(&% UNIVERSITE

) DE GENEVE Archive ouverte UNIGE

https://archive-ouverte.unige.ch

Rapport technique 1993

This version of the publication is provided by the author(s) and made available in accordance with the
copyright holder(s).

Nierstrasz, Oscar; Konstantas, Dimitri; Dittrich, Klaus; Jonscher, Dirk

How to cite

NIERSTRASZ, Oscar et al. CHASSIS - A Platform for Constructing Open Information Systems. 1993

This publication URL: https://archive-ouverte.unige.ch/unige:72612

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:72612

CHASSIS — A Platform for Constructing Open
Information Systems

Oscar Nierstrasz', Dimitri Konstantas*
Klaus Dittrich, Dirk Jonscher

Abstract

Present-day computer-based information systems are increasingly required to be open systems. This means that they must
cope with open networks, heterogeneous interoperable hardware and software systems, and, above all, evolving and chang-
ing requirements. The CHASSIS project aims to develop a software and methodology framework for (i) the security- and
reliability-oriented systematic design and construction of heterogeneous information systems from individual existing and
newly developed application software components and database systems, and (i) their secure and reliable interoperation.
In CHASSIS, object-orientation is the key technology for the construction of such a system as its uniform interface is real-
ized by an object-oriented data model and the homogenization layer is realized by object-oriented software. CHASSIS in-
cludes object models for database and language integration, software to support system integration, specification methods
to support the design process and advanced security mechanisms to provide the resulting information system with a high
degree of security. CHASSIS is a joint Swiss project between the University of Zirich, the University of Geneva, and the
Asea Brown Boveri Research Centre (Baden).

Keywords: open systems, security, federated databases, object-orientation.

* A French version of this paper has appeared as: “CHASSIS — Une Plate-forme pour la Construction de Systémes d’'Information
Ouverts,” inProceedings, AFCET '93 — Vers des Systemes d’'Information Flexifglesailles, June 8-10, 1993, pp. 153-161.

t.Author’s current addresdnstitut fur Informatik und angewandte Mathematik (IAM), University of Berne , Langgassstrasse 51,
CH-3012 Berne, Switzerlandel: +41 (31) 631.461&-mail: oscar@iam.unibe.chVYWW:http://iamwww.unibe.ch/~oscar

f.Université de Genéve, Centre Universitaire d’Informatique, 24 rue Général Dufour, CH-1211 Geneéve 4, Switzerland.
E-mail: {oscar,dimitri}@cui.unige.chTel: +41 (22) 705.7664/764Fax: +41 (22) 320.2927.

** Universitat Zarich, Institut fir Informatik, WinterthurerstraRe 190, CH-8057 Zirich, Switzerland.
E-mait{dittrich,jonscher}@ifi.unizh.chTet+41 1 257.4312/433Fax+41 1 363.0035.

1 Introduction ware components and database systems. Partners in CHASSIS

. are the University of Zurich, the University of Geneva, and the
Changes in the hardware and software landscape of comp Ea Brown Boveri Research Centre (Baden)

based application systems in recent years have led towards I%\Ithough CHASSIS aims to provide a general-purpose

tributed, networked and “open” solutions, and away from cens L . :)
) . ramework, our initial requirements will come from the domain
tralized, proprietary systems. The new systems are open

terms of platform, topology and evolution. Although openne of engineering information systems for electrical engineering

security and reliability are well-understood at a systems Ie\lfpe speciality OTABB.)' In these application fields many differ-
ent types of engineering tasks are necessary to build a complete

this is unfortunately not yet the case for applications software

. - . syl;stem, such as mechanical CAD, electrical CAD (e.g., wiring
So atypical user of a modern computer system will find h|msg L o : .
lagrams), application-specific calculations (e.g., mechanical

(or herself) with a rich variety of software tools, database SYs: .
L ; u . esses, heat transfer, energy efficiency etc.), document prepa-
tems and applications available as “services” through the neE

: . ration, composition (or configuration) of customer-specific

work, but, in most cases, without any coherent and systematic R
. stems from standard parts, and parameterization and pro-

means to combine these tools to solve everyday problems. Far- ~ : .

" S O ramming according to customer requirements (e.g. of a pro-
thermore, it is not presently possible in a distributed, heteroge- o : 2

) . . - €ss control system). In addition, the various organizational as-
neous environment to share information, make existing an

newly develobed software svstems interonerable. and cge_cts play an increasingly important role, such as collaboration
y ='op . y P . oPmany teams, often located in different regions, optimization

struct new information systems based on already available ser- . : . .

vices, data and software, with reasonable effort and in a %?g integration of the engineering process from offer prepara-

way ' ’ i0R to the final acceptance test, and project management and
' control.

