.

**.Universität Zürich, Institut für Informatik, Winterthurerstraße 190, CH-8057 Zürich, Switzerland.
E-mail:{dittrich,jonscher}@ifi.unizh.ch. Tel:+41 1 257.4312/4337. Fax:+41 1 363.0035.

1 Introduction
Changes in the hardware and software landscape of computer-
based application systems in recent years have led towards dis-
tributed, networked and “open” solutions, and away from cen-
tralized, proprietary systems. The new systems are open in
terms of platform, topology and evolution. Although openness,
security and reliability are well-understood at a systems level,
this is unfortunately not yet the case for applications software.
So a typical user of a modern computer system will find himself
(or herself) with a rich variety of software tools, database sys-
tems and applications available as “services” through the net-
work, but, in most cases, without any coherent and systematic
means to combine these tools to solve everyday problems. Fur-
thermore, it is not presently possible in a distributed, heteroge-
neous environment to share information, make existing and
newly developed software systems interoperable, and con-
struct new information systems based on already available ser-
vices, data and software, with reasonable effort and in a safe
way.

CHASSIS†† is a Swiss federal research project of the Pro-
gramme Prioritaire Informatique that aims to provide a plat-
form for the security- and reliability-oriented systematic de-
sign and construction of heterogeneous information systems
from individual existing and newly developed application soft-

ware components and database systems. Partners in CHASSIS
are the University of Zürich, the University of Geneva, and the
Asea Brown Boveri Research Centre (Baden).

Although CHASSIS aims to provide a general-purpose
framework, our initial requirements will come from the domain
of engineering information systems for electrical engineering
(the speciality of ABB). In these application fields many differ-
ent types of engineering tasks are necessary to build a complete
system, such as mechanical CAD, electrical CAD (e.g., wiring
diagrams), application-specific calculations (e.g., mechanical
stresses, heat transfer, energy efficiency etc.), document prepa-
ration, composition (or configuration) of customer-specific
systems from standard parts, and parameterization and pro-
gramming according to customer requirements (e.g. of a pro-
cess control system). In addition, the various organizational as-
pects play an increasingly important role, such as collaboration
of many teams, often located in different regions, optimization
and integration of the engineering process from offer prepara-
tion to the final acceptance test, and project management and
control.

The key problem that CHASSIS attempts to deal with is the
secure integration of heterogeneous, open systems. Traditional
software systems are closed in all the ways that modern sys-
tems are now required to be open, but the most important of
these is that we cannot assume even the system requirements
themselves to be closed and fixed. Flexible applications and in-
formation systems must be open to changing requirements.
CHASSIS specifically targets the problems of (1) secure inte-

††.Configurable, Heterogeneous, And Safe, Secure Informa-
tion Systems.

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 2

gration of heterogeneous, autonomous database systems, and
(2) interoperability of heterogeneous software and database
systems. CHASSIS adopts an object-oriented approach to both
these problems, by introducing (1) an object-oriented data
model and corresponding security model for a federated data-
base, and (2) an object-oriented framework for interoperability
in which every independent software system and information
system can be encapsulated as a cell, which contains the origi-
nal system as its nucleus, and adds a membrane that is respon-
sible for type matching, object mapping and connection trad-
ing. In a later phase of the project, we plan to develop a set of
reusable software components for system integration, based on
the CHASSIS framework.

2 The CHASSIS Framework
The goal of CHASSIS is to provide for the secure and reliable
interoperation of heterogeneous software applications and in-
formation systems. To as large a degree as possible, interoper-
ability should not require existing services and systems to be
modified. In particular, existing applications should continue to
work without alteration when their underlying database sys-
tems become available to a network of clients. Furthermore, lo-
cal autonomy must be preserved, so security must be main-
tained according to local requirements. A global security
scheme must take into account differences in policy between
constituent database systems.

