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par

Eugen Bronasco

de

Balti (Moldavie)

Ph.D. N° 5897

Centre d’impression de l’UNIGE
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Résumé de la thèse en français

L’objectif de cette thèse est de développer de nouveaux outils pour la construction
d’intégrateurs numériques pour les équations différentielles stochastiques (EDS), at-
teignant un ordre élevé en convergence faible et/ou un ordre élevé pour l’échantillonnage
de la mesure invariante. Ces outils s’appuient sur le cadre des forêts aromatiques ex-
otiques afin d’analyser la convergence des intégrateurs pour l’équation de Langevin
sur-amortie à diffusion constante.

Nous étendons ce cadre aux EDS avec bruit multiplicatif. Nous introduisons les
séries de Butcher et les S-séries définies sur les forêts aromatiques exotiques, permet-
tant d’étudier les structures algébriques sous-jacentes aux méthodes stochastiques de
type Runge-Kutta. Ces structures, dans le contexte de la convergence faible et de
l’échantillonnage de la mesure invariante, diffèrent fortement de celles rencontrées dans
le cadre déterministe, où la structure pré-Lie des arbres décorés donne naissance à
l’algèbre de Hopf de Grossman-Larson sur les forêts.

En exploitant la structure pré-Lie-Rinehart des arbres aromatiques décorés, nous
construisons l’algèbre D-traciale libre, l’algébröıde de Hopf de Grossman-Larson des
forêts aromatiques décorées ainsi que l’algébröıde pré-Hopf correspondant. En utilisant
la dualité entre le coproduit de Butcher-Connes-Kreimer et le produit de Grossman-
Larson, nous décrivons la loi de composition des S-séries définies sur les forêts aro-
matiques décorées. Ceci nous permet de formaliser la composition des méthodes
numériques et le post-traitement dans le cadre des S-séries. De plus, nous intro-
duisons les forêts agglomérées décorées et définissons la coaction de Calaque–Ebrahimi-
Fard–Manchon (CEM) des forêts agglomérées et aromatiques, fournissant un formal-
isme pour la loi de substitution. Enfin, nous construisons l’espace des forêts aro-
matiques exotiques à partir des forêts aromatiques décorées et analysons l’impact de
cette extension sur les structures algébriques sous-jacentes. Ces fondements algébriques
permettent de décrire rigoureusement l’analyse d’erreur rétrograde et les techniques
d’équations modifiées dans le cadre de l’échantillonnage de la mesure invariante.

Nous formalisons l’obtention des conditions d’ordre pour l’échantillonnage de la
mesure invariante et présentons un algorithme systématique pour leur génération.
En exploitant les propriétés de cet algorithme ainsi que la structure algébrique des
forêts aromatiques exotiques, nous établissons la propriété multiplicative des condi-
tions d’ordre. Ce résultat réduit considérablement le nombre de conditions nécessaires
pour atteindre un ordre donné en échantillonnage de la mesure invariante.

À partir de ces développements, nous construisons un nouvel intégrateur pour les
EDS à bruit multiplicatif. Cette méthode atteint l’ordre un en convergence faible et
l’ordre deux pour l’échantillonnage de la mesure invariante, généralisant ainsi l’intégrateur
de Leimkuhler-Matthews aux EDS avec bruit additif. Sa construction repose sur les
concepts de forêts aromatiques exotiques et leurs propriétés algébriques.

L’approche initiale pour la construction de cette méthode consistait à résoudre 93
conditions d’ordre, mais cela s’est avéré irréalisable. Nous avons donc adopté une autre
stratégie : partir d’une méthode d’ordre deux en convergence faible, déjà connue pour
satisfaire les propriétés nécessaires, et la modifier afin de réduire son coût de calcul.

Nous analysons la stabilité du nouvel intégrateur et le validons numériquement sur
une série de problèmes tests, démontrant ainsi son efficacité et sa précision. Notam-
ment, la performance de la méthode reste indépendante de la dimension du problème,
un avantage crucial dans le cadre de la dynamique moléculaire.
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Pour gérer la complexité croissante des calculs associés au formalisme des forêts
aromatiques exotiques pour les EDS à bruit multiplicatif, nous développons le package
Arboretum.hs. Ce logiciel automatise les calculs usuels sur les algèbres de graphes,
incluant l’implémentation des produits de greffage, de Grossman-Larson et d’insertion
des forêts aromatiques décorées. Conçu comme un cadre flexible, Arboretum.hs se veut
applicable à une grande variété de problèmes au-delà de ceux abordés dans cette thèse.

Les résultats présentés dans cette thèse sont publiés ou à parâıtre dans [7, 11, 12].
Le package Arboretum.hs est disponible publiquement sur GitLab:

https://gitlab.unige.ch/Eugen.Bronasco/arboretum.hs
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Chapter 1

Introduction

The aim of this thesis is to develop new tools for constructing time integrators for
stochastic differential equations (SDEs) that achieve high weak order and/or high or-
der for invariant measure sampling. These tools build upon the framework of exotic
aromatic forests to analyze the convergence of integrators for the overdamped Langevin
equation with constant diffusion.

We extend the framework of exotic aromatic forests to SDEs with multiplicative
noise. We introduce Butcher series and S-series defined over exotic aromatic forests,
allowing us to investigate the algebraic structures underlying stochastic Runge-Kutta-
type methods. These structures, in the context of weak convergence and invariant
measure sampling, differ significantly from those appearing in the deterministic setting,
where the pre-Lie structure of decorated trees gives rise to the Grossman-Larson Hopf
algebra of forests.

Using the pre-Lie-Rinehart structure of decorated aromatic trees, we construct the
free tracial D-algebra, the Grossman-Larson Hopf algebroid of decorated aromatic
forests, and the corresponding pre-Hopf algebroid. Leveraging the duality between the
Butcher-Connes-Kreimer coproduct and the Grossman-Larson product, we describe
the composition law for S-series over decorated aromatic forests. This enables us to
formulate the composition of numerical methods and post-processing within the S-
series framework. Furthermore, we introduce decorated clumped forests and define the
Calaque–Ebrahimi-Fard–Manchon (CEM) coaction of clumped and aromatic forests,
providing a formalism for the substitution law. Finally, we construct the space of ex-
otic aromatic forests using decorated aromatic forests and analyze how this extension
affects the underlying algebraic structures. These algebraic foundations allow us to
rigorously describe backward error analysis and modified equation techniques in the
context of invariant measure sampling.

We formalize the derivation of order conditions for invariant measure sampling and
present a systematic algorithm for this process. By exploiting the properties of this
algorithm and the algebraic structure of exotic aromatic forests, we establish the mul-
tiplicative property of order conditions. This result significantly reduces the number
of conditions required to achieve a desired order for invariant measure sampling.

Using these insights, we construct a new integrator for SDEs with multiplicative
noise. This method achieves weak order one and order two with respect to invariant
measure sampling, generalizing the Leimkuhler-Matthews integrator for SDEs with
additive noise. Its construction is based on the concepts of exotic aromatic forests and
their algebraic properties.

1
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The initial approach to constructing this method involved solving 93 order condi-
tions, but this proved infeasible. Instead, we adopted an alternative strategy: starting
with a weak order two method—already known to satisfy the necessary convergence
properties—and modifying it to reduce computational cost.

We analyze the stability of the new integrator and validate it numerically on a set
of test problems, demonstrating its efficiency and accuracy. Notably, the method’s
performance remains independent of the problem’s dimensionality, a crucial advantage
in the context of molecular dynamics.

To manage the increasing computational complexity associated with the exotic aro-
matic forests formalism for SDEs with multiplicative noise, we introduce the Arbore-
tum.hs package. This software automates common computations involving algebras
of graphs, including the implementations of grafting, Grossman-Larson, and insertion
products of decorated aromatic forests. Crucially, Arboretum.hs is designed as a ver-
satile framework, making it applicable to a variety of problems beyond those addressed
in this thesis.

The results presented in this thesis are either published or under consideration for
publication in [7, 11, 12]. The Arboretum.hs package is publicly available on GitLab:

https://gitlab.unige.ch/Eugen.Bronasco/arboretum.hs

1.1 Overdamped Langevin dynamics with variable diffusion

Langevin dynamics describes the movement of a particle in a potential field under the
influence of friction and random noise. The noise term models the stochastic collisions
between the particle and the surrounding medium. The system is governed by the
Langevin equation:

dX(t) = P (X)dt, dP (t) = −∇V (X)dt− γP (X)dt+ σ
√
γ dW (t),

where V : Rd → R is a potential function with a smooth and globally Lipschitz
gradient ∇V : Rd → Rd. The parameter γ > 0 represents the friction coefficient,
and σ is a constant related to the temperature. The term W (t) is a standard d-
dimensional Wiener process, and the initial conditions (X(0), P (0)) are deterministic.
It can be shown that taking the limit as γ → ∞ removes the inertia term, leading
to the overdamped Langevin equation, also known as the Langevin equation without
inertia. See [63] for more details. This limiting process results in the equation:

dX(t) = −∇V (X(t))dt+ σ dW (t). (1.1.1)

This equation describes Brownian motion, a model for the random movement of par-
ticles suspended in a fluid, introduced in 1905 by Einstein [30]. Appropriate assump-
tions on the potential guarantee the problem to be ergodic [52, 63] with the den-
sity of the unique invariant measure being ρ∞ = Z exp(− 2

σ2V ) where Z is such that∫
Rd ρ∞(x)dx = 1.

Definition 1.1.1. A problem is ergodic if there exists a unique invariant measure µ
satisfying for all deterministic initial conditions X0 and all smooth test functions ϕ,

lim
T→∞

1

T

∫ T

0

ϕ(X(s))ds =

∫
Rd

ϕ(x)dµ(x), almost surely.



1.2. INVARIANT MEASURE SAMPLING AND POST-PROCESSING 3

In addition, the expectation of ϕ evaluated with the solutionX(t) typically converges
exponentially fast as t → +∞ to the corresponding equilibrium average taken with
respect to the invariant measure:∣∣∣∣E(ϕ(X(t))

)
−
∫
Rd

ϕ(x)dπ(x)

∣∣∣∣ ≤ Ce−λt (1.1.2)

for all t > 0 and constants C, λ > 0 independent of t (but C depends on ϕ and X0).
To enhance the dynamics of X(t) and improve its ability to sample the invariant

measure, we consider position-dependent diffusion, which modifies the behavior of the
noise without altering the invariant measure. This approach helps mitigate the is-
sue of metastable trajectories that arise when the invariant measure contains multiple
high-probability regions separated by low-probability regions. Such trajectories of-
ten undersample the invariant measure. The overdamped Langevin equation with a
position-dependent diffusion matrix D(x) (symmetric and positive definite) takes the
form:

dX(t) = F (X(t))dt+ σD(X(t))1/2dW (t), F = −D∇V +
σ2

2
div(D), (1.1.3)

We consider a symmetric diffusion matrix D(x) = (Dij(x))i,j=1,...,d of size d × d with
columns Dj = (Dij)i=1,...,d for all j = 1, . . . d assumed smooth with respect to x. The
divergence of the smooth matrix D(x) is defined as the vector whose jth component is

the divergence divDj(x) =
∑d

i=1
∂Dij

∂xi
(x), of the jth column Dj of the diffusion matrix

D,

div(D) =

divD1
...

divDd

 .

Defining the symmetric matrix D(x) in the form D = ΣTΣ, one can also consider
the system

dX = −(ΣTΣ)(X)∇V (X)dt+
σ2

2
div(ΣTΣ)(X)dt+ σΣ(X)dW, (1.1.4)

which is equivalent to (1.1.3) with symmetric diffusion matrix Σ = D1/2. Without
loosing generality, we shall assume for simplicity that Σ is symmetric. 1

1.2 Invariant measure sampling and post-processing

We study ergodic numerical time integrators as a method for sampling the invariant
measure of a Langevin equation. In this context, we recall the definition of an ergodic
integrator and outline several standard assumptions.

Definition 1.2.1. A numerical method X1 = Ψh(X0) is ergodic if there exists a unique
invariant probability law µh with finite moments of any order satisfying for all deter-
ministic initial conditions X0 = x and all smooth test functions ϕ,

lim
N→∞

1

N + 1

N∑
n=0

ϕ(Xn) =

∫
Rd

ϕ(x)dµh(x), almost surely.

1Indeed, observe that replacing Σ(x) by the symmetric positive definite matrix (Σ(x)TΣ(x))1/2 in (1.1.4) does not
change the law of the solution X(t).
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Figure 1.2.1: Trajectories generated by the new method introduced in Chapter 2, solving the over-
damped Langevin equation (1.1.1) with σ = 1 using a stepsize of h = 0.001 and the potential V (x)
defined in Section 2.3.2. The plot on the left displays seven short trajectories (T = 1) all starting
from the center, while the plot on the right shows a single long trajectory (T = 100) which illustrates
the ergodicity of the overdamped Langevin dynamics.

See [52] for more details.

Figure 1.2.1 shows an example of trajectories generated by the new method intro-
duced in Chapter 2 solving the overdamped Langevin equation with additive noise with
the potential V (x) defined in Section 2.3.2.

The following assumptions are commonly used in the analysis of the weak error
of numerical integrators and are typically satisfied for stochastic Runge-Kutta type
methods.

Assumption 1.2.2. The integrator X1 = Ψh(X0) has bounded moments of any order
along time, i.e., for all integer n ≥ 0,

sup
n≥0

E[|Xn|2k] <∞ ∀k ≥ 0

We recall that the exact solution has the weak Taylor expansion of the form

E[ϕ(X(h))|X0 = x] = ϕ(x) + hLϕ(x) + h2
L2ϕ(x)

2!
+ · · ·+ hk

Lkϕ(x)

k!
+ · · · ,

with the generator Lϕ := F · ∇ϕ + σ2

2

∑d
a=1 ϕ

′′(Σa,Σa) coming from the backward
Kolmogorov equation, which states that the map u(x, t) defined by

u(x, t) := E[ϕ(X(t)) : X(0) = x]

is the solution of the following deterministic parabolic PDE in Rd:

∂u

∂t
= Lu, u(x, 0) = ϕ(x), x ∈ Rd, t > 0 .

The convergence analysis, in the weak sense and for the invariant measure sampling,
is based on the weak Taylor expansion of the integrator and the exact solution. Let
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C∞
P (Rd,R) be the space of smooth test functions such that all partial derivatives up to

all orders have a polynomial growth, that is, for ϕ ∈ C∞
P (Rd,R), we have,

| ∂nϕ

∂xi1 · · · ∂xin
| ≤ C(1 + |x|s),

for some s and C independent of x.

Assumption 1.2.3. The integrator X1 = Ψh(X0) has a weak Taylor expansion of the
form

E[ϕ(X1)|X0 = x] = ϕ(x) + hA1ϕ(x) + h2A2ϕ(x) + · · ·
for all ϕ ∈ C∞

P (Rd,R), where Ai, i = 1, 2, . . . , are linear differential operators. For
more details see [75]. We assume that A1 = L, that is, the integrator has at least weak
order 1.

We note that an integrator X1 = Ψh(X0) has weak order p if

Ak =
Lk

k!
, for all k = 1, . . . , p .

Definition 1.2.4. A numerical method X1 = Ψh(X0) has order p with respect to the
invariant measure of the SDE if∣∣∣∣∫

Rd

ϕ(x)dµh(x)−
∫
Rd

ϕ(x)dµ(x)

∣∣∣∣ ≤ Chp ,

where C is independent of h assumed small enough.

We rely on the following theorem, which establishes the order conditions for invariant
measure sampling. We let A∗

j be the adjoint of Aj with respect to the L2 inner product,

⟨ϕ1, ϕ2⟩L2 :=

∫
Rd

ϕ1(x)ϕ2(x)dx .

Theorem 1.2.5. [2] Consider an ergodic integrator X1 = Ψh(X0). Assume that As-
sumptions 1 and 2 hold. If, for j = 2, . . . , p, we have A∗

jρ∞ = 0, then the integrator
achieves order p with respect to the invariant measure.

We note that L∗ρ∞ = 0, which implies that an integrator of weak order p has at least
order p with respect to the invariant measure. We also note that several sources of error
arise when sampling the invariant measure, including bias due to the integrator’s order,
Monte Carlo error, and the rate λ in (1.1.2) of convergence to the invariant measure.

The Monte Carlo error, which scales asM− 1
2 , can be reduced by increasing the number

of trajectories M used to approximate the expectation. The rate of convergence to the
invariant measure can be improved by choosing an appropriate diffusion matrix D,
however, this aspect is not addressed in this thesis.

Post-processing is a powerful technique originating from the deterministic context,
where it is paired with pre-processing. It was introduced by Butcher in [17] in the
context of ODEs. Given an integrator Ψh, we can increase the order of integration
by finding perturbations of the identity χh and χ−1

h , which are called post- and pre-
processors and are inverses of each other. These are composed with Ψh as follows:

Ψ
(2)
h := χh ◦Ψh ◦ χ−1

h .
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Notably, computing n steps of the new integrator Ψ
(2)
h incurs the same computational

cost as n steps of Ψh, assuming the computational cost of χh and χ−1
h is negligible.

Post-processing was extended to the stochastic context in [79]. In the context of
SDEs, particularly for invariant measure sampling, preprocessing is omitted as it does
not influence the long-time behavior of the integrator. Post-processing, however, is
employed to increase the order of the integrator with respect to the invariant measure,
as described in the following theorem. To simplify notation, let ⟨Aj⟩ denote the integral
with respect to the invariant measure over Rd of the differential operator Aj applied
to an arbitrary test function ϕ, that is,

⟨Aj⟩ :=
∫
Rd

Aj[ϕ](x)ρ∞(x) dx .

Theorem 1.2.6. [79] Assume the hypotheses of Theorem 1.2.5 and consider a post-
processor χh that admits the following weak Taylor expansion for all C∞

P (Rd):

E[ϕ(χh(X0))] = ϕ(X0) +

p−1∑
i=1

αih
iLiϕ(X0) + hpApϕ(X0) + · · · ,

for some constants αi and differential operator Ap. Assume further that

⟨Ap+1 + [L,Ap]⟩ = 0 ,

where [L,Ap] = LAp −ApL is the Lie bracket. Then, χ ◦Ψh yields an approximation
of order p+ 1 for the invariant measure.

An example of a post-processed integrator is the Leimkuhler-Matthews method,
which is of order 2 with respect to the invariant measure and of order 1 in the weak
sense. The original non-Markovian formulation, introduced in [45, 44], is

Xn+1 = Xn − h∇V (Xn) +
√
hσ
ξn + ξn+1

2
. (1.2.1)

We can write it in a post-processed form, with Xn+1 being the output, as

Xn+1 = Xn − h∇V (Xn) +
√
hσξn,

Xn = Xn +
1

2

√
hσξn, (1.2.2)

by substituting Xn+1 = Xn+1 − 1
2

√
hσξn+1 and Xn = Xn − 1

2

√
hσξn into the first

equation of (1.2.2).
We introduce a generalization of method (1.2.2) of order 2 with respect to the

invariant measure and weak order 1 for the case of a position-dependent matrix Σ in
(1.1.4). The new method is defined as:

Xn+1 = Xn + hF (Xn) + Φ̂Σ
h (Xn +

1

4
hF (Xn−1)),

Xn = Xn +
1

2

√
hσΣ(Xn)ξn, with X−1 = X0, (1.2.3)

where ΦΣ
h (Xn) = Xn + Φ̂Σ

h (Xn) is an integrator of weak order 2 applied to the SDE
problem with noise only,

dX = σΣ(X)dW, (1.2.4)
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where ΦΣ(X0) = X0 +
√
hσΣ(X0)ξn + O(h). The output of the method (1.2.3) is

given by Xn+1 and it requires one evaluation of F per timestep with the number of
evaluations of Σ depending on our choice of ΦΣ

h . We remark that the new method
(1.2.3) uses a similar postprocessor compared to (1.2.2),

Xn = Ψh(Xn) = Xn +
1

2

√
hσΣ(Xn)ξn, (1.2.5)

and that it becomes equivalent to (1.2.2) for the additive noise case Σ(x) = I.

1.3 The framework of B-series and S-series

The correspondence between the elementary differentials in the Taylor expansion of
the exact solution of an ODE and non-planar rooted trees is a classical result [20].
In the 1960s, Butcher used this correspondence to formulate the order conditions for
Runge-Kutta methods [16] for arbitrary order, enabling the construction of many new
high-order integrators. This approach was further developed by Hairer and Wanner
[33], who introduced the modern concept of Butcher series (B-series) and described
the underlying algebraic structures. In particular, the composition of Runge-Kutta
methods, as well as other B-series, can be expressed using the Butcher-Connes-Kreimer
Hopf algebra [26], introduced in the context of renormalization in quantum field theory.

The theory of B-series gained renewed interest in the 1990s with the rise of geomet-
ric numerical integration [34], as B-series proved to be a powerful tool for describing
symplectic integrators, as well as for backward error analysis and modified equation
techniques.

There are several equivalent ways to introduce the B-series framework. We adopt
an approach based on the algebraic structures of the space of vector fields, following
the perspective of [50]. Let us consider the space X of vector fields on Rd. Let f, g ∈ X
and let f [g] denote the differentiation of g in the direction of f , that is, for p ∈ Rd, we
have

f [g](p) =
(
f(p)[g]

)
(p) =

d∑
i=1

f i(p)∂ig(p), with ∂ig :=
∂g

∂xi
.

This way, vector fields define differential operators of degree one. The differential
operators of higher degrees can be obtained by pointwise composition of vector fields,
for example, let f, g, h ∈ X and ∂ij := ∂i∂j, then, for p ∈ Rd, we have

(fg)[h](p) =
(
(f(p)g(p))[h]

)
(p) =

d∑
i,j=1

f i(p)gj(p)∂ijh(p) ,

From now on we will omit writting p and the differentiation will be written as

f [g] =
d∑

i=1

f i∂ig, and fg[h] =
d∑

i,j=1

f igj∂ijh .

Due to the fact that the pointwise composition is commutative, differentiation is a
pre-Lie product, that is, it satisfies the following relation

f [g[h]]− f [g][h] = g[f [h]]− g[f ][h], for f, g, h ∈ X .



8 CHAPTER 1. INTRODUCTION

We consider an initial value ODE of the form

dy

dt
= f(y), y(0) = y0. (1.3.1)

The elementary differentials that appear as terms in the Taylor expansion of y(h)
around 0 form a pre-Lie algebra with the product given by differentiation. For example,

hf [h2f ′f ] = h3f ′f ′f + h3f ′′(f, f) .

Let us consider the pre-Lie algebra of non-planar rooted trees (T ,↷) with ↷ being
the grafting product on trees defined by attaching the root of the left operand to a
vertex of the right operand in all possible ways, for example,

↷ = + .

We extend the grafting product to the commutative algebra of forests (F , ·) which is
the symmetric algebra on trees, (F , ·) := SR(T ). Let τ ∈ T and π1, π2 ∈ F , then

(τ · π1) ↷ π2 = τ ↷ (π1 ↷ π2)− (τ ↷ π1) ↷ π2 ,

τ ↷ (π1 · π2) = (τ ↷ π1) · π2 + π1 · (τ ↷ π2) .

We note that this definition of grafting on forests is well-defined since grafting is a
pre-Lie product. The details can be found in [61].

Remark 1.3.1. The algebra (F , ·,↷) forms a commutative version of D-algebra struc-
ture introduced in [56].

In [21], it is proven that the algebra (Tn,↷) with n−colored trees is the free pre-Lie
algebra with n generators. Therefore, there exists a surjective homomorphism from the
pre-Lie algebra (T ,↷) onto the pre-Lie algebra of elementary differentials generated
by hf . The homomorphism is extended to (F , ·,↷) by sending the commutative
product to the pointwise composition product of vector fields. The homomorphism is
denoted by F and we give the explicit formula in Definition 1.3.2. The homomorphism
F should not be confused with the expectation E. Let us use the following notation,
[d] := {1, . . . , d}. Let B+

• : F → T be defined as B+
• (π) = π ↷ • for π ∈ F .

Definition 1.3.2. Let τ = B+
• (γ1 · · · γn) be a tree, then,

F(τ) = F(γ1) · · ·F(γn)[hf ] ,

analogously, using the fact that f [g] =
∑d

i=1 f
i∂ig for vector fields f and g, we have

F(τ) = h

d∑
i1,...,in=1

F(γ1)i1 · · ·F(γn)in∂i1···inf .

For example, F( ) = h3
∑d

i,j=1 f
if j∂ijf , or, analogously, F( ) = h3f ′′(f, f).

We use the homomorphism F to define B-series as formal sums indexed by rooted
non-planar trees, which represent the Taylor expansion of numerical integrators or
exact solutions. Consequently, B-series establish a connection between numerical anal-
ysis and combinatorial algebra, linking the properties of numerical integrators to the



1.3. THE FRAMEWORK OF B-SERIES AND S-SERIES 9

algebraic and combinatorial structures of trees and forests. This framework provides a
combinatorial representation of order conditions by comparing the coefficients of the B-
series associated with the numerical integrator and the exact solution. Throughout this
thesis, we will use this link to relate the described algebraic structures to applications
in numerical analysis.

Definition 1.3.3. [16, 33] B-series are formal sums of vector fields of the following
form

B(a) =
∑
τ∈T

a(τ)

σ(τ)
F(τ) ,

where T is the set of rooted non-planar trees, a : T → R is a functional, and σ(τ) is
the size of the automorphism group of τ .

The exact solution y(h) and one-step of a Runge-Kutta method Ψh(A, b, f) can
be expanded using B-series as y0 7→ y0 + B(a)(y0) with the functionals a : T → R
defined appropriately. The concept of S-series was used to study the first integrals of
B-series [60]. Let I : Rd → R be a first integral, then we have the following property

I
(
y0 +B(a)(y0)

)
= S(a)[I](y0) =

∑
π∈F

a(π)

σ(π)
F(π)[I](y0) ,

where S(a) is called an S-series, F is the set of forests, the functional a : F → R extends
to forests by a(π1 · π2) = a(π1)a(π2) for π1, π2 ∈ F . We note that y0 + B(a)(y0) =
S(a)[Id](y0) where Id is the identity Id(x) = x. Similar ideas are used to write the flow
of a differential equation as the exponential of F(•), i.e.

y(h) = exp
(
F(•)

)
Id(y0) = S(α)[Id](y0) ,

where α is an appropriate functional on forests. The details can be found in Chapter
III.5.1 of [34] in the context of the Baker-Campbell-Hausdorff formula for splitting
integrators. We note that in a stochastic context, we can replace the first integral
I with a test function ϕ and use S-series to study the expectation of a functional
of one-step of a numerical integrator, i.e. E[ϕ(y0 + B(a)(y0))], using its weak Taylor
expansion [75].

An important feature of B-series and S-series is that they are completely charac-
terized by the functionals a : T → R. This allows us to use combinatorial properties
and algebraic structures on trees and forests to study the properties and operations
of numerical integrators. For example, an important property of F is presented in the
following proposition.

Proposition 1.3.4. [61] Let ⋄ denote the Grossman-Larson product, then,

F(π1 ⋄ π2)[·] = F(π1)
[
F(π2)[·]

]
,

where π1 and π2 are forests.

The Grossman-Larson product is defined as

π ⋄ η =
∑
(π)

π(1) · (π(2) ↷ η) ,
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for π, η ∈ F and ∆(π) =
∑

(π) π(1) ⊗ π(2) being the deshuffle coproduct in Sweedler
notation. The deshuffle coproduct is defined as

∆(τ) = τ ⊗ 1+ 1⊗ τ ,

where τ ∈ T is a tree, and, for π, η ∈ F ,

∆(π · η) = ∆(π) ·∆(η) ,

where concatenation · is defined on F ⊗ F by component-wise concatenation. For
example,

⋄ = + + + .

1.4 Exotic forests

Exotic forests where first introduced in [41] for the generation of order conditions
for invariant measure sampling of Langevin dynamics with additive noise. Similar
formalisms using trees were introduced in [14, 67] in the context of finite time weak
and strong integrators. In contrast, we focus in this work on the invariant measure
accuracy. We define exotic forests using the concept of decorated forests, which are
α : V (π) → D that send vertices of π to decorations from the set D which is defined
depending on the type of forests we want to represent. The set of decorated forests
with an abstract set D is denoted by FD and the vector space by FD.

Definition 1.4.1. A morphism φ : (π1, α1) → (π2, α2) between two decorated forests
is a morphism between the forests φ : π1 → π2 such that α1 = α2 ◦ φ.

Let us consider the space of bicolored forests F•,× spanned by forests π ∈ F together
with decorations αg : V (π) → {•,×}. Let the space of grafted forests be defined as
the quotient space Fg := F•,×/K× with

K× := span{(π, αg) ∈ F•,× : ∃(v, u) ∈ E(π), αg(u) = ×} .

That is, grafted forests are bicolored forests (π, αg) for which α−1
g (×) is a subset of

leaves of π. For example, some grafted trees are listed below

× , ,
×

, ,
× ×

,
×

,

×

,
× × ×

,

,

× ×

,

×

×

, ,
× ×

,
× × × ×

.

The size of a grafted forest is taken to be the sum of weights of vertices with black
vertices having weight 1 and grafted vertices having weight 0.5. Grafted forests arise
when we consider the overdamped Langevin equation (1.1.1) and the B-series [41] that
are used to study it. The sets of grafted forests and trees are denoted by Fg and Tg,
and the corresponding vector spaces are denoted by Fg and Tg.

Exotic forests are grafted forests in which all grafted vertices are paired. Each pair
of grafted vertices is called a liana and is assigned a natural number as its identifier.
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Exotic forests were first introduced in [41], where lianas were represented using a new
type of edge. In this work, we adopt a different formalism, representing a liana by
assigning the same natural number to its two paired grafted vertices. Exotic forests
form a set EF and a vector space EF . For example, some exotic trees are listed below

, ,
1 1

, , ,
1 1

,

1

1

,

1 1

,
1 1 2 2

.