T i - -

CHAS?SL _tls_a SIV\¢SS fe?eral {ﬁsfaf‘:h ptrOJect 0(; the Plro The key problem that CHASSIS attempts to deal with is the
gramme Frioritaire informatique that aims 1o provide a p asIécure integration of heterogeneous, open systems. Traditional
fqrm for the securllty— and rel|ab|l|ty-or|enf(ed systgmaﬂc d%’oftware systems are closed in all the ways that modern sys-
sign and construction of heterogeneous information syste, $is are now required to be open, but the most important of

from individual existing and newly developed application SOffﬁese is that we cannot assume even the system requirements

themselves to be closed and fixed. Flexible applications and in-
formation systems must be open to changing requirements.
CHASSIS specifically targets the problems of (1) secure inte-

11.Configurable, Heterogeneous, And Safe, Secure Informa-
tion Systems.

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 2

gration of heterogeneous, autonomous database systems, atalthe first of the two alternatives sketched above, an appli-
(2) interoperability of heterogeneous software and databasgion leaves its handling of persistent data unchanged, i.e. the
systems. CHASSIS adopts an object-oriented approach to li#ta repository it uses is either isolated in the object represent-
these problems, by introducing (1) an object-oriented datg the application within the integrated information system, or
model and corresponding security model for a federated dasadirectly accessed by the application by circumventing the
base, and (2) an object-oriented framework for interoperabil@iiorage service component. In the second case, the application
in which every independent software system and informatisaftware has to be modified by replacing the parts dealing with
system can be encapsulated aslhwhich contains the origi- permanently storing data by appropriate calls to the federated
nal system as itsucleus and adds emembrandhat is respon- database system. Although the latter may possibly require con-
sible for type matching, object mapping and connection treglderable programming efforts, it is the only way to effectively
ing. In a later phase of the project, we plan to develop a setlfire data among applications and benefit from the integration
reusable software components for system integration, basedt security features provided by the storage services.

the CHASSIS framework.
W The Federated Database is itself encapsulated within the

2 The CHASSIS Framework overall integrated information system (see Figure 1)aadla

The goal of CHASSIS is to provide for the secure and reliable nucleus 1 7 (existing or new)
interoperation of heterogeneous software applications and in- @ @ @ application SOféwafe or
formation systems. To as large a degree as possible, interoper- services (SW
ability should not require existing services and systems to bg Cell encapsulation | | Cell encapsulation

" Membrane for nucleus 1 |Membrane for nucleus
modified. In particular, existing applications should continue to

work without alteration when their underlying database sys-

Interoperability support (by

Cell encapsulation Membrang

tems become available to a network of clients. Furthermore, lo- for Federated Database mean\;i t";ﬁg‘éﬁg)s“'aﬂon
cal autonomy must be preserved, so security must be main- ‘
; P ; ; homogenization layer for the
tained according thcaI requwements. A global_securlty secure integration ot Federated Database
scheme must take into account differences in policy between management systems
constituent database systems. A —
Looking deeper at the problem, one can distinguish two fea- W @

tures that an existing software component can provide for an in- . S/

formation system: functionality (services) and data. Conse- Figure1 Architecture of an integrated information system
guently, making a software system interoperable means to cor based on CHASSIS
sider the following two scenarios:

« |If just the services it offers are of interest within the intd-he Cell framework provides object-oriented support for the
grated information system, it is sufficient to treat it asiateroperability of heterogeneous software systems at the lan-
black box. It is encapsulated as an object that providesgtsgige level. A cell defines an independent name space and is
functionality in a uniform way such that it can be used pmposed of two parts:raicleusand anembrangsee Figure
others. 2). The nucleus is the collection of “user” and system applica-

« However, as soon as the software component workstB_WS (possi_bly, but not nece_ssarily object-oriented_), which we
some permanent data, it is most likely that interoperaﬁﬁ_—'"_ refer to in general as “ob;ects,” that are responsible for pro-
ity means to make these data also accessible within Yifling services and managing the local resources. The mem-

information system and to share them with othercompl?f-a”e’ which surrounds the nucleus, handles all communica-
nents. As a consequence, a uniform, integrated view ion with the external world, that is with other remote cells. The

all the data from the different applications is needed i @bjects of the nucleus are not directly visible to other cells and
as a federated system. cannot “see” outside the nucleus. It is the membrane that is re-