Looking deeper at the problem, one can distinguish two fea-
tures that an existing software component can provide for an in-
formation system: functionality (services) and data. Conse-
quently, making a software system interoperable means to con-
sider the following two scenarios:

• If just the services it offers are of interest within the inte-
grated information system, it is sufficient to treat it as a
black box. It is encapsulated as an object that provides its
functionality in a uniform way such that it can be used by
others.

• However, as soon as the software component works on
some permanent data, it is most likely that interoperabil-
ity means to make these data also accessible within the
information system and to share them with other compo-
nents. As a consequence, a uniform, integrated view on
all the data from the different applications is needed, i.e.,
as a federated system.

This federated system not only plays a key role in system in-
tegration, but takes on special importance with respect to secu-
rity. On the one hand, it provides the basis for enforcing securi-
ty in the entire integrated information system and on the other
hand, it has to preserve as far as possible the security of partic-
ipating component database systems. So it must include com-
prehensive concepts for the protection of data stored in the in-
tegrated individual and autonomous database systems (e.g. ac-
cess and information flow control), since local systems might
not be willing to join a federation with weak security proper-
ties. In CHASSIS, object-orientation is the key technology for
the construction of such a system as its uniform interface is re-
alized by an object-oriented data model and the homogeniza-
tion layer is realized by object-oriented software.

In the first of the two alternatives sketched above, an appli-
cation leaves its handling of persistent data unchanged, i.e. the
data repository it uses is either isolated in the object represent-
ing the application within the integrated information system, or
is directly accessed by the application by circumventing the
storage service component. In the second case, the application
software has to be modified by replacing the parts dealing with
permanently storing data by appropriate calls to the federated
database system. Although the latter may possibly require con-
siderable programming efforts, it is the only way to effectively
share data among applications and benefit from the integration
and security features provided by the storage services.

The Federated Database is itself encapsulated within the
overall integrated information system (see Figure 1) as a cell.

The Cell framework provides object-oriented support for the
interoperability of heterogeneous software systems at the lan-
guage level. A cell defines an independent name space and is
composed of two parts: a nucleus and a membrane (see Figure
2). The nucleus is the collection of “user” and system applica-
tions (possibly, but not necessarily object-oriented), which we
will refer to in general as “objects,” that are responsible for pro-
viding services and managing the local resources. The mem-
brane, which surrounds the nucleus, handles all communica-
tion with the external world, that is with other remote cells. The
objects of the nucleus are not directly visible to other cells and
cannot “see” outside the nucleus. It is the membrane that is re-
sponsible for the mapping of remote objects to the nucleus (that
is to introduce a proxy of the remote object in the local nucle-
us), and for providing for the transformations of remote types
to local ones.

The most important services offered by the membrane of a
Cell are type matching, object mapping and connection trad-
ing. Type matching is a service that allows the “user” to define
a correspondence of a local type to a type or types of the remote
type hierarchy, that is a type match. Object mapping allows the
remote objects to be accessed through the local name space.
Connection trading handles the terms under which a remote ob-
ject is mapped to the local name space. During the mapping of
an object to the nucleus of another cell we say that the cells are
connected.

(existing or new)
application software or

services (SWi)

Federated Database

Interoperability support (by
means of encapsulation

within cells)

Figure 1 Architecture of an integrated information system
based on CHASSIS

homogenization layer for the
secure integration of data

management systems

Cell encapsulation Membrane
for Federated Database

Cell encapsulation
Membrane for nucleus k

Cell encapsulation
Membrane for nucleus 1

DBS1 DBSm

SW1 SW1 SW1

nucleus knucleus 1

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 3

In the definition of a type match, the “user” can specify the
correspondence between the operation of the local and remote
type and the relation of their parameters. Operations can be co-
erced, parameters can be adapted and new code can be intro-
duced to handle cases where a simple mapping is not possible.

According to the defined type match, objects from remote
cells are mapped to the nucleus of the local cell. This way ob-
jects from different environments, on remote cells that can be
based on different languages or different programming para-
digms, can be accessed through a familiar local language and
paradigm. With the use of reciprocal object mappings objects
of any type can be passed as parameters of an operation.