The pairing between two grafted vertices is denoted by assigning a natural number
to the pair. The choice of the natural number doesn’t matter as long as the natural
numbers are distinct. An exotic forest is called connected if it cannot be written as a
concatenation of non-trivial exotic subforests. For example, all connected exotic forests
up to size 3 are:

, 1 1 , ,
1

1 ,
1 1

, , ,

1 1

,

1

1

,

1

1 ,
1 1

,
1

1 ,
1 1 2 2

,
1 1 2

2 ,
1 2

1 2 .

The following exotic forests are identical,

1 2

2

1 =
4 3

4

3 .

We extend the definition of the grafted tree by allowing internal vertices to be
colored by ×. For example, we allow the following grafted trees up to size 2.5,

×

×

, × , ×

×

×

, ×

× ×

,
×

×

, ×

×

, ×

×

, ×

×

, ×

×

×

×

, ×

×

× ×

, ×

× ×

×

, ×

× × ×

,

and the following connected exotic forests up to size 3,

, 1 1 , 1

1

, ,
1 1

,
1

1 , 1 1 , 1

2

1 2 , 1

2

1

2

, . . . .

Definition 1.4.2. An exotic forest is a decorated forests (π, αe) whereD := {•}∪N and
|α−1

e (k)| ∈ {0, 2} with two exotic forests (π1, αe,1) and (π2, αe,2) considered equivalent
if π1 = π2 and there exists φ ∈ SN with φ(•) = • such that αe,1 = φ ◦ αe,2.

These grafted and exotic forests arise when we study the overdamped Langevin
equation (1.1.4) with position-dependent diffusion matrix. We extend the homomor-
phism F to the space of decorated forests.

Definition 1.4.3. Let FD be a set of decorated forests and let F(d) be a vector field
corresponding to a decoration d ∈ D. Then, let τ = B+

d (π), then,

F(τ) = F(π)[F(d)] ,

where F(π) = F(γ1) · · ·F(γn) for π = γ1 · · · γn. For grafted forests, F(•) = F (X0),
F(×) = σΣ(X0)ξ.
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For example, let all F and Σ be evaluated at X0,

F(
× ×

) = F( × × )[F ] = σ2

d∑
j,k=1

(Σξ)j(Σξ)k(∂j,kF ),

F(
× ×

×

) =
d∑

i,j=1

F( × )[F ]iF( ×

×

)[F ]j∂i,j

= σ3

d∑
i,j,k,l,m,n=1

(Σξ)kF l(∂k,lF )
i(Σξ)n(∂nΣξ)

m(∂mF )
j∂i,j

Definition 1.4.4. Let F be extended to exotic forests EF by F( k ) = σ
∑d

ak=1 Σak

for k ∈ N.

For example,

F(
1 1

) = F( 1 1 )[F ] = σ2

d∑
j,k,a=1

ΣjaΣka(∂j,kF ),

F(

1

1 2

2 ) = σ
d∑

i,j,a2=1

F(
1

1 2 )[F ]iΣja2∂i,j

= σ3

d∑
i,j,k,l,m,n,a1,a2=1

Σna1(∂nF )
kΣla1Σma2(∂k,l,mF )

iΣja2∂i,j.

From the proposed examples, we can clearly see the advantage of using the exotic
formalism to represent the corresponding vector fields and differential operators. It
provides a concise notation and allows us to focus on the combinatorial aspects of our
computations, greatly simplifying them. Proposition 1.3.4 is extended to exotic forests
in [7, 41]. It allows us to study the weak convergence of integrators without leaving
the framework of exotic forests. A detailed study of the grafting and Grossman-Larson
products as well as deshuffle coproduct on exotic forests can be found in Chapter 3.

Example 1.4.5. Several examples of the grafting and Grossman-Larson products on
exotic forests are found below

1

1 ↷
1 1

=
2 2

1

1

+
1 2 2

1

+

1

2 2

1

+
1

1

2 2

,

1

1 ⋄
1 1

=
1

1

2 2

+
1 1 2 2

+ 1

1

2 2

+

1

1 2 2

.

The deshuffle coproduct over exotic forests cannot break a connected component, for
example,

∆(
1

1 ) =
1

1 ⊗ 1+ 1⊗
1

1 ,
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while in the case of classical decorated forests, we would have

∆(
1

1 ) =
1

1 ⊗ 1+
1

⊗ 1 + 1 ⊗
1

+ 1⊗
1

1 .

We use exotic forests to express the generator L and the weak Taylor expansion of
the exact solution as

Lϕ = F( +
1

2 1 1 )[ϕ], E[ϕ(X(h))] = F(exp⋄( +
1

2 1 1 ))[ϕ] .

This allows us to express the exact solution E[ϕ(X(h))] as an S-series over exotic forests,
S(α)[ϕ], for a suitably defined functional α : EF → R. If the weak Taylor expansion
of an integrator can be expressed using an S-series S(a), then the weak order can be
verified by checking that a(π) = α(π) for all π of size at most q, where q is the desired
order of accuracy.

In a similar fashion, we use exotic forests to express order conditions for the invariant
measure sampling. To simplify notation, let ⟨π⟩ denote the integral with respect to the
invariant measure over Rd of the differential corresponding to π applied to an arbitrary
test function ϕ, that is,

⟨π⟩ :=
∫
Rd

F(π)[ϕ](x)ρ∞(x) dx .

Then, an integrator with a weak Taylor expansion S(a) is of order p with respect to
the invariant measure if

⟨
∑
|π|≤p

a(π)

σ(π)
π⟩ = 0 .

The integration by parts (IBP) technique, as described in Chapter 3, induces a
transformation on exotic forests that preserves the value of ⟨−⟩ [41, 79]. Originally
introduced in the context of SDE (1.1.1), this technique is also shown to be applicable
in the context of (1.1.4).

Theorem 1.4.6 (IBP). Let π ∈ EF be an exotic forest and choose a grafted root v
paired to a grafted leaf u. Then,

⟨π⟩ = −⟨
∑

w∈V (π)
w/∈{v,u}

πv→w + 2π•⟩ ,

where V (π) is the set of vertices of π, πv→w is the exotic forest π in which v is connected
to w, and π• is the exotic forest π in which v is removed and u is replaced by a new
black vertex.

Example 1.4.7. Some examples of the IBP transformation are given below

1

1

IBP−−→ −
1

1

−

1 1

−

1

1

− 2 ,

1

1

IBP−−→ −

1 1

−
1

1

− 2 .
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We use IBP in Chapter 2 to derive a new order-two method for invariant measure
sampling and in Chapter 3.1 to introduce a formal algorithm for the generation of order
conditions for invariant measure sampling. The generated order conditions for order
p have the form ω(π) = 0 for all π ∈ EF of size |π| ≤ p with ω ∈ EF∗ being called
the order condition map. The algebraic properties of the algorithm enable us to obtain
Theorem 3.1.8 which is presented and proved in Section 3.1.

Theorem 3.1.8. Let · denote the concatenation product and let ω be the order condition
map for a numerical method that can be expanded as a B-series over grafted trees, then,

ω(π1 · π2) = ω(π1)ω(π2), for π1, π2 ∈ EF.

Theorem 3.1.8 allows us to decrease the number of order conditions with respect to
the invariant measure for a class of numerical methods that includes stochastic Runge-
Kutta-type methods. If an exotic forest π can be written as π = π1 ·π2, then the order
condition ω(π) = 0 is automatically satisfied if ω(π1) = 0 is satisfied. For example,
Theorem 3.1.8 implies the following relations between the order conditions:

ω( ) = ω( )2, ω( ) = ω( )3,

ω( ) = ω( )ω( ), ω(
1 1

) = ω(
1 1

)ω( ),

which decreases the number of order conditions, in particular, for order 3 from 13 to

9. The values of ω( ), ω( ), and ω( ) for stochastic Runge-Kutta methods with
coefficients bi, aij, di with i, j = 1, . . . , s are presented below,

ω( ) =
s∑

i,j=1

biaij −
1

2
+

s∑
i=1

bi − 2
s∑

i=1

bidi, ω( ) =
s∑

i=1

bi − 1,

ω( ) = −2
s∑

i,j=1

bidibj −
3

2

s∑
i=1

bi +
s∑

i,j=1

bibj +
s∑

i,j,k=1

biaijbk + 2
s∑

i=1

bidi +
1

2
−

s∑
i,j=1

biaij.

The list of values of ω for all exotic trees up to size 3 can be found in Table .0.2 in
the Appendix. This property was first observed for order 3 by manual computation in
[41]. In this paper, we prove the property for arbitrary high order.

Relation between grafted and exotic forests

We relate grafted and exotic forests by examining the relation between the correspond-
ing sets of decorations. We note that the differential operators and vector fields corre-
sponding to exotic forests are obtained as the expectation of the differential operators
and vector fields corresponding to grafted forests. This relationship is then translated
into a relation between grafted and exotic forests.

Definition 1.4.8. Let α : V (π) → D and α̂ : V (π) → D̂ be two decorations of a
forest π ∈ F . Decoration α is said to be finer than α̂ if there exists a surjective map
Φ : D → D̂ such that α̂ = Φ ◦ α.

For example, let Φ : De → Dg for De = {•}⊔N and Dg = {•,×} be the map defined
as Φ(•) := • and Φ(k) = × for all k ∈ N, then, it induces a map Φπ : (π, αe) → (π, αg),
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e.g.

Φπ(
1 2

1 2

) =
× ×

× ×

.

We note that Φπ is well-defined on the equivalence classes (π, αe) that are used to
define the exotic forests. We say that the decoration of the exotic forests is finer than
the decoration of the grafted forests.

Definition 1.4.9. Let p(π, α, α̂), with α being finer than α̂, denote the number of
decorations α̃ such that (π, α̃) ∼= (π, α) and α̂ = Φ ◦ α̃ where Φ is the map such that
α̂ = Φ ◦ α.

If (π, αe) ∈ EF is an exotic forest, then p(π, αe, αg) is the number of ways to pair
grafted vertices of (π, αg) ∈ Fg to obtain a forest isomorphic to (π, αe).

Example 1.4.10. Let us consider

(π, αe) =
1 2

1 2

, (π, αg) =
× ×

× ×

, with π = ,

and find the value of p(π, αe, αg). Let us list the elements of the equivalence class
(π, αe):

(π, αe) = {
i k

i k

: i, k ∈ N} ,

and notice that the only choice for α̃e ̸= αe such that (π, α̃e) ∼= (π, αe) and Φ ◦ α̃e = αg

is

(π, α̃e) = {
k i

i k

: i, k ∈ N} ,

Therefore, p(π, αe, αg) = 2.

Proposition 1.4.11. [7] Let π ∈ F be a forest and let α : V (π) → D be finer than

α̂ : V (π) → D̂, then

p(π, α, α̂) =
σ(π, α̂)

σ(π, α)
.

The differential operators corresponding to grafted and exotic forests are related
through expectation, which forms the pairings between the grafted vertices via the
Isserlis theorem, as they correspond to Gaussian random variables. For more details,
see [41].

Theorem 1.4.12. [41, 7] Let (π, αg) ∈ Fg be a grafted forest with an even number of
grafted vertices. Then, the expectation of F(π, αg) is given by

E[F(π, αg)] =
∑

αe∈Φ−1(αg)

σ(π, αg)

σ(π, αe)
F(π, αe) ,

where the sum is over all decorations αe defined by Definition 1.4.2 such that Φ◦αe = αg

where Φ(•) = • and Φ(k) = × for all k ∈ N.
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Proof. We use the definitions of grafted and exotic forests, as well as Proposition 1.4.11.

Theorem 1.4.12 is used to express the relation between the S-series over grafted and
exotic forests in Chapter 3.

1.5 Main contributions

The main contributions of this thesis are as follows:

• Construction of an efficient second-order integrator for sampling the invariant mea-
sure of Langevin dynamics with a position-dependent diffusion matrix (Chapter
2).

• Introduction of exotic aromatic S-series, formulation of a formal algorithm for
generating order conditions for invariant measure sampling, and proof that the
order condition map ω is a character, which permits the reduction of the number
of order conditions (Section 3.1).

• Study of the Grossman-Larson Hopf algebroid of decorated aromatic forests, in-
cluding the pre-Hopf algebroid and the composition law (Section 3.2).

• Introduction of clumped forests, analysis of the multi-pre-Lie insertion algebra of
decorated aromatic trees, and description of the substitution law (Section 3.3).

• Extension of these results to the exotic aromatic context and introduction of back-
ward error analysis and modified equation techniques in the context of invariant
measure sampling (Section 3.4).

• Development of a Haskell package to automate computations related to algebras
of forest-like graphs (Chapter 4).



Chapter 2

Construction of a new method for
Langevin dynamics

In this chapter, we present a framework for constructing new numerical integrators of
a desired order. The key ingredient in this methodology is the use of exotic forests to
represent the differential operators that appear in the Taylor expansion of the exact
solution and the numerical integrator.

We use our framework to introduce a generalization of the method (1.2.2) of order 2
with respect to the invariant measure for the case of a position-dependent matrix Σ in
(1.1.4). An essential feature of the new method is that it requires only one evaluation
of the drift per timestep. The procedure for constructing the new method is as follows:

1. Compute the differential operator corresponding to h2 of the exact solution of the
SDE (1.1.4) using the tree formalism.

2. Simplify the expression using integration by parts to eliminate terms requiring
multiple evaluations of the drift, without losing the order with respect to invariant
measure sampling.

3. Construct a post-processed Runge-Kutta-type method whose Taylor expansion
matches the simplified expression obtained in the second step.

This chapter follows closely the paper [12], which has been submitted for publication
and was written in collaboration with Benedict Leimkuhler, Dominic Phillips, and
Gilles Vilmart. The new method is defined as:

Xn+1 = Xn + hF (Xn) + Φ̂Σ
h (Xn +

1

4
hF (Xn−1)),

Xn = Xn +
1

2

√
hσΣ(Xn)ξn, with X−1 = X0, (2.0.1)

where ΦΣ
h (Xn) = Xn + Φ̂Σ

h (Xn) is an integrator of weak order 2 applied to the SDE
problem with noise only,

dX = σΣ(X)dW, (2.0.2)

where ΦΣ(X0) = X0 +
√
hσΣ(X0)ξn + O(h). The output of the method is given by

Xn+1 and it is referred to as Second-Order Postprocessed method for Variable Diffusion
(PVD-2). PVD-2 (2.0.1) has one evaluation of F and the number of evaluations of Σ

17
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depends on our choice of ΦΣ
h . We remark that the new method (2.0.1) uses a similar

post-processor compared to (1.2.2),

Xn = Ψh(Xn) = Xn +
1

2

√
hσΣ(Xn)ξn, (2.0.3)

and that it becomes equivalent to (1.2.2) for the additive noise case Σ(x) = I. There
are different natural choices for the noise integrator ΦΣ

h involved in the new scheme
(2.0.1). Possible weak second order noise integrators for (2.0.2) include:
(Method MT2) The tensor Σ is evaluated 5 times if we choose ΦΣ

h to be the method
from [4, eq. (3.7)], a derivative-free variant of the so-called Milstein-Talay method [53,
27, p. 103, eq. (2.18)] where written in the particular case of a null drift function:

X1 = X0 +
1

2

d∑
a=1

(
σΣa

(
X0 + hσΣ(X0)Ja

)
− σΣa

(
X0 − hσΣ(X0)Ja

))

+
σ
√
h

2

(
σΣ

(
X0 +

√
h

2
σΣ(X0)χ

)
+ σΣ

(
X0 −

√
h

2
σΣ(X0)χ

))
ξn,

where Ja = (Ja,b)
d
b=1, χ = (χb)

d
b=1, and for a, b = 1, . . . , d we have

P(χb = ±1) =
1

2
,

Ja,b =


(ξn,bξn,b − 1)/2, if a = b,

(ξn,aξn,b − χa)/2, if a > b,

(ξn,aξn,b + χb)/2, if a < b.

(Method W2Ito1) The tensor Σ is evaluated 3 times if we take ΦΣ
h to be the method

introduced in [76, table 2] with a null drift function:

X1 = X0 +
√
h

d∑
a=1

(
− σΣa(X0) + σΣa(K

(a)
1 ) + σΣa(K

(a)
2 )

)
ξn,a

+ 2
√
h

d∑
a=1

(
σΣa(X0)− σΣa(K

(a)
2 )

)
Ĵa,a,

K
(a)
1 = X0 +

√
h

2
σΣa(X0)χ̂1 +

√
h

d∑
b=1
b̸=a

σΣb(X0)Ĵa,b,

K
(a)
2 = X0 −

√
h

2
σΣa(X0)χ̂1.

with P(χ̂i = ±1) = 1
2
for i = 1, 2 and

Ĵa,b =


χ̂1(ξ

2
n,a − 1)/2, if a = b,

ξn,b(1 + χ̂2)/2, if a > b,

ξn,b(1− χ̂2)/2, if a < b.

We emphasis that the above methods MT2 and W2Ito1 are Runge-Kutta type methods
with noise increments in the internal stages, an idea first introduced in [68] to obtain
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a number of diffusion tensor evaluations that is independent of the dimension of the
noise. We denote versions of the PVD-2 method that use these noise integrators as
PVD-2[MT2] and PVD-2[W2Ito1] respectively.

Theorem 2.0.1. The method presented in (2.0.1) is of order 2 with respect to the
invariant measure for the SDE (1.1.4).

The proof of Theorem 2.0.1 is provided in Section 2.1. Section 2.2 examines the
stability of the new method and introduces several modifications that enhance its
stability. Experimental results confirming convergence are presented in Section 2.3.

2.1 Convergence analysis for invariant measure sampling

We recall that the weak Taylor expansion of the solution of (1.1.4) has the form

E[ϕ(X(h))|X(0) = X0] = ϕ(X0) + h(Lϕ)(X0) + h2
L2ϕ

2!
(X0) + · · · ,

where the generator of the SDE is given by Lϕ := F · ∇ϕ+ σ2

2

∑d
a=1 ϕ

′′(Σa,Σa).

2.1.1 Integration by parts

The order conditions for the invariant measure of a post-processed integrator, as stated
in Theorems 1.2.5 and 1.2.6, involve integrals of differential operators applied to test
functions ϕ, we use integration by parts and Lemma 2.1.1 to manipulate the expres-
sions. The integration by parts technique is demonstrated in the context of the SDE
(1.1.4), confirming that Theorem 1.4.6 remains applicable.

Lemma 2.1.1. We have the following identities:

1. div(Σ2) =
∑d

a=1 Σa div(Σa) +
∑d

a=1Σ
′
aΣa,

2. Σ2f =
∑d

a=1 Σa(Σa · f).
We apply Lemma 2.1.1 in the following example where we demonstrate integration

by parts and show the benefits of using the tree formalism.

Example 2.1.2. Let us consider a case with Σ assumed constant,

d∑
i,j,k,a=1

⟨ΣiaΣjaF
k∂i,j,kϕ⟩ =

d∑
i,j,k,a=1

∫
Rd

ΣiaΣjaF
k∂i,j,kϕρ∞dx (A)

apply integration by parts

(A) = −
d∑

i,j,k,a=1

∫
Rd

ΣiaΣja(∂iF
k)(∂j,kϕ)ρ∞dx

−
d∑

i,j,k,a=1

∫
Rd

ΣiaΣjaF
k(∂j,kϕ)(∂iρ∞)dx

we use ∂iρ∞ = 2
σ2f

iρ∞ and rewrite the expression without the integral notation

(A) = −
d∑

j,k,a=1

⟨
d∑

i=1

ΣiaΣja(∂iF
k)(∂j,kϕ) +

2

σ2
(Σa · f)ΣjaF

k(∂j,kϕ)⟩
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applying Lemma 2.1.1 and the definition of F we get

(A) = −
d∑

j,k,a=1

⟨ 2
σ2
F jF k(∂j,kϕ) +

d∑
i=1

ΣiaΣja(∂iF
k)(∂j,kϕ)⟩ .

Next, we consider the same case with Σ being non-constant,

d∑
i,j,k,a=1

⟨ΣiaΣjaF
k(∂i,j,kϕ)⟩ =

d∑
i,j,k,a=1

∫
Rd

ΣiaΣjaF
k(∂i,j,kϕ)ρ∞dx (B)

apply integration by parts

(B) = −
d∑

i,j,k,a=1

∫
Rd

(∂iΣia)ΣjaF
k(∂j,kϕ)ρ∞dx−

d∑
i,j,k,a=1

∫
Rd

Σia(∂iΣja)F
k(∂j,kϕ)ρ∞dx

−
d∑

i,j,k,a=1

∫
Rd

ΣiaΣja(∂iF
k)(∂j,kϕ)ρ∞dx−

d∑
i,j,k,a=1

∫
Rd

ΣiaΣjaF
k(∂j,kϕ)(∂iρ∞)dx

we use ∂iρ∞ = 2
σ2F

iρ∞ and rewrite the expression without the integral notation

(B) = −
d∑

j,k,a=1

⟨(Σa div(Σa) + Σ′
aΣa)

jF k(∂j,kϕ)

+
d∑

i=1

ΣiaΣja(∂iF
k)(∂j,kϕ) +

2

σ2
(Σa · F )ΣjaF

k(∂j,kϕ)⟩

applying Lemma 2.1.1 and the definition of F we get

(B) = −
d∑

j,k,a=1

⟨ 2
σ2
F jF k(∂j,kϕ) +

d∑
i=1

ΣiaΣja(∂iF
k)(∂j,kϕ)⟩ .

Using the tree formalism introduced in Chapter 1, we can write this example as

⟨ 1 1 ⟩ = −⟨2 + 1

1

⟩ ,

which agrees with Theorem 1.4.6. An analogous computation can be performed to
show that

⟨ 1

1

⟩ = −⟨2 +
1 1

⟩ . (2.1.1)

Equation (2.1.1) is used in the proof of Theorem 2.0.1.

2.1.2 Proof of convergence

Let us start by recalling the statement and the setting of Theorem 2.0.1. We consider
the following integrator,

Xn+1 = Xn + hF (Xn) + Φ̂Σ
h (Xn +

1

4
hF (Xn−1)) ,

Xn = Xn +
1

2

√
hσΣ(Xn)ξn , with X−1 = X0 , (2.1.2)

where ΦΣ
h (Xn) = Xn + Φ̂Σ

h (Xn) = Xn +
√
hσΣ(Xn)ξn +O(h) is an integrator of weak

order 2 applied to the problem dX = σΣ(X)dW .
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Theorem 2.0.1. The integrator of the form (2.1.2) is of order 2 with respect to the
invariant measure.

We consider a modification of integrator (2.1.2) which is written as an integrator
Xn+1 = Φh(Xn) and a post-processor Xn = Ψh(Xn) with

Φh(Xn) = Xn + hF (Y ) + Φ̂Σ
h (Xn +

1

4
hF (Xn)) ,

Y = Xn +
1

2

√
hσΣ(Xn)ξn ,

Ψh(Xn) = Xn +
1

2

√
hσΣ(Xn)ξn , (2.1.3)

where F (Xn−1) of (2.1.2) is replaced by F (Xn). We note that the integrator (2.1.3)
requires 2 evaluations of F per step.

Lemma 2.1.3. Given a post-processor of the form (2.1.3) and an integrator Φh which
admits weak Taylor expansion with A1 = L has order 2 with respect to the invariant
measure if

⟨A2⟩ = ⟨F(
2

+
1 1

2
+

1 1

4
+

1

1

2
+

1 1

8

+
1 1 2 2

8
+

1 2 2

1

2
+

2

1

2

1

4
+

2 2

1 1

4
)⟩ . (2.1.4)

Proof. By Theorem 1.2.6, an integrator Φh with A1 = L has order 2 with respect to
the invariant measure if A2 satisfies

⟨A2⟩ = ⟨L
2

2
− [L,A1]⟩ , (2.1.5)

where we note that ⟨L2

2
⟩ = 0. We use the tree formalism to express the condition

(2.1.5) explicitely. We start by noting that

L = F( +
1

2 1 1 ), and A1 = F(
1

8 1 1 ) .

This implies, using Proposition 1.3.4, that

[L,A1] = F(
1

4 1 1 − 1

4 1

1

− 1

8

1 1

) .

Using Proposition 1.3.4, we express L2 as

L2 = F( + + 1 1 + 1 1 + 1

1

+
1

2

1 1

+
1

4 1 1 2 2 + 1 2 2

1

+
1

2 2

1

2

1

+
1

2 2 2

1 1

) .

This gives us the following condition on A2:

⟨A2⟩ = ⟨F(
2

+
2

+
1 1

2
+

1 1

4
+

3 1

1

4
+

3
1 1

8

+
1 1 2 2

8
+

1 2 2

1

2
+

2

1

2

1

4
+

2 2

1 1

4
)⟩ .
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Using (2.1.1) we finally get

⟨A2⟩ = ⟨F(
2

+
1 1

2
+

1 1

4
+

1

1

2
+

1 1

8

+
1 1 2 2

8
+

1 2 2

1

2
+

2

1

2

1

4
+

2 2

1 1

4
)⟩ .

This finishes the proof.

We use Lemma 2.1.3 to prove Proposition 2.1.4.

Proposition 2.1.4. The post-processed integrator Xn = (Ψh ◦Φn
h)(X0) of (2.1.3) is of

order 2 with respect to the invariant measure.

Proof. The post-processed integrator Xn = (Ψh ◦ Φn
h)(X0) of (2.1.3) has A1 = L. To

see that it is of order 2 with respect to the invariant measure, we use Lemma 2.1.3,
that is, we check that A2 satisfies (2.1.4). The differential operators appearing in the
weak Taylor expansion of ΦΣ

h are denoted by AΣ
j where j ∈ N with AΣ

1 = F(1
2 1 1 ).

Therefore, the differential operator A2 has the form

A2 = F(
1

2
+

1

2 1 1 +
1

2 1

1

+
1

8

1 1

) +AΣ
2 .

Since ΦΣ
h is weak order 2, AΣ

2 of ΦΣ
h (Xn +

1
4
hF (Xn)) is

AΣ
2 = F( 1 1

4
+

1 1 2 2

8
+

1 2 2

1

2
+

2

1

2

1

4
+

2 2

1 1

4
).

Therefore, the condition (2.1.4) is satisfied and the method has order 2 with respect
to the invariant measure.

We are now ready to prove Theorem 2.0.1 and show that the post-processed inte-
grator of (2.1.2) has order 2 with respect to the invariant measure.

Proof. of Theorem 2.0.1 We recall that the only difference between the integrators
described by (2.1.2) and (2.1.3) is the replacement of F (Xn−1) by F (Xn) which sim-
plifies the analysis. Let us now show that the differential operators A2 of (2.1.2) and
(2.1.3) are identical and, therefore, the integrator (2.1.2) is of order 2 with respect to
the invariant measure.

We have the following identity

Xn−1 = Xn−1 +
1

2

√
hσΣ(Xn−1)ξn−1

= Xn − hF (Xn−1)− Φ̂Σ
h (Xn−1 +

1

4
hF (Xn−2)) +

1

2

√
hσΣ(Xn−1)ξn−1

= Xn −
1

2

√
hσΣ(Xn)ξn−1 +O(h).

Therefore, the Φ̂Σ
h term of (2.1.2) has the following form

Φ̂Σ
h

(
Xn +

1

4
hF (Xn−1)

)
= Φ̂Σ

h

(
Xn +

1

4
hF (Xn)−

1

8
h
√
hσF ′(Xn)Σ(Xn)ξn−1 +O(h2)

)
.
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We see that the Taylor expansion of the Φ̂Σ
h term of (2.1.2) differs from the Taylor

expansion of the Φ̂Σ
h term of (2.1.3) by

−1

8
h2σ2(Σξn)

′F ′Σξn−1 +O(h2.5) ,

which has expectation O(h3) due to the fact that each term corresponding to h2.5

has an odd number of gaussians ξn or ξn−1 with mean 0. Therefore, the differential
operators A2 of (2.1.2) and (2.1.3) are identical.

Remark 2.1.5. A direct approach, involving the computation of order conditions for
second order with respect to the invariant measure, followed by the solution of the
resulting system, proved to be too challenging to perform manually. This involved
handling 93 order conditions that needed to be satisfied. A subset of these conditions
is listed below:

1. aσ( 1 1 )− 2aσ( 1 1 2 2 ) = 0,

2. aσ( 1 2

1

2 )− 2aσ( 1 1 2 2 ) = 0,

3. aσ( 1

1

2 2 )− 2aσ( 1 1 2 2 ) = 0,

4. aσ( 1 1 ) = 0,

5. aσ(
1

1 ) = 0,

· · ·

91. aσ(
1 1

) = 0,

92. aσ( 1

1

) = 0,

93. aσ( 1

1

) = 0,

where aσ(π) denotes the Runge-Kutta coefficient corresponding to the forest π and
divided by its symmetry.

2.2 Mean-square stability analysis

We observe that the next step, Xn+1, in the method (2.0.1) proposed here is dependent
on both Xn and Xn−1. To analyze the stability of this method effectively, we express

it in a partitioned form XP
n+1 = ΦP

h (X
P
n ) where X

P
n = (XT

n , X
T

n−1)
T :

(
Xn+1

Xn

)
= ΦP

h

(
Xn

Xn−1

)
=

(
Xn + hF (Xn) + Φ̂Σ

h

(
Xn +

1
4
hF (Xn−1)

)
Xn +

1
2

√
hσΣ(Xn)ξn

)
. (2.2.1)

2.2.1 Stability domain for mean-square stiff problems

We consider the following test problem in dimension d = 1, which is introduced in [71]
and widely used in the literature [1, 15, 35, 77] for studying the mean-square stability
of integrators applied to stiff problems::

dX(t) = λX(t)dt+ µX(t)dW (t) , X(0) = 1 , (2.2.2)

where λ and µ are fixed complex parameters. After applying the new method to the
test problem, we obtain the stability matrix R(p, q, ξn) of the following form, with

p = λh and q = µ
√
h,
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(a) New method (2.0.1) (b) Modification 1 (2.2.6) (c) Modification 2 (2.2.7)

Figure 2.2.1: Mean-square stability domains of the PVD-2 method (2.0.1) and modifications (2.2.6)

and (2.2.7), for which E[X2

n] → 0 for the scalar test problem (2.2.2) in the (p, q2)–plane where
p = λh, q = µ

√
h.

