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ORIGINAL ARTICLE

[ OPEN J

Impact of Field-of-view Zooming and Segmentation Batches
on Radiomics Features Reproducibility and Machine
Learning Performance in Thyroid Scintigraphy

Soroush Bagheri MSc* Ghasem Hajianfar, MSc, f Maziar Sabouri MSc¢f§
Omid Gharibi MSc }§ Babak Yazdani MD,|| Atena Aghaee, MD,q
Ali Mohammad Nickfarjam, PhD#** Akram Yazdani PhD,T1]f
Akbar Aliasgharzadeh, PhD,* Habiballah Moradi PhD,*
Arman Rahmim, PhD,}§ and Habib Zaidi PhD7§|||||||

Background: Thyroid diseases are the second most common hor-
monal disorders, necessitating accurate diagnostics. Advances in
artificial intelligence and radiomics have enhanced diagnostic pre-
cision by analyzing quantitative imaging features. However,
reproducibility challenges arising from factors such as the field-of-
view (FOV) zooming and segmentation variability limit the clinical
application of radiomic-based models.

Aim: This study focuses on evaluating the impact of segmentation
and FOV zooming on the reproducibility of radiomic features and
improved performance of machine learning (ML) when using
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reproducible features for classification of thyroid scintigraphy
images into normal, diffuse goiter (DG), multinodular goiter
(MNG), and thyroiditis.

Patients and Methods: A retrospective analysis was conducted on
872 thyroid scintigraphy cases from 3 centers. Radiomic feature
reproducibility was assessed using the intraclass correlation
coefficient (ICC), with robust features (ICC>0.80) identified
under segmentation and zooming conditions. Four ML training
scenarios were implemented to train models on Center A data,
including (1) all, (2) zoom-robust, (3) segmentation-robust, and
(4) mutually robust features, with 3 feature selection methods
and 7 classifiers. Models were validated on external data sets
(centers B and C).

Results: FOV zooming significantly reduced feature reproducibility
(ICC>0.80: 49%), while segmentation effects were minimal
(ICC>0.80: 96%). Models trained on mutually robust features
outperformed those trained using all features. Boruta-MLP ach-
ieved the highest accuracy (0.71, P-value <0.001 vs. all features) in
zoomed data sets, and RFE-MLP performed best (0.69, P-value
<0.001 vs. all features) in the baseline data set, with Gray-Level Co-
occurrence Matrix (GLCM) features frequently selected.

Conclusions: Utilizing robust radiomic features significantly
improved the performance of ML models in thyroid disease classi-
fication, enabling more accurate and generalizable diagnostic out-
comes across diverse data sets.

Key Words: robust features, machine learning, nuclear medicine,
radiomics, reproducibility, scintigraphy, thyroid

(Clin Nucl Med 2025;50:683-694)

hyroid disease, the second most prevalent hormonal

disorder, is experiencing a rising incidence while its
mortality rate remains constant.! Prevalent diagnostic
techniques encompass sampling (eg, blood analyses, fine-
needle aspiration), and imaging using ultrasound (US),
computed tomography (CT), magnetic resonance imaging
(MRI), and single-photon emission computed tomography
(SPECT) modalities.2# US imaging is primarily employed
for the evaluation of thyroid nodules. Nonetheless, its sub-
jective nature and reliance on the operator have led to
restricted interobserver variability. Although there is good
concordance in inter-reader ultrasound image inter-
pretation, interobserver variability remains challenging even
among less experienced observers.S CT and MRI assess
structural abnormalities but frequently produce nonspecific
findings, particularly in conditions such as Graves disease,
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and hence are rarely used.® Thyroid scintigraphy using
9mTcpertechnetate and 21 serves a crucial role in the
assessment of the thyroid gland status. While *°™Tc-per-
technetate is frequently utilized owing to its accessibility and
cost-effectiveness, '>’I is commonly favored in clinical
practice for thyroid scintigraphy, especially in specific
regions and diagnostic protocols.”-18