This federated svst tonlv ol K lei t sponsible for the mapping of remote objects to the nucleus (that
IS tederated system not only plays a k€y role In system iz, jniroquce a proxy of the remote object in the local nucle-

t_egrat|on, but takes on speC|_aI |mportanc_e with respgct to sq%-' and for providing for the transformations of remote types
rity. On the one hand, it provides the basis for enforcing secyliiocal ones

ty in the entire integrated information system and on the other

hand, it has to preserve as far as possible the security of particthe most important services offered by the membrane of a
ipating component database systems. So it must include c@aH aretype matchingobject mappingandconnection trad-
prehensive concepts for the protection of data stored in theing. Type matching is a service that allows the “user” to define
tegrated individual and autonomous database systems (e.ga@orrespondence of a local type to a type or types of the remote
cess and information flow control), since local systems mighipe hierarchy, that istgpe matchObject mapping allows the

not be willing to join a federation with weak security properemote objects to be accessed through the local name space.
ties. In CHASSIS, object-orientation is the key technology f@onnection trading handles the terms under which a remote ob-
the construction of such a system as its uniform interface isjesst is mapped to the local name space. During the mapping of
alized by an object-oriented data model and the homogeniaa-object to the nucleus of another cell we say that the cells are
tion layer is realized by object-oriented software. connected

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 3

Membrane data models and different access control mechanisms in com-
/ ponent database systems). The challenge is to develop a global
I security model (based on the global — i.e. object-oriented —
_ Application or .
system software data model) and to map global authorizations onto correspond-
ing local ones by preserving local autonomy. Furthermore, the
federation allows for establishing inter-database relationships
which must be protected, too.

|

ports

. The object-oriented data model at the integration layer basi-
Nucleus cally conforms to the object-oriented database systanifes-
. to [2] and can be characterized as follows: Each entity within
Figure2 A Cell the system is an object consisting of a set of (complex) at-
In the definition of a type match, the “user” can specify thdbutes and a set of methods which encapsulate their behav-
correspondence between the operation of the local and remwie. We do not stick tstrict encapsulation, though. A subset of
type and the relation of their parameters. Operations can besi@ributes can be made visible (and accessible) to the public.
erced, parameters can be adapted and new code can be igis{ects have an identity independent of their values, i.e. identi-
duced to handle cases where a simple mapping is not possiylés a property that distinguishes objects from each other. They
According to the defined type match, objects from remacée instances of exactly one type. The inheritance paradigm is
cells are mapped to the nucleus of the local cell. This way #i&sed on inclusion and specialization inheritance. We allow for
jects from different environments, on remote cells that can Bltiple inheritance restricted to strict inclusion inheritance.
based on different languages or different programming pafde chosen message passing paradigm is rather simple. The re-
digms, can be accessed through a familiar local language e@ijer of a message is always an object and the selector coin-
paradigm. With the use of reciprocal object mappings objeétgles with the name of the method to be invoked. Summing up,
of any type can be passed as parameters of an operation. the modelis close to ZO@/ [5] which is a companion project

Before a connection between two cells can be establisHgzUrich University aimed at developing an integration frame-
the terms of the connection need to be negotiated. These tefif for database federations. The intention is to enhance
include, but are not restricted to, the duration of the connectig? Qln by access control functionality.
the security algorithms that will be used during the exchange ofThe global security model developed so far has the follow-
messages, the access rights to the local and remote objectsnthmain features [3]: It is based on discretionary access con-
charging rates etc. trol, i.e., on the identity of the subject and of the protected ob-

The Cell framework allows application objects that are infect. We have chosen a mixed system, providing for positive
plemented on different languages, object-oriented or not, &tfl negative authorizations, with a closed world assumption
running on different corresponding execution environments(@osure assumption in case of incomplete specification). A re-
cooperate and communicate via higher level object types &ttgst is rejected if neither a positive nor a negative authoriza-
not on|y via Simp]e data type objects (integers’ Strings etéi_g)'n can be inferred from the set of explicit authorizations. Fur-
which in addition are part of their local execution environmerifiermore, we apply a simple scheme for conflict resolution.
This way existing software components on remote cells can¥gative authorizations always override positive ones. Decen-
reused without any modifications via local proxies that folloit@lized authorization is based on an ownership paradigm and
the conventions, abstractions and mechanisms of the localtg-well-known “grant options” [4]. Considerations on admin-
vironment. As a result the interoperation of applications bistration paradigms will follow. We distinguish between two
comes more reliable and safe since it based on tested exidtiRgs of subjects: users and roles. Roles describe the organiza-
software components. Furthermore the Cell framework allo$i@nal, functional or social position of users within the universe
the dynamic (re)configuration of object connections so that &-discourse and can be used, e.g., to model the structure of
plications can be introduced, changed or suppressed at any fiffgpanies. Users may play several roles (even at the same
without any side effects (overheads, blocking of communidine) inheriting their access rights. Activation and deactivation