Before a connection between two cells can be established,
the terms of the connection need to be negotiated. These terms
include, but are not restricted to, the duration of the connection,
the security algorithms that will be used during the exchange of
messages, the access rights to the local and remote objects, the
charging rates etc.

The Cell framework allows application objects that are im-
plemented on different languages, object-oriented or not, and
running on different corresponding execution environments to
cooperate and communicate via higher level object types and
not only via simple data type objects (integers, strings etc.),
which in addition are part of their local execution environment.
This way existing software components on remote cells can be
reused without any modifications via local proxies that follow
the conventions, abstractions and mechanisms of the local en-
vironment. As a result the interoperation of applications be-
comes more reliable and safe since it based on tested existing
software components. Furthermore the Cell framework allows
the dynamic (re)configuration of object connections so that ap-
plications can be introduced, changed or suppressed at any time
without any side effects (overheads, blocking of communica-
tion channels etc.) for the running applications.

3 The Federated Database System
As mentioned above, a federation can be considered to be a par-
ticular cell of an information system. However, the integration
of already existing, autonomous component database systems
raises some unique security questions. The key issue in this
realm of distributed data processing is the need to offer a uni-
fied, transparent view on data which are stored in different da-
tabases by preserving local autonomy. The latter covers autho-
rization autonomy as well. We have chosen a tightly coupled
system to allow for global access control. Some of the main
problems we are faced with stem from heterogeneity (different

data models and different access control mechanisms in com-
ponent database systems). The challenge is to develop a global
security model (based on the global — i.e. object-oriented —
data model) and to map global authorizations onto correspond-
ing local ones by preserving local autonomy. Furthermore, the
federation allows for establishing inter-database relationships
which must be protected, too.

The object-oriented data model at the integration layer basi-
cally conforms to the object-oriented database system manifes-
to [2] and can be characterized as follows: Each entity within
the system is an object consisting of a set of (complex) at-
tributes and a set of methods which encapsulate their behav-
iour. We do not stick to strict encapsulation, though. A subset of
attributes can be made visible (and accessible) to the public.
Objects have an identity independent of their values, i.e. identi-
ty is a property that distinguishes objects from each other. They
are instances of exactly one type. The inheritance paradigm is
based on inclusion and specialization inheritance. We allow for
multiple inheritance restricted to strict inclusion inheritance.
The chosen message passing paradigm is rather simple. The re-
ceiver of a message is always an object and the selector coin-
cides with the name of the method to be invoked. Summing up,
the model is close to ZOO/IfI

* [5] which is a companion project
at Zürich University aimed at developing an integration frame-
work for database federations. The intention is to enhance
ZOO/IfI by access control functionality.

The global security model developed so far has the follow-
ing main features [3]: It is based on discretionary access con-
trol, i.e., on the identity of the subject and of the protected ob-
ject. We have chosen a mixed system, providing for positive
and negative authorizations, with a closed world assumption
(closure assumption in case of incomplete specification). A re-
quest is rejected if neither a positive nor a negative authoriza-
tion can be inferred from the set of explicit authorizations. Fur-
thermore, we apply a simple scheme for conflict resolution.
Negative authorizations always override positive ones. Decen-
tralized authorization is based on an ownership paradigm and
the well-known “grant options” [4]. Considerations on admin-
istration paradigms will follow. We distinguish between two
kinds of subjects: users and roles. Roles describe the organiza-
tional, functional or social position of users within the universe
of discourse and can be used, e.g., to model the structure of
companies. Users may play several roles (even at the same
time) inheriting their access rights. Activation and deactivation
of roles is done explicitly and restricted by conflict relations,
i.e. it is possible to prevent the concurrent activation of roles
which may result in an insecure accumulation of rights. The
system makes heavy use of implicit authorizations. Roles may
be in a relationship of subordination (this binary relationship
establishes a partial ordered set). Superior roles inherit positive
authorizations from their subroles whereas subordinated roles
inherit negative authorizations from their superior roles. This
results in a system where superior roles have strictly greater
power (or authority) than their subordinates. Furthermore,

Figure 2 A Cell

Application or
system software

Nucleus

Communication
ports

Membrane

*.Zürich object-oriented integration framework for building
Heterogeneous Database Systems

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 4

complex objects are a unit of authorization, i.e. rights for com-
plex objects are inherited by all its component objects. There
are some other implications required for object-oriented data
models which are not presented here in more detail.