(
Xn+1

Xn

)
=

(
1 + p+ 1

2
pqξn + R̂Σ(p, q, ξn)

1
4
pR̂Σ(p, q, ξn)

1 + 1
2
qξn 0

)(
Xn

Xn−1

)
, (2.2.3)

where RΣ(p, q, ξn) is the stability function of the noise integrator and R̂Σ = RΣ − 1.

Following the ideas from Saito-Mitsui [71], we consider E[XP
n+1X

P
n+1

T
] and obtain the

following equation with R = R(p, q, ξn) being the stability matrix from (2.2.3),

 E[X2
n+1]

E[X2

n]
E[Xn+1Xn]

 =

 E[R2
11] E[R2

12] 2E[R11R12]
E[R2

21] 0 0
E[R21R11] 0 E[R21R12]

 E[X2
n]

E[X2

n−1]
E[XnXn−1]

 . (2.2.4)

The mean-square stability region of the method (2.0.1), that is the domain of p, q

such that the second moments of the numerical solution E[X2
n],E[X

2

n] tend to 0 as
n → +∞, is then computed by checking the values of p and q for which the largest
eigenvalue of the matrix in (2.2.4) is smaller than 1. To do this, we need to choose
the noise integrator. We note that both noise integrators MT2 and W2Ito1 have the
following stability function

RΣ(p, q, ξn) = 1 + qξn +
q2

2
(ξ2n − 1). (2.2.5)

The resulting stability region is computed numerically for real p and is presented in
Figure 2.2.1a. For comparison, the light gray region in Figure 2.2.1a is the stability
region of the exact solution for which E(X(t)2) → 0 as t → +∞ and is given by the

condition Re(λ) + |µ|2
2
< 0.

2.2.2 Improving the stability

We consider slight modifications to the method to enhance the stability region without
compromising the order of convergence or significantly increasing the computational
cost. The first modification brings the term hF (Xn−1) inside the

√
h term of the Taylor
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expansion of the noise integrator. This is enough to obtain the desired order 2 and
simplifies the stability matrix in (2.2.3). We obtain the following method

Xn+1 = Xn + hF (Xn) + Φ̂Σ
h (Xn, Xn +

h

4
F (Xn−1)),

Xn = Xn +
1

2

√
hσΣ(Xn)ξn, with X−1 = X0, (2.2.6)

with the following choice of the noise integrator ΦΣ
h (Xn, X

(1)
n ):

1. Modified MT2 weak order 2 method from [4]

ΦΣ
h (Xn, X

(1)
n ) = Xn +

1

2

d∑
a=1

(
σΣa

(
Xn + σΣ(Xn)Ja

)
− σΣa

(
Xn − σΣ(Xn)Ja

))

+
σ
√
h

2

(
σΣ

(
X(1)

n +

√
h

2
σΣ(Xn)χ

)
+ σΣ

(
X(1)

n −
√
h

2
σΣ(Xn)χ

))
ξn.

2. Modified W2Ito1 method from [76]

ΦΣ
h (Xn, X

(1)
n ) = Xn +

√
h

d∑
a=1

(
− σΣa(Xn) + σΣa(K

(a)
1 ) + σΣa(K

(a)
2 )

)
ξn,a

+ 2
√
h

d∑
a=1

(
σΣa(Xn)− σΣa(K

(a)
2 )

)
Ĵa,a,

K
(a)
1 = X(1)

n +

√
h

2
σΣa(Xn)χ̂1 +

√
h

d∑
b=1
b̸=a

σΣb(Xn)Ĵa,b,

K
(a)
2 = Xn −

√
h

2
σΣa(Xn)χ̂1.

The notation coincides with that used in the definition of MT2 and W2Ito1 methods.
The improved stability region can be found in Figure 2.2.1b. The next improvement
of the stability region is achieved by modifying the Milstein-Tretyakov term of the

noise integrator. We note that the term q2

2
(ξ2n − 1) from (2.2.5) results in the term

q4 in E[R2
11],E[R2

12],E[R11R12] from (2.2.4). We decrease the significance of this term
by multiplying it by 1 + p

2
which goes to 0 as p approaches −2. This is achieved by

replacing Xn used in the Milstein-Tretyakov term by Xn + h
2
F (Xn). The updated

method is

Xn+1 = Xn + hF (Xn) + Φ̂Σ
h (Xn, Xn +

h

4
F (Xn−1), Xn +

h

2
F (Xn)),

Xn = Xn +
1

2

√
hσΣ(Xn)ξn, with X−1 = X0, (2.2.7)

with the noise integrator being one of the following options:
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1. Modified weak order 2 method from [4]

ΦΣ
h (Xn, X

(1)
n , X(2)

n ) = Xn +
1

2

d∑
a=1

(
σΣa

(
Xn + σΣ(X(2)

n )Ja
)
− σΣa

(
Xn − σΣ(X(2)

n )Ja
))

+
σ
√
h

2

(
σΣ

(
X(1)

n +

√
h

2
σΣ(X(2)

n )χ
)
+ σΣ

(
X(1)

n −
√
h

2
σΣ(X(2)

n )χ
))
ξn.

2. Modified W2Ito1 method from [76]

ΦΣ
h (Xn, X

(1)
n , X(2)

n ) = Xn +
√
h

d∑
a=1

(
− σΣa(Xn) + σΣa(K

(a)
1 ) + σΣa(K

(a)
2 )

)
ξn,a

+ 2
√
h

d∑
a=1

(
σΣa(Xn)− σΣa(K

(a)
2 )

)
Ĵa,a,

K
(a)
1 = X(1)

n +

√
h

2
σΣa(X

(2)
n )χ̂1 +

√
h

d∑
b=1
b ̸=a

σΣb(X
(2)
n )Ĵa,b,

K
(a)
2 = Xn −

√
h

2
σΣa(X

(2)
n )χ̂1.

Further experiments that modified the coefficient 1
2
of F (Xn) confirmed that Xn +

h
2
F (Xn) is the optimal choice for X

(2)
n . The updated stability region is shown in Figure

2.2.1c. However, in our broader experiments, modifications (2.2.6) and (2.2.7) did not
lead to a significant improvement in stability compared to the original version (2.0.1).
As a result, we opted to use for simplicity the original version (2.0.1) in our numerical
simulations.

2.3 Numerical experiments

We present experiments that confirm the convergence order two of PVD-2 for sampling
the invariant measure. We explore several one and two-dimensional problems as well
as higher dimensional problems to emphasize that the method converges regardless of
dimensionality. In the following, we fix σ = 1.

In our experiments, we compare the performance of PVD-2, given by (2.0.1), against
the following methods: Euler-Maruyama (EM), Leimkuhler-Matthews with drift cor-
rection (LMd) (referred to as Hummer-Leimkuhler-Matthews in some sources) [64], the
Strang splitting between Runge-Kutta 4 and W2Ito1 noise integrator (RK4[W2Ito1])
[76], and Leimkuhler-Matthews with time rescaling (LMt) [64]. Properties of these
methods are summarised in Table 2.3.1, below.

Note that LMd does not converge for general variable diffusion in dimensions larger
than d = 1. The method RK4[W2Ito1] uses Strang splitting, doubling the number
of force evaluations, giving a total of 4 × 2 = 8. The same order could be achieved
with fewer F evaluations, however, our aim is to compare against a highly-accurate
integrator as a challenging baseline. Method LMt uses a constant stepsize h in a
transformed time variable τ(t). For plots, we display error curves with an effective step
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Method Weak Order Sampling Order # F Eval. # Σ Eval.

EM 1 1 1 1

LMd (dim. d = 1) 1 1 1 1

RK4[W2Ito1] 2 2 8 3

LMt 1 2 1 1

PVD-2[W2Ito1] 1 (expected) 2 (expected) 1 3

PVD-2[MT2] 1 (expected) 2 (expected) 1 5

Table 2.3.1: Summary of method characteristics, including the number of F and Σ evaluations per
step. Sampling order is the order of sampling of the invariant measure, i.e. p in Definition 1.2.4.

Figure 2.3.1: The potentials and diffusion coefficients used in one-dimensional experiments.

size h′ = h
〈
dt
dτ

〉
, where ⟨·⟩ denotes a trajectory average. The number of Σ evaluations

for PVD-2[W2Ito1] and PVD-2[MT2] comes directly from the number of Σ evaluations
for the noise integrator method, see the introduction of the new method in the beginning
of Section 2.

2.3.1 One dimension

We consider three potentials of increasing complexity, namely the quadratic potential
V (x) = x2/2, the quartic potential V (x) = x4/4 and the asymmetric double-well
potential V (x) = x2/2 + sin(1 + 3x). For the first two potentials we consider cosine
diffusion Σ(x) = 3

2
+ 1

2
cos(x) and sine diffusion Σ(x) = 3

2
+ 1

2
sin(x). For the double-well,

we consider diffusion of the form Σ(x) = exp(1
4
V (x)). These potentials and diffusion

coefficients are illustrated in Figure 2.3.1. Under mild conditions on V (x), diffusion of
the form Σ(x) ∝ exp(2σ−2V (x)) for σ > 0 is known to be nearly optimal diffusion for
enhancing the crossing rate between metastable wells [46, 64]. Note that f = −∇V is
globally Lipschitz for the quadratic and double-well potentials, but not for the quartic
potential, making it an interesting test case.

For computing the L1 error, we divide the subset [−5, 5] of the x-domain intoM = 30
bins and for a fixed T compute the mean error:

Error(h, T ) :=
1

M

M∑
i=1

|ωi − ω̂i(h, T )|, (2.3.1)

where ωi is the exact occupancy probability of the ith interval and ω̂i is the empirical
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Figure 2.3.2: Convergence for sampling the invariant measure in a quadratic potential V (x) = x2/2.
Left: diffusion Σ(x) = 3

2 + 1
2 cos(x). Right: diffusion Σ(x) = 3

2 + 1
2 sin(x).

estimate when running trajectories with fixed stepsize h up to a final time T . In all
experiments, we set T = 5×107 and ran each integrator using time steps starting from
10−2, increasing by a factor of 100.1 at each step until the method became unstable.
Results for the quadratic, quartic and double-well are shown in Figures 2.3.2, 2.3.3
and 2.3.4, respectively. For all curves, we also display an estimate of the Monte-Carlo
error in the bias (shaded areas), considering the standard deviation of 10 independent
trajectories.

Both variants of PVD-2 consistently achieve second-order convergence across various
environments, including challenging non-globally Lipschitz cases like the quartic po-
tential. They also yield lower errors than RK4[W2Ito1], using only one force evaluation
per step versus RK4[W2Ito1]’s eight. Nevertheless, in one-dimension, time-rescaling
combined with the Leimkuhler-Matthews (LMt) consistently results in the lowest error
for any given stepsize. This highlights the importance of transforming a multiplicative
noise to additive whenever possible [64]. Note, however, that LMt can only be applied
in the multiplicative setting for isotropic diffusion. For this reason, we exclude this
method from our higher-dimensional benchmarks.

2.3.2 Two dimensions

We consider a 4-well potential given by

V (x1, x2) =

√
17

16
− 2x21 + x41 +

√
17

16
− 2x22 + x42, (2.3.2)

along with four diffusion tensors of increasing complexity:

(A) Constant : A constant, anisotropic diffusion:

ΣA(x1, x2) =

[
2 0
0 3

2

]
.
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Figure 2.3.3: Convergence for sampling the invariant measure in a quartic potential V (x) = x4/4.
Left: diffusion Σ(x) = 3

2 + 1
2 cos(x). Right: diffusion Σ(x) = 3

2 + 1
2 sin(x).

Figure 2.3.4: Convergence for sampling the invariant measure in a double-well potential V (x) =
x2

2 + sin(1 + 3x) with diffusion Σ(x) = exp
(
1
4V (x)

)
. The left figure shows the error convergence

against stepsize and the right figure shows the error convergence against the number of F evaluations,
a proxy for computational cost.
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(B) Isotropic I : Non-homogeneous diffusion given by the Moro-Cardin tensor [55]
which impedes convergence due to the low level of noise in the central high-
potential region:

ΣB(x1, x2) =

(
1 + A exp

(
−∥x∥2

2ϵ2

))−1

I, x =

[
x1
x2

]
,

where A = 5 and ϵ = 0.3.

(C) Isotropic II : Non-homogeneous diffusion which aids convergence due to the high
level of noise in the central high-potential region:

ΣC(x1, x2) =

(
1 + A exp

(
−∥x∥2

2ϵ2

))
I, x =

[
x1
x2

]
,

where A = 1 and ϵ = 0.3.

(D) Anisotropic: An anisotropic diffusion given by

ΣD(x1, x2) = I − xxT

2∥x∥2 + 1
, x =

[
x1
x2

]
,

which can be written in terms of the planar angle θ = arg(x) as

ΣD(x1, x2) = I − ∥x∥2

2∥x∥2 + 1

[
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

]
.

The pre-factor of ∥x∥2
2∥x∥2+1

ensures that θ-dependent component vanishes at x = 0,

thus guaranteeing that ΣD(x1, x2) is everywhere smooth.

In Figure 2.3.5, we visualise how these diffusion tensors vary relative to the energy
contours of (2.3.2). To measure convergence, we compute the L1 error of the square-
norm observable:

Error(h,N, T ) :=
∣∣∣O − Ô(h,N, T )

∣∣∣ ,
where O =

∫
(x21 + x22)ρ(x1, x2)dx1dx2 is the exact square-norm average and Ô is the

empirical estimate when running N trajectories with fixed stepsize h and averaging the
value of the observable at time T . We fix N = 105 and T = 30 and ran each integrator
with fixed step sizes h ∈ {10−2, 10−1.9, . . . , 10−0.1, 100.0}. Results are shown in Figure
2.3.6.

Note that in all cases, PVD-2 is the best performing integrator for small stepsizes,
within standard error. However, metastability is more severe in the quadruple-well
compared to one-dimensional problems (Section 2.3.1). This is especially true for
diffusion tensor Isotropic I (B). Here, diffusion vanishes over the central maximum,
inhibiting well transitions. This highlights the loss of second-order convergence (for
any method) in Figure 2.3.6(B); the simulation time is too short to observe complete
sampling. In our numerical tests, increasing T did not improve these convergence rates,
suggesting that the temporal convergence to equilibrium is very slow for the considered
diffusion tensor.
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Figure 2.3.5: Contours of the quadruple well potential (2.3.2) are shown with the various diffusion
tensor fields. Diffusion fields Σ(x1, x2) are visualised by the magnitude of the expected noise increment
in the x1 (blue) and x2 (red) directions shown at each grid point. For better comparison, the diffusion
arrows in (B) and (D) are scaled by a factor of 2 compared to (A) and (C).
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Figure 2.3.6: Convergence for sampling the invariant measure in the 2D quadruple-well potential for
the four diffusion tensors depicted in Figure 2.3.5. Note that in (A), both variants of PVD-2 perform
identically hence only PVD-2[W2Ito1] shows. The computations were performed on the Baobab
cluster of the University of Geneva using the Julia programming language.
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2.3.3 Higher dimensions

We consider the high-dimensional ring potential, which was used as a test problem in
[72, Sect. 7]. For x ∈ Rd, the potential is given by

V (x) =
1

2
k(1− ∥x∥)2, (2.3.3)

where ∥x∥ :=
√∑d

i=1 x
2
i is the L2 norm of x. We use k = 50 and run experiments for

d = 10 and d = 100. For the diffusion tensor, we use a rank-one update to the identity
matrix which inhibits diffusion in the radial direction, given by

Σ(x) = I − xxT

2∥x∥2
. (2.3.4)

This diffusion tensor is non-smooth at x = 0. However, in high dimensions, and for
large k, the invariant measure of the ring potential is highly concentrated near the
unit sphere and there is thus negligible probability mass near this point. We therefore
might still expect to observe second-order convergence when using PVD-2.

To measure convergence, we compute the L1 error of the square-norm observable:

Error(h, T ) :=
∣∣∣O − Ô(h, T )

∣∣∣ ,
where O =

∫
(
∑d

i=1 x
2
i )ρ(x)dx is the exact square-norm average and Ô is the empirical

estimate when running trajectories with fixed stepsize h up to a final time T . For d = 10
experiments, we set T = 106. For d = 100, T = 104. We compare the performance of
the same integrators as in Section 2.3.2, except instead of W2Ito1 we use MT2 with
Runge-Kutta 4 Strang splitting (RK4[MT2]) [4]. In our low-dimensional experiments,
W2Ito1 and MT2 performed very similarly, however MT2 is simpler to implement for
large d.

In both high-dimensional experiments, we recovered a second order convergence
curve for our new method. In moderate dimensions (d = 10), we observe that PVD-
2[MT2] even outperforms RK4[MT2], whilst requiring only a single F evaluation per
step, instead of eight. In high dimensions (d = 100), although RK4[MT2], it has
much more limited stability that all other tested methods. In contrast, LMd does not
converge in the multivariate setting.
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Figure 2.3.7: Convergence to the observable ∥x∥ in the ring-potential (2.3.3) with diffusion tensor
given by (2.3.4). Left: dimension d = 10. Right: dimension d = 100.



Chapter 3

Algebraic structure of exotic
aromatic forests

In this chapter, we further generalize the class of forests by extending it to exotic
aromatic forests in Section 3.2 and clumped forests in Section 3.3. Our focus is on the
algebraic structures of grafted, exotic, aromatic, and clumped forests, aiming to apply
these structures in the context of numerical analysis. This chapter consolidates the
results from [7, 11] within a unified formalism.

In Section 3.1, we introduce a formal algorithm for generating order conditions for
invariant measure sampling. Although the algorithm is developed for (1.1.1), we note
that the theory also applies to (1.1.4), with the primary distinction being that the forest
transformation, called ELI, introduced in Section 3.1, cannot be applied. Subsequently,
we reduce the number of order conditions by examining their algebraic structure and
demonstrating that they form a character with respect to the concatenation of forests.
The results presented in Section 3.1 are published and can be found in [7].

In Section 3.2, we define the concept of aromas. Aromas are graphs that emerge
when the divergence of a vector field and the inner product between two vector fields
are incorporated into the framework of forests. Classical forests combined with aromas
form aromatic forests, which are a powerful tool in geometric numerical integration.
We extend the grafting product to aromatic forests, define the associated D-algebra
structure, and investigate the Grossman-Larson Hopf algebroid structure that replaces
the Hopf algebra structure from classical theory. Additionally, we examine how the
introduction of aromas affects the structure of a pre-Hopf algebra, leading us to define
the resulting structure as a pre-Hopf algebroid.

In Section 3.3, we introduce clumped forests, which generalize aromatic forests by
associating each aroma with a rooted component of the forest. Clumped forests are
a necessary component in defining the substitution law. This necessity arises from
the fact that substitution is expressed using homomorphisms of D-algebras that map
vertices to formal sums of aromatic trees. Additionally, since grafting is not linear over
the ring of aromas in the right operand, we cannot define monomials of aromatic trees
over this ring. As a result, the substitution law for aromatic forests is formulated using
a coaction of clumped forests on aromatic forests.

In Section 3.4, we consolidate the results discussed throughout the chapter and
extend them to the framework of exotic aromatic forests. A key property of exotic
aromatic forests is that pairs of grafted vertices (referred to as lianas) can connect
different connected components, forming components with multiple roots. This char-

35
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acteristic challenges many classical results, which often rely on the assumption that
each component has a single root, rendering some results invalid or requiring alter-
native proofs. The results presented in Sections 3.2, 3.3, and 3.4 are part of [11], a
collaboration with Adrien Laurent, and have been submitted for publication.

A fundamental object connecting the algebraic and combinatorial structures of
forests to the numerical analysis of time integrators is the S-series. An S-series is
a formal sum indexed by a class of forests, where each term corresponds to the dif-
ferential operator associated with a given forest, with coefficients determined by the
specific integrator. The primary focus is the S-series over exotic forests, which serves
as a bridge to translate the algebraic results established in this chapter into numerical
applications.

Recall that EF denotes the set of exotic forests introduced in Section 1.4 and EF
denotes the corresponding vector space. Let EF be the space of formal sums of the
following form ∑

π∈EF

a(π)π, with a ∈ EF∗.

Recall the symmetry coefficient σ(π) := |Aut(π)|. Let δσ : EF∗ → EF be the isomor-
phism given by

δσ(a) =
∑
π∈EF

a(π)

σ(π)
π.

We will abuse the notation and use δσ to denote analogous isomorphisms for other
spaces. The space will be made clear from the context and will always be the domain
of the functional to which δσ is applied.

Definition 3.0.1. S-series over exotic forests are defined as S := F ◦ δσ, that is,

S(a) =
∑
π∈EF

a(π)

σ(π)
F(π).

S-series over exotic forests are called exotic S-series. If a ∈ EAT ∗, that is, a is non-zero
only on exotic aromatic trees, then S(a) is called an exotic B-series and denoted by
B(a).

S-series over grafted forests Fg is defined analogously. We consider the following
form of stochastic Runge-Kutta methods solving (1.1.1) with F = −∇V denoting the
drift term. Stochastic Runge-Kutta methods can be extended to solve (1.1.4) by adding
an appropriate Σ term to the noise terms of the scheme.

Definition 3.0.2. Let aij, bi, d
(k)
i be the coefficients defining the stochastic Runge-

Kutta scheme, and ξ
(k)
n ∼ N (0, Id) be independent Gaussian random vectors. Then,

the stochastic Runge-Kutta scheme has the form:

Yi = Xn + h

s∑
j=1

aijF (Yj) +
l∑

k=1

d
(k)
i

√
hξ(k)n , i = 1, . . . , s,

Xn+1 = Xn + h

s∑
i=1

biF (Yi) +
√
hσξ(1)n .
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We shall assume for simplicity of the presentation that l = 1 which is sufficient
to achieve weak order 2 or order 3 with respect to the invariant measure. We note
that l > 1 is necessary in general to achieve high order [42]. The analysis in this
paper extends naturally to the l > 1 case by considering grafted forests with decorated
grafted vertices. Two grafted vertices can form a pair only if they are decorated by the
same number. For example, for l = 2, we should consider grafted of the form

×
1

×
1

,

×
1

×
2

×
1

×
2 .

We recall the map B+
c : FD → TD for c ∈ D, which attaches all the roots of a given

forest to a new vertex, thereby making it the root of the resulting tree. For example,

B+
• ( × ) =

×

, B+
×( × ) = ×

×

.

Proposition 3.0.3. Let S(a) be the S-series over grafted forests of a stochastic Runge-
Kutta method with coefficients bi, aij, di for i, j = 1, . . . , s, then the map a : Fg → R is
defined as

a(B+
• (π)) =

s∑
i=0

bia
[i](π), a[i](B+

• (π)) =
s∑

j=1

aija
[j](π), a[i](B+

×(π)) = di,

with a(π1 · π2) = a(π1)a(π2) and a
[i](π1 · π2) = a[i](π1)a

[i](π2) for π, π1, π2 ∈ Fg.

We recall that a pair of grafted vertices is referred to as a liana. Let Φ : EF → Fg

denote the map that forgets the pairing between grafted vertices, that is, it sends all
k ∈ N to × and keeps • unchanged. For example,

Φ(
1

1 ) =
×

× , Φ(
1

2

2

1 ) =
×

×

×

× .

Proposition 3.0.4. The expectation of an S-series over grafted forests S(a) is the
exotic S-series S(a ◦ Φ), that is,

E [S(a)] = S(a ◦ Φ).

Proof. We use the definitions of S-series, as well as Theorem 1.4.12.

We now present some numerical applications of the algebraic results developed
throughout the chapter. Let e denote the functional e : EF → R corresponding
to the exact solution, such that S(e) = exp(hL). An integrator with an exotic S-series
S(a), defined as E[ϕ(X1)] = S(a), is said to have weak order q if a(π) = e(π) for all
π ∈ EF with |π| ≤ q. An integrator with at least weak order one is referred to as
consistent.

Let us consider an equivalence relation between functionals over exotic forests, de-
noted by ∼, where a ∼ b for a, b ∈ EF∗ if there exists a chain of transformations
consisting of ELI and IBP (see Section 3.1) such that δσ(a) → δσ(b). A key property
of the relation ∼ is presented below,

a ∼ b =⇒
∫
Rd

S(a)[ϕ](x)ρ∞(x)dx =

∫
Rd

S(b)[ϕ](x)ρ∞(x)dx.
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An integrator with an exotic S-series S(a) is said to have order p for the invariant
measure sampling if a ∼ ω with ω(π) = 0 for all π ∈ EF with |π| ≤ p.

Let ET denote the set of exotic trees, that is, the set of exotic forests with a single
root. Corollary 3.1.9 of Theorem 3.1.8 introduced in Section 3.1 reduces the number
of order conditions significantly by considering the value of ω over ET instead of EF .

Corollary 3.1.9. Given an integrator satisfying the assumptions discussed in Chapter
1 with E[ϕ(X1)] = S(a), it has order p for the invariant measure sampling if ω(τ) = 0
for τ ∈ ET with ω defined as in (3.1.1).

All order conditions for invariant measure sampling up to order 3 can be found in
Appendix .0.2. We note that the results presented below are obtained for S-series over
exotic aromatic forests. Exotic aromatic forests are a generalization of exotic forests
which is described in Section 3.2. The vector spaces of exotic aromatic forests and
trees are denoted by EAF and EAT , respectively.

Let Φ1
h and Φ2

h be two integrators that share the same timestep while having inde-
pendent noise terms. Theorem 3.4.3 from Section 3.4 establishes that the composition
of these two integrators, each with an exotic S-series, results in an integrator that
also possesses an exotic S-series of a specific form. We present the definition of the
Butcher-Connes-Kreimer coproduct used in the statement of Theorem 3.4.3 and stud-
ied in Section 3.2.4.

Definition 3.4.2. The Butcher-Connes-Kreimer coproduct on EAF is defined as

∆BCK(π) :=
∑
π0⊂π

π \ π0 ⊗ π0,

where the sum runs over all rooted exotic aromatic subforests π0 ∈ EAF of π such
that π \ π0 ∈ EAF and there are no edges going from π0 to π \ π0 in π.

An important property of ∆BCK over exotic aromatic forests is that it keeps the
vertices of a liana on the same side of the tensor product, for example,

∆BCK( 1

1

) = 1

1

⊗ 1+ 1 1 ⊗ + 1⊗ 1

1

.

Let mR denote the multiplication map over R.

Theorem 3.4.3. Consider two independent integrators Φ1
h and Φ2

h with exotic S-
series S(a1) and S(a2), then the composition of Φ1

h and Φ2
h has the following S-series

E[ϕ((Φ2
h ◦ Φ1

h)(x))] = S(a1 ∗ a2)[ϕ](x).

with a1 ∗ a2 = mR ◦ (a1 ⊗ a2) ◦ ∆BCK where ∆BCK is the Butcher-Connes-Kreimer
coproduct over exotic forests.

Let SF (a) denote the exotic S-series of a numerical integrator solving an SDE with
drift F . The drift can be chosen to be a B-series BF (b), where b ∈ EAT ∗ is a functional
that is non-zero only on exotic aromatic trees. Theorem 3.4.5 asserts that applying a
numerical integrator to an SDE with drift SF (b0) is equivalent to applying a numerical
integrator with an exotic S-series of a specific form to the SDE with drift F .

The description of the substitution law for exotic aromatic S-series relies on the
coaction ∆CEM : EAF → CEF1 ⊗ EAF with CEF1 := S(EAT ) which is studied in
detail in Sections 3.3 and 3.4.
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Definition 3.4.4. Let the CEM coaction ∆CEM : EAF → CEF1 ⊗ EAF over exotic
aromatic forests be defined as

∆CEM(π) :=
∑

p∈P (π)

p⊗ π/p,

where P (π) is the set of partitions of π with a partition p ∈ P (π) being a set of
exotic aromatic subtrees of π that covers all black vertices of π. When written in
the left operand of the tensor product, p is interpreted as a monomial in CEF1. The
exotic aromatic forests π/p denotes the forest obtained by contracting each element of
p into a black vertex. If the forest π ∈ EAF doesn’t have valid subforests p ∈ CEF1,
then ∆CEM(π) = 1⊗ π. For details see the proof of Theorem 3.4.6.

Theorem 3.4.5. Let a ∈ EAF∗, b ∈ EAT ∗, then,

SBF (b)(a) = SF (bc ⋆ a), with bc ⋆ a = mR ◦ (bc ⊗ a) ◦∆CEM ,

where bc is the character of CEF1 that extends b.

We use Theorem 3.4.5, along with Theorem 3.1.8 introduced in Section 3.1, to
extend the powerful techniques of backward error analysis and the modified equa-
tion—originally developed for the geometric numerical integration of ODEs—to the
SDE context for invariant measure sampling. These techniques are formally presented
in Theorems 3.0.5 and 3.0.7, using concepts introduced in Sections 3.3 and 3.4. No-
tably, the statements of Theorems 3.0.5 and 3.0.7 rely on the map A (Section 3.1) to
be defined in a specific way that reduces all exotic forests to monomials of exotic trees
which is known to be possible for overdamped Langevin equations with additive noise,
i.e., problem (1.1.1), but not for more general problems.

