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Identification of malignant cells in
single-cell transcriptomics data
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Massimo Andreatta 1,2,3 , Josep Garnica 1,2,3 & Santiago Javier Carmona1,2,3

Single-cell transcriptomics has significantly advanced our ability to uncover the cellular heterogeneity
of tumors. A key challenge in single-cell transcriptomics is identifying cancer cells and, in particular,
distinguishing them from non-malignant cells of the same cell lineage. Focusing on features that can
be measured by single-cell transcriptomics, this review explores the molecular aberrations of cancer
cells and their observable readouts at the RNA level. Identification of bona fide cancer cells typically
relies on three main features, alone or in combination: i) expression of cell-of-origin marker genes; ii)
inter-patient tumor heterogeneity; iii) inferred copy-number alterations. Depending on the cancer type,
however, alternative or additional features may be necessary for accurate classification, such as
single-nucleotide mutations, gene fusions, increased cell proliferation, and altered activation of
signaling pathways. We summarize computational approaches commonly applied in single-cell
analysis of tumoral samples, as well as less explored features that may aid the identification of
malignant cells.

Solid tumors are complex ecosystems consisting of multiple interacting
populations. Besides malignant cells, a heterogeneous collection of non-
malignant immune and stromal cells populate the tumor microenviron-
ment (TME), and affect the abilityof the tumor to grow, invadeother tissues,
and resist therapies. Both malignant and non-malignant cells in the TME
can take up multiple cellular states, depending on many factors including
tissue location, nutrient availability, cell-cell interactions, and inflammatory
conditions1,2. Single-cell omics technologies, and in particular single-cell
RNA-sequencing (scRNA-seq), have revolutionized our ability to describe
with unprecedented resolution the heterogeneity of cancer cells and of
their TME3.

Cell type annotation is a key step towards understanding the diversity
of scRNA-seq datasets. Cell types can be manually assigned by clustering
and expression of marker genes, or by applying one of many automated
computational tools4. In the context of cancer, a crucial aspect is the iden-
tification of malignant cells from complex single-cell data sets composed of
diverse immune and stromal cell types, as well as non-malignant cells of the
same lineage as the cancer cells (e.g., normal epithelial cells). Distinguishing
malignant cells from their healthy counterparts at the single-cell level is
especially challenging – in particular in primary tumors where both
malignant and normal cells of the same lineage coexist. While tumors are
inherently unique – evenwithin the same cancer type – a limited number of
underlying organizing principles (or “hallmarks”) govern the acquisition of
the traits that lead to malignancy5,6. With a pragmatic focus on measurable
features in scRNA-seq, we will explore the molecular alterations and

idiosyncrasies of cancer cells, along with their observable transcriptional
phenotypes (Fig. 1). In this context, we will review the computational
approaches commonly applied in research practice as well as additional
features that may enhance the identification of malignant cells from single-
cell transcriptomics data.

Expression of cell-of-origin markers
The “cell of origin” (COO) refers to the normal cell type that underwent
malignant transformation and gave rise to the tumor7. For instance,
carcinomas originate from epithelial cells; sarcomas from mesenchymal
cells; lymphomas and leukemias from hematopoietic cells. In the context
of malignant cell identification in scRNA-seq data, one of the most
straightforward approaches to isolate the cell type of interest is the use of
COO markers. By way of example, Puram et al. applied a signature of
epithelial genes to identify malignant cells in head-and-neck squamous
cell carcinoma (HNSCC)8. They found that expression of epithelial genes
successfully partitioned putative cancer cells from immune and stromal
components, and that this classification agreed with orthogonal readouts
such as copy-number alterations. In their meta-analysis across nine
cancer types, Barkley et al. relied on the expression of COO markers
(epithelial markers for carcinomas, stromal markers for gastrointestinal
stromal tumors) as one of the criteria to identify malignant cells9. In
multiple myeloma (MM), a signature of plasma cell markers (MZB1,
JCHAIN, SDC1) was sufficient to isolate malignant MM cells10; the
authors then confirmed that these cells harbored copy-number
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alterations that were not present in naïve andmemory B cell populations,
or in normal plasma cells from a different study.

However, tumors often contain – in addition to cancer cells – normal
cells from the same COO lineage. A recent meta-analysis by Gavish et al.
estimated that two-thirds of scRNA-seq carcinoma samples contained a
variable fraction of non-malignant epithelial cells11. Therefore, expression of
COO markers alone is not sufficient to distinguish malignant cells and
should be complemented by other features (see Table 1). In their analysis of
nasopharyngeal carcinoma, Chen et al. first distinguished cells of epithelial
origin (both malignant and normal) from immune and stromal cells by
expression of epithelial gene sets. Secondly, they subset on the epithelial
compartment andpredicted copy-number alterations to distinguish normal
frommalignant epithelial cells12. Similarly, Kürten et al. identified epithelial
cells in HNSCC by unsupervised clustering and marker-based annotation,
and then separated normal from malignant epithelial cells by their copy-
number profiles13. In infantile fibrosarcoma (a soft-tissue malignancy that
originates from fibroblasts), Li et al. utilized specific markers (MMP9,
COL1A1) to focus on fibroblasts, and subsequently applied InferCNV to
distinguishmalignant fromnon-malignant cells14. A potential complication
with using COOmarkers in several carcinomas is represented by epithelial-
to-mesenchymal transition (EMT), whereby cancer cells lose or down-
regulate expression of epithelial markers such as EPCAM and CDH1 while
gaining mesenchymal markers such as VIM and FN1, giving rise to inter-
mediate differentiation states that may be difficult to detect based only on
markers15,16. On the other hand, expression of EMT markers could poten-
tially be exploited to distinguish malignant from normal epithelial cells (see
the section “Activating invasion” below). In summary, cell-of-origin mar-
kers are generally effective for distinguishing tumor cells from stromal and
immune cells but need to be complemented by other readouts to differ-
entiate malignant from non-malignant cells of the same lineage.