Optionally, a domain concept can be used. We distinguish
two different kinds of domains: subject domains and protection
object domains. A subject domain consists of a set of users,
roles or other subject domains. A protection object domain may
include any subset of protection objects, i.e. types, extensions
of types, (complex) objects and other protection object do-
mains. They are used for implicit authorizations too. Authori-
zations for domains (being positive or negative) are inherited
by its elements. Domains provide a powerful means for model-
ling several important security concepts like nested work-
groups or private databases.

The global security model will be implemented in an object-
oriented manner, too, using ObjectStore (a commercial object-
oriented database system) to store these metadata.

The architecture of the global access control system is based
on a distributed reference monitor which intercepts messages,
evaluates whether they are authorized or not and mediates them
to the receiver. An instance of this monitor is running on every
node where the federation itself is running. Note that this mon-
itor is only the first line of defence since every local component
database system has (theoretically) an access control system of
its own.

We do not consider any problem of network security, since
this is an independent research direction and we can apply the
results already available (e.g., encryption techniques and mutu-
al authentication).

The demonstrator will be implemented with C++ integrat-
ing an object-oriented (ObjectStore) and a relational database
system (Oracle). As ObjectStore does not offer any access con-
trol mechanism, the real challenge is to map the global security
concepts onto the local ones of Oracle. The key issue is that lo-
cal (Oracle) decisions always take priority and that the global
model is much more powerful than the access control mecha-
nisms which are locally available. We intend to ensure a consis-
tent authorization state between the global and the local level.
The local access control decisions can be based on two differ-
ent paradigms. The federation has to deliver a trustworthy iden-
tity of the global user who has initiated the mediated request at
the federation level, or the federation itself appears to be a local
user (or to be more precise, a local application). In the latter
case, the local systems must put some trust into the security
mechanisms of the federation, i.e. they have to sacrifice their
local authorization autonomy to a certain degree. However,
both solutions are only the extremes of a continuous range of
decisions, since the federation may map several global users to
(virtual) local users [10]. The scheme which should be used is a
matter of negotiation between the global and the local security
administrator.

4 Object-Oriented Interoperability
Since applications can exchange information through their
common federated database system we can say that a federated
database system provides a base for interconnecting the appli-

cations from “below.” However, not all applications use the
federated database system, and more than one federated data-
base system can coexist in a network. In addition an application
might also need to directly utilize the services offered by other
applications even if they are all interconnected with the same
federated database system. However in an open environment a
given service will be offered by many servers through possibly
different interfaces. As a result an application wishing to access
a specific service offered from different applications will have
to use a different interface for accessing the server of each ap-
plication. The situation becomes even more complicated if the
different applications use different security mechanisms and
protocols.

One solution to the above multiple interface problem has
been proposed by the Object Management Group (OMG) with
the Common Object Request Broker Architecture (COR-
BA)[1]. However CORBA does not allow flexible transforma-
tions of interfaces nor can it handle the exchange of types other
than data types and their (simple) aggregates. Furthermore,
CORBA does not consider any security issues. A better suited
solution for the CHASSIS project is the Object Oriented In-
teroperability (OOI) support [7] of the Cell framework [6][8].
This support is based on three services: Type Matching, Object
Mapping and Connection Trading.

4.1 Type Matching

Type Matching consists of defining the bindings and transfor-
mations from the interface that the client requests to the one of-
fered by the server. These transformations and bindings are ex-
pressed in a Type Matching Specification Language (TMSL)
which is specific to each cell and thus can have a syntax similar
to the native programming language of the cell.