The necessity of accurate diagnosis in the shortest time
possible is of great importance in medicine. Hence, artificial
intelligence (Al) and radiomics have been widely adopted to
accelerate medical decision processes.!%20 The field of
radiomics involves the extraction and analysis of quantita-
tive features from medical images through sophisticated
algorithms to reveal patterns that can assist in diagnosis,
prognosis, outcome prediction, and treatment planning.2!.22
Another reason compelling us to adopt Al technologies is
that noninvasive techniques, such as US and NM, exhibit
limited sensitivity and specificity.23-25 Notwithstanding the
burgeoning promise of radiomics, obstacles persist, partic-
ularly with the evaluation of repeatability and
reproducibility.26-28 According to research and guidelines
for identifying biomarkers, it is crucial to assess the
repeatability, reproducibility, and prevalent robust charac-
teristics of these indicators before making clinical judg-
ments. A radiomic feature must be robust under batch
effects, exhibiting consistency between 2 measurements
under varying settings to qualify as a reliable clinical
biomarker. Popular batches in medical imaging and radio-
mics workflow include changes in equipment, data acquis-
ition, software, segmentation, operator, and sample.2?

In thyroid scintigraphy imaging, certain issues, such as
differential diagnosis between a normal thyroid and a
diffuse goiter (DG), are challenging and may occasionally
be overlooked.!530-32 To mitigate this issue, images are
often captured at higher magnification. Even in some
centers where the devices are not capable of higher zoom
imaging, pinhole collimators are used, primarily for the
better identification of different thyroid diseases, such as
multinodular goiter (MNG), thyroiditis, etc.13.14.33.34
Changes in zooming or field-of-view (FOV) can introduce
batch effects on radiomic features.31.35.36

This study aimed to evaluate the batch effects of
segmentation and FOV zooming on radiomic features’
reproducibility and machine performance in image classi-
fication using thyroid scintigraphy images. To this end, we
will identify reliable features in the first step, and then
classify the images into 4 categories—normal, DG, MNG,
and thyroiditis, once using all features, and in a separate
attempt, using only the reliable ones.

PATIENTS AND METHODS

The flowchart of the study is shown in Figure 1. In
what follows, we elaborate on the various steps.

Data Collection

This retrospective study analyzed 872 cases collected
from 3 centers between 2021 and 2023 (center A: 531 cases,
center B: 188 cases, center C: 153 cases). Of the total cases,
62% were women: center A (75%), center B (27%), and
center C (67%). Each case in center A included 2 images
captured at different zoom levels: one at X1.25 and the other
at x3. However, images of patients from center B and center
C were obtained only at X1.78 and X3, respectively. We
mention images with X1.25 and %3 magnifications as
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baseline and zoomed data sets, respectively. Patients with
single-zoom imaging, low counts, or lead shields in their
images were excluded from the study. The research was
conducted with ethics approval (code: IR.KAUMS.
NUHEPM.REC.1403.022).

Image Acquisition

Anterior thyroid scintigraphy images were acquired
using a gamma camera with a matrix size of 128x128 pixels,
~15-20 minutes after patients received an injection of
6-10 mCi of the **™TC-pertechnetate radiopharmaceutical.
Patients were classified into 4 categories based on clinical
reports: MNG, thyroiditis, DG, and Normal. The scans
showing diminished or negligible uptake in the presence of
suppressed TSH were classified as indicative of subacute
thyroiditis. However, other less common differential diag-
noses, such as iodine-induced hyperthyroidism, thyrotox-
icosis factitia, and struma ovari, were also considered.34.37

Radiomic Feature Reproducibility Assessment

To assess the reproducibility of radiomic features, we
only used the data from center A and defined 2 batches:
segmentation and zoom. The segmentation batch aims to
investigate the impact of intraobserver segmentation varia-
bility on radiomic features’ reproducibility, while the zoom
batch explores the effect of FOV magnification. Then, the 2-
way mixed average measure or (3, k) intraclass correlation
coefficient (ICC)38 score was calculated for each feature
within each of the batch groups assigning them to a group of
excellent (0.90 <ICC <1.00), good (0.80 <ICC <0.90), fair
(0.50 <ICC<0.80), and poor (ICC<0.50) reproducibility
based on their ICC scores.