Copy number alterations
A copy-number alteration (CNA) refers to the aberrant duplication or
deletion of genomic DNA segments. Some literature uses CNA inter-
changeably with CNV (copy-number variation), although the latter usually
refers more specifically to the germline variation between individuals in a
population. By amplifying the expression of oncogenes or dampening the
effect of tumor suppressor genes, CNAs have a crucial role in cancer
development17,18. CNAs and aneuploidy – the loss or duplication of entire
chromosomes– are extremely common in tumor formation and progres-
sion: it has been estimated that approximately 90% of solid tumors and 75%
of hematopoietic cancers are aneuploid19,20. Moreover, tumors of similar
origin tend to have similar chromosomal aberrations. For example, squa-
mous cancers tend to lose chromosome arm3p21.Gastrointestinal tumors of
different types (colorectal, non-squamous esophageal, stomach, and pan-
creatic) present frequent co-occurring gains of arms 8q, 13q, and

chromosome 2021. In amultiplemyeloma cohort, 17 of 21 patients harbored
a deletion of chromosome 1322. It should be noted that CNAs and aneu-
ploidy occur at different scales (specific regions versuswhole chromosomes)
and following different mechanisms (local duplication/deletion versus
defective chromosomal segregation). However, from the point of view of
their detection in the transcriptome, both processes are measured as an
increase/decrease of average expression over a chromosomal region, and the
same computationalmethods are commonly applied for their detection. For
the sake of simplicity, here we will refer to both processes as copy-number
alterations.

Several computational methods have been developed for the pre-
diction of CNAs in scRNA-seq data. InferCNV is one of the first and
most widely used CNA prediction methods to date23. Briefly, the algo-
rithm calculates the smoothed expression of genes ordered along their
chromosomal coordinates, and compares this profile to the corre-
sponding expression in a population of diploid “reference” cells (which
may be normal cells of the same lineage, or other “confident normal” cells
such as immune cells, as discussed later in this section). CNA events are
predicted using a hidden Markov model that evaluates the transition to
complete or partial loss/duplication of chromosome regions, with an
optional refinement by a Bayesian mixture model. CopyKAT24 combines
hierarchical clustering with a Gaussian mixture model to identify a
population of “confident normal” cells, which is used to estimate copy
number baseline values for diploid cells. Based on this reference, chro-
mosomal breakpoints are calculated through a statistical framework that
tests for significant mean expression differences between adjacent
genomic windows. Similar to CopyKAT, SCEVAN25 starts by identifying
a small set of confident normal cells and the diploid baseline; it then uses
a joint segmentation algorithm to identify breakpoints and deviations
from the baseline. In addition to the gene expression profile along the
chromosomes, CaSpER26 measures an allelic shift signal to estimate
genome-wide loss-of-heterozygosity events. The measurement of allelic
shift requires calculating single-nucleotide variants (SNVs); therefore,
this method must be run on the sequencing reads (unlike most other
approaches, which can be applied directly on the gene expression
matrix). Numbat27 complements gene expression profiles with haplotype
information and allelic imbalance estimates to support CNA calls. Recent
benchmarks have found that methods that exploit allelic shift signals
(such as Numbat and CaSpER) have superior performance for CNA
identification; when only expression matrices are available, CopyKAT is
the recommended method28,29.

Regardless of the algorithm employed, information in single-cells is
considered to be too noisy for classification. Instead, cells are usually first
clustered based on theCNAglobal patterns, and then all cells in a cluster are
collectively classified as either normal or malignant8,23. Identification of
malignant clusters can be supported by previous knowledge on common

Fig. 1 | Transcriptional aberrations that can be quantified by scRNA-seq, grouped by cancer hallmarks. In bold are indicated the featuresmost frequently used in scRNA-
seq analysis to identify malignant cells. Cell illustration modified from NIAID NIH BIOART (bioart.niaid.nih.gov/bioart/508).
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chromosomal alterations for the cancer type in question. For example, a
study of clear cell renal cell carcinoma (ccRCC) classified as malignant all
scRNA-seq clusters with chromosome 3p loss, a common alteration in
ccRCC30. When available, paired whole-exome sequencing (WES) can also
be useful to support themajor CNAs predicted by scRNA-seq. For instance,
Xing et al. used ploidy alterations derived fromWES to confirm the chro-
mosomal regions most affected by CNAs in multiple lung adenocarcinoma
patients31. Chen et al. corroboratedCNApatterns obtained in scRNA-seqby
matched WES on the same patients12.

To support the identification ofmalignant cells harboringCNAs, it can
be advantageous to have access to bona fide non-cancerous samples as
references for normal ploidy. In a study of nasopharyngeal cancer12, the
authors also collected one sample from normal nasopharyngeal epithelial
tissue. They applied InferCNV to all cells expressing epithelial markers in
both cancer and normal control samples. Cells from tumor samples with
CNA profiles that clustered with the normal sample rather than the tumor
samplewere considered as normal epithelial cells.Maynard et al. performed
scRNA-seq on 45 samples of lung adenocarcinoma, as well as on normal
adjacent tissue.They found that theCNAprofile of a groupof epithelial cells
– classified as non-malignant– clustered with spike-in normal cells from
adjacent tissues, while cells believed to be malignant formed a separate
cluster compared to the spike-in normal cells32. When no normal samples
are available as a reference, immune cells are often used as a baseline for
normal ploidy. For instance, a recent study in Non-Small Cell Lung Cancer
(NSCLC) considered dendritic cells, which were abundant across all
patients, as the confident diploid reference for CNA detection by
CopyKAT33.