The goal of backward error analysis is to find a modified vector field written formally
as an exotic B-series,

hF̃ = B(b) = hF + h2F1 + h3F2 + . . . , b : ET → R, b(•) = 1,

for some vector fields F1, F2, . . . that typically write as polynomials in the coordinates
of F and its partial derivatives, such that the invariant measure of the ergodic integrator
with S-series S(a) coincides with the invariant measure of the modified dynamics of
(1.1.1) with F = −∇V replaced by F̃ . The coefficient map b ∈ ET ∗ is the solution to
the substitution bc ⋆ e ∼ a where ⋆ is the substitution law described in Theorem 3.4.5.

It is known [28, 2] that there exists a modified vector field for large classes of
methods, such as stochastic Runge-Kutta methods. The calculations are tedious and
were rewritten with exotic series in [41, 7]. There is, however, no proof that the
calculations can be carried out up to any order in these works as there is no reason in
general why the modified vector field could be written as an exotic B-series. A geometric
justification of the importance of writing the modified vector field as an exotic B-series

is given in [40]: it enforces that F̃ is invariant with respect to orthogonal changes of
coordinates, which is a natural property in the stochastic context. We provide here
a simple and natural algebraic criterion, satisfied by large classes of methods, for the
description of integrators that have a modified vector field in the form of an exotic

B-series. In addition, we give the first explicit expression of the modified vector field F̃
relying on the map A defined in Section 3.1. This shows in particular that exotic series
are a powerful tool for the stochastic backward error analysis.
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Theorem 3.0.5 (Backward error analysis). Consider a consistent method with the ex-
otic S-series S(a) for solving equation (1.1.1). Assume that a is a character of (EF , ·).
Then, there exists a modified vector field hF̃ = B(b) that can be written as an exotic
B-series with a coefficient map b : ET → R satisfying bc ⋆ e ∼ a, and given by

b = δ• + A
( ∞∑

k=0

(−1)kAk
⋆̃e(a− e)

)
|ET ,

where A⋆̃e : EF∗ → EF∗ satisfies A⋆̃e(x) = A(x)⋆̃e and

a⋆̃e = (a⊗ e) ◦ ∆̃CEM , and ∆̃CEM(π) = ∆CEM(π)− • ⊗ π − π ⊗ •,

for a ∈ EF∗, π ∈ EF such that |π| > 1.

Proof. After initializing b0 = δ•, we construct recursively the coefficient map se-
quence (bn) by

bn = bn−1 + A(a− bn−1,c ⋆ e)|ET , bn−1,c ⋆ e = mR ◦ (bn−1,c ⊗ e) ◦∆CEM ,

with bn−1,c := exp⊙(bn−1) and the coproduct ∆CEM : EF → S(ET ) ⊗ EF . As-
sume bn−1(•) = 1, since A∗(•) = •− 1 1 and the method associated to a is consistent,
we find

bn(•) = bn−1(•)+(a−bn−1,c ⋆e)(•− 1 1 ) = 1+a(•)−a( 1 1 )−e(•)+e( 1 1 ) = 1,

thus we obtain that bn(•) = 1 for any n by induction. For all τ ∈ ET such that |τ | > 1,
using the reduced coproduct yields

bn(τ) = bn−1(τ) + A(a)(τ)− (bn−1 ⊗ e)(A∗(τ)⊗ •)
− (bn−1 ⊗ e)(• ⊗ A∗(τ))− A(bn−1,c⋆̃e)(τ)

= bn−1(τ)− A(bn−1)(τ) + A(a− e− bn−1,c⋆̃e)(τ)

= A(a− e+ bn−1,c⋆̃e)(τ),

where we recall that the only exotic tree τ for which |τ | ≤ 1 is τ = • and we
used A(bn−1) = bn−1. The first values are

b1 = δ• + A(a− e)|ET ,
b2 = δ• + A(a− e)|ET − A(A(a− e)⋆̃e)|ET ,
...

bn = δ• + A
( n−1∑

k=0

(−1)kAk
⋆̃e(a− e)

)
|ET , where A⋆̃e(x) = A(x)⋆̃e.

Since |A∗(τ)|e ≤ |τ |e where |τ |e is the number of edges of τ , and ∆̃n
CEM(τ) = 0 if n ≥

|τ |e, we have for all n ≥ |τ |e,

bn(τ) = δ• + A
( |τ |e−1∑

k=0

(−1)kAk
⋆̃e(a− e)

)
(τ),

so that the sequence (bn) converges to the desired coefficient map b by stationarity.



41

Example 3.0.6. Recall the Euler-Maruyama method for the Langevin equation (1.1.1),

X1 = X0 − h∇V (X0) +
√
hσξ1, with ξ1 ∼ N (0, Id).

The first terms of the modified vector field hF̃ = B(b) given by Theorem 3.0.5 for the
Euler-Maruyama method are

B(b) = h +
h2

2
+
h2

4

1 1

− h3

2
+
h3

12

− h3

4

1 1

− h3

12

1

1

+
h3

12

1 1

+
h3

12

1 1 2 2

+ · · ·

Note that removing the stochastic terms (that are, the trees with lianas) does not yield
the modified vector field for the Euler method with the standard deterministic backward
error analysis (see [34, Chap. IX]). Indeed, high order for the invariant measure does
not imply high order in the weak or strong sense [2], hence the modified equations and
order conditions in the deterministic sense or weak sense are not the same as for the
invariant measure sampling, as highlighted in [2, 3, 41, 43, 72].

Consider now a consistent integrator with S-series S(a). Similar to backward error

analysis, we are interested in finding a modified vector field hF̃ = B(b) with b ∈ ET ∗

and b(•) = 1 such that bc ⋆ a ∼ δ1, that is, the integrator applied to the modified
equation (1.1.1) with F = −∇V replaced by F̃ is exact. This technique allows in
particular to increase the order of a numerical method when the partial derivatives
of F are not costly to evaluate (see, for instance, in the deterministic setting [19, 34,
22]). A general expansion of the modified vector field is presented in the Td case in [2,
41], but it is not an exotic B-series in general and it is not unique. Following [7], we
propose a simple criterion to obtain the existence of a modified vector field in the form
of an exotic B-series for which we also provide an explicit expression.

Theorem 3.0.7 (Modified equations). Consider a consistent method with the exotic
S-series S(a) for solving equation (1.1.1). Assume a is a character of (EF , ·). Then,

there exists a modified vector field hF̃ = B(b) that can be written as an exotic B-series
with the coefficient map b : ET → R satisfying b(•) = 1, bc ⋆ a ∼ δ1, and given by

b = δ• − A
( ∞∑

k=0

(−1)kAk
⋆̃a(a)

)
.

Proof. We introduce the sequence (in the spirit of the works [2, 41])

bn = bn−1 − A(bn−1,c ⋆ a), b0 = δ•.

Similarly to the proof of Theorem 3.0.5, we show by induction that bn(•) = 1 and we
obtain bn = −A(a + bn−1,c⋆̃a) using the reduced coproduct. The sequence (bn) takes
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the following first values

b1 = δ• − A(a),

b2 = δ• − A(a) + A(A(a)⋆̃a),

...

bn = δ• − A
( n−1∑

k=0

(−1)kAk
⋆̃a(a)

)
, where A⋆̃a(x) = A(x)⋆̃a,

and (bn) converges to b = δ• − A
(∑∞

k=0(−1)kAk
⋆̃a(a)

)
by stationarity.

Any method of Runge-Kutta type has a coefficient map that is a character, so that
Theorem 3.0.7 applies and there exists a modified vector field that can be written as
an exotic B-series. See [41, Sec. 5.1] for examples.

3.1 Order conditions for invariant measure sampling

We consider numerical integrators that can be expanded using B-series over grafted
trees, for example, integrators of Runge-Kutta type. We recall that for such integrators
the differential operators Aj from Theorem 1.2.5 have the form

Aj =
∑

π∈EFj

a(π)

σ(π)
F(π)[−],

where EFj is the subset of exotic forests of size j. Thus, Theorem 1.2.5 states that a
numerical method y0 +B(a)(y0) is of order p with respect to the invariant measure, if∫

Rd

S<p(a)[ϕ]ρ∞dx = (I ◦ δσ,<p)(a) = 0,

where I(π) =
∫
Rd F(π)[ϕ]ρ∞dx and δσ,<p(a) is the sum over all exotic forests up to size

p with coefficients given by a : EF → R normalized by σ. We obtain order conditions
with respect to the invariant measure by modifying the differential operators that make
up S<p(a) in a way that does not change the value of the integral. This translates into
two transformations applied to the corresponding exotic forests:

1. Edge-liana inversion (ELI), which moves the liana down the tree along an edge,

A

B

1

C

1
ELI−−→ A

1

C

B

1

,

where we note that ELI uses the fact that the exotic forests here are used to
denote differential operators, which means that it assumes there is an ”invisible”
edge starting at the roots,

2. Integration by parts (IBP), which takes a grafted root, connects it to all other
vertices with coefficient −1, and adds a term with coefficient −2 in which the
grafted root is removed and the paired grafted vertex is colored black, for example,

1A

1

IBP−−→ −
1A

1

−

1A 1

−

1A 1

− 2 .
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More details on ELI and IBP can be found in [41] in Section 4.2 and Proposition 4.7.
Proposition 3.1.1 allows us to use ELI and IBP to obtain order conditions. Proposition
is proven for ELI using the fact that the vector field F of (1.1.1) is the gradient of a
potential, that is, F = −∇V , and for IBP using the integration by parts process on
the integral.

Proposition 3.1.1. [41] Let π1, π̂1, π2, π̂2 ∈ EF such that π1
ELI−−→ π̂1 and π2

IBP−−→ π̂2,
then

I(π1) = I(π̂1) and I(π2) = I(π̂2),

where ϕ ∈ C∞
P from the definition of I is a test function.

Definition 3.1.2. Let a connecting liana be a liana α−1
e (k) = {v1, v2} in π for some

k ∈ N such that v1 and v2 are in different connected components of π and are both
leaves.

We define the term connecting liana and build an algorithm by composing ELI and
IBP such that the exotic forests obtained by the algorithm have no connecting lianas.

Definition 3.1.3. Let a connecting liana be a liana α−1
e (k) = {v1, v2} in π for some

k ∈ N such that v1 and v2 are in different connected components of π.

Example 3.1.4. Connecting lianas are labeled in the exotic forests below:

1
A

1
A

,
1 1

2
B

2
B

, 1
C

1
C

.

To eliminate the connecting liana A, we first apply ELI to bring one end of the liana
to the root level, followed by IBP to remove the connecting liana. The resulting exotic
forests are:

1 1
ELI−−→ 1

1

IBP−−→ −

1 1

−
1

1

− 2 .

To eliminate the connecting liana B, we apply ELI twice, followed by IBP, resulting
in:

1 1

2

2
ELI−−→

1 1 2

2

ELI−−→ 2

1 1 2

IBP−−→ −
2

1 1 2

−

2

1 1 2

−

2 1 1 2

− 2

1 1

.

Finally, to eliminate the connecting liana C, we directly apply IBP, yielding:

1

1

IBP−−→ −
1

1

−

1 1

−

1

1

− 2 .
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The compositions of ELI and IBP listed in Example 3.1.4 are called transformation
chains and denoted by π → π̂ where π ∈ EF and π̂ ∈ S(ET ), where S(ET ) is the
vector space of exotic forests without connecting lianas which we write as the symmetric
algebra of exotic trees.

To simplify the analysis of the algorithm that we introduce, let us consider the
space of labeled exotic forests denoted by EFL. We use the labeling to split the
transformation chains into labeled transformation chains (LTCs) that have labeled
exotic forests as terms. This means that the IBP transformation applied to π is split
into IBPv transformations for v ∈ V (π) and IBP• for the term where the grafted
root is removed and the remaining grafted vertex becomes black. For example, the
transformation chain

1 1
ELI−−→ 1

1

IBP−−→ −

1 1

−
1

1

− 2

is split into the following labeled transformation chains:

1 1
ELI−−→ 1

1

IBP1−−−→

1 1

,

1 1
ELI−−→ 1

1

IBP2−−−→
1

1

,

1 1
ELI−−→ 1

1

IBP•−−−→ ,

where we exclude the coefficients from the LTC and handle them separately. We note
that ELI is not affected.

Let us denote by Ψ : EF → EFL any injection of EF into EFL which labels the
vertices of exotic forests according to some rules. Let Φ : EFL → EF be the linear
map that forgets the labeling. We note that Φ ◦Ψ = id and Ψ ◦ Φ is a relabeling. Let
A : EF → S(ET ) be a linear map defined as

A := Φ ◦ AL ◦Ψ, where AL(π) :=
∑
π→π̂

C(π → π̂)π̂,

where the sum is taken over all labeled transformation chains (LTCs) starting at π
which are generated recursively by Algorithm 1 and the coefficient C(π → π̂) is defined
as

C(π → π̂) := (−1)|π→π̂|IBPv (−2)|π→π̂|IBP• ,

where |π → π̂|IBPv is the number of IBPv transformations for v ∈ V (π̃) for any
intermediate π̃ and |π → π̂|IBP• is the number of IBP• transformations.

Let us assume a total order on the vertices of any labeled exotic forest. We require
the total order to respect the concatenation product, that is,

v1 ≤ v2 in π1 · π2 if v1 ≤ v2 in π1, for v1, v2 ∈ V (π1).

Such order can be obtained by extending the results from [78]. Let a minimal con-
necting liana be the connecting liana {v1, v2} such that v1 has the shortest path to the



3.1. ORDER CONDITIONS FOR INVARIANT MEASURE SAMPLING 45

root. If there are multiple such lianas, choose the liana with smallest v1 according to
the total order of vertices. If there are multiple lianas with equal v1, choose the liana
with the smallest v2.

Algorithm 1: Generate the set of all LTCs that start with π1 ∈ EFL

Input: π1 ∈ EFL

Output: The set of LTCs {π1 → πn} with πn ∈ S(ET )L.

Step 1: If π1 has no connecting lianas, then return the singleton set {π1 → π1}. Else, let
l = {v1, v2} be the minimal connecting liana of π1.

Step 2: If the grafted vertex v1 is a root, then let {π(i)
2 }Ni=1 with N = |V (π1)| + 1 be the

set of forests obtained by applying IBPv and IBP• to π1 with respect to l.

Step 3: If v1 is not a root, then let {π2} be the singleton set containing the forest obtained
by applying ELI moving l towards the root.

Step 4: For each π2 ∈ {π(i)
2 }Ni=1, apply Algorithm 1 to π2. Merge all the resulting sets

{π(i)
2 → πn} of LTCs and prepend π1 to each LTC. Return the resulting set

{π1 → πn} = {π1 → π
(i)
2 → πn}.

Proposition 3.1.5. Algorithm 1 ends in a finite number of steps.

Proof. The algorithm is guaranteed to end because every application of the IBP de-
creases the number of roots, which means that IBP can be applied only a finite number
of times. The application of ELI does not change the number of roots. ELI moves a
liana towards the root which can be done a finite number of times. Note that the
minimal connecting liana will stay minimal after the application of ELI.

Let ⟨·, ·⟩ be the orthonormal inner product, that is, for π1, π2 ∈ EF , we have

⟨π1, π2⟩ :=

{
1 , if π1 = π2,

0 , otherwise.

Let ⟨·, ·⟩σ be the renormalized inner product, that is, ⟨π1, π2⟩σ := σ(π1)⟨π1, π2⟩. We
note that both inner products are equal on the space of labeled exotic forests EFL.
Due to Algorithm 1, the maps AL and A are well-defined and we are ready to obtain
the order conditions with respect to the invariant measure. The order conditions are
denoted by ω(π) = 0 with π ∈ S(ET ) where

ω(π) := (a ◦ A∗)(π) , (3.1.1)

with A∗ being the adjoint of A with respect to the inner product ⟨·, ·⟩σ. Due to Theorem
1.2.5 and Proposition 3.1.1, the conditions ω(π) = 0 for all π ∈ S(ET ), |π| < p, imply
the order p with respect to the invariant measure, since∫

Rd

S<p(a)[ϕ]ρ∞dx = (I ◦ δσ,<p)(a) = (I ◦ A ◦ δσ,<p)(a) = 0.
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Let ∆σ : EF → EF⊗EF denote the dual of the concatenation product with respect
to the inner product ⟨·, ·⟩σ. The explicit formula for ∆σ is the following

∆σ(
π

σ(π)
) =

∑
π1·π2=π

π1
σ(π1)

⊗ π2
σ(π2)

.

We can see that this formula is true, since,

⟨π1 · π2, π⟩σ = ⟨π1 ⊗ π2,∆σ(π)⟩σ = σ(π), if π1 · π2 = π.

Let us also consider the dual of the concatenation product on the space EFL of labeled
exotic forests, ∆ : EFL → EFL ⊗ EFL. We prove Lemma 3.1.6 as an intermediate
result.

Lemma 3.1.6. Let π, π̂ ∈ EFL be labeled exotic forests. We define the sets S1 and S2

as

S1 := {(π → π̂, (π̂1, π̂2)) : π̂1 · π̂2 = π̂},
S2 := {((π1, π2), π1 → π̂1, π2 → π̂2) : π1 · π2 = π},

then, S1
∼= S2.

Proof. Let us take a tuple (π → π̂, (π̂1, π̂2)) ∈ S1. It contains an LTC π → π̂ and a
splitting of π̂ into π̂1 and π̂2. Since LTC keeps the labels of vertices when it acts on
them, we can split π into π1 and π2 by following the labeling of π̂1 and π̂2. This also
gives us a splitting of the LTC π → π̂ into π1 → π̂1 and π2 → π̂2. That is, we get a
tuple ((π1, π2), π1 → π̂1, π2 → π̂2) which is an element of S2.

Let us take a tuple ((π1, π2), π1 → π̂1, π2 → π̂2) ∈ S2 that contains a splitting of π
into π1 and π2, and two LTCs π1 → π̂1 and π2 → π̂2. We can combine π1 → π̂1 and
π2 → π̂2 by concatenating all intermediate labeled exotic forests into one LTC π → π̂.
This is possible since the total order of vertices respects the concatenation product
and the two LTC have distinct labels because π1 and π2 are a splitting of one exotic
forest. By combining the two LTCs, we also get an exotic forest π̂ that has π̂1 and π̂2
as splitting.

This finishes the proof.

Proposition 3.1.7. The following identities are true:

1. ∆σ ◦ Φ = (Φ⊗ Φ) ◦∆,

2. ∆ ◦ AL = (AL ⊗ AL) ◦∆,

3. ∆σ ◦ A = (A⊗ A) ◦∆σ.

Proof. We first prove identities (1) and (2) and use them to prove identity (3).
Step 1) Let us write the labeling of an exotic forests explicitly as α and take (π, α) ∈

EFL, then, we have

((Φ⊗ Φ) ◦∆)(π, α) =
∑

π1·π2=π
α1⊔α2=α

π1 ⊗ π2

We note the splittings of α as α1 ⊔ α2 with αi being the decoration of πi for i = 1, 2.
Every splitting of α corresponds to a decorated exotic forest (π, β) with β : V (π) →
{1, 2} such that β−1(1) = π1 and β−1(2) = π2, therefore,

|{(α1, α2) : α1 ⊔ α2 = α}| = |{β : V (π) → {1, 2} : β−1(i) = πi}| = |B|.
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We see that |B| = p(π, β, ∅) and, from Proposition 1.4.11, we know that

p(π, β, ∅) = σ(π)

σ(π, β)
=

σ(π)

σ(π1)σ(π2)
.

This implies that, using the formula for ∆σ, we have

((Φ⊗ Φ) ◦∆)(π, α) = σ(π)
∑

π1·π2=π

π1
σ(π1)

⊗ π2
σ(π2)

= σ(π)∆σ(
π

σ(π)
) = (∆σ ◦ Φ)(π, α).

This proves identity (1).
Step 2) We follow the definition of AL and use the property C(π → π̂) = C(π1 →

π̂1)C(π2 → π̂2) where the LTC π → π̂ splits into the LTCs π1 → π̂1 and π2 → π̂2. We
start by using the definitions of AL and ∆ and obtain:

∆ ◦ AL =
∑
π→π̂

π̂1·π̂2=π̂

C(π → π̂)(π̂1 ⊗ π̂2).

Then, we use Lemma 3.1.6 and group the terms to get

∆ ◦ AL =
∑

π1·π2=π

( ∑
π1→π̂1

C(π1 → π̂1)π̂1

)
⊗

( ∑
π2→π̂2

C(π2 → π̂2)π̂2

)
.

We use the definitions of AL and ∆ to conclude the proof of identity (2).
Step 3) We use the definition of A and identites (1) and (2) to show that

∆σ ◦ A = (Φ⊗ Φ) ◦ (AL ⊗ AL) ◦∆ ◦Ψ.

We note that the definition of A accepts any injection Ψ, therefore, we can insert a
relabeling Ψ ◦ Φ to obtain

∆σ ◦ A = (Φ ◦ Φ) ◦ (AL ⊗ AL) ◦ (Ψ⊗Ψ) ◦ (Φ⊗ Φ) ◦∆ ◦Ψ,

which proves identity (3) using the definition of A, identity (1), and the property
Φ ◦Ψ = id.

Theorem 3.1.8. Let us apply Algorithm 1 to an exotic S-series S(a) with a being a
character of (EF , ·), then, the map ω defined as (3.1.1) is a character of (EF , ·), that
is,

ω(π1 · π2) = ω(π1)ω(π2), for π1, π2 ∈ EF . (3.1.2)

Proof. We use the definition of ω and ∆σ to have

ω(π1 · π2) = ⟨(A ◦ δσ)(a), π1 · π2⟩σ = ⟨(∆σ ◦ A ◦ δσ)(a), π1 ⊗ π2⟩σ
let us use identity (2) from Proposition 3.1.7

= ⟨((A⊗ A) ◦∆σ ◦ δσ)(a), π1 ⊗ π2⟩σ
we use the explicit formula for ∆σ to obtain

= ⟨(A ◦ δσ)(a), π1⟩σ⟨(A ◦ δσ)(a), π2⟩σ = ω(π1)ω(π2).

and this finishes the proof.
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We use the fact that the map ω is a character of (EF , ·) to reduce the number
of order condtition for invariant measure sampling. We recall that given a numerical
integrator X1 := Φh(X0) with E[ϕ(X1)] = S(a)[ϕ], it is of order p for the invariant
measure sampling if ω(π) = 0 for all π ∈ S(ET ) with ω := a ◦ A∗ where A∗ is the
adjoint of the map A with respect to the inner product ⟨−,−⟩σ.
Corollary 3.1.9. Given an integrator satisfying the assumptions discussed in Chapter
1 with E[ϕ(X1)] = S(a)[ϕ], it has order p for the invariant measure sampling if ω(τ) = 0
for τ ∈ ET .

3.2 Composition law

We extend the framework of B-series and S-series by extending the tree and forest
formalisms. We consider the sets of aromatic trees AT := A × T where A is the set
of aromas, that is, graphs in which every vertex has exactly one outgoing edge. They
were introduced independently in [23] and [37] for the study of volume-preserving
integrators. The definition of aromas is extended in [43] to include stolons1, that is,
pairs of trees with linked roots which are used to represent inner products two vector
fields. The set A also includes the empty graph and some of its elements are

1, , , , ,

, , ,

where all the edges are oriented towards the bottom and anticlockwise. The correspond-
ing vector spaces are denoted by A and AT , respectively. The set of aromatic forests
AF is defined as AF := A × F and includes the empty forest 1. The corresponding
vector space is denoted by AF .

Aromas play a significant role in geometric numerical integration, serving to repre-
sent inner products and the divergence of a vector field, as will be demonstrated in the
discussion of the F map.

We define decorated aromatic forests AFD, grafted aromatic forests AFg, and exotic
aromatic forests EAF with the corresponding vector spaces AFD,AFg, EAF analo-
gously to FD, Fg, EF .

For example, some grafted aromatic trees and exotic aromatic trees are listed below

, , ,

× ×

,

×

×

,
× ×

,

×

× ,

×

× ,

1 1

,

1

1

,
1 1

,

1

1 ,

1

1 ,

1

1 ,

1 1 2

2 .

We extend the definition of the map F to include aromas which induces the notion
of S-series over aromatic forests following the Definition 3.0.1.

1In botany, stolons are horizontal connections that link the base of two plants, allowing a plant to clone itself.
Strawberry plants are an example of plants with stolons.
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Definition 3.2.1. On aromas ω which have a cycle, choose an edge e = (u, v) of the
cycle. Let ω\e denote the tree obtained by removing the edge e from the aroma ω. Let

ω \i e denote the tree ω \ e with the vertex v being decorated by i. Let F( i ) := ∂if ,
then, F(ω) is defined as

F(ω) :=
d∑

i=1

F(ω \i e)i.

On armoas given by a stolon τ γ where τ and γ are trees, F is defined as

F( τ γ ) := ⟨F(τ),F(γ)⟩ =
d∑

i=1

F(τ)iF(γ)i.

For example,

F( ) =
d∑

i=1

∂if
i, F( ) =

d∑
i,j=1

f if j∂jf
i

F( ) =
d∑

i=1

F(
k

)k =
d∑

i=1

F(
i

)i =
d∑

i,j,k=1

∂kf
if j∂ijf

k

3.2.1 D-algebra of decorated aromatic forests

Let ↷ : AT D ⊗ AT D → AT D denote the grafting product over decorated aromatic
trees. The grafting product τ ↷ γ is the sum over all ways to attach the root of τ to
a vertex of γ, for example,

↷ = 2 + .

Divergence of an aromatic tree is defined to be a map div : AT D → AD such that div(τ)
is a sum over all ways to attach the root of τ to one of its vertices, for example,

div( ) = + + 2 .

Let MATD denote the set of marked decorated aromatic trees (v, τ) with v ∈ V (τ)
being the marked vertex of τ . Let MAT D denote the corresponding vector space.
Marked decorated aromatic trees (v, τ) ∈ MATD define AD-linear endomorphisms
(v, τ) : AT D → AT D by (v, τ)(γ) = γ ↷v τ where the product ↷v attaches the root of
the left operand to the vertex v of the right operand. Let the map d : AT D → MAT D

be an injection defined as

dτ :=
∑

v∈V (τ)

(v, τ),

let ↷m: AT D ⊗MAT D → MAT D denote the action of AT D on MAT D defined as

γ ↷m (v, τ) := (v, γ ↷ τ).
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Then, let ElAD
(AT D) be the algebra of AD-linear endomorphisms generated by(
(γ1 ↷m) ◦ · · · ◦ (γn ↷m)

)
(dτ), for τ, γ1, . . . , γn ∈ AT D.

The pair (AT D,AD) is the tracial pre-Lie-Rinehart algebra generated by the set D,
that is, it satisfies the following properties:

1. AD is a unital commutative algebra with concatenation product · : AD ⊗AD →
AD,

2. AT D is an AD-module with a pre-Lie product ↷ : AT D ⊗ AT D → AT D, that
is,

τ ↷ (γ ↷ ν)− (τ ↷ γ) ↷ ν = γ ↷ (τ ↷ ν)− (γ ↷ τ) ↷ ν,

for τ, γ ∈ AT D, ν ∈ AT D ⊔ AD,

3. for any τ ∈ AT D, the map τ ↷ − : AD → AD is a derivation and the Leibniz
rule holds,

τ ↷ (ω · ν) = (τ ↷ ω) · ν + ω · (τ ↷ ν),

for ω ∈ AD and ν ∈ AD ⊔ AT D.

4. there exists a map t : ElAD
(AT D) → AD called a trace such that t(τ̃ ◦ γ̃) = t(γ̃◦ τ̃)

and t(τ ↷m γ̃) = τ ↷ t(γ̃) with τ ∈ AT D, τ̃ , γ̃ ∈ ElAD
(AT D) and ◦ denotes the

composition of endomorphisms. The divergence is then defined as div(τ) := t(dτ).

More details can be found in [31] where it is proven that (AT D,AD) is a free tracial pre-
Lie-Rinehart algebra. We extend the structure of the tracial pre-Lie-Rinehart algebra
by considering a symmetric AD-bilinear form ⟨−,−⟩ : AT D ⊗AD

AT D → AD with the
Leibniz rule:

τ ↷ ⟨γ, ν⟩ = ⟨τ ↷ γ, ν⟩+ ⟨γ, τ ↷ ν⟩, for τ, γ, ν ∈ AT D.

The aroma ⟨γ, ν⟩ ∈ AD is called a stolon and is denoted by a horizontal double edge

that connects the roots of the corresponding trees, for example, ⟨ , ⟩ = .
The resulting algebra (AT D,AD) is called a tracial stolonic pre-Lie-Rinehart algebra.

Definition 3.2.2. Let (A1, R1) and (A2, R2) be tracial stolonic pre-Lie-Rinehart alge-
bras. A map φ : (A1, R1) → (A2, R2) is a tracial stolonic pre-Lie-Rinehart homomor-
phism if

φ(x↷ y) = φ(x) ↷ φ(y), for x, y ∈ A1,

φ(⟨x, y⟩) = ⟨φ(x), φ(y)⟩,
t(φ(x̃)) = φ(t(x̃)), for x̃ ∈ ElR1(A1).

Proposition 3.2.3. The tracial stolonic pre-Lie-Rinehart algebra (AT D,AD) is a free
tracial stolonic pre-Lie-Rinehart algebra. That is, given a tracial stolonic pre-Lie-
Rinehart algebra (A,R) and a set map D → A, it can be extended uniquely to a tracial
stolonic pre-Lie-Rinehart homomorphism φ : (AT D,AD) → (A,R).