The zoom batch includes all the available samples (531
patients) at xX1.25 and X3 zooms. However, the segmenta-
tion batch incorporates 50 samples (50% normal) segmented
twice by the same physician with 4 years of experience, with
a 2-month gap between the 2 attempts. All abnormal
categories were combined into a single group in this batch.
Also, segmentation was performed separately for images at
x1.25 and X3 zoom levels, giving segmentation without
zoom (Segmentation_WZ) and segmentation with zoom
(Segmentation_Z) subgroups.

In this study, segmentation and radiomic feature
extraction were performed using 3D-Slicer software and
the Pyradiomics library.39 A list of all 102 radiomic features
extracted is provided in the Supplementary Section, Table
S1, Supplemental Digital Content 1, http:/links.lww.com/
CNM/AS65.

Feature Selection and Classification

To explore the impact of feature reproducibility on
classification performance, we grouped radiomic features
into 4 categories: all features, features reproducible under
zoom changes, features reproducible under segmentation
variations, and mutually robust features, which were
mutually reproducible under both segmentation and zoom
batches.

The training process was separately performed on
baseline and zoomed images of patients from center A in 4
scenarios corresponding to the feature set used for training.
Scenario 1 included all extracted features, scenario 2
involved features reproducible under zoom changes, sce-
nario 3 contained features reproducible under segmentation
variations, and scenario 4 comprised mutually robust
features. In each scenario, the features were first normalized
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FIGURE 1. Detailed steps of the study protocol at one glance.

with z-score normalization and then subjected to feature
selection using 3 methods: boruta, recursive feature elimi-
nation (RFE) with random forest (RF) core, and minimum
redundancy maximum relevance (MRMR).

The selected features were then processed through
internal 5-fold cross-validation, during which 7 classifiers
were used. Decision tree (DT), k-nearest neighbors (KNN),
multilayer perceptron (MLP), naive bayes (NB), RF,
support vector machine (SVM), and extreme gradient
boosting (XGB) were applied alongside hyperparameter
optimization. The hyperparameters were optimized with
grid search and 5-fold cross-validation.

After training, the models were tested on 2 external
data sets from centers B and C. The data from center B,
containing thyroid images at X1.78 zoom, was used as the
external validation for the training set with baseline zoom,
while the data from center C, with X3 zoom, validated the
zoomed training set. Before external validation, the features
extracted from the 2 external sets were normalized using the
mean and SD of features from the corresponding training
sets. Then, each model was separately applied to the
external data set.

Model Evaluation

Model evaluation was conducted using various per-
formance metrics, including accuracy, area under the
receiver operating characteristic curve (AUC-ROC), pre-
cision, recall, and F1 score. These metrics were calculated
under 3 different averaging methods: macro, which treats all
classes equally; micro, which considers the global perform-
ance across all instances; and weighted, which accounts for
class imbalance by assigning weights proportional to class
frequencies. Wilcoxon rank sum test with 1000 bootstraps
on accuracy was used to find significantly different
(P-value <0.05) between all feature-trained models and
mutual rubost features.

RESULTS

Data Collection

TABLE 1 summarizes information about patients’
demographics from various centers, including age, gender,

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc.

the number of distinct classes they belong to, and the
vendor.

Image Acquisition

Figure 2 illustrates segmented examples of the 4 classes.
In each class, the baseline and zoomed images correspond to
a single patient.

Radiomic Features Reproducibility Assessment

Figures 3 and 4 present the results of the ICC analysis
for individual features and different radiomic families under
all batches. Overall ICC score variability across the 3
different batches is also shown in Figure 5. According to
Figure 3, most of the radiomic features (96%) in both
baseline and zoomed data sets remained reproducible
(ICC>0.80) under segmentation batch. However, this
number dropped to only 49% under the Zoom batch. In
addition, as shown in Figure 4, the behavior of features
within the same family across all batches was largely
consistent, with shape2D features exhibiting the highest
variations.