Kim et al. proposed a quantitative approach to automatically label cells
as normal ormalignant based onCNAprofiles: first theymeasured the sum
of squared values for the CNA profiles, calculated as altered expression on
moving windows of 100 genes, compared to a normal reference; based on

the top 5% of cells along this axis (assumed to be robustly malignant), they
calculated the correlation of the CNA of each cell with the profile of these
robustlymalignant cells. High-correlating cells, defined by a fixed threshold
across samples, were labeled as malignant34. The predictive value of this
strategy was independently confirmed in ameta-analysis of multiple cancer
types9. In specific cancer types, such as thyroid cancer, pediatric cancers,
sarcomas, and certain hematopoietic cancers, CNAs are more rare, and
other mechanisms such as gene translocation, point mutations and epige-
netic changes drive carcinogenesis35–38. In these cases, identification of
malignant cells in scRNA-seq should rely on additional transcriptional
features.

Inter-patient tumor heterogeneity
Inter-patient tumor heterogeneity refers to transcriptional differences
between cancer cells of different patients. Because of their distinct muta-
tional histories, spatial location and interactions with the environment,
different tumors are in general genotypically and phenotypically unique.
Variability among cancers of the same organ is also at the basis of classifi-
cation of cancers into subtypes, usually characterized by distinct
morphologies, oncogenic drivers and expression of specific markers7.

In exploratory single-cell transcriptomics analysis, inter-patient var-
iation tends to be a dominant factor and often results in patient-specific
cell clusters. Several studies have observed such patient specificity and
leveraged it to distinguish malignant cells from normal cells. For example,
Tirosh et al. showed that malignant cells (as orthogonally defined by ploidy
alterations) from melanoma tumors tended to form individual patient-
specific clusters39. On a large ovarian cancer cohort, Vázquez-Garcia et al.
observed that, whereas stromal and immune cells from different patients
tended to cluster by cell type, the transcriptomes of cancer cellswere patient-
specific40. Bischoff et al. collectedmultiple lung adenocarcinoma samples, as
well as normal lung tissue; upon performing scRNA-seq, cells that formed

Table 1 | Transcriptional features commonly or potentially used to identify malignant cells from scRNA-seq data

Commonly used features

Feature/aberration Readout Comments

Expression of cell-of-origin-marker genes Gene signature score Not sufficient to distinguish between normal and malignant cells of the same
type; usually combined with other features

Inter-patient tumor heterogeneity Index of cluster mixing (e.g. LISI score,
entropy)

Requires multiple samples; may be confounded by batch effects

Copy-number alterations Copy-number profile/aneuploidy score Requires a reference of “normal” ploidy; will not detectmalignant cells without
chromosomal alterations

Supporting features

Feature/aberration Readout Comments

Single-nucleotide alterations and
mutational burden

Mutations in known sites/total number
of mutations

Works best when combined with WES of matched samples; limited by low-
coverage of scRNA-seq technologies

Formation of fusion transcripts Expression of fused genes Specific to individual cancer types; limited by low-coverage of scRNA-seq
technologies

Sustained proliferation Signature score for cycling gene sets Commonly measured as cycling enrichment by cluster

Pathway dysregulation Signature score for altered pathway Specific to individual cancer types

Potentially discriminating features

Feature/aberration Readout Comments

MHC downregulation Signature score for antigen-presenting
machinery

Specific to individual cancer types, TMEs, or individual cancer sub-clones

Overexpression of checkpoint molecules Checkpoint ligand expression Limited evidence in scRNA-seq

Expression of telomerase subunits Gene or signature score Limited evidence in scRNA-seq

Metabolic signatures Signature score Adjacent normal cells may exhibit similar alterations

Pro-angiogenic signaling Gene or signature score Limited evidence in scRNA-seq

Drivers of invasion (EMT) Signature score Intermediate EMT states may be difficult to capture

Oncofetal reprogramming Gene or signature score Specific to individual cancer types

Number of unique expressed genes Gene count Can be confounded by heterogeneous sequencing depth
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patient-specific clusters were labeled as malignant, whereas cells that clus-
tered together with the normal lung tissue were labeled as normal epithelial
cells41. Inter-patient heterogeneity has also been observed in non-small-cell
lung cancer42, HNSCC8, as well as in hematopoietic cancers. For instance, a
study of childhood leukemia found that malignant cells formed patient-
specific clusters,whereasnormal bone-marrowmononuclear (BMMC)cells
from leukemia samples clustered with BMMCs from healthy donors43.

Aiming at quantifying inter-patient heterogeneity in basal cell carci-
noma (BCC), Yerly et al.44 measured cluster mixing by a per-cell-type Local
Inverse Simpson’s Index (LISI) score45. For a given cell type, this metric
quantifies the number of patients having cells in any given neighborhood of
cells, effectivelymeasuring patientmixing for each cell type (see resources in
Table 2). Across a cohort of BCC patients, cancer cells had consistently
lower LISI scores compared to normal epithelial cells, stromal cells, and all
immune cell types44. Similarly, Chan et al. observed thatmalignant cells had
lowermixing (measured in terms of Shannon entropy) compared to normal
epithelial cells as well as to non-epithelial cells46. Batch effects – technical
variations introduced during sample collection and processing, library
preparation and sequencing – can be a potential confounding factor when
assessing inter-patient heterogeneity. Therefore, the evaluation of inter-
patient tumor heterogeneity and its associated metrics depend on the
availability of multiple samples from different individuals sequenced in a
consistent way (i.e. same technology and protocol). Considering the scale
and experimental design of modern scRNA-seq experiments, this should
not be a frequent limitation.