Proof. Let (A,R) be a tracial stolonic pre-Lie-Rinehart algebra. The pair (AT D,AD)
is a free tracial pre-Lie-Rinehart algebra as is shown in [31], therefore, given a map
D → A from the set of generators D, it can be extended uniquely to a tracial pre-Lie-
Rinehart homomorphism φ : (AT D,AD) → (A,R). It remains to show that the map
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φ can be defined uniquely over the stolons forming a tracial stolonic pre-Lie-Rinehart
homomorphism.

The space AT D⊗̂AD
AT D is the commutative tensor product over AD defined using

the AD-module structure of AT D. We note that ⟨−,−⟩ : AT D⊗̂AD
AT D → AD is

injective and covers all stolons in AD. Therefore, we define φ(ω) with ω being a stolon
as

φ(ω) := ⟨−,−⟩R ◦ (φ⊗ φ) ◦ ⟨−,−⟩−1,

where ⟨−,−⟩R : A⊗̂RA → R is the inner product of the tracial stolonic pre-Lie-
Rinehart algebra (A,R). The map φ is the unique tracial stolonic pre-Lie-Rinehart
homomorphism extending a given map D → A and the statement is proved.

The classical Guin-Oudom process [61] extends uniquely a pre-Lie product over
a vector space V to a product over the symmetric algebra S(V ). We generalize
and use this process to extend uniquely the pre-Lie-Rinehart product ↷ over a AD-
module AT D to the symmetric algebra AFD := SAD

(AT D) of decorated aromatic
forests.

Proposition 3.2.4. There exists a unique extension of the ↷ product to AFD such
that

(i) ω1 ↷ ν = ων, for ω ∈ AD, ν ∈ AD ⊔ AT D,

(ii) (τ · π) ↷ ν = τ ↷ (π ↷ ν)− (τ ↷ π) ↷ ν, for τ ∈ AT D, π ∈ AFD,

(iii) π ↷ (µ1 · µ2) =
∑

(π)(π(1) ↷ µ1) · (π(2) ↷ µ2), for µ1, µ2 ∈ AFD,

with deshuffle coproduct ∆AD
(π) =

∑
(π) π(1) ⊗AD

π(2).

We follow the structure of the proof of Proposition 2.7 of [61] which proves an
analogous statement for S(AT D). We check that the relations (i), (ii), (iii) are well-
defined over SAD

(AT D).

Proof. It follows from (i), (iii), and the coassociativity of ∆AD
that

τ ↷ 1 = 0, and τ ↷ (π1 · · · πn) =
n∑

k=1

π1 · · · (τ ↷ πk) · · · πn.

The relation (ii) is well-defined with respect to the choice of τ using the Lemma 2.5
of [61] which is based on induction on the length of the monomial and the pre-Lie
relation. This means that (τ · π) ↷ ν is well-defined for τ · π ∈ S(AT D) using (i)
and (ii). Let J be an ideal of S(AT D)

J := ⟨(ωτ · γ − τ · ωγ) · π : ω ∈ AD, τ, γ ∈ AT D, π ∈ S(AT D)⟩.

It remains to show that J ↷ ν = 0 which follows from the property (ωτ · π) ↷ ν =
ω(τ · π ↷ ν), with ω ∈ AD, proved by induction on the length of the monomial π.
The initial step is shown below for γ ∈ AT D using the AD-linearity in the left operand
of ↷:

(ωτ · γ) ↷ ν = ωτ ↷ (γ ↷ ν)− (ωτ ↷ γ) ↷ ν = ω(τ · γ ↷ ν).
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Assume the property to be true for monomials shorter than π = τ1 · · · τn ∈ S(AT D)
and recall that

ωτ ↷ π =
n∑

k=1

ω(τ ↷ τk) · πk̂, where πk̂ := τ1 · · · τk−1τk+1 · · · τn.

Then, by induction, we have,

(ωτ ↷ π) ↷ ν =
( n∑

k=1

ω(τ ↷ τk) · πk̂
)
↷ ν

= ω
( n∑

k=1

(τ ↷ τk) · πk̂
)
↷ ν

= ω((τ ↷ π) ↷ ν).

This allows us to prove the inductive step:

(ωτ · π) ↷ ν = ωτ ↷ (π ↷ ν)− (ωτ ↷ π) ↷ ν = ω(τ · π ↷ ν).

Therefore, relations (i) and (ii) extend↷ to SAD
(AT D)⊗(AD⊕AT D) → (AD⊕AT D).

Due to the Leibniz rule, the property (ωπ) ↷ ν = ω(π ↷ ν), the cocommutativity
and coassociativity of ∆AD

, the relation (iii) is well-defined. Therefore, it defines ↷
on AFD = SAD

(AT D).

Definition 3.2.5. Let (A, ·) be a unital commutative graded algebra with unit 1.
Let A be equipped with a non-associative product ↷ and let x ∈ A1 and a, b ∈ A
satisfy the relation

x↷ (a · b) = (x↷ a) · b+ a · (x↷ b).

The triple (A, ·,↷) is a commutative D-algebra if the following identities are satisfied

1 ↷ a = a,

a↷ x ∈ A1,

(ω · a) ↷ b = ω · (a↷ b),

(x · a) ↷ b = x↷ (a↷ b)− (x↷ a) ↷ b,

for ω ∈ A0, x ∈ A1, a, b ∈ A. It is called tracial if there exists a trace t : ElA0(A1) →
A0.

For a tracial commutative D-algebra A, the pair (A1, A0) is a tracial pre-Lie-Rinehart
algebra. This implies that (AFD,↷) is a free tracial commutative D-algebra due to
the fact that (AT D,AD) is a free tracial pre-Lie-Rinehart algebra and (AFD,↷) is
obtained uniquely using the Guin-Oudom process (Proposition 3.2.4). We extend the
structure of the D-algebra (AFD,↷) with the AD-bilinear form ⟨−,−⟩ : AT D ⊗AD

AT D → AD and see that it is free using Proposition 3.2.3.
A map φ : A → A′ between two tracial commutative D-algebras A and A′ is a

D-algebra morphism if φ(A1) ⊂ A′
1 and

φ(a · b) = φ(a) · φ(b), φ(a↷ b) = φ(a) ↷ φ(b),

φ(⟨x, y⟩) = ⟨φ(x), φ(y)⟩, φ(t(x̃)) = t(φ(x̃)),

for a, b ∈ A, x, y ∈ A1, x̃ ∈ ElA0(A1).
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Example 3.2.6. Let X be the space of vector fields Rd → Rd. The symmetric al-
gebra SC∞(Rd)(X ) over the ring of C∞(Rd) maps is a commutative tracial D-algebra

and represents the space of differential operators in Rd. The non-associative product is
given by the directional derivation, for example, let f, g, h : Rd → Rd, then,

(fg)[h] =
d∑

i,j=1

f igjhij, where hij :=
∂2h

∂xi∂xj
.

Divergence of a vector field is div(f) =
∑d

i=1 f
i
i and the bilinear product is the inner

product, i.e., ⟨f, g⟩ =
∑d

i=1 f
igi.

3.2.2 Grossman-Larson Hopf algebroid

We observe that the algebra of endomorphisms generated by π ↷ − : AFD → AFD for
π ∈ AFD is isomorphic to the algebra (AFD, ⋄), where ⋄ denotes the Grossman-Larson
product. This product is defined by the property

π1 ↷ (π2 ↷ −) = (π1 ⋄ π2) ↷ −, π1, π2 ∈ AFD, (3.2.1)

consistent with the definition introduced in Chapter 1. Furthermore, this formulation
of the Grossman-Larson product implies its associativity.

We also note that the algebra (AFD, ⋄) is defined over R, whereas the coalgebra
(AFD,∆AD

) is defined over AD. This distinction implies that the algebraic and coal-
gebraic structures do not form a bialgebra but rather a bialgebroid. The concept of a
bialgebroid has several non-equivalent definitions, often referred to by different names.
In this discussion, we focus on the definitions provided in [6, 49, 54].

In [6], notions of left and right bialgebroids are introduced. The concept of a bial-
gebroid presented in [54], referred to as an A/R-bialgebra, corresponds to the left
bialgebroid from [6] and appears to be a special case of the bialgebroid defined in [49].
The key difference lies in the requirement in [54] and [6] that the image of the coprod-
uct resides in a subspace of AFD ⊗AD

AFD where component-wise multiplication is
well-defined.

Definition 3.2.7 (Left bialgebroid). Let R and A be two associative algebras with R
being commutative. Let ι : R → A be an algebra inclusion which induces a bimodule
structure, r · a · r′ := ι(rr′)a, which we use to define the tensor product of A with itself
over R, A⊗RA. A is endowed with a coalgebra structure over R with counit ϵ : A→ R
and the coproduct ∆ : A→ A⊗R A which corestricts to the subspace

A R×A := {
∑
i

ai ⊗R a
′
i :

∑
i

aiι(r)⊗R a
′
i =

∑
i

ai ⊗R a
′
iι(r), for r ∈ R},

and is an algebra homomorphism, that is, ∆(aa′) = ∆(a)∆(a′). Counit ϵ satisfies the
property ϵ(aa′) = ϵ(a(ι ◦ ϵ)(a′)). Then, A is a left bialgebroid over R.

We note that the component-wise multiplication is not well-defined on A ⊗R A,
however, it is well-defined on a subspace which, for all

∑
i ai⊗R a

′
i,
∑

j bj ⊗ b′j ∈ A⊗RA
and r ∈ R, satisfies ∑

i,j

aiι(r)bj ⊗R a
′
ib

′
j = aibj ⊗R a

′
iι(r)b

′
j, (3.2.2)
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Using the associativity of the product, the requirement (3.2.2) is reduced to∑
i

aiι(r)⊗R a
′
i =

∑
i

ai ⊗R a
′
iι(r),

found in the definition of A R×A. We also note, that the counit ϵ is not an algebra
homomorphism.

Definition 3.2.8 (Right bialgebroid). Let R and A be two associative algebras with R
being commutative. Let ι : R → A be an inclusion which induces a bimodule structure,
r · a · r′ := aι(rr′), which we use to define the tensor product of A with itself over R,
A ⊗R A. A is endowed with a coalgebra structure over R with counit ϵ : A → R and
the coproduct ∆ : A→ A⊗R A which corestricts to the subspace

A×R A := {
∑
i

ai ⊗R a
′
i :

∑
i

ι(r)ai ⊗R a
′
i =

∑
i

ai ⊗R ι(r)a
′
i, for r ∈ R},

and is an algebra homomorphism, that is, ∆(aa′) = ∆(a)∆(a′). Counit ϵ satisfies the
property ϵ(aa′) = ϵ((ι ◦ ϵ)(a)a′).Then, A is a right bialgebroid over R.

Proposition 3.2.9 demonstrates that AFD, equipped with the Grossman-Larson
product and a deshuffle coproduct over AD, forms a left bialgebroid over AD.

Proposition 3.2.9. Let (AFD, ⋄) denote the Grossman-Larson algebra over R, and
let ι : AD → AFD be the inclusion map defined by ι(ω) = 1ω for ω ∈ AD. Define
AFD as a AD-bimodule via

ω · π · ω′ = 1ω ⋄ 1ω′ ⋄ π = ωω′π.

The deshuffle coproduct ∆AD
: AFD → AFD⊗AD

AFD corestricts to AF AD
×AF and

is an algebra homomorphism. Furthermore, the counit ϵAD
: AFD → AD, defined by

ϵAD
(1ω) := ω for ω ∈ AD and 0 elsewhere, satisfies the property

ϵAD
(π ⋄ π′) = ϵAD

(π ⋄ (ι ◦ ϵAD
)(π′)).

This structure defines a left bialgebroid, referred to as the left Grossman-Larson bial-
gebroid and denoted by BL

GL.

Proof. Let us show that the deshuffle coproduct corestricts to AF AD
×AF , that is, for

π ∈ AFD, ω ∈ AD, and ∆AD
(π) =

∑
(π) π(1) ⊗ π(2), we have∑

(π)

π(1) ⋄ ω ⊗AD
π(2) =

∑
(π)

π(1)(π(2) ↷ ω)⊗AD
π(3)

=
∑
(π)

π(1) ⊗AD
(π(2) ↷ ω)π(3) =

∑
(π)

π(1) ⊗AD
π(2) ⋄ ω,

where we use the definition of the Grossman-Larson product from Chapter 1, and the
coassociativity and cocommutativity of the deshuffle coproduct. The fact that ∆AD

is
an algebra homomorphism, that is, for π, π′ ∈ AFD, we have∑

(π⋄π′)

(π ⋄ π′)(1) ⊗AD
(π ⋄ π′)(2) =

∑
(π),(π′)

π(1) ⋄ π′
(1) ⊗AD

π(2) ⋄ π′
(2),
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is proven using the definition of the Grossman-Larson product (3.2.1) together with
the relation (iii) from Proposition 3.2.4. To prove the compatibility of ϵAD

with the
product, we note that ϵAD

(π1 ⋄ π2) is non-zero if and only if π2 ∈ AD and is equal to
the aromas obtained by grafting all trees of π1 onto π2 in all possible ways.

Proposition 3.2.9 can be extended to any commutative D-algebra, provided the
associativity of the Grossman-Larson product is established similarly to [61, Lemma
2.10]. Moreover, by excluding all aromas (i.e., setting AD = {1}), the left bialgebroid
reduces to a graded connected bialgebra, which is also a Hopf algebra.

Remark 3.2.10. We say that BL
GL is cocomplete since BL

GL =
⋃∞

n=0B
L
GL,n and is a

free AD-module. An analog of the Cartier-Milnor-Moore theorem is proven in [54]
which states that a cocomplete and graded projective left bialgebroid is the universal
enveloping Lie-Rinehart algebra of the Lie-Rinehart algebra of its primitive elements.
The freeness of the AD-module BL

GL implies its graded projectiveness, therefore, the left
bialgebroid BL

GL is the universal enveloping Lie-Rinehart algebra of the pre-Lie-Rinehart
algebra (AT D,AD).

Remark 3.2.11. If we replace the coalgebra structure of BL
GL by the deshuffle coprod-

uct ∆ : AFD → AFD ⊗ AFD and ϵ : AFD → R, then we get a Grossman-Larson
Hopf algebra dual (up to the symmetry coefficients) to the Hopf algebra mentioned in [5,
Thm. 4.4].

The notions of a Hopf algebroid presented in [6] and [49] are different and none seems
to be more general than the other, as is discussed in detail in [6, Section 4.6.1]. We
show that BL

GL defines a Hopf algebroid as introduced in [49] by defining the antipode
SGL which satisfies the necessary assumptions.

Proposition 3.2.12. Let SGL : (AFD, ⋄) → (AFD, ⋄) be the algebra anti-isomorphism
defined as

(i) SGL(ω) := ω, SGL(ωπ) := SGL(π) ⋄ ω, for ω ∈ AD, π ∈ AFD,

(ii) SGL(τ) := −τ, SGL(τπ) := −SGL(π) ⋄ τ − SGL(τ ↷ π), for τ ∈ TD.

Then, HGL := (BGL, SGL) is the Grossman-Larson Hopf algebroid as defined in [49]
with SGL being called an antipode and satisfying the following conditions where π ∈
AFD and ∆AD

(π) =
∑

(π) π(1) ⊗AD
π(2),

(1)
∑

(π) SGL(π(1)) ⋄ π(2) = 1ϵAD
(SGL(π)),

(2)
∑

(π) π̂(1) ⋄ SGL(π̂(2)) = 1ϵAD
(π), with γ(π(1) ⊗AD

π(2)) = π̂(1) ⊗ π̂(2),

where γ is the section of the projection P : AFD⊗AFD → AFD⊗AD
AFD that places

all aromas on the left side of the tensor product, that is, π̂(2) has no aromas. Moreover,
S2
GL = id.

Proof. It can be seen that SGL defined this way is an anti-isomorphism due to the
associativity of the Grossman-Larson product and the definition which can be rewritten
as

SGL(ω ⋄ π) = SGL(π) ⋄ SGL(ω), SGL(τ ⋄ π) = SGL(π) ⋄ SGL(τ).
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Let us prove that SGL satisfies the condition (1) and (2). We start with (1) by noting
that SGL(−) ⋄ − : AFD ⊗AD

AFD → AFD is well-defined since

SGL(ωπ(1)) ⋄ π(2) = SGL(π(1)) ⋄ ω ⋄ π(2) = SGL(π(1)) ⋄ ωπ(2).

We see that (1) is satisfied for π = ω ∈ AD. Let us check that (1) is satisfied for π =
ωτ ∈ AT D:

SGL(τ) ⋄ ω + SGL(1) ⋄ ωτ = −τω − τ ↷ ω + ωτ = SGL(τ) ↷ ω = 1ϵAD
(SGL(ωτ)),

where τ ∈ TD. Let τ ∈ TD, π ∈ FD, ω ∈ AD, then, τπω = τ ⋄ πω − τ ↷ πω. We use
induction on the length of π and assume that the condition (1) is satisfied for τ ↷ πω.
We check that the left-hand side of (1) applied to τ ⋄ πω is 0:∑
(τ⋄πω)

SGL((τ ⋄ πω)(1)) ⋄ (τ ⋄ πω)(2) =
∑

(τ),(πω)

SGL(τ(1) ⋄ π(1)) ⋄ τ(2) ⋄ π(2)ω

=
∑
(πω)

SGL(π(1)) ⋄
(∑

(τ)

SGL(τ(1)) ⋄ τ(2)
)
⋄ π(2)ω = 0,

since
∑

(τ) SGL(τ(1)) ⋄ τ(2) = 0. This implies that left-hand side of (1) applied to τπω is∑
(τπω)

SGL((τπω)(1)) ⋄ (τπω)(2) = −1ϵAD
(SGL(τ ↷ πω))

= 1ϵAD
(SGL(τπω)) + 1ϵAD

(SGL(πω) ⋄ τ)
= 1ϵAD

(SGL(τπω)).

This proves that SGL satisfies the condition (1). To prove condition (2), we recall
that the Grossman-Larson product is AD-linear in its left operand and that γ places
all aromas on the left side of the tensor product. This implies that both sides of the
condition (2) are AD-linear and the condition is reduced to the analogous condition
over the Grossman-Larson Hopf algebra over FD. This proves that SGL satisfies the
condition (2).

We prove the property S2
⋄ = id by induction on the number of trees in π ∈ AFD.

Assume π ∈ FD, if π = τ ∈ TD, then, S
2
⋄(τ) = −S⋄(−τ) = τ . Assume the statement is

true for all monomials shorter than π = τπ′ for τ ∈ TD and π′ ∈ FD, then,

S2
GL(τπ

′) = SGL(−SGL(π
′) ⋄ τ)− τ ↷ π′ = τ ⋄ π′ − τ ↷ π′ = τπ′.

Let us now consider ωπ ∈ AFD for ω ∈ AD and π ∈ FD. We have,

S2
GL(ωπ) = SGL(SGL(π) ⋄ ω) = ωS2

GL(π) = ωπ,

and the statement is proved.

We now demonstrate that AFD, equipped with the Grossman-Larson product and
an appropriate coalgebra structure, forms a right bialgebroid. Furthermore, we show
that the triple (BL

GL, B
R
GL, SGL) constitutes a Hopf algebroid as defined in [6]. To

distinguish between the coalgebra structures of BL
GL and BR

GL, we denote the coproduct
and counit of BL

GL by

∆L
AD

: AFD → AFD ⊗A↷
D
AFD, and ϵLAD

: AFD → AD,
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respectively, and those of BR
GL by

∆R
AD

: AFD → AFD ⊗A↶
D
AFD, and ϵRAD

: AFD → AD.

Using the fact that S2
GL = id, established in Proposition 3.2.12, we deduce using [6,

Prop. 4.4] that SGL is an anti-isomorphism between the left and right bialgebroids.
This gives us a unique way to construct the right bialgebroid BR

GL.

Proposition 3.2.13. Let (AFD, ⋄) be the Grossman-Larson algebra over R with in-
clusion ι : AD → AFD defined as ι(ω) = 1ω for ω ∈ AD. The AD-bimodule structure
is defined as ω · π · ω′ := π ⋄ ι(ωω′) for ω, ω′ ∈ AD and π ∈ AFD. Let the coproduct
∆R

AD
: AFD → AFD ⊗A↶

D
AFD be defined, for π ∈ FD, ω ∈ AD, as

∆R
AD

(π) := ∆L
AD

(π), ∆R
AD

(ωπ) := ω1 ⋄∆R
AD

(π),

where we identify FD ⊗A↷
D
FD and FD ⊗A↶

D
FD. Let the counit be defined as

ϵRAD
(ωπ) := SGL(π) ↷ ω.

Then, this structure defines a right bialgebroid, referred to as the right Grossman-
Larson bialgebroid and denoted by BR

GL. Moreover, the triple (BL
GL, B

R
GL, SGL) forms a

Hopf algebroid, that is, the following compatibility conditions are satisfied:

(1) ϵLAD
◦ ι = idAD

and ϵRAD
◦ ι = idAD

,

(2) (∆L
AD

⊗A↶
D
id) ◦∆R

AD
= (id⊗A↷

D
∆R

AD
) ◦∆L

AD
,

(3) (∆R
AD

⊗A↷
D
id) ◦∆L

AD
= (id⊗A↶

D
∆L

AD
) ◦∆R

AD

(4) SGL(ι(ω) ⋄ π ⋄ ι(ω′)) = ι(ω′) ⋄ SGL(π) ⋄ ι(ω),

(5) ⋄ ◦ (SGL ⊗A↷
D
id) ◦∆L

AD
= ι ◦ ϵRAD

and ⋄ ◦ (id⊗A↶
D
SGL) ◦∆R

AD
= ι ◦ ϵLAD

Proof. We use the fact that SGL is an anti-isomorphism between the left and right
bialgebroids to define the right bialgebroid BR

GL with ϵRAD
= ϵLAD

◦ SGL and

∆R
AD

:= (SGL ⊗ SGL) ◦∆L
AD

◦ SGL.

The definition of SGL from Proposition 3.2.12 implies

ϵRAD
(ωπ) = ϵRAD

(ω1 ⋄ π) = ϵLAD
(SGL(π) ⋄ ω1) = SGL(π) ↷ ω.

It is also straightforward to check that ∆R
AD

(τ) = ∆L
AD

(τ) for τ ∈ TD. We note that

∆L
AD

is an algebra homomorphism and SGL is an algebra anti-homomorphism which

is applied twice. This implies that ∆R
AD

is an algebra homomorphism. This property

defines ∆R
AD

uniquely as

∆R
AD

(τπ) = ∆R
AD

(τ) ⋄∆R
AD

(π)−∆R
AD

(τ ↷ π).

This proves that ∆R
AD

(π) = ∆L
AD

(π) for all π ∈ FD where we identify FD ⊗A↷
D
FD and

FD ⊗A↶
D
FD. Analogously, for ω ∈ AD, we have

∆R
AD

(ωπ) = ∆R
AD

(ω1 ⋄ π) = (1⊗ ω1) ⋄∆R
AD

(π) = ω1 ⋄∆R
AD

(π).

The compatibility conditions of the Hopf algebroid follow by the construction of BR
GL

and from Proposition 3.2.12.
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3.2.3 Pre-Hopf algebroid of decorated aromatic forests

The space of decorated aromatic forests with commutative product · and deshuffle
coproduct forms a Hopf algebra H := (AFD, ·,1,∆AD

, ϵAD
, S). The Hopf algebra H

together with the product ↷: H ⊗ H → H forms a pre-Hopf algebroid which is
a generalization of the pre-Hopf algebra [47] that satisfies the following conditions
for π, µ, η ∈ H, a map β : H → H, and a section γ of the projection P : H ⊗ H →
H ⊗AD

H with γ(π(1) ⊗AD
π(2)) = π̂(1) ⊗ π̂(2):

(1) π ↷ (µ · η) = (π(1) ↷ µ) · (π(2) ↷ η),

(2) π ↷ (µ↷ η) = (π(1) · (π(2) ↷ µ)) ↷ η,

(3) π̂(1) ↷ (β(π̂(2)) ↷ −) = ϵAD
(π)id,

(4) β(π(1)) ↷ (π(2) ↷ −) = ϵAD
(β(π))id.

Conditions (1) and (2) follow from the definition of the D-algebra and the conditions (3)
and (4) are satisfied for β and γ being the anitipode SGL and γ from Proposition 3.2.12.
We present an alternative proof for (8) of [47, Lemma 2.3].

Lemma 3.2.14. For all π, µ ∈ H, we have π ↷ S(µ) = S(π ↷ µ).

Proof. Consider µ = τ ∈ AT D, then π ↷ τ ∈ AT D and π ↷ S(τ) = −π ↷ τ =
S(π ↷ τ). Assume the statement is true for all monomials shorter than µ = τ1 · · · τn
for τi ∈ AT D, then,

S(π ↷ τ1 · · · τn) = −
∑
(π)

(π(1) ↷ τ1)S(π(2) ↷ τ2 · · · τn)

= −
∑
(π)

(π(1) ↷ τ1)(π(2) ↷ S(τ2 · · · τn))

= −π ↷ (τ1S(τ2 · · · τn)) = π ↷ S(µ).

This finishes the proof.

We check that the subadjacent Hopf algebra with antipode ŜGL defined in [47,
Thm. 2.4] corresponds to the Grossman-Larson Hopf algebroid by showing that the
antipodes coincide.

Lemma 3.2.15. Let ŜGL be the antipode defined in [47, Thm. 2.4], that is,

ŜGL(π) :=
∑
(π)

ŜGL(π(1)) ↷ S(π(2)), for π ∈ H.

Then, ŜGL = SGL where SGL is defined in Proposition 3.2.12.

Proof. We see that ŜGL(ω) = ω and ŜGL(τ) = −τ for ω ∈ AD and τ ∈ TD. We check by

induction and using the fact that SGL is a coalgebra homomorphism that ŜGL(ωπ) =
SGL(ωπ) for π ∈ AFD:

ŜGL(ωπ) =
∑
(π)

SGL(π(1)) ↷ S(ωπ(2)) =
∑
(π)2

(SGL(π(1)) ↷ ω)(SGL(π(2)) ↷ S(π(3)))

=
∑
(π)

(SGL(π(1)) ↷ ω)SGL(π(2)) = SGL(π) ⋄ ω.
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We use the same properties to show that ŜGL(τπ) = SGL(τπ):

ŜGL(τπ) = SGL(π(1)) ↷ S(τπ(2)) + SGL(τπ(1)) ↷ S(π(2))

= −SGL(π(1)) ↷ τS(π(2))− (SGL(π(1)) ⋄ τ) ↷ S(π(2))− SGL(τ ↷ π(1)) ↷ S(π(2))

= −SGL(π) ⋄ τ − SGL(π(1)) ↷ S(τ ↷ π(2))− SGL(τ ↷ π(1)) ↷ S(π(2))

= −SGL(π) ⋄ τ − SGL(τ ↷ π),

where we omit writting the sums to simplify the notation. Therefore, ŜGL = SGL

following the definition from Proposition 3.2.12.

3.2.4 Butcher-Connes-Kreimer coproduct

Let us recall the definition of the inner product ⟨−,−⟩σ on the space of decorated
aromatic forests AFD. Let ⟨−,−⟩ be the inner product with respect to which AFD

forms an orthonormal basis of AFD. Then, ⟨π, η⟩σ := σ(π)⟨π, η⟩. Let us define the
Butcher-Connes-Kreimer coproduct that is the adjoint of the Grossman-Larson product
with respect to the inner product ⟨−,−⟩σ as is proven in Propostion 3.2.17.

Definition 3.2.16. The Butcher-Connes-Kreimer coproduct on AFD is defined as

∆BCK(π, α) :=
∑
π0⊂π

(π \ π0, α|π\π0
)⊗ (π0, α|π0

),

where the sum runs over all rooted subforests π0 ∈ AF of π such that π \π0 ∈ AF and
there are no edges going from π0 to π \ π0 in π.

We prove the relation between the Grossman-Larson product and the Butcher-
Connes-Kreimer coproduct.

Proposition 3.2.17. The Butcher-Connes-Kreimer coproduct ∆BCK over decorated
aromatic forests is the adjoint of the Grossman-Larson product ⋄ with respect to the
inner product ⟨−,−⟩σ, that is, ⟨π ⋄ η, γ⟩σ = ⟨π ⊗ η,∆BCK(γ)⟩σ.

Proof. We recall that ⟨π, η⟩σ := σ(π)⟨π, η⟩ where ⟨−,−⟩ is the inner product with
respect to which the set of decorated aromatic forests AFD forms an orthonormal basis
of AFD.

We note that an aromatic forest can be decorated by multiple sets by taking their
Cartesian product, for example, (π, α, αN) := (π, α×αN) where α×αN : V (π) → D×N.
We define a set of labeled decorated aromatic forests AFDL and the corresponding space
AFDL. We note that labels, unlike decorations, are required to be in bijection with
the vertices. The elements (π, α, αl) of AFDL are aromatic forests π ∈ AF decorated
by α : V (π) → D for some set D and αl : V (π) → N such that αl is an injection.

