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THE ROLE OF CALCIUM IN THE CONTROL OF PEROXIDASE ACTIVITY 

C.PENEL 

Laboratoire de Physiologie vegetale, Universite de Geneve, 
3, place de l'Universite, 1211 Geneve 4, Switzerland. 

Introduction 

Peroxidases are used as markers by plant physiologists in a 
wide variety of experimental situations: following chemical 
treatments, in relation with growth or differentiation, for 
genetic studies, to show the effects of environmental factors on 
plants. In most cases, quantitative or qualitative variations of 
peroxidases are reported . The great sensitivity of these enzymes 
to many endogenous or exogenous factors explains why peroxidases 
are so often chosen. But the numerous publications devoted to them 
rarely concern the molecular reasons which could explain their 
high reactivity. 

It is now evident that peroxidases are dependent on calcium ion 
through several mechanisms. Calcium mediates many different 
cellular processes, acting as second messenger and regulating many 
functions of plant cells (for recent reviews, see 7, 12). One 
reason why peroxidases are so reactive could lie in the fact that 
they are closely dependent on calcium. This means that cellular 
redistributions of this ion occurring in response to hormones, 
light or other factors could change peroxidase activity. There are 
apparently three distinct mechanisms by which calcium can control 
peroxidases rather directly. These mechanisms, which are described 
with some details below, are the direct activation of peroxidases, 
their binding to membranes and their secretion. 
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Peroxidase activation 

In many instances, it was reported that the addition of calcium 
activated plant peroxidases (1, 5, 22). Generally, this activation 
only affects some of the isoperoxidases present in a tissue. In 
order to study further this property, peroxidases extracted from 
spinach leaves were separated through a column of concanavalin A 
(con A) Sepharose and their activation by calcium was measured. 
Taking advantage of the fact that only manganese is really 
necessary for the binding of glycoprotein to con A (21), the 
affinity chromatography was performed in the absence of added 
calcium. In addition , as a progressive elution by the competing 
sugar was used, a microheterogeneity of peroxidases appeared, as 
already with other glycoproteins (2). The total peroxidase 
activity present in a crude extract may be separated into several 
peaks (Fig. la): the first peak (A) corresponds to peroxidases 
which are not retained by con A, then there are several fractions 
corresponding to peroxidases with increasing affinity for the 
lectin and, finally, a peak with high affinity. Among all these 
fractions, only some can be activated by the addition of calcium 
in the assay medium. They exhibit a low affinity for con A. Two 
particular fractions were also prepared from spinach leaves and 
submitted to the same chromatography proc

7
dure. The peroxidases 

present in free spaces of leaves and collected by vacuum 
infiltration had no affinity for con A (Fig. lb) and are not 
activated by calcium. On the contrary, peroxidases ionically bound 
to cell walls were all retained by con A (Fig. le) and were partly 

Fig. 1. Separation of peroxidases by affinity chromatography 
through a column of concanavalin A Sepharose (20 x 0. 8 cm). The 
resin was equilibrated in 100 mM acetate buffer pH 6 containing 
IM NaCl and lmMnCl2. Elution of the glycoproteins bound to con A 
was obtained by a linear gradient of methyl-a -b-glucopyranoside 
(M-Glu: 0-1 mM) followed by two washings with 5 and 100 mM M-Glu. 
Peroxidase activity was assayed in 20 mH acetate buffer 
containing 8 mM guaiacol and 2 mM H202, without or with 5 mH 
CaCl2. The absorbance at 470 nm was read after 5 min. a) Crude 
extract: spinach leaves were ground in chromatography buffer and 
the resulting extract centrifuged at 10000 g for 10 min. b) free 
space peroxidases: obtained by vacuum infiltration of leaves in 
phosphate buffer pH 7 followed by centrifugation c) peroxidases 
ionically bound to cell walls: leaves were ground in 25 mM Mes­
tris pH 7.2. The resulting extract was centrifuged at 1000 g, the 
pellet washed in the same buffer and then the bound proteins were 
detached with chromatography buffer. 
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activated by calcium. A separation of isoperoxidases present in 
these different peaks by isoelectric focusing in agarose gels is 
shown in Fig.2. It can be observed that isoperoxidases exhibiting 
a high affinity for con A and no activation by calcium are mainly 
acidic, while the activable isoperoxidase with low affinity for 
con A is cathodic. The isoperoxidase from free spaces has the most 
basic isoelectric point. The activable cathodic isoperoxidase 
apparently exhibits the greater microheterogeneity, but this 
microheterogeneity is not apparent on gel after isoelectric 
focusing. 