Using TMSL the “user” can specify the relations between
operations of the local type (interface) to the remote type and
how the offered parameters should be transformed to match the
requested parameters. TMSL is powerful enough to supports
not only the definition of the relation between operations but
also pre- and post-processing of parameters and results, aggre-
gation and segregation of operations and types, and the defini-
tion of adaptation functions for higher flexibility.

In the definition of a type match in we distinguish three
kinds of relations between types of the local and the remote
type hierarchies: Equivalent, Translated and Type Matched.

Equivalent types are types which exist in both cells with the
same semantics and structure. This is most commonly the case
with data types, like for example integers, strings and their ag-
gregates. Equivalent types can be migrated from one cell to an-
other without any modification (except possibly modifications
of the internal representation, like byte ordering).

Translated types are types which have the same semantics in
the two cells but have different structure and representation.
For example strings can be represented in one cell as arrays of
characters while in an other a special type “string” might be
present. In this case a string (represented as an array of charac-
ters) can be migrated to the second cell with a translation to a
“string” object.

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 5

Type Matched types are types which have their interfaces
linked via a type match relation. This is the case not only for the
primary servers of a cell but also for other objects, like console,
array processor and database, which cannot be migrated to a re-
mote cell.

4.2 Object Mapping
Whereas type matching maintains the static information of the
interoperability templates, object mapping provides the dy-
namic support and implementation of the interoperability
links. We distinguish two parts in object mapping: the static and
the dynamic. The static part of object mapping is responsible
for the creation of the classes that implement the interoperabil-
ity links as specified by the corresponding type matching. The
dynamic part on the other hand, is responsible for the instantia-
tion and management of the objects used during the interoper-
ation.

The essence of object mapping is to dynamically introduce
in the local node the services of servers found on other nodes.
This however must be done in such way so that the access of the
services is done according to the local conventions and para-
digms. In an object oriented node this will be achieved with the
instantiation of a local object that represents the remote server,
which in OOI we call an inter-object. An inter-object is an in-
stance of a type for which a type match has been defined. The
class (that is, the implementation of a type) of the inter-object is
created by the object mapper from the type match information
and we call it inter-class. An inter-class is generated automati-
cally by the object mapper and it includes all code needed for
implementing the links to the remote server or servers.

After the instantiation of an inter-object and the establish-
ment of the links to the remote server, the controlling applica-
tion will start calling the operations of the inter-object passing
other objects as parameters. OOI allows objects of any type to
be used as a parameters at operation calls. The object mapper
will handle the parameter objects according to their type rela-
tions with the remote node. This way objects whose type has an
equivalent or translated one on the remote node, will be migrat-
ed, while objects for which a type match exists will be accessed
through an inter-object on the remote node.

4.3 Connection Trading
Connection trading is initiated at the time when the a connec-
tion is requested. There are two modes under which the Con-
nection Trader operates: master and slave. The Connection
Trader at the client side runs in slave mode, while the one at the
server side runs in master mode. The reason for the distinction
comes from the fact that the server cell is the one that should
impose its terms to the client. If the client does not like the
terms of the service it can access a different server!

With the Cell encapsulation the nucleus is relieved from all
security considerations from the external world, which are han-
dled by the membrane. Every access to the information system
will be preceded by a session of connection trading where the
security requirements and other connection parameters will be
defined. Once the connection trading is completed successfully
the actual services will be provided. Nevertheless, the connec-
tion parameters can be dynamically re-negotiate and new secu-

rity procedures can be established or even the services can be
interrupted in case a breach of security is suspected. Further-
more even during a service connection different security re-
quirements for specific operations or data exchange might be
imposed dynamically via a special connection trading sessions.
However all the dynamic negotiation of security procedures
will be transparent to the nucleus whose objects will have the
notion of offering their services to other local objects.

5 Concluding Remarks
The CHASSIS project aims to address the secure and reliable
interoperation of heterogeneous applications and database sys-
tems by means of an object-oriented interoperability frame-
work and an object-oriented data model for database federa-
tion. The requirements for CHASSIS will initially be provided
from the domain of electrical engineering information systems,
and the results will be applied in a prototype system in this do-
main.