tion channels etc.) for the running applications. of roles is done explicitly and restricted by conflict relations,
i.e. it is possible to prevent the concurrent activation of roles
3 The Federated Database System which may result in an insecure accumulation of rights. The

As mentioned above, a federation can be considered to be a eﬁ.l-em makgs hegvy use of '”?p"‘?'t authorlgatlons. ques m_ay
in a relationship of subordination (this binary relationship

ticular cell of an information system. However, the integrati L

of already existing, autonomous component database systgﬁ]i blishes a partial ordered set). Superior roles inherit positive

raises some unique security questions. The key issue in orizations from their subroles whereas subordinated roles
: JRperit negative authorizations from their superior roles. This

realm of distributed data processing is the need to offer a , X .
fied, transparent view on data which are stored in different éggults in a system where superior roles have strictly greater

tabases by preserving local autonomy. The latter covers aufraver (or authority) than their subordinates. Furthermore,
rization autonomy as well. We have chosen a tightly coupl
system to allow for global access control. Some of the main
problems we are faced with stem from heterogeneity (different

* Zirich doject-giented _ntegration_famework for buding
Heterogeneous Database Systems

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 4

complex objects are a unit of authorization, i.e. rights for cowations from “below.” However, not all applications use the
plex objects are inherited by all its component objects. Théeelerated database system, and more than one federated data-
are some other implications required for object-oriented d&i@se system can coexist in a network. In addition an application
models which are not presented here in more detail. might also need to directly utilize the services offered by other

Optionally, a domain concept can be used. We distingu@pplications even if they are all interconnected with the same
two different kinds of domains: subject domains and protectififierated database system. However in an open environment a
object domains. A subject domain consists of a set of uséli¥en service will be offered by many servers through possibly
roles or other subject domains. A protection object domain nfdifferent interfaces. As a result an application wishing to access
include any subset of protection objects, i.e. types, extensidrPecific service offered from different applications will have
of types, (complex) objects and other protection object d-use a different interface for accessing the server of each ap-
mains. They are used for implicit authorizations too. Authoflication. The situation becomes even more complicated if the
zations for domains (being positive or negative) are inheritdifferent applications use different security mechanisms and
by its elements. Domains provide a powerful means for modefotocols.

ling several important security concepts like nested work- One solution to the above multiple interface problem has
groups or private databases. been proposed by the Object Management Group (OMG) with
The global security model will be implemented in an objedhe Common Object Request Broker Architecture (COR-
oriented manner, too, using ObjectStore (a commercial objegf)[1]. However CORBA does not allow flexible transforma-
oriented database system) to store these metadata. tions of interfaces nor can it handle the exchange of types other

The architecture of the global access control system is baftah data types and their (simple) aggregates. Furthermore,
on a distributed reference monitor which intercepts message9RBA does not consider any security issues. A better suited
evaluates whether they are authorized or not and mediates thetion for the CHASSIS project is ti@bject Oriented In-
to the receiver. An instance of this monitor is running on evegfoperability(OOI) support [7] of theCell frameworK6][8].
node where the federation itself is running. Note that this moris support is based on three servidgge MatchingObject
itor is only the first line of defence since every local componégPpingandConnection Trading
i(igt(;avt\)/ﬁ.se system has (theoretically) an access control systeérln. ff Type Matching

We do not consider any problem of network security, sindgpe Matching consists of defining the bindings and transfor-
this is an independent research direction and we can applyrtfadions from the interface that the client requests to the one of-
results already available (e.g., encryption techniques and mdiwed by the server. These transformations and bindings are ex-
al authentication). pressed in &ype Matching Specification Langua(leMSL)