Single-nucleotide alterations and mutational burden
While normal tissues tend to accumulate somatic mutations over time,
cancer cells typically harbor a higher number of mutations compared to
their normal counterparts47. Therefore, single-nucleotide alterations (SNAs)
in specific driver genes, as well as the total number of mutations accumu-
lated by a given cell (the “mutational burden”), have the potential to

discriminate normal frommalignant cells. However, SNAs are challenging
to measure from scRNA-seq data. Most scRNA-seq technologies produce
relatively short reads, which are usually enriched at 3’ ends; sequencing
coverage is often low and uneven along the genome; and RNA profiles can
be affected by allelic imbalance48.Abenchmarkof SNAdetection algorithms
showed that most traditional tools for bulk analysis detected a very low
fraction of variants in scRNA-seq data49. More recent tools specifically
developed for single-cell omics data, such as scAllele, Monopogen, and
SComatic, perform better50–52, but their application remains mostly limited
to high-coverage single-cell sequencing technologies48.

Gasper et al. demonstrated that variant calling by SnpEff 53 allowed the
identification of cancer cells on several Smart-seq2 datasets that had
otherwise limited or no copy-number variations54. However, they also
remarked that their approach was likely to fail on 10X Genomics datasets,
due to the reads covering only a short region of the 3’ end of each transcript.
In a small cell lung cancer (SCLC) study, Chen et al. predicted SNAs on
scRNA-seq data, and then classified cell clusters to bemalignant if theywere
enriched in reads calling SNAs compared to immune and mesenchymal
cells46. Ianevski et al. implemented a single-cell SNA calling module based
on transcriptomicsdata in their scType tool, and showed that the number of
SNAwithin a cell type was predictive ofmalignant vs. normal cells for acute
myeloid leukemia (AML)55.

Thepotential of SNAdetection fromscRNA-seqwill likely beunlocked
by technological advances in sequencingmethods. Aiming at extending the
rangeof detectablemutations, vanGalen et al. combinedwell-based scRNA-
seq with targeted DNA sequencing on a panel of common mutations in
AML, a cancer type that frequently lacks CNAs38. They also incorporated
long-read nanopore sequencing in their pipeline, allowing improved
detection of mutations far from 3’ gene ends. Single-cell mutation calls and
transcriptomes were used to train a machine learning classifier with the
ability to distinguish normal from malignant bone marrow cells. By com-
bining full-length transcriptome coverage with a 5’ unique molecular

Table 2 | Selected tools and resources for the identification of malignant cells in scRNA-seq data

Resource Type/readout Comments Availability and references

InferCNV Copy number alterations Arguably the most widely used method for CNA detection in
scRNA-seq

https://github.com/broadinstitute/infercnv23

CopyKAT Among top performers in recent benchmarks, especially when
using only gene expression matrix

https://github.com/navinlabcode/copykat24

Numbat Exploits allelic imbalance to improve CNA prediction; requires
sequencing reads

https://github.com/kharchenkolab/numbat27

LISI Inter-patient heterogeneity A simple metric of patient mixing https://github.com/immunogenomics/LISI45

scIntegrationMetrics Implements per-cell-type LISI and additional metrics https://github.com/carmonalab/
scIntegrationMetrics129

scAllele Single nucleotide
alterations

SNA detection tailored for scRNA-seq https://github.com/gxiaolab/scAllele50

Monopogen SNA calling (germline + somatic) leveraging linkage
disequilibrium from reference panels

https://github.com/KChen-lab/Monopogen51

STAR-fusion Fusion transcripts Primarily designed for bulk RNA-seq, but can be adapted for
single-cell data

https://github.com/STAR-Fusion/STAR-
Fusion62

scFusion Specific for gene fusion detection at single-cell resolution https://github.com/XiDsLab/scFusion65

UCell Gene signature scoring Simple and robust rank-based gene set scoring https://github.com/carmonalab/UCell130

GSVA Implements methods for gene set enrichment analysis https://github.com/rcastelo/GSVA131

scATOMIC Automated classifier Integrated pipeline for cell type classification, including
malignant vs. normal cells

https://github.com/copykat-lab/scATOMIC82

Ikarus Relies on DEG signatures between normal and malignant cells https://github.com/BIMSBbioinfo/ikarus122

scMalignantFinder Uses logistic regression trained on curated pan‑cancer gene
signatures and DEGs

https://github.com/Jonyyqn/
scMalignantFinder123

OncoDB Database Collates expression profiles for cancer vs. normal tissues https://oncodb.org/81

3CA Provides robust transcriptional meta-programs for several
cancer types

https://www.weizmann.ac.il/sites/3CA/114

HPA Includes scRNA-seq expression profiles for many tissues and
cell types

https://www.proteinatlas.org/132
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identifier (UMI)RNAcounting strategy, the Smart-seq3 technology enables
the identification of SNAs at allele and isoform resolution, making Smart-
seq3 particularly suitable for distinguishing malignant cells from normal
cells in heterogeneous tumor samples56. While specific studies employing
Smart-seq3 for SNA detection in cancer are yet to be published, this tech-
nology inherently supports such applications.

Formation of fusion transcripts
Gene fusions resulting from chromosomal rearrangements have been
observed at high frequencies in specific cancer types, including sarcomas,
leukemias, and prostate cancer57–59. Fusion transcripts can generate onco-
proteins, as in the case of the TMPRSS2–ERG fusion after chromosome 21
rearrangement in prostate cancer60, the EWSR1–FLI1 chimeric oncogene
observed in 85% of Ewing sarcomas37, or the long-recognized BCR-ABL1
fusion observed in the “Philadelphia chromosome” of chronic myeloid
leukemia patients61.