Let us define the Grossman-Larson product and BCK coproduct on the space
AFDL by considering the space AFDN of elements (π, α, αN) where (π, α) ∈ AFD

and αN : V (π) → N. The algebra (AFDL, ⋄) is obtained by taking a quotient of
(AFDN, ⋄) over an appropriate ideal, while the coalgebra (AFDL,∆BCK) is an appro-
priate subcoalgebra of (AFDN,∆BCK). We note that the Grossman-Larson product
and the BCK coproduct on the space AFDL are adjoint to each other with respect to
the inner product ⟨−,−⟩.
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Let us denote by ÃFDL the space of formal sums of the form
∑

π∈AFDL
a(π)π

with a ∈ AF∗
DL. Let φ : (AFD, ⋄) → (ÃFDL, ⋄) be an algebra injection and

φ̂ : (AFDL,∆BCK) → (AFD,∆BCK) be a coalgebra surjection defined as

φ(π, α) :=
∑
αl

(π, α, αl), φ̂(π, α, αl) := (π, α),

where the sum is over all possible bijections αl : V (π) → N. We notice that

⟨φ(π, α), (π, α, αl)⟩ = σ(π, α), and ⟨(π, α), φ̂(π, α, αl)⟩ = 1,

where we use Proposition 1.4.11 to see that p(π, α, α × αl) = σ(π, α). This implies
that φ(π, α, αl) = σ(π, α)φ̂∗(π, α, αl). Let π, η, γ ∈ AFD and γ̃ ∈ AFDL such that
γ = φ̂(γ̃), then, using the definition of ⟨−,−⟩σ, we have,

⟨π ⊗ η,∆BCK(γ)⟩σ = σ(π)σ(η)⟨π ⊗ η,∆BCK(φ̂(γ̃))⟩
we use the fact that φ̃ is a coalgebra homomorphism,

⟨π ⊗ η,∆BCK(γ)⟩σ = σ(π)σ(η)⟨π ⊗ η, (φ̂⊗ φ̂) ◦∆BCK(γ̃)⟩
= σ(π)σ(η)⟨φ̂∗(π)⊗ φ̂∗(η),∆BCK(γ̃)⟩

we use φ(π, α, αl) = σ(π, α)φ̂∗(π, α, αl) as,

⟨π ⊗ η,∆BCK(γ)⟩σ = ⟨φ(π)⊗ φ(η),∆BCK(γ̃)⟩
the BCK coproduct and Grossman-Larson product are adjoint on AFDL,

⟨π ⊗ η,∆BCK(γ)⟩σ = ⟨φ(π) ⋄ φ(η), γ̃⟩
recall that φ is an algebra homomorphism,

⟨π ⊗ η,∆BCK(γ)⟩σ = ⟨φ(π ⋄ η), γ̃⟩ = ⟨π ⋄ η, φ∗(γ̃)⟩ = ⟨π ⋄ η, γ⟩σ,

and the statement is proved.

3.3 Substitution law

In this section, we introduce the necessary algebroic tools for the description of the
substitution law of exotic aromatic S-series. Similarly to Section 3.2 in which we start
with the grafting pre-Lie product, in this section, we start with the insertion pre-Lie
product ▶: AT ⊗AT → AT defined by inserting the left operand into a vertex of the
right operand in all possible ways, for example,

▶ = ▶
(
div( )( ↷ )

)
= div( )( ↷ ) + div( )( ↷ )

+ div( )( ↷ )

= + 3 + .

If for grafting product the extension to decorated aromatic trees is natural and doesn’t
require additional discussion, the same cannot be said about the insertion product.



3.3. SUBSTITUTION LAW 61

3.3.1 Clumped forests

We define decorated clumped forests as a symmetric algebra CFD = S(AT D) over R.
We use the Guin-Oudom process [61] to define the product ↷ on CFD. The commuta-
tive D-algebra (CFD,↷) that we obtain in this way has CFD,0 = {1} and is in many
ways similar to the commutative D-algebra of classical forests (FD,↷). Decorated
clumped forests have a convenient algebraic structure described in the following result.

Theorem 3.3.1. The left Grossman-Larson bialgebroid (CFD, ⋄,1,∆, ϵ) is a Hopf alge-
bra, dual up to the symmetry to the Butcher-Connes-Kreimer Hopf algebra over clumped
forests.

Proof. Since CFD,0 = {1}, the left bialgebroid structure reduces to a graded connected
bialgebra, that is, to a Hopf algebra. Its duality to the corresponding Butcher-Connes-
Kreimer Hopf algebra over clumped forests can be seen by following the proof for
classical forests from [36].

We recall that the map δσ sends a functional a ∈ CF∗
D (or a ∈ AF∗

D) to a formal
sum with coefficients given by the functional and renormalized by the symmetry σ,

that is,
∑

π
a(π)
σ(π)

π for π ∈ CFD (or π ∈ AFD). We note that since the concatenation

product and deshuffle coproduct are adjoint with respect to the inner product ⟨−,−⟩σ,
we have

δσ(a) · δσ(b) = δσ(a⊙ b) with a⊙ b := mR ◦ (a⊗ b) ◦∆. (3.3.1)

Let the map Φ : (CFD,↷) → (AFD,↷) be a commutative D-algebra morphism
that ”forgets” the clumping, for example,

Φ( · ) = Φ( · ) = .

We define Φ∗ : AFD → CFD as

(Φ ◦ δσ)(a) = δσ(a ◦ Φ∗), with a ∈ CF∗
D,

in particular, Φ∗ is the adjoint of Φ with respect to the ⟨−,−⟩σ inner product. Let us
consider the exponential maps

exp· : AT D → AFD, exp⊙ : AT ∗
D → AF∗

D,

exp·
C : AT D → CFD, exp⊙

C : AT ∗
D → CF∗

D.

Using (3.3.1), we obtain for a0 ∈ AT ∗
D the following identities

exp·(δσ(a0)) = δσ(exp
⊙(a0)), exp·

C(δσ(a0)) = δσ(exp
⊙
C(a0)),

with the functionals exp⊙(a0) and exp⊙
C(a0) being characterized in Propositon 3.3.2.

Proposition 3.3.2. Let a0 ∈ AT ∗ be an infinitisimal character and let

ae := exp⊙(a0), ac := exp⊙
C(a0).

Then, ac ∈ CF∗
D is a character of (CFD, ·) and ae = ac ◦ Φ∗ with ae ∈ AF∗

D.
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Proof. We prove that ac := exp⊙
C(a0) is a character of CFD by considering a decorated

clumped forest π = τ1 · · · τn ∈ CFD where τi ∈ AT D. Then,

exp⊙
C(a0)(π) =

1

n!
· (a0 ⊗ · · · ⊗ a0)(∆

n−1(π))

=
1

n!
·
∑
σ∈Sn

a0(τσ(1)) · · · a0(τσ(n)) = a0(τ1) · · · a0(τn).

We prove ae = ac ◦ Φ∗ by using the identity exp·(δσ(a0)) = Φ
(
exp·

C(δσ(a0))
)
.

We define F over CFD by F := F ◦ Φ where we use the same notation for the
morphism over clumped and aromatic forests. This way, we obtain S-series over deco-
rated clumped forests. We note that, following the definition of Φ∗, any S-series S(a)
with a ∈ CF∗

D is identical to the S-series over decorated aromatic forests S(a ◦ Φ∗).
Moreover, given any functional a ∈ AF∗

D, there exists a functional aC ∈ CF∗
D such

that a = aC ◦ Φ∗, since Φ∗ is injective. A possible definition of aC is

aC(π) =
1

nm
a(Φ(π)), for π ∈ CFD,

where n is the number of rooted components and m is the number of aromas.
Proposition 3.3.3 presents a straightforward way to compute Φ∗(π) for a forest

π ∈ AFD, for example,

Φ∗( ) = · + · .

We note that a tree τ ∈ TD induces a map τ ′ : AD → AT D with τ ′(ω) = ωτ
for ω ∈ AD. We can extend (−)′ to FD in two possible ways, that is, for a π ∈ FD, we
have two maps,

π′ : AD → AFD, π′′ : AD → CFD,

defined as
(π · µ)′(ω) = ωπµ, (π · µ)′′(ω) = (π′′ ⊙ µ′′)(ω),

with π′′⊙µ′′ := ·◦(π′′⊗µ′′)◦∆ where ∆ is a R-linear deshuffle coproduct. For example,

( )′( ) = , ( )′′( ) = · + · .

The following result presents a convenient method to compute Φ∗.

Proposition 3.3.3. Given a decorated forest π ∈ FD and ω ∈ AD, we have the
following identity

Φ∗(π′(ω)) = π′′(ω).

Proof. We take the adjoints of π′ and π′′ with respect to the ⟨−,−⟩σ inner product
and denote them by π′∗ : AFD → AD and π′′∗ : CFD → AD. Then, π′∗(ωπ) = σ(π)ω
where ω ∈ AD and π ∈ FD. To prove the statement, we have to show that π′′∗(πω) =
σ(π)ω where πω ∈ CFD is a decorated clumped forest that occurs as a term in π′′(ω),
that is, we need to show that π′∗(Φ(πω)) = π′′∗(πω).

We note that for τ ∈ TD, τ
′′∗(ω) = τ ′∗(ω) = σ(τ)ω and the statement is true. We

use an inductive assumption and (3.3.1) to obtain

(π · µ)′′∗(ηω) = (· ◦ (π′′∗ ⊗ µ′′∗) ◦∆)(ηω) = σ(π)σ(µ)|A|ω,
where A is the set of ηω,(1) ⊗ ηω,(2) such that the rooted components of ηω,(1) and ηω,(2)
are isomorphic to π and µ, respectively. We note that σ(π)σ(µ)|A| = σ(π · µ) and the
proof is finished.
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3.3.2 Insertion multi-pre-Lie algebra

We introduce the decorated insertion product ▶d: AT D ⊗AT D → AT D which inserts
the aromatic tree from the left operand into the vertices decorated by d ∈ D of the
right operand in all possible ways. For example, we recall that

= div(◦)(◦ ↷ ◦) ↷ •,

then,

▶◦ = div( )(◦ ↷ ◦) ↷ •+ div(◦)( ↷ ◦) ↷ •

+ div(◦)(◦ ↷ ) ↷ •

= + + +

+ + + .

The product ▶d generalizes the insertion product studied in [70, 51, 69]. The fam-
ily (AT D, (▶d)d∈D) is a multi-pre-Lie algebra [13, 32], that is, for τ, γ, ν ∈ AT D

and d, e ∈ D we have

τ ▶d (γ ▶e ν)− (τ ▶d γ) ▶e ν = γ ▶e (τ ▶d ν)− (γ ▶e τ) ▶d ν.

Let AT ⊕D
D := AT D ⊗ R[D] =

⊕
d∈D AT Dιd where ιd for d ∈ D form the basis

of R[D] and let us define the action ▶: AT ⊕D
D ⊗AT D → AT D by

τιd ▶ γ = τ ▶d γ.

Let us consider S(AT ⊕D
D ) which becomes CF⊗D

D :=
⊗

d∈D CFDιd after we assume the
identity πιd · µιd = (π · µ)ιd. We check that the Guin-Oudom process for multi-pre-Lie
products [32, Thm. 2.4] is well-defined and use it to define

▶: CF⊗D
D ⊗ CFD → CFD.

For example, let D := {•, ◦}, then,

( ι◦) · ( ι•) ▶ = 2 + 4 + 2 .

We note that for π, µ ∈ CFD, we have πιd ▶ µ = 0 if the number |π|AT of aromatic
trees in π is greater than the number |µ|d of vertices decorated by d in µ. We define a
substitution action ▷ : CF⊗D

D ⊗ CFD → CFD in the following way

(⊗d∈Dπdιd) ▷ µ :=

{
(⊗d∈Dπdιd) ▶ µ, if |πd|AT = |µ|d for all d ∈ D,

0, otherwise.
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The substitution action substitutes all vertices in the right operand by the aromatic
trees from the left operand. We recall that CFD is a free D-algebra generated by the
set D, therefore, given a map φ : D → AT D, there exists a unique morphism Aφ :
CFD → CFD. The morphism Aφ can be written using the substitution action.

Lemma 3.3.4. Given a morphism Aφ : CFD → CFD that acts on generators D as φ,
we have

Aφ(π) = ⊗d∈D exp·
C(φ(d)ιd) ▷ π.

Proof. We use the definition of the exponential map exp·
C and the substitution action

▷ to obtain

⊗d∈D exp·
C(φ(d)ιd) ▷ π =

1∏
d∈D |π|d!

(⊗d∈Dφ(d)
|π|dιd) ▶ π = Aφ(π),

which proves the statement.

3.3.3 Substitution law over clumped forests

Let a⊗D := ⊗d∈Dadιd with ad ∈ CF∗
D be a functional over CF⊗D

D defined as

a⊗D(⊗d∈Dπdιd) =
∏
d∈D

ad(πd).

Definition 3.3.5. Define the CEM coaction ∆CEM : CFD → CF⊗D
D ⊗ CFD as

∆CEM(π) :=
∑

p∈P (π)

∑
c:p→D

c−1(D)⊗ π/(p,c),

where the sum is over the set of partitions P (π) of π and the maps c : p → D which
assign a decoration to each element of the partition p. A partition p ∈ P (π) is a set
of decorated aromatic subtrees of π that covers all vertices of π. When written in the
left operand of the tensor product, c−1(D) is interpreted as a monomial ⊗d∈Dc

−1(d)ιd
in CF⊗D

D . The exotic aromatic forest π/(p,c) denotes the forest obtained by contracting
each element τ of p into a vertex of color c(τ).

For example, let D = {•, ◦}, then,

∆CEM( ) = ι• ⊗ + ι◦ ⊗ ,

∆CEM( ) = ι• ⊗ + ι◦ ⊗ + ι• ⊗ + ι◦ ⊗

ι• · ι◦ ⊗ + ι◦ · ι• ⊗ ,

∆CEM( ) = ι• ⊗ + ι• ⊗ + ι• ⊗ + ι• ⊗ +

ι◦ ⊗ + ι◦ ⊗ + ι◦ ⊗ + ι◦ ⊗ +

ι• · ι◦ ⊗ + ι◦ · ι• ⊗ + ι• · ι◦ ⊗ + ι◦ · ι• ⊗ +

ι◦ · ι• ⊗ + ι◦ · ι• ⊗ + ι• · ι◦ ⊗ +

ι• · ι◦ ⊗ + ι• · ι◦ ⊗ + ι◦ · ι• ⊗ .
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Proposition 3.3.6. Let a ∈ CF∗
D and b⊗D ∈ CF⊗D∗

D , then,

δσ(b
⊗D ⋆ a) = δσ(b

⊗D) ▷ δσ(a),

where b⊗D ⋆ a = mR ◦ (b⊗D ⊗ a) ◦∆CEM .

Proof. We prove the statement in two steps. First, we prove the statement over the
space of ordered clumped forests. Ordered clumped forest are forests in which all
vertices are totally ordered. Next, we describe the relationships between the product
and coproduct over ordered and non-ordered clumped forests and use them to finish
the proof.

1. The space CFDO is defined by assigning every decorated clumped forest π a total
order over the vertices. We note that a forest π ∈ CFD corresponds to |π|! ordered
forests in CFDO. The symmetry of any element of CFDO is equal to 1. Let CF⊗D

DO :=⊗
d∈D CFDOιd.

We define ▷O : CF⊗D
DO ⊗ CFD → CFDO and ∆O

CEM : CFDO → CF⊗D
DO ⊗ CFD to be

the natural extensions of ▷ and ∆CEM . The map ▷O substitutes the vertices decorated
by d by the trees of πdιd and chooses a total order between the vertices of πd and πl
with d ̸= l in all possible ways. We note that there are

(∑
d∈D |πd|

)
!/
∏

d∈D |πd|! ways
to choose a total order between the vertices of πd and πl with d ̸= l. Let π ∈ CF⊗D

DO

and µ ∈ CFD, then,

π ▷O µ =
∑

η∈CFDO

N(π, µ, η)η,

where N(π, µ, η) is the number of ways to substitute the vertices of µ by trees in π
to obtain η. We note that there are |Aut(µ)| ways to substitute the vertices of µ to
obtain the same ordered forest η, therefore, N(π, µ, η) = σ(µ). The symmetry is 1
for an ordered clumped forest, and, since all terms in ∆O

CEM(π) have coefficient 1, we
obtain

δOσ (b
⊗D) ▷O δσ(a) = δOσ (b

⊗D ⋆O a), where b⊗D ⋆O a = mR ◦ (b⊗D ⊗ a) ◦∆O
CEM ,

for b⊗D ∈ CF⊗D∗
DO and a ∈ CF∗

D. The image of δOσ is a formal sum over ordered clumped
forests.

2. We define the map φ that forgets the ordering of the vertices and let

φ̂(π) :=
φ(π)

|π|!
, φ⊗D(⊗d∈Dπdιd) = ⊗d∈Dφ(πd)ιd,

where φ, φ̂ : CFDO → CFD and φ⊗D, φ̂⊗D : CF⊗D
DO → CF⊗D

D . We have the following
properties

φ̂ ◦ ▷O = ▷ ◦ (φ̂⊗D ⊗ id), (φ⊗D ⊗ id) ◦∆O
CEM = ∆CEM ◦ φ.

We also note that for a functional b⊗D ∈ CF⊗D∗
D , δσ(b

⊗D) = φ̂⊗D(δOσ (b
⊗D ◦ φ⊗D)),

therefore,

δσ(b
⊗D) ▷ δσ(a) = φ̂⊗D

(
δOσ (b

⊗D ◦ φ⊗D)
)
▷ δσ(a)

= φ̂
(
δOσ (b

⊗D ◦ φ⊗D) ▷O δσ(a)
)

= φ̂
(
δOσ ((b

⊗D ◦ φ⊗D) ⋆O a)
)

= φ̂
(
δOσ ((b

⊗D ⋆ a) ◦ φ)
)
= δσ(b

⊗D ⋆ a).

This proves that δσ is an algebra morphism.
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We extend the insertion action ▶: AT ⊕D
D ⊗ AT D → AT D to the insertion pre-Lie

product ▶: AT ⊕D
D ⊗AT ⊕D

D → AT ⊕D
D by

τιd ▶ γιl = (τ ▶d γ)ιl.

We recall that CF⊗D
D = S(AT ⊕D

D ) which allows us to use the Guin-Oudom process and
define ▶: CF⊗D

D ⊗ CF⊗D
D → CF⊗D

D and the substitution product ▷ : CF⊗D
D ⊗ CF⊗D

D →
CF⊗D

D . The algebra (CF⊗D
D , ▷) is endowed with the deshuffle coproduct ∆ of S(AT ⊕D

D ).
We present a generalization of the result obtained in [18] for classical forests.

Theorem 3.3.7. The algebra B▷ := (CF⊗D
D , ▷) endowed with the deshuffle coproduct ∆

is a bialgebra dual to the CEM bialgebra BCEM := (CF⊗D
D , ·,∆CEM) with respect to

the ⟨−,−⟩σ inner product. Moreover, HCEM := BCEM/⟨(1 − d )ιd : d ∈ D⟩ is a
Hopf algebra dual to the Grossman-Larson Hopf algebra H▷, which is an appropriate
sub-bialgebra of B▷ and a universal enveloping algebra of (AT ⊕D

D ,▶).

Proof. Let us start by proving that B▷ is a bialgebra. The unit is given by u :=

⊗d∈D exp·
C(

d ιd) and counit is given by ϵ := 1∗ ∈ CF⊗D∗
D . It is straightforward

to check that the counit is compatible with the product and unit. We use the prop-
erty ∆(exp·

C(τ)) = exp·
C(τ) ⊗ exp·

C(τ) to check that the unit is compatible with the
coproduct, that is, ∆(u) = u⊗ u. We use

π ▷ (− · −) =
∑
(π)

(π(1) ▷−) · (π(2) ▷−)

and the associativity of ▷ to obtain the identity∑
(π),(µ)

(π(1) ▷ µ(1) ▷−)(π(2) ▷ µ(2) ▷−) =
∑
(π▷µ)

((π ▷ µ)(1) ▷−)((π ▷ µ)(2) ▷−).

Therefore, the compatibility of the product and coproduct is necessary. This proves
that B▷ is a bialgebra. Equation (3.3.1) and Proposition 3.3.6 show that BCEM is the
dual bialgebra of B▷.

Similarly to [18], we obtain a Hopf algebra once we take the quotient of BCEM by

the ideal ⟨(1− d )ιd : d ∈ D⟩. The Hopf algebra HCEM thus obtained is dual to the
Hopf algebra H▷ which is isomorphic to the Grossman-Larson Hopf algebra obtained
using Guin-Oudom process applied to the insertion pre-Lie product ▶. The elements
of H▷ have the form

⊗d∈D exp·
C( d ιd) · π, for π ∈ CF⊗D

D .

Following Guin-Oudom, Grossman-Larson algebra is a universal enveloping algebra of
the respective pre-Lie algebra.

Theorem 3.3.8 (Substitution law). Let a ∈ CF∗
D and let {b0,d ∈ AT ∗

D : d ∈ D} be
a set of infinitesimal characters. Let us consider a map φ : D → AT D with φ(d) =
δσ(b0,d), let F(d) = fd for d ∈ D, and let Sφ = F ◦ Aφ ◦ δσ, then,

Sφ(a) = S(b⊗D
c ⋆ a),

where b⊗D
c = ⊗d∈Dbc,dιd with bc,d being a character of CFD that extends b0,d.
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Proof. We use Lemma 3.3.4 and Proposition 3.3.2 to write Aφ as

Aφ(π) = δσ(b
⊗D
c ) ▷ π, where b⊗D

c = ⊗d∈Dbc,dιd,

with bc,d being a character of CFD that extends b0,d. We use the fact that Sφ = F◦Aφ◦δσ
and Proposition 3.3.6 to obtain

Sφ(a) = F
(
δσ(b

⊗D
c ) ▷ δσ(a)

)
= F

(
δσ(b

⊗D
c ⋆ a)

)
= S(b⊗D

c ⋆ a).

This finishes the proof.

Analogously to [50], due to the relation between the D-algebra homomorphism Aφ :
CFD → CFD and the corresponding map b⊗D

c ⋆ : CF∗
D → CF∗

D, we obtain Corol-
lary 3.3.9.

Corollary 3.3.9 (Left distributivity). There is the following distributivity relation
between the substitution law and the composition law:

a⊗D
c ⋆ (b ∗ c) = (a⊗D

c ⋆ b) ∗ (a⊗D
c ⋆ c),

for a⊗D
c = ⊗d∈Dac,dιd where ac,d are characters of CFD and b, c ∈ CF∗

D.

Proof. Let φ(d) = δσ(a0,d), then we have

δσ(a
⊗D
c ⋆ (b ∗ c)) = Aφ(δσ(b ∗ c))

= Aφ(δσ(b)) ⋄ Aφ(δσ(c))

= δσ((a
⊗D
c ⋆ b) ∗ (a⊗D

c ⋆ c)).

Since δσ is an isomorphism, the statement is proved.

3.3.4 Substitution law over decorated aromatic forests

We extend the definition of▶ to decorated aromatic forests as▶: CF⊗D
D ⊗AFD → AFD

and note that Φ is a CF⊗D
D -module morphism, that is,

Φ(π ▶ µ) = π ▶ Φ(µ).

We extend the substitution product ▷ : CF⊗D
D ⊗ AFD → AFD and ∆CEM : AFD →

CF⊗D
D ⊗AFD and use Proposition 3.3.6 to see that Φ∗ is a CF⊗D

D -comodule morphism,
that is,

∆CEM ◦ Φ∗ = (id⊗ Φ∗) ◦∆CEM .

Using the freeness of the tracial commutative D-algebra (AFD,↷), we note that for
every map φ : D → AT D, there exists a corresponding Aφ : AFD → AFD with the
following property

Φ ◦ Aφ = Aφ ◦ Φ,

where we use the same notation for the Aφ over decorated clumped and aromatic
forests. We describe the substitution law for S-series over decorated aromatic forests
by using the fact that any functional over decorated aromatic forests a ∈ AF∗

D can be
written as an image of the map Φ∗, that is, there exists a functional aC ∈ CF∗

D such
that a = aC ◦ Φ∗.
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Theorem 3.3.10. Using the notation from Theorem 3.3.8 and given a ∈ AFD, we
have

Sφ(a) = S(b⊗D
c ⋆ a),

with convolution product ⋆ with respect to ∆CEM : AFD → CF⊗D
D ⊗AFD.

Proof. We note that given a functional a ∈ AF∗
D, we can define a functional aC ∈ CF∗

D

such that a = aC ◦ Φ∗, moreover, S(a) = S(aC). The statement follows from the
following identities,

Sφ(a) = Sφ(aC) = S(b⊗D
c ⋆ aC) = S((b⊗D

c ⋆ aC) ◦Φ∗) = S(b⊗D
c ⋆ (aC ◦Φ∗)) = S(b⊗D

c ⋆ a),

with b⊗D
c := ⊗d∈Dbc,dιd.

Corollary 3.3.9 is extended to functionals over decorated aromatic forests in a similar
fashion.

3.4 Exotic aromatic forests

We construct the space EAF from the space of decorated aromatic forest AFD and
inherit a number of algebraic structures from it. There are two ways to do that: by
taking an appropriate subspace or by taking a quotient. We use the first approach to
define the algebras and the second approach to define coalgebras.

Let us consider decorated forests AFD with D = {•} ∪ N and let AFD denote its
completion with respect to the grading given by the number of vertices, that is, AFD is
a space of formal sums over AFD. We define the subspace AFE

D of AFD corresponding
to exotic aromatic forests spanned by

φ(π, αe) :=
∑

α∈P (αe)

(π, α), (3.4.1)

with φ : EAF → AFE
D an isomorphism. P (αe) is the set of decorations α with α−1(•) =

α−1
e (•) and

α(v1) = α(v2) if αe(v1) = αe(v2), for v1, v2 ∈ V (π).

We note that AFE
D forms a subalgebra of AFD with respect to the concatenation,

grafting, and Grossman-Larson products which induces the corresponding algebraic
structures over EAF through the isomorphism φ.

Let us now consider the subspace of AFD orthogonal to AFE
D with respect to the

inner product ⟨−,−⟩σ. We denote it by I and we can see that it is a coideal in the
coalgebra (AFD,∆AD

) using the fact that the deshuffle coproduct is adjoint to the
concatenation product. Taking a quotient of (AFD,∆AD

) by I gives a definition of
the coalgebra of exotic forests (EF ,∆EA) through the isomorphism

ψ(π, αe) := (π, αe) + I ∈ AFD/I . (3.4.2)

An exotic aromatic forest is connected if it cannot be written as a concatenation
of non-trivial exotic aromatic forests. This notion of connectedness coincides with the
one found in [40]. We note that due to the pairings of the number vertices (that are
also called lianas), exotic aromatic forests can contain connected components which
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have more than one root, which is a major difference with the standard Butcher trees
and forests. For example, the following exotic aromatic forests are connected:

1 1 ,
1

1

,
1 1 2 2 3

3 .

The EA-module of primitive elements PEAF := Prim(EAF ,∆EA) is spanned by the
connected exotic aromatic forests, for example,

∆EA(

1 1

2 2 3

3 ) =

1 1

2 2 3

3 ⊗ 1+ 1⊗

1 1

2 2 3

3 .

To prove the compatibility between the algebraic and coalgebraic structures of EAF ,
we consider the product ↷̃ : EAF ⊗ EAF → EAF defined as

π↷̃η = π ⋄ η − π · η, for π ∈ PEAF , η ∈ EAF ,
(π · γ)↷̃η = π↷̃(γ↷̃η)− (π↷̃γ)↷̃η, for γ ∈ EAF .

Intuitively, the product ↷̃ is a modification of the Grossman-Larson product ⋄ in which
we require each element of PEAF in the left operand to attach at least one root to a
vertex of the right operand. We note the following property

π ⋄ η =
∑
(π)

π(1) · (π(2)↷̃η), for π, η ∈ EAF , (3.4.3)

where ∆EA(π) =
∑

(π) π(1) ⊗ π(2) is the deshuffle coproduct defined on EAF .
We note that the space of exotic aromatic forests EAF can be defined as the symmet-

ric algebra SEA(PEAF) over the ring of exotic aromas. Analogously to Section 3.3.1,
we define two possible extensions of the concept of clumped forests to the exotic con-
text,

CEF := S(PEAF), CEF1 := S(EAT ).

We note that both symmetric algebras are over the base field R, meaning that the exotic
aromas are attached to the rooted components. We recall that EAT is the space of
exotic aromatic forests with one root and CEF1 ⊂ CEF . Some elements of CEF are

1

1 ·

2

2

·
3 3 4

4 ,
1 1 2

2 .

We note that
1 1

·

2

2

̸=
1 1

·

2

2

in CEF . Let Φ : CEF → EAF
denote the map that forgets the ”clumping”, that is,

kerΦ = ⟨ωτ · γ · π − τ · ωγ · π : ω ∈ EA, τ, γ ∈ EAT , π ∈ CEF⟩.

Theorem 3.4.1. The space of exotic aromatic forests forms a Grossman-Larson Hopf
algebroid, and the space of clumped exotic forests forms a Grossman-Larson Hopf al-
gebra. Moreover, Φ : CEF → EAF is a surjective algebra morphism.
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Proof. We note that the algebra structure is obtained by considering a subalgebra
of (AFD, ⋄), while the coalgebra structure is obtained by taking a quotient of the
coalgebra (AFD,∆AD

). This means that the algebra and coalgebra structures are not
automatically compatible. We prove the compatibility condition

∆EA(π ⋄ η) = ∆EA(π) ⋄∆EA(η),

by induction on the number of connected components in π. Assume the compatibility
is proven for all forests with the number of components less or equal to the number of
components in π. Consider π̃ · π with π̃ having one connected component, then,

∆EA((π̃π) ⋄ η) = ∆EA(π̃ ⋄ (π ⋄ η)− (π̃ ↷̃ π) ⋄ η)
= ∆EA(π̃) ⋄∆EA(π) ⋄∆EA(η)−∆EA(π̃ ↷̃ π) ⋄∆EA(η)

= ∆EA(π̃ ⋄ π − π̃ ↷̃ π) ⋄∆EA(η) = ∆EA(π̃π) ⋄∆EA(η),

where we use the associativity of ⋄ and coassociativity of ∆EA. It remains to show that

∆EA(π̃ ⋄ η) = ∆EA(π̃) ⋄∆EA(η), for π̃ ∈ PEAF , η ∈ EAF .