The demonstrator will be implemented with C++ integrathich is specific to each cell and thus can have a syntax similar
ing an object-oriented (ObjectStore) and a relational databEhe native programming language of the cell.
system (Oracle). As ObjectStore does not offer any access condgsing TMSL the “user” can specify the relations between
trol mechanism, the real challenge is to map the global secugigierations of the local type (interface) to the remote type and
concepts onto the local ones of Oracle. The key issue is thahlgw the offered parameters should be transformed to match the
cal (Oracle) decisions always take priority and that the globafuested parameters. TMSL is powerful enough to supports
model is much more powerful than the access control mechat only the definition of the relation between operations but
nisms which are IocaIIy available. We intend to ensure a consgigso pre- and post_processing of parameters and results, aggre-
tent authorization state between the global and the local leygltion and segregation of operations and types, and the defini-
The local access control decisions can be based on two diffgi of adaptation functions for higher flexibility.
ent paradigms. The federation has to deliver a trustworthy iden- _— . o
tity of the global user who has initiated the mediated reques{(a{n the def|n|t|on of a type match in we distinguish three

. o Inds of relations between types of the local and the remote
the federation level, or the federation itself appearsto be a | cafj : . .

. o Opépe hierarchies: Equivalent, Translated and Type Matched.

user (or to be more precise, a local application). In the lattef
case, the local systems must put some trust into the securitfFquivalent types are types which exist in both cells with the
mechanisms of the federation, i.e. they have to sacrifice tt&@fme semantics and structure. This is most commonly the case
local authorization autonomy to a certain degree. Howevéith data types, like for example integers, strings and their ag-
both solutions are only the extremes of a continuous rangdtggates. Equivalent types can be migrated from one cell to an-
decisions, since the federation may map several global use@f@r without any modification (except possibly modifications
(virtual) local users [10]. The scheme which should be used Bfghe internal representation, like byte ordering).

mattgr_ of negotiation between the global and the local securityrransiated types are types which have the same semantics in
administrator. the two cells but have different structure and representation.
4 Object-Oriented Interoperability For example s'Frin_gs can be represer_lted in oTe (_:eII"as arrays of

characters while in an other a special type “string” might be
Since applications can exchange information through thphesent. In this case a string (represented as an array of charac-
common federated database system we can say that a fedetatsjican be migrated to the second cell with a translation to a
database system provides a base for interconnecting the apgiiiing” object.

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher 5

Type Matched types are types which have their interfacéty procedures can be established or even the services can be
linked via a type match relation. This is the case not only for tinéerrupted in case a breach of security is suspected. Further-
primary servers of a cell but also for other objects, like consategre even during a service connection different security re-
array processor and database, which cannot be migrated to quiements for specific operations or data exchange might be
mote cell. imposed dynamically via a special connection trading sessions.

. . However all the dynamic negotiation of security procedures
4.2 Object Mapping will be transparent to the nucleus whose objects will have the
Whereas type matching maintains the static information of thétion of offering their services to other local objects.
interoperability templates, object mapping provides the dy- ;
namic support and implementation of the interoperabilié/ Concluding Remarks
links. We distinguish two parts in object mapping: the static amtle CHASSIS project aims to address the secure and reliable
the dynamic. The static part of object mapping is responsiiiéeroperation of heterogeneous applications and database sys-
for the creation of the classes that implement the interoperatéins by means of an object-oriented interoperability frame-
ity links as specified by the corresponding type matching. Therk and an object-oriented data model for database federa-
dynamic part on the other hand, is responsible for the instantian. The requirements for CHASSIS will initially be provided
tion and management of the objects used during the interopeim the domain of electrical engineering information systems,
ation. and the results will be applied in a prototype system in this do-

The essence of object mapping is to dynamically introduc®in.
in the local node the services of servers found on other nodesThe object-oriented framework for interoperability features
This however must be done in such way so that the access offienotion of &Cell, that encapsulates an existing system by
services is done according to the local conventions and pat@rounding it with anembraneresponsible for negotiating
digms. In an object oriented node this will be achieved with tbemmunication with external applications and services. In the
instantiation of a local object that represents the remote ser@MASSIS project we plan to study the connection trading re-
which in OOl we call aimnter-object.An inter-object is an in- quirements and procedures with special focus in the security is-
stance of a type for which a type match has been defined. $bes. In addition we will study the security implications that
class (thatis, the implementation of a type) of the inter-objectype matching and object mapping have in the interconnection
created by the object mapper from the type match informatioidifferent information systems.
and we call itnter-classAn inter-class is generated automati- The object-oriented data model for database federation
cally by the object mapper and it includes all code needed figfles the data models of constituent databases by providing for
implementing the links to the remote server or servers. an integration layer in which a global object-oriented schema