The object-oriented framework for interoperability features
the notion of a Cell, that encapsulates an existing system by
surrounding it with a membrane responsible for negotiating
communication with external applications and services. In the
CHASSIS project we plan to study the connection trading re-
quirements and procedures with special focus in the security is-
sues. In addition we will study the security implications that
type matching and object mapping have in the interconnection
of different information systems.

The object-oriented data model for database federation
hides the data models of constituent databases by providing for
an integration layer in which a global object-oriented schema
can be expressed. A global security model will be developed to
cope with the different security requirements and policies of
the underlying databases.

Finally, we hope to develop a framework of reusable soft-
ware components for interconnecting heterogeneous systems
in a type-safe and secure fashion. This will be done using a pat-
tern language presently being designed as part of another
project (“Active and Multimedia Objects”). The pattern lan-
guage [9] is intended to simplify and generalize object-oriented
mechanisms for encapsulation and reuse by introducing active
objects as the basic computational entities, and patterns as the
fundamental abstraction mechanism for developing reusable
software components (subsuming classes, inheritance and oth-
er related mechanisms). As the pattern language will itself be
under development during the initial phase of CHASSIS, work
on the development of the framework within CHASSIS will
necessarily begin later and be of a more experimental nature.

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 6

References

[1] The Common Object Request Broker: Architecture and Specifi-
cation, Object Management Group and X Open, Document
Number 91.12.1 Revision 1.1

[2] M. Atkinson et al., “The Object-Oriented Database System
Manifesto,” Proc. 1st Int. Conf. on Deductive and Object-Ori-
ented Databases, Kyoto, Japan, Dec. 1989

[3] D. Denning, “Cryptography and Data Security,” Addison-Wes-
ley, Reading Massachusetts, 1982

[4] P.P. Griffith and B.W. Wade, “An Authorization Mechanism for
a Relational Database System,” ACM TODS, Vol. 1, No. 3, Sep.
1976, 242-255

[5] M. Haertig and K. R. Dittrich, “An Object-Oriented Integration
Framework for Building Heterogeneous Database Systems,” in
Proc. of the IFIP DS-5 Conf. on Semantics of Interoperable Da-
tabase Systems, Lorne, Australia, Nov. 1992.

[6] D. Konstantas, “Design Issues of a Strongly Distributed Object
Based System,” in Proceedings of 2nd IEEE International
Workshop for Object-Orientation in Operating Systems (I-
WOOOS ’91), Palo-Alto, October 17-18 1991, pp. 156-163.

[7] D. Konstantas, “Object-Oriented Interoperability,” in Proceed-
ings ECOOP ’93, ed. O. Nierstrasz, LNCS, Springer-Verlag,
Kaiserslautern, Germany, July 1993, to appear.

[8] D. Konstantas, “Hybrid Cell: An Implementation of an Object
Based Strongly Distributed System,” in Proceedings of the In-
ternational Symposium on Autonomous Decentralized Systems
— ISADS 93, Kawasaki, Japan, March 30 1993, to appear.

[9] O. Nierstrasz, “Composing Active Objects — The Next 700
Concurrent Object-Oriented Languages,” in Research Direc-
tions in Concurrent Object Oriented Programming, ed. G.
Agha, P. Wegner and A. Yonezawa, MIT Press, 1993, to appear.

[10] M. Templeton, E. Lund and P. Ward, “Pragmatics of Access
Control in Mermaid,” Data Engineering, Vol. 10, No. 3, Sep.
1987 (Special Issue on Federated Database Systems).

	CHASSIS — A Platform for Constructing Open Information Systems
	1�� Introduction
	2�� The CHASSIS Framework
	3�� The Federated Database System
	4�� Object-Oriented Interoperability
	4.1�� Type Matching
	4.2�� Object Mapping
	4.3�� Connection Trading

	5�� Concluding Remarks