In Figure 5, the density plots of both with and without
zoom data show that the segmentation batch does not
interrupt feature reproducibility significantly. This is evident
by the sharp peak around ICC=1. Comparing segment-Z
and segment-WZ shows that the impact of the segmentation
batch is less pronounced in zoomed images, giving a more
peaked distribution. In contrast, the zoom batch effect alone
results in a smoother and more dispersed ICC score
distribution. A smoother density under the zoom batch
indicates that the ICC values are more distributed across a
wider range, showing less agreement. This suggests that the
zoom effect introduces variability in the feature values. The
boxplot further supports this observation, as both segment-
WZ and segment-Z lead to ICC scores tightly clustered near
1, with minimal spread and a few outliers. Meanwhile, zoom
exhibits a broader spread and lower median, indicating
higher variability.

Feature Selection and Classification

TABLE 2 presents the mutually robust features with
ICC>0.80 across all batches. The features reproducible
under each batch, along with all radiomic features used in
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TABLE 1. Patient Information Categorized by Center

Age Gender Disease Total Vendor Name
Diffuse Multinodular
Data Set Center Zooming Mean+SD Female Male  Goiter Goiter Normal Thyroiditis N  Manufacture
Train A %x1.25%3.0 43%13 394 137 146 168 116 101 531 MEDISO
External B %x1.78 NA 51 137 49 31 67 41 188 GE INFINIA
External C x3.0 47+5 103 50 64 55 8 26 153 SIEMENS
Total 548 324 259 254 191 168 872

this study, are presented separately in Supplementary Tables
S2-S4, Supplemental Digital Content 1, http:/links.Ilww.
com/CNM/AS65.

The results for all scenarios are provided in Supple-
mentary Tables S5-S20, Supplemental Digital Content 1,
http://links.lww.com/CNM/A565, while the results for
scenarios 1 and 4 are discussed here. This is because the
primary objective of this study is to identify and highlight
the impact of the most reliable features on classification
performance, making the findings of scenario 4 particularly
significant. We determined mutually robust features across 3
analyses: segmentation with zoom, segmentation without
zoom, and zoom itself as a batch factor. Next, we trained
machine learning (ML) models separately once using these
mutually robust features and once using all the features
extracted from both baseline and zoomed data sets. Finally,
the trained models were evaluated on the external dataset
with the correlated zooming setting as the training sets.
Figure 6 summarizes the performance of each trained model
in terms of accuracy.

When using zoomed data set for training and
validation, Boruta-MLP trained with mutually robust
features achieved the best result, yielding an accuracy of
0.71. On the other hand, when training and validation were
performed on the baseline data set, RFE-MLP surpassed

Baseline

Normal thyroid Multi-nodular goiter

Thyroiditis Diffuse goiter

other models, achieving an accuracy of 0.69. The accuracy
of the same models dropped to 0.57 and 0.61 for Boruta-
MLP and RFE-MLP while using all features with P-value
<2.2e-16, demonstrating a significant level of inferior
machine performance. Detailed results of the confusion
matrices and ROC curves of these 2 models are shown in
TABLE 3 and Figure 7.

Figure 8 shows the selected robust features by the
Boruta and RFE methods. RFE is a backward selection
algorithm that iteratively removes the least important
features from a model based on a predefined importance
metric. In this study, feature importance is quantified using
mean decrease accuracy (MDA). MDA reflects the impor-
tance of a feature by randomly permuting it and measuring
the resulting drop in the model’s predictive accuracy.
Therefore, features can be ranked based on their MDA
score, where a higher MDA indicates greater importance.40
Both feature selection methods agree that the majority of
the top 5 most important features are from GLCM. Boruta
selected 4 and RFE 3 GLCM features among the top 5.