After the instantiation of an inter-object and the establisban be expressed. A global security model will be developed to
ment of the links to the remote server, the controlling applicaepe with the different security requirements and policies of
tion will start calling the operations of the inter-object passitige underlying databases.
other objects as parameters. OOI allows objects of any type teinally, we hope to develop a framework of reusable soft-
be used as a parameters at operation calls. The object magaes components for interconnecting heterogeneous systems
will handle the parameter objects according to their type rejaa type-safe and secure fashion. This will be done ugiat; a
tions with the remote node. This way objects whose type hagém languagepresently being designed as part of another
equivalent or translated one on the remote node, will be migigisject (“Active and Multimedia Objects”). The pattern lan-
ed, while objects for which a type match exists will be accessgithge [9] is intended to simplify and generalize object-oriented
through an inter-object on the remote node. mechanisms for encapsulation and reuse by introducing active
4.3 Connection Trading objects as the basic cpmputatione}l entities,[mitiamsas the

fundamental abstraction mechanism for developing reusable
Connection trading is initiated at the time when the a connggftware Components (Subsuming C|asse5, inheritance and oth-
tion is requested. There are two modes under which the Cgprelated mechanisms). As the pattern language will itself be
nection Trader operatemasterandslave The Connection ynder development during the initial phase of CHASSIS, work
Trader at the client side runs in slave mode, while the one atgfethe development of the framework within CHASSIS will

server side runs in master mode. The reason for the distinci@@essarily begin later and be of a more experimental nature.
comes from the fact that the server cell is the one that should

impose its terms to the client. If the client does not like the
terms of the service it can access a different server!

With the Cell encapsulation the nucleus is relieved from all
security considerations from the external world, which are han-
dled by the membrane. Every access to the information system
will be preceded by a session of connection trading where the
security requirements and other connection parameters will be
defined. Once the connection trading is completed successfully
the actual services will be provided. Nevertheless, the connec-
tion parameters can be dynamically re-negotiate and new secu-

CHASSIS — O. Nierstrasz, D. Konstantas, K. Dittrich, D. Jonscher

References (6]

[1]

(2]

(3]

[4]

[5]

The CommoBbject Request Broker: Architecture and Specifi-
cation, Object Management Group and X Open, Document
Number 91.12.1 Revision 1.1 [7]

M. Atkinson et al., “The Object-Oriented Database System
Manifesto,” Proc. 1st Int. Conf. on Deductive and Object-Ori-
ented Databases, Kyoto, Japan, Dec. 1989 [8]

D. Denning, “Cryptography and Data Security,” Addison-Wes-
ley, Reading Massachusetts, 1982

P.P. Griffith and B.W. Wade, “An Authorization Mechanism forjg)
a Relational Database System,” ACM TODS, \ol. 1, No. 3, Sep.
1976, 242-255

M. Haertig and K. R. Dittrich, “An Object-Oriented Integration
Framework for Building Heterogeneous Database Systems,[it0]
Proc. of the IFIP DS-5 Conf. on Semantics of Interoperable Da-
tabase Systembkorne, Australia, Nov. 1992.

D. Konstantas, “Design Issues of a Strongly Distributed Object
Based System,” iRroceedings of 2nd IEEE International
Workshop for Object-Orientation in Operating Systems (I-
WOOOS '91)Palo-Alto, October 17-18 1991, pp. 156-163.

D. Konstantas, “Object-Oriented Interoperability,Aroceed-
ings ECOOP '93ed. O. Nierstrasz, LNCS, Springer-Verlag,
Kaiserslautern, Germany, July 1993, to appear.

D. Konstantas, “Hybrid Cell: An Implementation of an Object
Based Strongly Distributed System,"Rmoceedings of the In-
ternational Symposium on Autonomous Decentralized Systems
— ISADS 93Kawasaki, Japan, March 30 1993, to appear.

O. Nierstrasz, “Composing Active Objects — The Next 700
Concurrent Object-Oriented Languages Riesearch Direc-

tions in Concurrent Object Oriented Programmieg. G.

Agha, P. Wegner and A. Yonezawa, MIT Press, 1993, to appear.

M. Templeton, E. Lund and P. Ward, “Pragmatics of Access
Control in Mermaid,” Data Engineering, Vol. 10, No. 3, Sep.
1987 (Special Issue on Federated Database Systems).

	CHASSIS — A Platform for Constructing Open Information Systems
	1�� Introduction
	2�� The CHASSIS Framework
	3�� The Federated Database System
	4�� Object-Oriented Interoperability
	4.1�� Type Matching
	4.2�� Object Mapping
	4.3�� Connection Trading

	5�� Concluding Remarks