Multiple computational tools have been developed for the detection of
fusion transcripts in bulk RNA-seq data, such as STAR-fusion62 and
Arriba63. When aligning RNA-seq reads to a reference genome, these
methods focus on the detection of chimeric (fusion) transcripts, where a
single read maps to two distinct gene loci. Several parameters – such as the
number of supporting reads, breakpoint consistency, intergenic distance,
and presence in databases of known fusions – are often applied to prioritize
and filter candidate fusion events.While developed for bulk transcriptomes,
these methods have also been adapted to high-coverage scRNA-seq data.
For example, Jerby-Arnon et al. applied STAR-fusion to predict SS18–SSX
fusion transcripts from a Smart-Seq2 dataset of synovial sarcoma, and
observed that a large fraction of cancer cells harbored this aberration64.
Computational tools specifically developed for scRNA-seq such as scFusion
are emerging65, but their usefulness remains to be benchmarked in low-
coverage single-cell datasets.

Sustained proliferation
The ability to sustain chronic proliferation is one of the fundamental
hallmarks of cancer5. While in normal cells growth and cell cycling
signals are tightly regulated, ensuring homeostatic cell numbers and
tissue architecture, cancer cells acquire the ability to grow and multiply
uncontrollably. In single-cell data, meta-analyses have revealed that cell
cycling is one of the most conserved transcriptional programs in
cancer cells11,66. However, because scRNA-seq captures a static snapshot,
only a fraction of cells will be actively progressing through the cell cycle
(outside of G0) at any given time. In a fast-proliferating cancer such as
HNSCC, Puram et al. observed that between 14% to 40% of malignant
cells were cycling, depending on the individual tumor8. A melanoma
study found high variability in the proliferation status of tumors, with
13.5% of cells cycling on average across individuals39. In other kinds of
tumors, such as low-grade glioma, proliferating cells are considerably less
frequent67.

While only a fraction of cancer cells are expected to be cycling in
scRNA-seq datasets, the rate of proliferating cells within a cell cluster can
be useful to distinguish malignant cells from normal cells. In a study of
pancreatic adenocarcinoma, Lin et al. evaluated signatures of cell cycling
phases and found that clusters of cancer cells were more proliferative
than normal epithelial cells or fibroblasts68. A study of human and mouse
cancers defined cancer cells (among epithelial cells) as patient-specific
clusters with an enrichment ofMki67 expression42. In cervical squamous
cell carcinoma (CSCC), expression of cell cycling genes was significantly
increased compared to epithelial cells from the normal cervix69. While
cell proliferation is quantified primarily in terms of gene-set scoring for
cell cycling phases, machine-learning methods trained specifically for the
task of cell cycle-phase prediction have also been proposed (reviewed in
ref. 70). Machine-learning methods have the ability to learn complex,
multivariate relationships between genes and may provide more robust
cell cycle-phase predictions. Because snapshot scRNA-seq data can
capture the proliferation rate only within a group of cells and not for

single cells, it is mainly used as a confirmatory readout rather than a
criterion for malignant cell classification.

Dysregulation of signaling pathways
Cancer exploits existing signaling pathways to grow, evade immune
detection, and survive in ahostile environment. Criticalmolecular pathways
frequently altered in cancer include the PI3K/AKT/mTOR pathway, the
RTK/RAS pathway, and the TP53 pathway (see e.g. refs. 71,72). Other
alterations are more specific to individual cancer types. For example, dys-
regulation of the androgen receptor pathway plays a crucial role in the
development andprogression of cancers of the prostate, themost androgen-
responsive tissue73.Mutations in components of the hedgehog pathway lead
to hyperactivation of HH signaling in basal cell carcinoma and
medulloblastoma74.

These aberrant pathways are reflected in altered transcriptomes, with
specific genes that can be used as biomarkers for a given cancer type. Byway
of example, HE4 (coded by WFDC2) has been consistently observed as
overexpressed in ovarian carcinomas75; TM4SF1 and LAMC2 are over-
expressed in pancreatic ductal adenocarcinoma76,77; other gastrointestinal
cancers frequently harbor activating mutations and overexpression of KIT
and PDGFRA78. Elevated expression of the MYC oncogene has been
reported in up to 70% of cancers79. Zhang et al. calculated a “malignant
score” for single cells in gastric adenocarcinoma based on a signature of
differentially expressed genes betweenmatched tumour and normal TCGA
samples (including CLDN4, CLDN7, TFF3, and REG4); they then used this
score to distinguish malignant from normal epithelial cells80. The OncoDB
database collects molecular signatures of differentially expressed genes
between cancer cells and normal cells, derived frombulk transcriptomes for
multiple cancer types81. scATOMIC, a method for pan-cancer cell type
classification, leverages OncoDB signatures to distinguish malignant from
normal cells based on signature scoring and hierarchical clustering82.

In a study of basal cell carcinoma (BCC), Yerly et al. took advantage of
the aberrant expression of several genes involved in the HH pathway
(including PTCH1, HHIP, GLI1, and GLI2) to identify malignant cells in
scRNA-seq data44. By constructing a signature from this gene set, they
observed a higher signature score in cancer cells compared to normal ker-
atinocytes (the cell of origin for this cancer type). The signature-based
classification was largely in agreement with orthogonal criteria for malig-
nant cell identification, namely inter-patient tumor heterogeneity andCNA
patterns44. The authors were also able to confirm the predictive power of
such a signature to isolate malignant cells in an independent, previously
published BCC cohort83.

Upon performing scRNA-seq in a pancreatic cancer cohort, Peng et al.
observed two distinct groups of ductal cells; they inferred that one group
represented malignant ductal cells based on both altered CNA profiles and
upregulation of several programs such as cell adhesion, response to stress,
and cell proliferation84. To distinguish malignant from non-malignant B
cells, Roider et al. exploited the fact thatmalignantB-cell populations tend to
express only one type of immunoglobulin light chain (either a kappa or
lambda light chain)85. By calculating the expression ratio of the constant part
of the kappa and lambda chains (defined as IGKC / (IGKC+ IGCL2)), the
authors were able to classify B-cell clusters either as healthy (approximately
0.5 ratio) or malignant (ratio skewed towards 0 or 1).