DISCUSSION

Radiomics is an approach to medical image analysis
that makes it possible to analyze images through

Zoomed

Normal thyroid Multi-nodular goiter

Thyroiditis Diffuse goiter

FIGURE 2. Baseline and zoomed image samples along with their segmentations. Zoomed and baseline samples of each class correspond

to the same patient.
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FIGURE 3. Behavior of individual features across segmentation (with and without zoom) and the zoom batches (1: ICC <0.50, 2:
0.50<1CC<0.80, 3: 0.80<1CC<0.90, 4: 0.90<ICC<1.00).

quantitative feature extraction.?? Several studies have To date, limited work has been done on radiomic
demonstrated that coupling ML and radiomics unlocks feature reproducibility in thyroid scintigraphy, and this
objective and experience-independent diagnosis within short makes our study unique to the best of our knowledge. Most
times with expert-level accuracy.41-43 However, the repro- thyroid studies investigating the predictive power of radio-

ducibility of such features is still under extensive study.#445  mic-based models or feature reproducibility have used CT,
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FIGURE 4. Overall variation of feature families across all batches (1: ICC<0.50, 2: 0.50<ICC<0.80, 3: 0.80<1CC<0.90, 4:

0.90<ICC<1.00).
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feature reproducibility, while zoom leads to a more variable distribution.
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MRI, and PET images.846-49 Therefore, in the present
study, we investigated the impact of intraobserver segmen-
tation variability and zooming on radiomic features’
reproducibility in the context of thyroid scintigraphy. In
nuclear thyroid scans, it is a challenging task to differentiate
normal and abnormal thyroid specifying the complications
(thyroiditis, DG, MNG). Accordingly, in the second step,
we employed 7 ML algorithms and 3 feature selection
methods to explore the efficacy of robust features under
segmentation and zoom variations in enhancing machine
performance.

The results of reproducibility assessments showed that
the majority (96%) of radiomic features are robust (ICC >
0.80) under intraobserver segmentation variability, irre-
spective of the zooming condition. The only texture feature
that showed excellent robustness (ICC>0.90) across all
batches appeared to be RLNU from GLRLM. In a study by
Gharibi et al,28 GLRLM was also shown to be robust
(ICC>0.90) under various changes in filter type, filter
cutoff, filter order, and even image reconstruction algo-
rithm. Moreover, all the mutually robust features we found
in the present study, except for IMC2 and JEnergy from
GLCM, LDE from GLDM, and RV from GLRLM, were
shown to have ICC > 0.80 in their study. This suggests that
GLRLM and most of the features we found mutually robust
are reproducible in single-photon emission imaging. How-
ever, more investigation into their correlation with diseases
is still needed. Reproducibility may not directly provide any
clinical advantage of radiomic features, but it is significantly
important in helping researchers preselecting features for
further analysis in machine learning studies, trust the
correlation of a feature to a disease more confidently, and
make future research more clinically reliable.?8 The reported
satisfactory ICCs in intra/interobserver segmentation agree-
ment suggest that manual segmentation has the least impact
on radiomics reliability, but introduces intraobserver
variability. Therefore, using automated segmentation com-
bined with robust features minimizes the impact of intra-
observer differences, thus enhancing the reliability of
radiomics-based Al applications.50-5!

In a study by Huang et al, %6 reproducibility of thyroid
CT radiomic features against interobserver and intraob-
server segmentation variations was investigated. They found
that elongation from shape; IDN, IV, and DE from GLCM;
RLNU, LRLGLE, SRE, and RP from GLRLM; SAE and
SZNUN from GLSZM; and Coarseness from NGTDM
were highly robust, showing ICC>0.90 under both
interobserver and intraobserver segmentation variations.
This is consistent with our findings except for IDN
(0.80 <ICC<0.90) and elongation (0.50 <ICC<0.80). In
our study, most of the sensitive features under the
segmentation batch were from the shape family. This is
while only 49% of the features were reproducible under
different zooming. The shape family was the most
reproducible under the zoom batch. This finding seems
reasonable, as the only disturbing factor affecting the shape
of the region of interest (ROI) is the difference in the
segmentation layer.

Furthermore, it is evident that most of the features
achieving high importance scores were from texture families.
This finding is aligned with the results presented by Sabouri
et al’2 and Huang et al.#¢ In their study, Sabouri et al>? used
single-center thyroid scintigraphy images to train ML
models for normal/abnormal classification of cases. They
selected the most predictive features iteratively by the
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boosting.