We note that π̃ has multiple roots which, when grafted onto different connected com-
ponents of η, connect them into a single component. We represent this by

π̃ ⋄ η =
∑
S∈η

(π̃↷̂S) · (η \ S),

where S is a possibly empty set of components of η and ↷̂ is grafting product which
attaches at least one root to each component of S, which means that the number of
components in S is less or equal to the number of roots of π̃. If S is empty, then
π̃↷̂S = π̃. Using this representation of π̃ ⋄ η, we have,

∆EA(π̃ ⋄ η) = ∆EA
(∑

S∈η

(π̃↷̂S) · (η \ S)
)

=
∑
S∈η

(π̃↷̂S ⊗ 1+ 1⊗ π̃↷̂S) ·∆EA(η \ S)

=
∑

S∈η,(η\S)

π̃↷̂S · (η \ S)(1) ⊗ (η \ S)(2) + (η \ S)(1) ⊗ π̃↷̂S · (η \ S)(2)

=
∑
(η)

(π̃ ⋄ η(1) ⊗ η(2) + η(1) ⊗ π̃ ⋄ η(2)) = ∆EA(π̃) ⋄∆EA(η),

and the compatibility condition is proven.
Following [48], the primitive elements PEAF endowed with ↷̃ form a pre-Lie al-

gebra. We use the product ↷̃ to define the antipode SGL for EAF by replacing
all instances of ↷ in Proposition 3.2.12 by the product ↷̃, all instances of τ ∈ TD

by τ ∈ PEAF , and ω ∈ AD by ω ∈ EA.
We obtain a bialgebra (CEF ,1, ⋄, ϵ,∆) by noting that CEF can be obtained by

taking a sub-D-algebra of D-algebra CF•N which is a special case of CFD. The an-
tipode SC

GL for CEF is obtained the same way, but the trees τ ∈ TD are replaced
by τ ∈ PEAF and the identities (i) are ignored.

This proves that we have a Hopf algebroid and Hopf algebra structures over EAF
and CEF , respectively. We note that Φ(π ⋄ µ) = Φ(π) ⋄ Φ(µ) and Φ(1) = 1, so Φ is a
surjective algebra morphism.
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We note that (EAF , ·,∆EA,↷) is not a pre-Hopf algebra, as

π ↷ (π1 · π2) ̸= (π(1) ↷ π1) · (π(2) ↷ π2) in EAF .

Moreover, (EAF , ·,∆EA, ↷̃) is not a pre-Hopf algebra for the same reason. However,
(EAF , ·,↷) is a D-subalgebra of (AFD, ·,↷) with the grading of the associative alge-
bra (EAF , ·) given by the number of roots.

We also note that following the discussion in Section 3.2.4, EAF is endowed with
a Butcher-Connes-Kreimer coproduct which is adjoint to the Grossman-Larson prod-
uct with respect to the inner product ⟨−,−⟩σ with the ∆BCK coproduct defined in
Definition 3.4.2.

Definition 3.4.2. The Butcher-Connes-Kreimer coproduct on EAF is defined as

∆BCK(π) :=
∑
π0⊂π

π \ π0 ⊗ π0,

where the sum runs over all rooted exotic aromatic subforests π0 ∈ EAF of π such
that π \ π0 ∈ EAF and there are no edges going from π0 to π \ π0 in π.

An important property of ∆BCK over exotic aromatic forests is that it keeps the
vertices of a liana on the same side of the tensor product, for example,

∆BCK( 1

1

) = 1

1

⊗ 1+ 1 1 ⊗ + 1⊗ 1

1

.

We use the coproduct ∆BCK to characterize the exotic aromatic S-series of a com-
position of two integrators. Let Ψ1

h and Ψ2
h be two integrators that share the same

timestep while having independent noise terms. It establishes that the composition of
these two integrators, each with an exotic aromatic S-series, results in an integrator
that also possesses an exotic aromatic S-series of a specific form.

Theorem 3.4.3 (Composition of integrators). Consider two independent integrators Ψ1
h

and Ψ2
h with exotic aromatic S-series S(a1) and S(a2), then the composition of Ψ1

h

and Ψ2
h has the following S-series

E[ϕ((Ψ2
h ◦Ψ1

h)(x))] = S(a1 ∗ a2)[ϕ](x).

with a1 ∗ a2 = mR ◦ (a1 ⊗ a2) ◦ ∆BCK where ∆BCK is the Butcher-Connes-Kreimer
coproduct over exotic aromatic forests.

Proof. The integrators Ψ1
h and Ψ2

h have exotic aromatic S-series, that is,

E[ϕ(Ψ1
h(X0))] = S(a1)[ϕ] , and E[ϕ(Ψ2

h(X0))] = S(a2)[ϕ] .

We use the independence of their noise terms to have the following equality,

E[ϕ((Ψ2
h ◦Ψ1

h)(X0))] = S(a1)
[
E[ϕ(Ψ2

h(X0))]
]
= S(a1)

[
S(a2)[ϕ]

]
.

Composition of differential operators corresponds to the Grossman-Larson product of
the corresponding exotic aromatic forests and the Grossman-Larson product is adjoint
to the Butcher-Connes-Kreimer coproduct using 3.2.17. Therefore, we have,

E[ϕ((Ψ2
h ◦Ψ1

h)(X0))] = S(a1 ∗ a2)[ϕ],

and the composition law is proved.
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Let us now introduce the substitution law for exotic aromatic S-series. Let Sf (a)
denote the exotic S-series of a numerical integrator solving an SDE with drift f . The
drift can be chosen to be an S-series Sf (b0), where b0 ∈ EAT ∗ is a functional that is
non-zero only on exotic aromatic trees. The S-sereis Sf (b0) is also denoted by Bf (b)
for simplicity (see Definition 3.0.1). Theorem 3.4.5 asserts that applying a numerical
integrator to an SDE with drift Sf (b0) is equivalent to applying a numerical integrator
with an exotic S-series of a specific form to the SDE with drift f .

Definition 3.4.4. Let the CEM coaction ∆CEM : EAF → CEF1 ⊗ EAF over exotic
aromatic forests be defined as

∆CEM(π) :=
∑
p⊂π

p⊗ π/p,

where the sum is over all clumped exotic subforests p ∈ CEF1 that cover all black
vertices and π/p is the exotic aromatic forest obtained by contracting the exotic aro-
matic trees of p into black vertices. If the forest π ∈ EAF doesn’t have valid sub-
forests p ∈ CEF1, then ∆CEM(π) = 1⊗ π. For details see the proof of Theorem 3.4.6.

Theorem 3.4.5 (Substitution law). Let a ∈ EAF∗, b ∈ EAT ∗, then,

SBf (b)(a) = Sf (bc ⋆ a), with bc ⋆ a = mR ◦ (bc ⊗ a) ◦∆CEM ,

where bc is the character of CEF1 that extends b and ∆CEM is defined in Defini-
tion 3.4.4.

The techniques of backward error analysis and the modified equation rely heavily
on the substitution law and are introduced in the beginning of Section 3 (see Theorems
3.0.5 and 3.0.7). Let us prove that CEF is endowed with a Hopf algebra structure with
coproduct ∆CEM which gives us a simplified way of computing the CEF1-coaction
∆CEM over EAF . We use the map Φ∗ studied in Section 3.3.1.

Theorem 3.4.6. The space of clumped exotic forests CEF forms a Hopf algebra

(CEF ,1, ·,1∗,∆CEM , SCEM),

where ∆CEM is the coproduct extended from Prim(EAF) to CEF by respecting the
concatenation product. Moreover, Φ∗ : EAF → CEF is a CEF1-comodule morphism
where Φ∗ is the adjoint of Φ, that is, Φ ◦ δσ = δσ ◦ Φ∗.

Proof. We recall that, following Theorem 3.3.7, BCEM := (CF⊗D
D , ·,∆CEM) is a bialge-

bra which becomes a Hopf algebra HCEM := (CFD, ·,∆CEM) once we take the quotient
of BCEM by the ideal ⟨(1− )ι•⟩+ J defined as

J := ⟨(1− k )ι
k
, πι

k
: π /∈ {1, k }, k ∈ N⟩.

The obtained coproduct of HCEM can now be described as

∆CEM(π) =
∑
p⊂π

p⊗ π/p, (3.4.4)

where the sum is over all clumped subforests p ∈ CFD that cover all black ver-
tices and π/p is the clumped forest obtained by contracting the aromatic trees of p
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into black vertices. If the forest π ∈ CFD doesn’t have valid subforests p ∈ CFD,
then ∆CEM(π) = 1 ⊗ π. We build the algebra (CEF , ·) by taking a subalgebra of
(CFD, ·). The coalgebra structure of (CEF ,∆CEM) is obtained by taking a quotient
over an appropriate coideal where we require the connected components of p to have
a single root. The compatibility between the product and coproduct follows directly
from the description of ∆CEM in (3.4.4). We obtain the Hopf algebra

(CEF ,1, ·,1∗,∆CEM , SCEM),

with ∆CEM : CEF → CEF ⊗CEF which corestricts to CEF1⊗CEF and Φ∗ is a CEF1-
comodule morphism.

We can simplify the computation of the substitution law for exotic aromatic S-
series using the map Φ and Theorem 3.4.6. Given a functional a ∈ EAF∗, we use the
discussion from Section 3.3.1 to define a functional aC ∈ CEF over clumped exotic
forests as

aC(π) :=
1

nm
a(Φ(π)),

where n is the number of rooted components and m is the number of aromas. We have
the property a = aC ◦ Φ∗ which we use to compute the substitution law as follows

bc ⋆ a = bc ⋆ (aC ◦ Φ∗) = (bc ⋆ aC) ◦ Φ∗.

The substitution law bc ⋆ aC over CEF is easier to compute since ∆CEM over CEF
respects concatenation. Therefore, computing the values of ∆CEM on PEAF is enough
to obtain its values over all clumped exotic forests.

Example 3.4.7. Let us compute the CEM coproduct over EAF using the comodule
morphism Φ∗.

(∆CEM ◦ Φ∗)(
1

1 ) = ∆CEM(
1

1 · ) + ∆CEM(
1

1 · )

= ∆CEM(
1

1 )̂·∆CEM( ) + ∆CEM(
1

1 )̂·∆CEM( ),

where (π(1) ⊗ π(2))̂·(µ(1) ⊗ µ(2)) = (π(1) · µ(1))⊗ (π(2) · µ(2)) and

∆CEM(
1

1 ) = ⊗
1

1 + ⊗
1

1 ,

∆CEM( ) = ⊗ + ⊗ ,

∆CEM( ) = ⊗ ,

∆CEM(
1

1 ) = ⊗
1

1 .

Therefore, we have

(∆CEM ◦ Φ∗)(
1

1 ) = ⊗
1

1 · + · ⊗
1

1

+ ⊗
1

1 · + · ⊗
1

1

= ⊗ Φ∗(
1

1 ) + 2 · ⊗ Φ∗(
1

1 ),

which agrees with a direct computation that gives

∆CEM(
1

1 ) = ⊗
1

1 + 2 · ⊗
1

1 .
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Chapter 4

Arboretum: symbolic package for
automatic computation

The Arboretum.hs package offers a comprehensive suite of tools to streamline compu-
tations involving algebras of graphs. It was developed in collaboration with Jean-Luc
Falcone from the Computer Science Department of University of Geneva and Gilles
Vilmart. A publication detailing the contributions of this package [9] is currently in
preparation. The design of the package is guided by three core principles:

1. Readability: The implementation of structures and operations closely follows their
mathematical definitions, ensuring that the code is intuitive and transparent.

2. Extensibility: The package is built to be easily extendable, allowing new features
and operations to be added without significant modifications to the existing code-
base.

3. Testing: Special emphasis is placed on testing. The package includes mechanisms
to easily validate the correctness of implementations, reflecting a commitment to
reliability.

In developing this package, we have prioritized readability and user experience over
raw performance. This trade-off is intentional, as the package is designed to serve both
as a computational tool and a platform for exploring and experimenting with algebras
of graphs. The simplicity of its implementation, combined with a focus on clarity,
ensures that users—particularly those interested in algebraic structures—can easily
work with Arboretum.hs while maintaining the flexibility to extend its functionality
as needed.

One notable example is BSeries.jl [65], a Julia package that replaces BSeries.py
[66], an earlier Python implementation by the same authors. It focuses on the effi-
cient implementation of classical techniques for B-series and Runge-Kutta methods.
Developed with different priorities in mind, it has its own specialization. A key dis-
tinction is that BSeries.jl is primarily designed for numerical analysts, emphasizing
well-established structures from numerical analysis. Consequently, it is less flexible
from an algebraic and combinatorial perspective, making it less suited for exploring
extensions within the tree and forest framework. See [38] for details.

We also mention the master’s thesis [73], which introduces a Python package [74] for
automating various classical computations in the theory of B-series. Additionally, [59]

75
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presents recursive formulas for operations on planar forests, with the goal of developing
a Haskell package for their computation.

4.1 Getting started

Users are encouraged to explore the examples provided in the manual for a practical
understanding of the package’s functionality. To begin using Arboretum.hs, install the
Haskell Tool Stack (Stack) by following the instructions from

https://haskellstack.org,

clone the git repository

https://gitlab.unige.ch/Eugen.Bronasco/arboretum.hs

and run stack repl in the root folder. The package uses a custom extension of the La-
TeX package planarforest to draw the trees and forests. The original planarforest
package is available at

https://hmarthinsen.github.io/planarforest/

The display function is used to display vectors of trees and forests. It generates a
PDF file in the root folder called output.pdf which contains the visual representation
of the vector and attemps to open the file using Zathura document viewer available on
Linux. The display function is used in the examples below to illustrate the results of
the computations.

Usage Example 4.1.1. Below you can find some examples of the package usage where
we define two planar forests f1 and f2, graft f1 onto f2, and substitute the vertices
decorated by 1 in f2 by trees of f1. The details can be found in Section 4.5.

f1 = [

PT 1 [PT 2 []],

PT 1 [PT 2 []]

]

display $ vector f1

( 1

2

· 1

2

)

f2 = [

PT 1 [],

PT 1 [PT 2 [], PT 2 []]

]

display $ vector f2

( 1 · 1

2 2

)

display $ f1 `graft` f2

https://haskellstack.org
https://gitlab.unige.ch/Eugen.Bronasco/arboretum.hs
https://hmarthinsen.github.io/planarforest/
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( 1 · 1
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1

2

) + 2( 1 · 1
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1
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1

2

) + ( 1 · 1

2

1

2

1

2

2

) + 2( 1 · 1

1

2

2 2

1

2

) + 2( 1 · 1

1

2

2

1

2

2

) +

( 1 · 1

1

2

1

2

2 2

) + 2( 1

1

2

· 1

2 2

1

2

) + 2( 1

1

2

· 1

2

1

2

2

) + 2( 1

1

2

· 1

1

2

2 2

) + ( 1

1

2

1

2

· 1

2 2

)

display $ substitute [PT 1 []] (map (:[]) f1) f2

2( 1

2

· 1

2

2 2

) + 4( 1

2

· 1

2 2

2

) + 2( 1

2

· 1

2 2 2

)

4.2 Why Haskell?

Haskell is a strong choice for the Arboretum.hs package, as it aligns well with our goals
of readability, extensibility, and testing. We are not the first to make this choice; an
alternative discussion on the benefits of using Haskell can be found in [59].

Below, we explore its key advantages while also addressing potential drawbacks,
particularly in comparison to languages such as Julia, Matlab, and Python.

4.2.1 Advantages of Haskell

1. The syntax is well-suited for writing code that mirrors mathematical definitions,
particularly in domains like algebraic structures. This close alignment between
code and mathematical notation enhances clarity, making the code easier to un-
derstand and reason about. Recursive structures, such as trees, are especially
intuitive to implement in Haskell due to its functional paradigm.

2. Haskell enforces immutability, meaning data cannot be altered once created. This
property simplifies reasoning about program behavior and ensures that functions
remain free from side effects.

3. A robust, static type system enables the definition of custom types that reflect the
algebraic structures in the package, allowing errors to be caught at compile time.
This provides an additional layer of safety and encourages reusable, extendable
code. In comparison, while languages like Python and Matlab offer flexibility,
their dynamic typing can lead to runtime errors that are harder to catch.

4. Haskell’s lazy evaluation model means that computations are deferred until their
results are required. This is particularly advantageous for dealing with infinite
structures, such as the B-series mentioned in the package’s planned features. This
allows for handling infinite sums efficiently without running into performance bot-
tlenecks, a flexibility not as easily managed in languages like Julia or Matlab.

5. Haskell’s emphasis on composability and modularity makes the codebase easy to
extend. New structures and operations can be introduced without disrupting the
existing framework, fostering scalability.
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6. Haskell’s support for property-based testing, through libraries like QuickCheck,
allows us to define properties that algebraic structures should satisfy and automat-
ically generate test cases to ensure correctness. This level of verification is harder
to achieve in dynamically-typed languages like Python, where more reliance is
placed on unit tests and manual validation.

4.2.2 Disadvantages and Remedies

1. While Haskell prioritizes readability and correctness, it may not always match the
performance of Julia, Matlab, or Python, particularly in numerical computations.
Performance bottlenecks can be mitigated by using Foreign Function Interface
(FFI) which enables integration with high-performance code from other languages,
allowing Haskell to leverage the strengths of Julia, Python, or C for specific tasks.

2. Haskell’s functional programming model and emphasis on immutability can be
challenging for developers accustomed to more imperative languages like Python,
Matlab, or Julia. These languages are often easier to learn offering familiar syntax
and workflows. However, the Arboretum.hs package is written without the use
of advanced Haskell techniques which reduces the complexity and makes it more
approachable for new users.

In summary, while Haskell may not offer the same performance or immediate acces-
sibility as Julia, Matlab, or Python in some areas, it excels in readability, correctness,
and modularity. With the right optimizations and careful design, Haskell is a robust
and extendable tool for working with algebras of graphs.

4.3 Algebras of graphs

We present several examples of implementing algebras of graphs, showcasing and ex-
plaining the majority of the package’s functionality. When constructing an algebra of
graphs, two primary approaches can be adopted:

1. Defining a general graph and subsequently restricting the type of graphs we accept
by imposing additional structure (as demonstrated in Section 4.4),

2. Building the specific graphs of interest directly from the ground up (as demon-
strated in Section 4.5).

Each approach comes with its own set of advantages and drawbacks. The first
approach is more flexible and can accommodate a broader variety of graphs, but it may
introduce additional complexity and reduce efficiency. The second, more specialized
approach, is often simpler and more efficient to implement, although it can require
more upfront work to define the specific graphs.

In our examples, we focus on the grafting product and the associated algebra of
forests and aromatic forests. Later, we present the tools and techniques used to imple-
ment substitution on classical and aromatic forests.
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4.4 Grafting of graphs

In this section, we discuss the definition and implementation of graphs, along with
the grafting operation. We provide an example of implementing an algebra of graphs,
starting with a general graph and imposing only the minimal required structure to
define the product of interest, which is the grafting product in our case.

Definition 4.4.1. A graph g is a set of vertices V (g) together with a set of directed
edges E(g). An edge e is defined by its source s(e) ∈ V (g) and target t(e) ∈ V (g). A
rooted graph has a marked vertex called a root. The set of rooted graphs is denoted
by GR.

We implement the Definition 4.4.1 below:

Implementation 4.4.2. A graph is any type g that is an instance of the Graph type
class. The Graph type class requires the type of the edges Edge g to be an instance of
the GraphEdge type class, which defines the source, target, and construction of edges.
The Graph type class also requires the type of the vertices Vertex g to be the EndPoint
of the edges. The Graph type class provides functions for constructing graphs, adding
edges, and adding graphs together.

class GraphEdge e where

-- | Ad edge of type `e` has endpoints of type `EndPoint e`.

type EndPoint e

source :: e -> EndPoint e

target :: e -> EndPoint e

-- | Constructs an edge from two endpoints an possibly

-- additional data of type `a`.

edge :: a -> EndPoint e -> EndPoint e -> e

class

( GraphEdge (Edge g)

, Vertex g ~ EndPoint (Edge g)

) => Graph g where

-- | The type of edges in the graph which must be

-- an instance of `GraphEdge`.

type Edge g

-- | The type of vertices in the graph which must be

-- the `EndPoint` of the edges.

type Vertex g

type Vertex g = EndPoint (Edge g)

singleton :: Vertex g -> g

edges :: g -> MultiSet (Edge g)

vertices :: g -> MultiSet (Vertex g)
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-- | Adds the vertices and edges of a graph to another graph.

-- We note that the type of edges must coincide.

addGraph :: (Graph g0, Edge g ~ Edge g0) => g0 -> g -> g

addEdge :: Edge g -> g -> g

class (Graph g) => RootedGraph g where

root :: g -> Vertex g

A straightforward implementation of a graph which uses integers as labels is included
in the package and is presented in Implementation 4.4.3.

Implementation 4.4.3. A simple implementation of a graph where we create an
instance of the GraphEdge type class for pairs of any type a. We also define the
IntegerGraph type, which is an instance of the Graph type class and is fully defined
by a multiset of vertices and edges. Finally, we define the Rooted type, which is an
instance of the RootedGraph type class.

instance GraphEdge (a, a) where

type EndPoint (a, a) = a

edge _ = (,)

source (x, _) = x

target (_, y) = y

data IntegerGraph

= IG (MS.MultiSet Integer) (MS.MultiSet (Integer, Integer))

instance Graph IntegerGraph where

type Edge IntegerGraph = (Integer, Integer)

singleton v = IG (singleton v) empty

edges (IG _ es) = es

vertices (IG vs _) = vs

addGraph g (IG vs es) =

IG (vertices g `union` vs) (edges g `union` es)

addEdge e (IG vs es) =

IG vs (e `insert` es)

integerGraph :: [Integer] -> [(Integer, Integer)] -> IntegerGraph

integerGraph vs es = IG (MS.fromList vs) (MS.fromList es)

data Rooted g = R (Vertex g) g

instance (Graph g) => RootedGraph (Rooted g) where

root (R r _) = r

rooted :: (Graph g, Eq (Vertex g)) => g -> Vertex g -> Rooted g
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rooted g r =

if r `vertexOf` g

then R r g

else error "Root vertex not in graph"

The function integerGraph is a helper function that simplifies the construction of
graphs and the function rooted is used to set the root of a graph.

We define a graph with the set of vertices V = {1, 2, 3} and the set of edges E =
{(1, 1), (2, 1), (2, 3)} in Example 4.4.4 and set the vertex 1 to be the root.

Usage Example 4.4.4. An example of a graph:

>>> g = integerGraph [1,2,3] [(1,1),(2,1),(2,3)]

>>> g

IntegerGraph(V=[1,2,3], E=[(1,1),(2,1),(2,3)])

>>> rg = rooted g 1

>>> rg

RootedIntegerGraph(V=[1,2,3], E=[(1,1),(2,1),(2,3)], R=1)

We note that since we don’t assume any structure on the graph, we can’t display it in
a more visually appealing way.

We are now ready to define and implement a generalization of the grafting product.
Let G and GR denote the vector spaces spanned by G and GR, respectively.

Definition 4.4.5. The grafting product ↷: GR ⊗ G → G is a bilinear map defined
by taking the sum over all the ways to connect the root of the left operand to a vertex
of the right operand. That is,

gr ↷ g =
∑

v∈V (g)

gr ↷v g,

where the operation ↷v connects the root of gr to the vertex v of g.

For example,

↷ = + .

The implementation of the grafting product that closely resembles the Definition
4.4.5 is presented below.

Implementation 4.4.6. Implementation of the grafting product:

graftGraph

:: ( Eq a2, Graded a2, Graph a2

, RootedGraph a1, Edge a1 ~ Edge a2

)

=> a1 -> a2 -> Vector Integer a2

graftGraph rg1 g2 =
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vectorFromNonDecList $

map ((1 *^) . graftGraphTo rg1 g2) $

toList $

vertices g2

graftGraphTo

:: ( RootedGraph a1

, Graph a2, Edge a1 ~ Edge a2

)

=> a1 -> a2 -> Vertex a2 -> a2

graftGraphTo rg1 g2 v = addGraph rg1 $ addEdge new_edge g2

where

new_edge = edge () (root rg1) v

The map graftGraph requires the left operand to be an instance of the RootedGraph

type class and the right operand to be an instance of the Graph type class with coin-
ciding edges. The function graftGraphTo connects the root of the left operand to a
specified vertex of the right operand.

We use the bilinear function which extends a map from the basis set to the cor-
responding vector space to apply the grafting product to vectors of graphs. The maps
vector, vectorFromList, and vectorFromNonDecList construct vectors and are dis-
cussed in great detail in the manual of the package.

Usage Example 4.4.7. We define g1 to be a graph with vertices {1} and no edges,
g2 to be a graph with vertices {2} and no edges, g3 to be a graph with vertices {3, 4}
and an edge (4, 3), and g4 to be a graph with vertices {5} and an edge (5, 5). We then
compute the product of the vectors g1 + 2 · g2 and 3 · g3 + 4 · g4 using the grafting
product.

>>> rg1 = rooted (integerGraph [1] []) 1

>>> rg2 = rooted (integerGraph [2] []) 2

>>> g1 = integerGraph [3,4] [(4,3)]

>>> g2 = integerGraph [5] [(5,5)]

>>> bilinear graftGraph

(vector $ 1*^rg1 +: 2*^rg2 +: Zero)

(vectorFromList [3*^g1,4*^g2])

(4 *^ IntegerGraph(V=[1,5], E=[(1,5),(5,5)])

+ 8 *^ IntegerGraph(V=[2,5], E=[(2,5),(5,5)]))_2

+ (3 *^ IntegerGraph(V=[1,3,4], E=[(1,3),(4,3)])

+ 3 *^ IntegerGraph(V=[1,3,4], E=[(1,4),(4,3)])

+ 6 *^ IntegerGraph(V=[2,3,4], E=[(2,3),(4,3)])

+ 6 *^ IntegerGraph(V=[2,3,4], E=[(2,4),(4,3)]))_3

We note that rg1 and rg2 are rooted graphs while g1 and g2 are non-rooted. See
the manual of the package for more details on the use of bilinear, vector, and
vectorFromList.
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We recall that the technique presented in this subsection defines a general graph
before imposing the structure necessary to define the grafting product. While this ap-
proach is flexible and can accommodate a wide variety of graphs, it may also introduce
additional complexity and reduce computational efficiency.

4.5 Grafting and substituting of decorated forests

In this section, we take an alternative approach by constructing the graphs we are
interested in from the ground up. This approach allows us to leverage their properties
to implement efficient formulas for operations and ensures that the structure we aim
to preserve is maintained through these operations—a guarantee provided by Haskell’s
strong and flexible type system. However, this approach requires a more detailed
understanding of the graph’s structure compared to the one discussed in Section 4.4.

We will explore the definition and implementation of decorated forests, along with
grafting, Grossman-Larson, and substitution operations. Later, we extend the formal-
ism to include aromatic forests, incorporating grafting and substitution operations as
well.

4.5.1 Decorated forests

Decorated forests are graphs in which every connected component is a decorated tree.
A tree is a connected graph with a unique vertex called the root of the tree and a unique
path from every vertex to the root. A tree τ is decorated if, given a set D, there exists
a map α : V (τ) → D which assigns a possibly non-unique decorator to each vertex of
τ . All trees and forests considered in this section are decorated, so we will often omit
mentioning this for simplicity. Below you can find an equivalent definition of decorated
trees which is more suitable for implementation.

Definition 4.5.1. Given a set of decorations D, a tree decorated by D is a tuple (r, π)
of a root r ∈ D and a collection π of trees decorated by D called children of r.

Let the set of trees be denoted by T . We note that the collections of trees π are
also called forests and their set is denoted by F .

Implementation 4.5.2. The IsDecorated type class is used to define the decora-
tion of the tree, while the IsTree type class is used to define the root, children, and
construction of the tree.

class IsDecorated a where

type Decoration a

class (IsDecorated t) => IsTree t where

root :: t -> Decoration t

children :: t -> [t]

buildTree :: Decoration t -> [t] -> t

The vector space of forests F forms an algebra with concatenation product. For
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example,

1

1 2

· 1

2

3

= 1

1 2

1

2

3

.

An implementation of planar trees is presented in Implementation 4.5.3 with forests
being represented as lists of planar trees.

Implementation 4.5.3. We define the PlanarTree data type which is an instance
of the IsDecorated and IsTree type classes. The PlanarTree data type represents a
tree with a root and a list of children.

data PlanarTree d = PT

{ planarRoot :: d

, planarChildren :: [PlanarTree d]

}

instance IsDecorated (PlanarTree d) where

type Decoration (PlanarTree d) = d

instance IsTree (PlanarTree d) where

root = planarRoot

children = planarChildren

buildTree = PT

An example of the use of planar forests can be found in Usage Example 4.1.1.

4.5.2 Planar and non-planar forests

A forest is planar if the order of its trees and the branches within the trees matters. In
a non-planar forest, the order of the trees and their branches does not matter. Both
classes of forests play important roles, but from an implementation perspective, planar
forests are simpler to handle since they rely on list structures, whereas non-planar
forests rely on multiset structures. Working with lists leads to cleaner code. Moreover,
mathematically, non-planar trees can be viewed as a subspace or a quotient space of
planar trees. To enable seamless transitions between planar and non-planar spaces, the
Planarable type class is implemented.

Implementation 4.5.4. We implement the Planarable type class:

class Planarable t where

type Planar t

planar :: t -> Planar t

nonplanar :: Planar t -> t

For example, we can use the planar map to obtain non-planar forests as is demon-
strated in Usage Example 4.5.5.
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Usage Example 4.5.5. There exist instances of the Planarable type class that have
planar trees and planar forest as values of the Planar type. Therefore, the map
nonplanar is defined on them. We note that t1 and t2 differ in the order of their
children which makes them non-equal. We observe that for the non-planar versions of
these trees, the order of the children does not matter.