In summary, many cancer types co-opt developmental plasticity to
increase their proliferation, invasiveness, and therapy resistance. However,
different cancer types disrupt distinctmolecular pathways depending on the
tissue of origin and common genetic alterations. For this reason, the use-
fulness of gene signatures associated with such dysregulated pathways for
the identification of cancer cells is in most cases cancer-type specific.

Additional transcriptional features
Defective MHC presentation. Tumor cells can evade CD8 T cell
immune detection by developing deficiencies in the MHC class I antigen
presentation pathway. Multiple mechanisms can be used by cancer cells
to reduce antigen presentation on their surface, including genetic and
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epigenetic changes, as well as antigen depletion86. Genetic changes can
affect the core components of the MHC complex (the variant HLA-A/B/
C chains and the invariant B2M chain), as well as other components of
the antigen-presentation machinery87,88. Non-genetic mechanisms for
MHC-I downregulation include epigenetic, transcriptional and post-
transcriptional silencing, as well as modulation of MHC-I expression by
disruptions in interferon pathways88. In practice, all of these mechanisms
can result in lower expression of the antigen presentation machinery,
B2M and genes in the MHC locus. While down-regulated expression of
B2M and MHC-I molecules has been reported in cancer cells in bulk
RNA-seq studies89, transcriptional aberrations in MHC presentation
components have not been systematically investigated in scRNA-seq
data. This is a largely unexplored and potentially useful readout to dis-
tinguish malignant from normal cells from scRNA-seq data.

Overexpression of checkpoint molecules. T cell receptors (TCR)
expressed on the surface of T cells can recognize mutated or overexpressed
self-antigens displayed by MHC molecules. However, multiple co-
stimulatory and co-inhibitory receptors (known as immune checkpoints)
modulate the TCR signaling pathway triggered in T cells, ultimately shaping
the expansion, differentiation, and phenotype of tumor-reacting T cells90.
These rheostatic mechanisms allow the detection of aberrant cells while
maintaining self-tolerance and limiting healthy tissue damage. Cancer cells
are known to exploit immune checkpoints to escape immune-mediated
destruction91. The PD-1/PD-L1 pathway is arguably the most well-studied
immune checkpoint in human cancers and has been the target of multiple
immune checkpoint blockade therapeutic avenues. Binding of PD-L1 on the
surface of cancer cells with PD-1 expressed on tumor-infiltrating T cells
modulates the TCR pathway and leads to inhibition of T cell activity. Indeed,
high PD-L1 expression is often observed on cancer cells and is generally
associated with poor prognosis92 – though it may prove beneficial in the
context of anti-PD1 therapy93. The immune checkpoint molecule TIM-3,
expressed in activated T cells, interacts with multiple ligands, such as Gal-9,
CEACAM1, PtdSer, and HMGB191. Gal-3 (encoded by LGALS3) is
expressed in a variety of cancer cells, and it can interact with the immune
checkpoint molecule LAG-3 to inhibit cytotoxic activity in CD8+ T
lymphocytes94. Yakubovich et al. showed that expression of LGALS3 (as well
as LGALS3BP) correlated with epithelial-to-mesenchymal transition in
ovarian cancer and is associated with worse prognosis95. Another LAG-3
functional ligand, FGL1, was shown to be highly expressed in a variety of
cancers, such as melanoma, lung cancer, and colorectal cancer96. Thus,
expression of co-inhibitor receptors is a promising criterion for cancer cell
detection. Systematic evaluations on the detectable expression of these
molecules by cancer cells in scRNA-seq data are still lacking.

Expression of telomerase subunits. Active telomerase is essential for
cancer cells to maintain telomere length and enable replicative immor-
tality.While telomerase can be occasionally active in normal cells and has
been correlated with cell proliferation97, upregulation of telomerase is a
common mechanism of cancer and has been detected in most cancer
types98. In particular, the transcription of telomerase reverse transcriptase
(TERT), the catalytic subunit of the telomerase enzymatic complex, is
tightly regulated in normal cells but is disrupted by multiple possible
mechanisms in cancer cells99. Noureen et al. noted that the enzymatic
activity of telomerase correlates only partially with the expression of
TERT; instead, they suggested a 13-gene signature as a robust tool to infer
telomerase activity across multiple cancer types100.

Metabolic reprogramming. Cancer cellsmust adapt theirmetabolism to
sustain their rapid growth and meet increasing energy demands. A well-
known metabolic shift is the Warburg effect, where cancer cells pre-
ferentially utilize glycolysis for energy production instead of oxidative
phosphorylation101. Beyond increased glycolysis, cancer cells tend to
preferentially utilize specific amino acids as a major source of energy,
especially glutamine, and reprogram their lipid metabolism102,103.

Metabolic reprogramming can be quantified in terms of gene-set activity
and pathway enrichment, or by using more complex constraint-based or
kinetic modeling for the reconstruction of metabolic fluxes (reviewed in
ref. 104). Regardless of the algorithm employed, differences in metabolic
activity may be exploited to distinguish normal from malignant cells in
scRNA-seq. For example, a study of lung cancer distinguished lung
cancer cells from normal epithelial cells by CNA patterns and used these
subsets to derive signatures of differentially expressedmetabolic genes. In
particular, they found that lipid metabolism was broadly dysregulated in
lung cancer cells compared to normal epithelial cells105. A survey of the
metabolic alterations in melanoma and HNSCC from scRNA-seq data
found that the activities of glycolysis and oxidative phosphorylation
correlated with hypoxia at the single-cell level, and that in general
metabolic pathways in malignant cells were more active and plastic than
those in non-malignant cells106. A recent study showed that, in multiple
cancer types,malignant cells expressed a higher fraction ofmitochondrial
RNA compared to healthy cells, independently of technical artifact
related to cell dissociation107. It remains unclear whether normal cells
from the same origin, especially when they experience the same micro-
environment as the cancer cells, would also adapt their metabolism in
similar ways.