MRMR method in each iteration of nested cross-validation.
In their study, the top 5 selected features were Coarseness
and Strength from NGTDM, M2DDC from Shape, IMC2
from GLCM, and GLV from GLSZM. Instead, IDN,
Correlation, MCC, and IMC1 from GLCM, and Pixel
Surface from Shape appeared to be the 5 most important
features in zoomed data in our study. In a different
approach, Huang et al46 used the LASSO method to rank
the important features extracted from thyroid CT scans and
reported coarseness from NGTDM; and RP and SRE from
GLRLM as important features, with coarseness being at
least twice as important. However, little difference was
found between the Boruta importance score of these features
in the present study. These combinations probably attained
enhanced performance owing to the synergy between the
feature selection technique and the model architecture.
Boruta and RFE reduce dimensionality by selecting only the
most predictive, thereby reducing overfitting and improving
model generalization.’3 MLP models benefit from speci-
alized feature sets due to their complex internal architecture.
We found that combining these effective feature selectors
with a flexible, nonlinear model, like MLP, improved
classification accuracy and robustness by learning from the
most informative features.

In another study similar to ours, Sabouri et al*
incorporated a larger population, including 2643 patients
from 9 medical centers and classified them into different
pathologies, including MNG, thyroiditis, and DG. This study
aimed to develop an automated pipeline that enhances
thyroid disease classification using thyroid scintigraphy
images, aiming to decrease assessment time and increase
diagnostic accuracy in 2 scenarios. Radiomic features were
extracted from both physician (scenario 1) and ResUNet
segmentations (scenario 2). ResUNet achieved DSC of
0.84%0.03, 0.71 £0.06, and 0.86 £0.02 for MNG, TH, and
DG, respectively. They selected the most important features
for model training in each iteration (9 iterations in total) in a
leave-one-center-out cross-validation scheme using RFE after
removing highly correlated features with a high Spearman

correlation coefficient. Kurtosis and Skewness from FO;
DNU and DNUN from GLDM; and Coarseness, Contrast,
and Complexity from NGTDM were each selected at least 7
times, reflecting their reproducibility. Classification in sce-
nario 1 achieved an accuracy of 0.76 + 0.04 and a ROC AUC
of 0.92£0.02, while in scenario 2, classification yielded an
accuracy of 0.74 £ 0.05 and a ROC AUC of 0.90 + 0.02. This
highlights their consistent relevance across various centers
and data types. Except for Kurtosis, Contrast, and Complex-
ity, all other features identified as important were robust
against Segmentation and zoom batches. Moreover, DNU
and Skewness were ranked relatively important by Boruta.
Still, they do not include any normal cases while performing
classification.

Turning to the impact of batches on classification
performance, another highlight of this study is that the ML
models performed generally better in classifying normal and
abnormal thyroid patients when trained with only robust
radiomic features. This is probably because some features
may show high correlation with the disease in the training
set, although being irreproducible under a specific batch.
Therefore, they will not offer a reliable explanation of the
test/validation sets with different imaging conditions and/or
parameters. Consequently, poor machine performance can
be expected when feature selection is only based on the
correlation of a radiomic feature with the disease, over-
looking its reproducibility. Also, our results show that
models had an easier task identifying thyroiditis (AUC
>0.90) compared with other classes. This is while models
showed significantly lower performance in differentiating
normal cases (AUC: 0.52 and 0.54). This finding of our
study is aligned with what Cama et al*7 presented in a paper
exploring the impact of segmentation variations on radiomic
features’ robustness and ML performance in predicting
breast cancer subtypes. In their study, Cama and colleagues
used 3 segmentation masks on breast MRI images and
found that feeding ML algorithms with features that are
highly reproducible under segmentation variations enhances
machine accuracy.
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FIGURE 7. ROC curves and confusion matrices of the 2 top models trained and evaluated once with mutually robust features and once
using all features on zoomed and baseline data sets.

Photopenic defects and discordant nodules pose chal-
lenges for accurate thyroid segmentation. In this study, we
used a traditional/manual approach to maintain consistency
across batches. While our study did not specifically focus on
these cases, deep learning-based methods may offer improved
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consistency by learning complex and contextual patterns,
including atypical uptake. Their performance in such
challenging scenarios remains an area for future investigation.