>>> t1 = PT 1 [PT 2 [], PT 3 []]

>>> t2 = PT 1 [PT 3 [], PT 2 []]

>>> t1 == t2

False

>>> t1' = nonplanar t1 :: Tree Integer

>>> t2' = nonplanar t2 :: Tree Integer

>>> t1' == t2'

True

The type annotation ::Tree Integer specifies that the resulting trees are of Tree

Integer type. This distinction is necessary because multiple instances of the
Planarable class may share the same Planar type, which is PlanarTree. While the
definition of the Tree d data type is omitted, it is structurally similar to its planar
counterpart, with the key difference being that the list of children is replaced by a
multiset of children.

4.5.3 Grafting

We use Sweedler notation to denote the deshuffle coproduct as ∆(π) =
∑

(π) π
(1)⊗π(2)

and consider the operation of grafting on decorated forests. The forest π1 is grafted
onto the forest π2 by taking the sum over all ways to attach the roots of the forest π1
to the vertices of π2.

Example 4.5.6. Some examples of grafting are:

1 ↷ 2

3 4

= 2

1 3 4

+ 2

3

1

4

+ 2

3 4

1

,

1

2

3 ↷ 4

5 6

= 4

1

2

3 5 6

+ 4

3 5

1

2

6

+ 4

3 5 6

1

2

+ 4

1

2

5

3

6

+ 4

1

2

5 6

3

+ 4

5

1

2

3

6

+ 4

5

1

2

6

3

+ 4

5

3

6

1

2

+ 4

5 6

1

2

3

.

Definition 4.5.7. Grafting of two empty forests gives an empty forest:

1 ↷ 1 := 1,

forest on an empty forest is 0:

π ↷ 1 := 0, for π ̸= 1,
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forest on a tree is defined using Grossman-Larson product:

π ↷ τ := (r, π1 ⋄ π2), for τ = (r, π2) ∈ T,

forest on a non-empty forest is defined using deshuffle coproduct:

π1 ↷ (τ · π2) :=
∑
(π1)

(π
(1)
1 ↷ τ) · (π(2)

1 ↷ π2), for π1, π2 ∈ F.

with (r,−) being linear and ⋄ denoting the Grossman-Larson product defined as

π1 ⋄ π2 :=
∑
(π1)

π
(1)
1 · (π(2)

1 ↷ π2).

We note that Definition 4.5.7 implies 1 ↷ π = π. Implementation 4.5.8 provides
the implementation of the grafting operation for planar forests.

Implementation 4.5.8. To facilitate future extension of the algebra to include aro-
matic forests, we define the Graftable type class for graphs that support grafting
operations:

class (IsVector a) => Graftable a where

graft :: a -> a -> Vector (VectorScalar a) (VectorBasis a)

instance

( IsTree t, IsVector t

-- [...]

)

=> Graftable [t]

where

graft [] [] = vector []

graft _ [] = vector Zero

graft [] f2 = vector f2

graft f [t] =

linear ((: []) . buildTree (root t)) $ gl f $ children t

graft f1 (t : f2) =

linear perCoproductTerm $ deshuffleCoproduct f1

where

perCoproductTerm (f11, f12) = graft f11 [t] * graft f12 f2

gl :: ( IsTree t, IsVector t

-- [...]

)

=> [t] -> [t] -> Vector (VectorScalar t) [t]

gl f1 f2 = linear perCoproductTerm $ deshuffleCoproduct f1

where

perCoproductTerm (f11, f12) = vector f11 * graft f12 f2

We refer to the manual of the Arboretum package for the details related to the imple-
mentation of the vector spaces and the operations on them.
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We demonstrate the use of the graft operation by computing an example found in
Example 4.5.6.

Usage Example 4.5.9. We define the trees 1

2

3 and 4

5 6

and compute their
grafting product.

>>> f1 = [PT 1 [PT 2 []], PT 3 []]

>>> f2 = [PT 4 [PT 5 [], PT 6 []]]

>>> display $ f1 `graft` f2

4

5 6

1

2

3

+ 4

5

1

2

6

3

+ 4

5

3

6

1

2

+ 4

5

1

2

3

6

+ 4

1

2

5 6

3

+ 4

1

2

5

3

6

+ 4

3 5 6

1

2

+ 4

3 5

1

2

6

+ 4

1

2

3 5 6

4.5.4 Substitution

Decorated vertices together with grafting and concatenation generate the whole space
of decorated forests. That is, for all τ ∈ T , we have,

τ = π ↷ r, π = τ1 · · · τn, where τi ∈ T. (4.5.1)

We consider a substitution operation ▷d that substitutes the vertices decorated by
d in (4.5.1) of the right operand by trees of the left operand in all possible ways.

Example 4.5.10. An example of substitution is:

1

2

3 ▷4 4

5 4

= 1

2

3 ▷4 ( 5 4 ↷ 4 )

= 5 1

2

↷ 3 + 5 3 ↷ 1

2

= 3

5 1

2

+ 1

2

5 3

+ 1

5 2

3

+ 1

3 2

5

+ 1

5 3 2

,

in which we substitute the vertices decorated by 4 in 4

5 4

by the trees of 1

2

3 in all
possible ways.

A forest can be represented as a syntactic tree with leaves being vertices and internal
nodes being the operations of grafting or concatenation. Let the set of syntactic trees
be denoted by ST , then, there is a map eval : ST → F which evaluates the syntacitc
tree and syn : F → ST that deconstructs a forest into a syntacitc tree.

Example 4.5.11. Some examples of syntactic trees are:

1

2

= eval
(

↷

2 1 )
, 1

2 3 4

= eval
(

↷

·

2 3 4

1 )
, 1

2

3

4

= eval
(

↷

·

↷

3 2

4

1 )
,
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or, analogously,

syn
(

1

2 )
= ↷

2 1

, syn
(

1

2 3 4 )
= ↷

·

2 3 4

1

, syn
(

1

2

3

4 )
= ↷

·

↷

3 2

4

1

.

By translating the substitution operation to syntactic trees, we can significantly
simplify its implementation. In the case of syntactic trees, the vertices of a forest
π become the leaves of the syntactic tree syn(π), and the substitution ▷d reduces to
simply replacing the leaves decorated by d. A detailed discussion of the syntactic tree
implementation can be found in Section 4.7.

To implement the map syn, we need to define grafting and concatenation operations
as decorations of internal vertices of a syntactic tree. To achieve this, we wrap these
operations in Operation a objects.

Implementation 4.5.12. Wrapping of the grafting and concatenation operations:

graftOp :: (IsVector a, Graftable a) => Operation a

graftOp = Op

-- [...]

$ \ops ->

case ops of

[x, y] -> graft x y

_ -> error "graftOp: arity"

concatOp :: (IsVector a, Monoid a) => Operation a

concatOp = Op

-- [...]

$ vector . mconcat

We use graftOp and concatOp to define the syn function, which is implemented
as part of the HasSyntacticTree type class. We note that the implementation of the
eval function and the HasSyntacticTree type class is discussed in Section 4.7.

Implementation 4.5.13. Implementation of the instance of the HasSyntacticTree

type class for forests:

instance

( IsVector t

, IsTree t

-- [...]

) => HasSyntacticTree [t]

where

syn [t] = case children t of

[] -> Leaf [t]

_ -> Node graftOp

[syn (children t), Leaf [buildTree (root t) []]]

syn ts = Node concatOp $ map (syn . (: [])) ts
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We present several examples of the usage of the map syn as well as substitute in
Usage Example 4.5.14. Implementation of the substitute map is discussed in Section
4.7.

Usage Example 4.5.14. We define the trees 1

2

3 and 4

5 4

and compute their
syntactic trees and substitution product.

>>> f1 = [PT 1 [PT 2 []], PT 3 []]

>>> f2 = [PT 4 [PT 5 [], PT 4 []]]

>>> display $ vector $ syn f1

·

↷

2 1

3

>>> display $ vector $ syn f2

↷

·

5 4

4

>>> display $ substitute [PT 4 []] (map (:[]) f1) f2

3

5 1

2

+ 1

2

5 3

+ 1

5 2

3

+ 1

3 2

5

+ 1

5 3 2

The result agrees with Example 4.5.10.

4.6 Decorated aromatic forests

Decorated aromatic forests arise in the field of geometric numerical integration, partic-
ularly when analyzing the divergence of vector fields represented by decorated rooted
trees. Taking the divergence of such a vector field translates into taking the divergence
of the decorated rooted trees, which involves connecting the root of the tree to each of
its vertices in all possible configurations. For example,

div( 1

2 3

4

) =
1

2 3

4

+
1

3

4

2

+
1

2

3

4

+
1

2

3 4

,

where the cycles are oriented counterclockwise. These cycles are referred to as aromas
and are defined as ordered forests that are invariant under cyclic permutations of their
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trees. This means that the aroma remains unchanged if the last tree in the cycle is
moved to the first position, with all other trees shifting from position i to i + 1. For
example,

1

2

3 4

=
4 1

2

3

, but
1

2

3 4

̸=
1

2

4 3

.

We define A as the vector space spanned by monomials of aromas (also referred to
as multi-aromas), making it a free algebra of aromas. We then define aromatic forests
as the tensor product AF := A ⊗ F . Below, we present the implementation of the
planar version of aromatic forests, building on our discussion in Section 4.5.2. For a
detailed discussion of decorated aromatic forests see Section 3.2.

Implementation 4.6.1. Planar implementation of the aromatic forests:

type PlanarAromatic t =

( [Cycle t]

, [t]

)

where Cycle t is a list of trees [t] invariant under cyclic permutations.

We implement an extended version of divergence, defined over planar aromatic
forests, in which the leftmost root is connected to all vertices in all possible ways.
For example,

div(
1

2

3 4

5

6

7 ) =
1

2

3 4

7

5

6

+
1

2

3 4

5

6

7 +
1

2

3

5

6

4

7

+
1

2

5

6

3 4

7 +
1

5

6

2

3 4

7 +
5

6

1

2

3 4

7

+
5 6 1

2

3 4

7 .

This extension of divergence is studied in detail in [39]. To spare the reader from
unnecessary technical details involved in handling aromas, we omit the implementation
details of the divergence function.

Usage Example 4.6.2. We define the planar aromatic forest
1

2

3 4

5

6

7 and
compute its divergence.

>>> af = (

... [ Cycle [PT 1 [PT 2 []], PT 3 []]

... , Cycle [PT 4 []]



4.6. DECORATED AROMATIC FORESTS 91

... ]

... , [ PT 5 [PT 6 []]

... , PT 7 []

... ]

... )

>>> display $ divergence af

((
1

2

3

·
4

)⊗ 7

5

6

)+((
1

2

3

·
4

5

6

)⊗ 7 )+((
1

2

3

5

6

·
4

)⊗ 7 )+((
1

2

5

6

3

·
4

)⊗

7 )+((
1

5

6

2

3

·
4

)⊗ 7 )+((
5

6

·
1

2

3

·
4

)⊗ 7 )+((
5 6

·
1

2

3

·
4

)⊗ 7 )

4.6.1 Grafting

We refer to [31] for a detailed study of the algebraic structure of the grafting algebra of
aromatic trees. Aromas are obtained as the image of the trace function tr, which takes
a rooted tree with a marked vertex and replaces the marked vertex with a connection
to the root. For example,

tr( 1

2 3

×

) =
1

2

3

,

where × denotes the marked vertex. Following this, we extend the grafting operation
to aromatic forests as defined below.

Definition 4.6.3. The grafting of two aromatic forests (ω1, π1) and (ω2, π2) with
ω1, ω2 ∈ A and π1, π2 ∈ F is defined as follows:

(ω1, π1) ↷ (ω2, π2) :=
∑
(π1)

(ω1 · (π(1)
1 ↷ ω2), π

(2)
1 ↷ π2),

where the grafting of π ∈ F onto a multi-aroma ω ∈ A with ω = ω1 · ω2 is defined as

π ↷ ω =
∑
(π)

(π(1) ↷ ω1) · (π(2) ↷ ω2),

with grafting of π ∈ F onto an aroma ω = tr(η) with η ∈ F defined as

π ↷ tr(η) = tr(π ↷ η).

We implement the grafting operation for aromatic forests in Implementation 4.6.4
by following closely the definition in Definition 4.6.3.

Implementation 4.6.4. Implementation of grafting of aromatic forests:

graftOnMultiAroma

:: ( IsDecorated t, IsTree t, IsVector t
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-- [...]

)

=> [t] -> [Cycle t] -> Vector (VectorScalar t) [Cycle t]

graftOnMultiAroma [] ma = vector (1 *^ ma)

graftOnMultiAroma _ [] = vector Zero

graftOnMultiAroma f [a] =

linear ((1 *^) . (: []) . Cycle) $ (f `graft`) $ unCycle a

graftOnMultiAroma f (a : ma) =

linear perCoproductTerm $ deshuffleCoproduct f

where

perCoproductTerm (x, y) =

(x `graftOnMultiAroma` [a]) * (y `graftOnMultiAroma` ma)

instance

( IsDecorated t, IsTree t, IsVector t

-- [...]

)

=> Graftable (PlanarAromatic t)

where

graft (ma1, f1) (ma2, f2) =

vector (ma1, [])

* linear perCoproductTerm (deshuffleCoproduct f1)

where

perCoproductTerm (x, y) =

linear (,[]) (x `graftOnMultiAroma` ma2)

* linear ([],) (y `graft` f2)

4.6.2 Substitution

The substitution operation on aromatic forests is defined analogously to the substitu-
tion on decorated forests in Section 4.5.4. For example,

1

2

3

· 4 ▷5
5 6

7

5

=
2 3 6 1

7

4

+
2

3

6 1

7

4

+
1

6

2

3

7

4

+
4 6 1

7

2

3

,

where the left operand is a clumped forest as introduced in Section 3.3.1. Following
[31], we note that an aromatic forest can be decomposed into a syntactic tree using
three operations: grafting, concatenation, and trace. Therefore, we implement the
function syn using graftOp and concatOp introduced in Section 4.5.4, along with a
new operation traceOp. We omit the technical details of the implementation of syn
and traceOp for brevity.

Usage Example 4.6.5. We define the list of aromatic trees,
1

2

3

and 4 , as well

as the aromatic forest
5 6

7

5

, and compute the corresponding substitution.
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>>> afs = mark

... [

... ( [ Cycle [ PT 1 [] ] ]

... , [ PT 2 [ PT 3 [] ] ]

... )

... , ( []

... , [ PT 4 []]

... )

... ]

>>> af = mark

... ( [ Cycle [ PT 5 [], PT 6 [] ] ]

... , [ PT 7 [ PT 5 [] ] ]

... )

>>> display $ substitute ([], [PT (Marked 5) []]) afs af

((
2 3 6

·
1

)⊗ m7

m4

)+((
2

3

6

·
1

)⊗ m7

m4

)+(
1

6

2

3

⊗ m7

m4

)+((
4 6

·
1

)⊗ m7

m2

m3

)

The result agrees with the example in Section 4.6.2. To avoid technical details, we omit
the discussion of the mark map and Marked data type.

4.7 Syntactic trees

As mentioned in Section 4.5.4, representing objects as syntactic trees can simplify the
implementation of operations on the objects of interest. In our case, we use syntactic
trees to streamline the implementation of the substitution of (aromatic) forests; how-
ever, this approach can also be applied to implement morphisms of algebras, provided
there is a systematic way to represent the objects of the algebra using a set of products
and generators. In this section, we discuss the implementation of the syntactic tree
data structure, the construction and evaluation of syntactic trees, and the operations
performed on them.

We note that this approach is similar to that of the theory of operads, which uses
trees to represent the composition of operations.

Definition 4.7.1. A syntactic tree is a tree whose leaves are decorated by elements
of a set of generators and whose internal vertices are decorated by operations.

To allow operations to be used as decorations of internal vertices, we define the
Operation a data type, which contains the name of the operation, its TeX represen-
tation, the arity of the operation (the number of arguments it takes), and the function
that evaluates the operation on a list of elements of type a.

Implementation 4.7.2. We define the Operation a and SyntacticTree a data
types:



94 CHAPTER 4. ARBORETUM: SYMBOLIC PACKAGE FOR AUTOMATIC COMPUTATION

data Operation a = Op

{ name :: String

, tex :: String

, arity :: Int

, func :: [a] -> Vector (VectorScalar a) (VectorBasis a)

}

data SyntacticTree a

= Node (Operation a) [SyntacticTree a]

| Leaf a

All objects that can be represented using a syntactic tree must be instances of
the HasSyntacticTree type class, which contains the function syn. The syn function
constructs a syntactic tree from an object, while the eval function evaluates a syntactic
tree to obtain the object it represents. We note that the eval function is already
available and does not need to be defined separately for each algebra.

Implementation 4.7.3. The type class HasSyntacticTree wich contains syn and the
function eval are implemented as follows:

class (IsVector a) => HasSyntacticTree a where

syn :: a -> SyntacticTree a

eval

:: ( IsVector a

-- [...]

)

=> SyntacticTree a -> Vector (VectorScalar a) a

eval (Leaf a) = vector a

eval (Node op as)

= linear (func op) $ product $ map (linear (: []) . eval) as

Let the space of syntactic tree ST be endowed with a composition ◦nd : ST ×ST n →
ST that replaces the i-th leaf decorated by d of the first argument by the i-th syntactic
tree of the second argument. For example,

↷

·

1 7

1

◦21 ↷

4 3

↷

6 5

= ↷

·

↷

4 3

7

↷

6 5

.

We omit the implementation of the compose function for the sake of brevity. Its type
signature is provided below. We note that the implementation is more general than the
original definition. Instead of replacing only the leaves, it can also replace syntactic
subtrees. Additionally, it returns Nothing if the number of subtrees to be replaced
differs from the number of syntactic trees in the second argument.
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Implementation 4.7.4. Type signature of the composition operation:

compose :: SyntacticTree a -> [SyntacticTree a] -> SyntacticTree a

-> Maybe (SyntacticTree a)

where the first argument is the syntactic tree to be replaced, the second argument is
the list of syntactic trees to replace with, and the third argument is the syntactic tree
to replace in.

We go further and define symmetric composition ◦Sn
d : ST × ST n → ST to be the

composition ◦nd which is summed over all permutations of the right operand. That is,

γ ◦Sn
d (γ1 · · · γn) =

∑
σ∈Sn

γ ◦nd (γσ(1) · · · γσ(n)).

For example,

↷

·

1 2

1

◦S2
1 ↷

4 3

↷

6 5

= ↷

·

↷

4 3

2

↷

6 5

+ ↷

·

↷

6 5

2

↷

4 3

.

Implementation 4.7.5. Implementation of the symmetric composition:

symmetricCompose

:: ( IsVector a

-- [...]

)

=> SyntacticTree a -> [SyntacticTree a] -> SyntacticTree a

-> Vector (VectorScalar (SyntacticTree a)) (SyntacticTree a)

symmetricCompose x ops obj =

mconcat

$ map

( \perm_ops -> case compose x perm_ops obj of

Just g -> vector (1 *^ g)

Nothing -> vector Zero

)

$ permutations ops

We note that once we represent the (aromatic) forests from Sections 4.5.4 and 4.6.2
as syntactic trees, the substitution operation corresponds to the symmetric composi-
tion.

Definition 4.7.6. Substitution operation ▷d is the operation on (aromatic) forests
that corresponds to the symmetric composition on syntactic trees, that is,

(τ1 · · · τn) ▷d π2 = eval
(
syn(π2) ◦Sn

d (syn(τ1) · · · syn(τn))
)
,

if π2 has exactly n vertices decorated by d. Otherwise, (τ1 · · · τn) ▷d π2 = 0.
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Example 4.7.7. Let us compute the substitution seen in Example 4.5.10 step by step:

1

2

3 ▷4 4

5 4

= eval
(

↷

·

5 4

4

◦S2
4 ↷

2 1

3

)
= eval

(
↷

·

5 4

4

◦24 ↷

2 1

3 + ↷

·

5 4

4

◦24 3 ↷

2 1 )

= eval
(

↷

·

5 ↷

2 1

3

+ ↷

·

5 3

↷

2 1 )
= 3

5 1

2

+ 1

5 3 2

+ 1

5 2

3

+ 1

3 2

5

+ 1

2

5 3

.

Implementation 4.7.8. Implementation of the substitution operation:

substitute

:: ( HasSyntacticTree a

, IsVector a

-- [...]

)

=> a -> [a] -> a -> Vector (VectorScalar a) a

substitute x gens obj =

linear eval $ symmetricCompose (syn x) (map syn gens) $ syn obj



Chapter 5

Conclusion and ongoing work

In this chapter, we summarize the main contributions of this thesis, give a brief outline
of the ongoing projects, and provide an outlook on future work.

In this thesis, we introduced exotic S-series and used them to derive order conditions
in the weak sense and for invariant measure sampling. Leveraging the framework of
exotic S-series, we proposed a novel generalization of the Leimkuhler-Matthews scheme
to address problems with position-dependent diffusion. We analyzed its stability and
conducted numerical experiments to confirm its order. However, the method has not
yet been applied to a real-world problem that would fully exploit its advantages, which
remains a task for future work.

Additionally, we formulated a formal algorithm for generating order conditions for
invariant measure sampling. By combining the algorithm’s properties with the alge-
braic properties of exotic forests, we demonstrated that order conditions corresponding
to exotic forests are automatically satisfied if the order conditions for trees are met,
significantly reducing the number of conditions that need to be considered. The algo-
rithm is currently defined for Langevin dynamics with additive noise. Extending it to
the case of multiplicative noise remains an open problem for future research.

We also studied decorated aromatic forests, proving that they form both a Grossman-
Larson Hopf algebroid, as defined in [6], and a pre-Hopf algebroid. While we provide
an explicit definition of the left bialgebroid and the antipode, an explicit formulation
of the right bialgebroid, as well as a deeper understanding of its role in numerical
analysis, is still lacking. Another promising direction is to explore the application of
the pre-Hopf algebroid structure in the context of solutions to the Yang-Baxter equa-
tion as well as the description of the Butcher-Connes-Kreimer structure adjoint to the
Grossman-Larson Hopf algebroid and the generalization of the Butcher group.

To extend this framework, we introduced clumped forests, a necessary component in
defining the substitution law, and explored their relationship with aromatic forests. We
proposed the multi-pre-Lie family of insertion algebras, which enabled us to define the
substitution law on clumped forests and extend it to aromatic forests. Furthermore,
we analyzed the impact of moving to the context of exotic aromatic forests, describing
the corresponding composition and substitution laws.

Recognizing the increasing complexity of the forest formalism in the stochastic con-
text and with the inclusion of aromas, we developed a Haskell package to automate
computations involving algebras of graphs. This package was designed with simplicity
and extensibility in mind, accommodating the diverse variations of the forest formal-
ism. As a result, it is applicable across various mathematical fields where algebras

97
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over tree- and forest-like graphs arise. The accompanying manual provides a detailed
overview of the package’s structure and its usage for implementing algebras. Currently,
the package includes an implementation of decorated aromatic forests, along with graft-
ing and insertion operations. However, the implementation of exotic aromatic forests,
as well as composition and substitution laws, remains for future work. To facilitate the
implementation of the substitution law, it is necessary to derive a recursive formula
for its computation. Alternatively, an approach based on dualization could be used
to derive coproducts from products automatically, which would significantly simplify
their implementation, though at the cost of computational efficiency. Other potential
developments include the construction of Butcher tableaus for Runge-Kutta methods
and their analysis, the generation of order conditions for invariant measure sampling
using exotic forests, and the implementation of algebras over planar forests using the
recursive formulas introduced in [59].

Convergence analysis of Spectral Deferred Correction, in preparation [10], in
collaboration with Joscha Fregin, Daniel Ruprecht, and Gilles Vilmart.

The Spectral Deferred Correction (SDC) method [29, 24, 25] is a time-stepping ap-
proach that iteratively improves the accuracy of a numerical solution. This is achieved
through the use of low-order methods, known as preconditioners, which are compu-
tationally inexpensive. These preconditioners approximate the error in the numerical
solution, enabling its correction and progressively enhancing the solution’s accuracy.

The primary goal of this project is to represent SDC methods as Runge-Kutta
methods and leverage Butcher series to analyze their convergence. Using the framework
of rooted trees, we prove that each iteration of the method increases the order of
accuracy by one, regardless of the choice of preconditioners, which do not even need to
be consistent. Furthermore, we investigate the phenomenon of order jumps—where the
order of the integrator increases by more than one in a single iteration—using the rooted
tree framework. Since SDC methods are often employed as computationally efficient
approximations of expensive collocation methods, we analyze these order jumps by
examining the underlying structure and behavior of collocation methods.

Our analysis leads to the introduction of a novel preconditioner. This preconditioner
can be computed in parallel and achieves an order two jump per iteration when the
SDC method approximates a collocation method.

Planar exotic forests and integrators on manifolds, in preparation [8], in col-
laboration with Adrien Busnot Laurent and Baptiste Huguet.

We introduce a general framework for analyzing novel stochastic frozen flow methods
of any order on any manifold in the weak sense, using a new algebraic formalism
analogous to Butcher series. This approach builds on Lie group methods [57, 58] as
well as Crouch-Grossman and commutator-free methods [27, 62] in the deterministic
setting. The proposed methods offer improvements over existing approaches in terms
of accuracy, versatility, and computational efficiency.

The calculation of order conditions is complex and necessitates appropriate algebraic
tools. To address this, we propose a novel extension of exotic series and Lie series,
referred to as exotic Lie series, for the systematic computation of order conditions for
the new frozen flow methods at any order in the weak sense.

We extend the exotic forests formalism by incorporating planarity, introducing pla-
nar exotic forests. While the algebraic formalism serves primarily as a tool to simplify
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calculations in this context, it also establishes strong connections to several active re-
search areas, including numerical methods on manifolds, differential geometry, stochas-
tic processes, post-Lie and Hopf algebras, and rough paths. These connections open
promising avenues for future research.

We explore the algebraic structure of planar exotic forests, focusing on their D-
algebra, Hopf algebra, and post-Hopf algebra structures. Furthermore, we relate these
structures to the composition of numerical methods and the derivation of order condi-
tions in the weak sense.
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List of grafted and exotic trees up to size 3

|τ | (τ, αg) σ(τ, αg) (τ, αe) σ(τ, αe) |τ | (τ, αg) σ(τ, αg) (τ, αe) σ(τ, αe)

0.5 × 1 3 1 1

1 1 1 2 2

1.5

×

1

× ×

2
1 1

2

× 1

×

×

1

1

1

1

2 1 1

× ×

2

1 1

2
× ×

2
1 1

2

× × × ×

24
1 1 2 2

8

1 1 2 2
×

× 1

1

1 1 1 1

2.5

×

1 1 1
×

1

× ×

2

1 1

2

× × ×

6

×

×

1

1

1

1
×

1

× ×

2
1 1

2

×

1

×

× 1

1

1 1
× ×

× 2

×

× 1

1

1 1

× 2

×

× 1

1

1 1

× 1

× × ×

× 6

1 1 2

2 2

Table .0.1: List of grafted and exotic trees up to size |τ | = 3 with their symmetries σ as described in
Section 1.4.



ORDER CONDITIONS FOR THE INVARIANT MEASURE UP TO ORDER 3 103

Order conditions for the invariant measure up to order 3

π ω(π)

order 1
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3
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Table .0.2: List of the order conditions for stochastic Runge-Kutta methods up to order 3 generated
by the Algorithm 1. The rows marked by ∗ correspond to the order conditions which are automatically
satisfied using the Theorem 3.1.8.
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Abstract

We develop the framework of exotic forests to study the algebraic structures under-
lying numerical integrators for sampling the invariant measure of Langevin dynamics.
Leveraging these algebraic structures, we introduce a formal algorithm for generating
order conditions for invariant measure sampling and prove that a large subset of these
conditions is satisfied automatically. Building on these insights, we derive an efficient
second-order integrator for sampling the invariant measure of Langevin dynamics with
position-dependent diffusion.

We then consider a broader set of exotic forests that includes graph structures known
as aromas and stolons, which play a crucial role in geometric numerical integration. We
analyze their associated composition and substitution laws, enabling the study of in-
tegrator composition, post-processing, backward error analysis, and modified equation
techniques within the Butcher series framework. Given the rapidly increasing com-
plexity of the forest structures we consider, we develop a Haskell package to automate
computations involving algebras over forests.

Résumé de la thèse

Nous développons les forêts exotiques d’arbres pour étudier les structures algébriques
associées aux intégrateurs numériques utilisés dans l’échantillonnage de la mesure in-
variante de la dynamique de Langevin. Nous introduisons un algorithme formel, util-
isant ces structures, pour générer les conditions d’ordre de ces intégrateurs numériques
et prouvons qu’un grand sous-ensemble de ces conditions est automatiquement satis-
fait. Inspirés par ces développements, nous construisons un intégrateur d’ordre deux
efficace pour l’échantillonnage de la mesure invariante de la dynamique de Langevin
avec une diffusion dépendante de la position.

Ensuite, nous considérons un ensemble plus général de forêts exotiques qui inclut
d’autres structures de graphes : les arômes et les stolons. Ces derniers jouent un rôle
crucial dans le domaine de l’intégration numérique géométrique. Nous analysons les
lois de composition et de substitution qui leur sont associées. Dans le cadre des séries de
Butcher, ceci nous permet d’étudier la composition d’intégrateurs, le ”post-traitement”,
l’analyse d’erreur rétrograde ainsi que les équations modifiées. Étant donnée la com-
plexité croissante des structures considérées, nous développons un package en Haskell
pour automatiser les calculs sur les algèbres définies sur l’espace des forêts.