Pro-angiogenic signaling. Tumor vascularization is essential to provide
nutrients and oxygen to cancer cells, as well as for disposing of metabolic
waste. During cancer progression, pro-angiogenic signaling is activated
to ensure access to the blood circulation system and allow tumor
growth108. In particular, the VEGF signaling pathway has been shown to
promote vascularization across many cancer types, and the VEGF-A
gene is produced in large quantities by cancer cells109. Upregulation of
fibroblast growth factors (FGF) by cancer cells has also been shown to
promote angiogenesis and tumor growth110. In single-cell data, several
studies have shown that VEGF is highly expressed by at least a subset of
cancer cells111,112. However, to the best of our knowledge no studies have
directly compared pro-angiogenic pathway activities in normal versus
cancer cells from the same tissue at single cell level.

Drivers of invasion. Cancer invasion refers to the ability of tumor cells to
break through their local tissue boundaries, penetrate the surrounding
extracellular matrix, and invade nearby tissues. Epithelial-to-
mesenchymal transition (EMT) is a fundamental process by which
cancer cells lose their adhesion and polarity, adopting mesenchymal
traits that increase their migratory and invasive capacities. These mor-
phological and functional changes are accompanied by the expression of
transcriptional programs characterized by gradual loss of epithelial
markers (e.g. EPCAM and CDH1) while gaining mesenchymal char-
acteristics (e.g.VIM and FN1)113. Largemeta-analyses of scRNA-seq have
identified recurrent EMT programs across multiple cancer types, pro-
viding signatures that could aid the identification of malignant cells11,114.
While EMT can be a useful feature to distinguishmalignant from normal
cells, it has limitations: EMT is a continuous, dynamic and reversible
process, which gives rise to partial and intermediate states that affect only
a fraction of cancer cells in a tumor.

Oncofetal reprogramming. Re-expression of fetal-like cell states allows
cancer cells to mimic characteristics of embryonic or fetal development,
adopting gene expression patterns and behaviors typical of early devel-
opmental stages. By reactivating developmental signaling pathways and
cellular states that are dormant or inactive in normal adult tissues,
oncofetal reprogramming promotes tumor development and invasion,
phenotypic plasticity and evasion of immune recognition115. Abnormal
expression of fetal antigens in tumors has been reported in several cancer
types and has been used as a clinical biomarker. For example, re-
expression of the oncofetal proteins SALL4 and AFP is often observed in
hepatocellular carcinoma116,117. High expression of IGF2BP family pro-
teins has been reported across cancers of multiple tissues, including
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colon, liver, kidney, pancreas, and female reproductive organs118. Other
common genes with oncofetal properties include CEA, CA125, LIN28B,
H19 and FOXM1115. Using scRNA-seq data, a recent study of cervical
cancer found that oncofetal protein SALL4 was significantly upregulated
in cancerous cells compared to normal epithelial cells119. Because of their
specific expression in malignant cells, oncofetal signatures can be
potentially useful to identify cancer cells in single-cell data.

Number of expressed genes. A study of NSCLC reported that cancer
cells expressed a significantly higher number of unique genes compared
to normal epithelial cells, and that this observation could not simply be
explained by sequencing depth32. This observation agrees with the census
by Zhang et al., which found a large increase in the number of unique
genes in cancer, especially for lowly-expressed genes120. There are several
possible reasons for this effect: aberrant epigenetic regulation may acti-
vate otherwise silent genes or pseudo-genes; hyperactivation of signaling
pathways such as PI3K/AKT/mTORorRTK/RASmay lead to expression
of genes that would otherwise be unutilized by normal cells; increased
intra-tumor heterogeneity compared to normal tissue may expand the
spectrum of transcribed genes at any given time. In general, while normal
cells operate under strict regulatory mechanisms to maintain tissue-
specific functions and conserve energy, cancer cells are free to simulta-
neously utilize a larger fraction of the genome. The cost of an expanded
transcriptome is potentially higher immunogenicity, as it can give rise to
additional proteins recognizable by the immune system.

Machine learning approaches
As more single-cell omics datasets become available, constructing
machine learning approaches for the identification of malignant cells
becomes increasingly feasible. One of the first machine-learning
approaches was proposed by van Galen et al. to distinguish malignant
and normal cells in AML. The authors started from confident normal
bone marrow cells and tumor cells of different cancer subtypes with
detected mutations to train a random forest classifier. They then applied
the classifier to predict whether the left-out cells without detected
mutations in the transcripts were normal or malignant38. This approach
allowed the authors to obviate the limited sensitivity of SNA calling on
scRNA-seq data and complement the classification by random forest
predictions based on single-cell gene expression.

scATOMIC is a machine-learning algorithm for pan-cancer classifi-
cation of cell types in scRNA-seq which also includes a module for dis-
criminating normal frommalignant cells82. Themethod is trained on single-
cell data from 19 common cancer types and is structured in a cellular
hierarchy, where related cell types are placed under the same parent nodes.
Cells of a query dataset are classified according to transcriptional similarity
to the training set, traversing the hierarchy down to the most fine-grained
cell type supported by a minimum confidence score. The predictions
include a provisional “cancer cell” class for several cancer types. To distin-
guish bona fide cancer cells from normal cells of origin, scATOMIC applies
a post-classification method based on cancer-signature scoring. Briefly,
putative cancer cells are scored against a database of differentially expressed
genes between cancer cells of multiple types and matched normal tissues
from OncoDB81. Based on the gene set scores, cells are grouped by hier-
archical clustering and heuristics are applied to decide which clusters
represent malignant or normal cells. A recent study suggested combining
the output of scATOMICwith CNAdetection using SCEVAN and showed
that the consensus of the two approaches yielded superior performance121.