In the previously mentioned study by Sabouri et al,52
the DT classifier achieved the highest performance using the
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TABLE 3. Performances of the top models when trained with mutually robust features on baseline data (top) and zoomed data (bottom),
and evaluated on the corresponding external datasets

Model Zoom Set Class Precision Recall F1-score Support
RFE-MLP Baseline dataset Robust Features Normal 0.81 0.57 0.67 67
Thyroiditis 0.86 0.90 0.88 41
DG 0.62 0.67 0.65 49
MNG 0.49 0.71 0.58 31
Micro Avg (Accuracy) 0.69 0.69 0.69 188
Macro Avg 0.70 0.71 0.69 188
Weighted Avg 0.72 0.69 0.69 188
All Features Normal 0.85 0.34 0.49 67
Thyroiditis 0.68 0.98 0.80 41
DG 0.70 0.61 0.65 49
MNG 0.36 0.68 0.47 31
Micro Avg (Accuracy) 0.61 0.61 0.61 188
Macro Avg 0.65 0.65 0.60 188
Weighted Avg 0.69 0.61 0.60 188
Boruta-MLP Zoomed dataset Robust Features Normal 0.14 0.12 0.13 8
Thyroiditis 0.88 0.88 0.88 26
DG 0.66 0.84 0.74 64
MNG 0.79 0.55 0.65 55
Micro Avg (Accuracy) 0.71 0.71 0.71 153
Macro Avg 0.62 0.60 0.60 153
Weighted Avg 0.72 0.71 0.70 153
All Features Normal 0.06 0.25 0.10 8
Thyroiditis 0.81 0.85 0.83 26
DG 0.60 0.64 0.62 64
MNG 0.88 0.40 0.55 55
Micro Avg (Accuracy) 0.57 0.57 0.57 153
Macro Avg 0.59 0.53 0.52 153
Weighted Avg 0.71 0.57 0.60 153

Avg: average, DG: diffuse goiter, MNG: multi-nodular goiter, RFE: recursive feature elimination, MLP: multilayer perceptron

most predictive combination of 6 features (AUC: 0.81,
ACC: 0.78, Fl-score: 0.80). In contrast, when utilizing the
10 most predictive features, the RF classifier performed the
best (AUC: 0.77, ACC: 0.79, Fl-score: 0.83). In the other
study by Sabouri et al,* Residual UNet (ResUNet) model
was developed for thyroid auto-segmentation to compare
the performance of an XGB model in classifying MNG,
Thyroiditis, and DG patients when it is fed with physician-
segmented and ResUNet-segmented images. They found
negligible inferior performance when feeding the model with
ResUNet-segmented images (AUC: 0.92 vs. 0.90, ACC:
0.76 vs. 0.74). Such findings, alongside the results of the
present study, demonstrate the capability of Al and radio-
mics in binary and multiclass thyroid disease classification.

Boruta (Zoomed Data)

Also, deep learning segmentation methods can reduce
assessment time while maintaining high diagnostic accuracy.

This work involved multiple limitations, including
utilizing a single physician investigating intraobserver
segmentation variability, although other physicians may
be employed for comparative analysis of patient outcomes.
Furthermore, the sex predilection differences in centers A
and B likely reflect referral patterns, demographics, or
health care-seeking behavior, rather than thyroid disease
prevalence in the general population. The use of a single-
center training dataset may introduce biases related to
differences in patient demographics, imaging protocols, and
equipment, which could affect the generalizability of the
model. Future works should focus on using multicenter
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training data sets.%35 The baseline training (x1.25) and
external validation (X1.78) sets were not precisely in
agreement regarding the zoom settings, as we were not able
to access other data sets. Moreover, deep learning models
ought to be employed on a greater number of patients.

CONCLUSIONS

Our study demonstrated that most of the radiomic

features are reproducible under intraobserver segmentation
variabilities. However, zooming can significantly affect
> 50% of the features. Utilizing reliable radiomic features
can significantly enhance the generalizability of ML models.
This improvement in generalizability allows the models to
perform effectively across diverse data sets and scenarios,
ultimately leading to more accurate predictions and better
overall outcomes.

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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