Ikarus is a machine learning pipeline based on logistic regression and
network propagation, aimed at distinguishing malignant cells from normal
cells at the single-cell level122. The method relies on deriving robust tumor
and normal gene signatures as the consensus of differentially expressed
genes between normal and malignant cells across multiple datasets. The
tumor and normal gene set scores are then used to train a logistic regression
classifier, which can be applied to new query data by label propagation
through a cell-cell graph. The authors provide a tumor gene signature based

on several cancer types, which can be customized by users if the tool is to be
used on an unrepresented cancer type. A similar approach was used in a
recent publication by Yu et al., who derived differentially expressed genes
(DEGs) between malignant and normal epithelial cells for four carcinoma
types. The union of the DEGs from multiple datasets was then used to
construct a logistic regression classifier, called scMalignantFinder123. In their
own benchmark, the algorithm outperformed competing methods, in
particular copy-number-based classification of malignant cells.

In principle, machine learning methods could be agnostic to the
molecular mechanisms driving the differences between normal and
malignant cells and be entirely data-driven. Approaches based on deep
neural networks are being proposed for the specific task of cancer cell
identification124–126 and are expected to become increasingly prevalent as
large scRNA-seq datasets become available. Nevertheless, generating
accurate machine learning methods heavily depends on well-annotated
training data, for which an understanding of fundamental principles of
malignancy remains essential.

Conclusions
Several transcriptional features have been exploited in research to identify
malignant cells from scRNA-seq datasets (summarized in Table 1). Most
studies have mainly relied on three features, alone or in combination: i)
expression of cell-of-origin marker genes (e.g., epithelial markers for car-
cinomas); ii) inter-patient heterogeneity, as measured by patient-specific
clustering of cancer cells; and iii) detection of copy-number alterations.
Depending on the cancer type, however, these three features may not be
sufficient to confidently and specifically distinguish malignant cells from
normal cells. For cancers with no or infrequent CNAs, for example,
detection of single-nucleotide variants may be necessary to capture more
subtle differences between normal and malignant cells. Other cancer types
may rely on specific chromosomal aberrations such as gene fusions; in this
case, specialized tools and pipelines may need to be applied. In cancers that
are characterized by specific pathway alterations, gene markers and multi-
gene signatures can guide the identification of malignant cells. Enrichment
in proliferating cells may also be a useful feature to support classification.
Finally, several well-established cancer cell aberrations, including immune
evasion mechanisms such as MHC downregulation and PD-L1 over-
expression, amongothers, are potentially detectable in single-cell omics data
and could complement the identification of malignant cells. In practical
terms, we note that most of these features can be measured by differential
activation of specific genes or gene signatures.

Tumors are not only heterogeneous across subjects (inter-patient), but
they also present internal variability within the same tumor. Recent meta-
analyses have identified a relatively small number of recurrent gene meta-
programs that explain themajority of variabilitywithin tumors acrossmany
cancer types11,114. Such intra-tumor heterogeneity is a consequence of clonal
structures within the tumor, as well as the spatial distribution of cancer cells
and their interactions with the TME. Intra-tumor heterogeneity can be a
complicating factor in the identification of malignant cells, since specific
criteria discussed heremay only apply to a subset of the cells within a tumor.
For example, only a fractionof cellsmay activate particular pathways such as
proliferation at a given time; specific subclones of a tumor may harbor
different copy-number variations; and a subset of cancer cellsmay shed cell-
of-origin markers through lineage plasticity programs such as epithelial-to-
mesenchymal transition127. It can be argued that such “division of labor” by
tumor subpopulations provides an evolutionary advantage for cancers to
survive treatment regimens and recur months or years after tumor
regression128. In abroad sense, normal epithelial cellsmayalsobe considered
as a special sub-clone of a tumor: the sub-clone without copy-number
alterations, displaying similar transcriptomics activity across multiple sub-
jects. Approaches for malignant cell identification that aim to be compre-
hensive will benefit from combining multiple classification criteria in order
to cover all the “flavors” of cancer cells within heterogeneous tumors.
However, plug-and-play pipelines that integrate multiple features for the
identification of malignant cells are currently lacking.
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The collective experience of ten years of single-cell analysis indicates
that transcriptional processes are often better represented by clusters of cells
rather than individual cells. On one hand, this is a consequence of the
limited sensitivity of scRNA-seq, with missing detection of transcripts in a
significant fraction of cells (a.k.a. dropout). This can partly explain the
success of CNAs for cancer cell identification: rather than using expression
of individual genes or mutations, CNAs measure the altered expression of
multiple adjacent genes along a chromosome, thereby reducing sparsity128.
On the other hand, the defining hallmarks of cancer could be thought of as
properties of groups of cells, rather than of individual cells.Within a tumor,
not all cells present the features of malignancy; and conversely, individual
cells often display mutations and other abnormalities without being
necessarily malignant. It is perhaps for these reasons – both technical and
biological – that computational tools seem to have converged to confront
malignant cell identification as a problem of clusters of cells, rather than of
individual cells.

Machine learning methods that explicitly or implicitly rely on all these
transcriptional alterations are increasingly becoming available (Table 2).
Provided enough well-annotated data, automated methods have the
potential to accurately discriminate normal frommalignant transcriptomes
through the combination of multiple features. Nevertheless, it is possible
that RNA readouts may not always be sufficient to accurately classify
malignant cells. Integration of scRNA-seq with other modalities, such as
chromatin accessibility or protein abundance and spatial localization, may
be beneficial to augment the transcriptome with epigenetic and post-
translational mechanisms of malignancy.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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