A B C D 

-

E 

8 

Fig. 2. Isoelectric focusing in 
agarose gel of the various 
fractions obtained by affinity 
chromatography (Fig. 1). Fractions 
were desalted through Sephadex G 
25 before electrophoresis. The 
gradient of pH was provided by 
1.50% Ampholine (LKB) 3.5-10.0 and 
0.75% Ampholine 9.0-11.0. The 
electrophoresis was run for about 
90 min at 6 W. Bands were revealed 

C!) with benzidine- D202. 

The activable cathodic isoperoxidase obtained by affinity 
chromatography (fraction B in Fig.l) was used to characterize 
further the effect of calcium. Fig. 3 shows the rate of guaiacol 
oxidation at two different concentrations of hydrogen peroxide. It 
is evident from this simple experiment that calcium increases the 
velocity of the reaction and the activation is greater at the 
lower hydrogen peroxide concentration (after a 1-min incubation 
the ratio A47o+Ca / A470-Ca is 6.2 and 1.8 respectively). 
Measurements performed at various calcium concentrations showed 
that the ion is active at low concentrations (Fig. 4). 

The effect of calcium was also tested on peroxidases 
preparations which were not purified through con A Sepharose 
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Fig. 3. Rate of oxidation of guaiacol (4 mM) in the presence of 
u2o2 (0. 4 or 2 mM) by peroxidase from fraction B (Fig. 1), 
measured with a nu 5 Beckman spectrophotometer . 
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Fig. 4. Effect of EG TA or various concentrations of CaCl2 on the 
oxidation of guaiacol (1 mM) in the presence of 20 µM H202 by 
peroxidase from fraction B (Fig. 1). 



160 

A.470 
o.o 

0.04 

0.00 

C PENEL 

5 mM CaCI 

0 50 1 00 150 200 250 
SECONDS 

Fig. 5. Effect of 5 mM 
of guaiacol (1 mM) in 
peroxidases ionically 
described for Fig. 1. 
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Fig. 6. Effect of 5 mM CaCl2 on the rate of oxidation 
of guaiacol (1 mM) in the presence of 20 µM B202 by 
peroxidases from free spaces prepared as described 
for Fig. 1. 
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(Fig. 5 and 6). In these cases, the rate of reaction was less 
linear. This can be explained by the presence of cofactors such as 
phenolics, which affect the kinetic properties of peroxidases 
(15). It appeared that peroxidases ionically bound to walls can be 
activated by calcium, with a maximum activation at the beginning 
of the reaction (Fig. 5), when free-space peroxidases, which 
correspond to fraction A in Fig. l, are not activated (Fig. 6). 

Several facts can be emphasized. i) Only a cathodic 
isoperoxidase is sensitive to calcium addition. This is consistent 
with a study on horseradish isoperoxidases (6). ii) The effect of 
calcium is stronger at low hydrogen peroxide concentrations. As 
one can imagine that this concentration is low in cells or cell 
walls, this mechanism could have a great importance in vivo. This 
importance is also suggested by the observation by Geiger and 
Goujon (5) that healthy tissues of Hevea contained a calcium­
activable isoperoxidase which disappeared in tissues infected by a 
fungi. iii) The calcium-dependent isoperoxidase from spinach 
leaves is sensitive to low calcium concentrations and may be 
separated by affinity chromatography. 

Binding of peroxidases to membranes 

It was observed several years ago that some isoperoxidases bind 
to membranes upon addition of calcium. This occurred in extracts 
of hypocotyl hooks of Cucurbita pepo (17), of lentil roots (16), 
of sugarbeet cells (18) and of Pharbitis cotyledons (10). In this 
latter case, manganese was shown to be also active. Generally, the 
isoperoxidase which binds is cathodic. However, the calcium­
dependent binding of acidic isoperoxidases was also reported (20). 
The binding of the cathodic isoperoxidase is saturable by 
increasing the calcium (manganese) concentration or isoperoxidase 
concentration; it depends on the presence of the carbohydrate 
moiety of peroxidase; its mechanism seems common to several plants 
since, for example, zucchini peroxidases can be associated to 
Pharbitis microsomes (10). Preliminary studies have shown that 
plasmalemma, tonoplast and other cellular membranes are able to 
bind the cathodic isoperoxidase upon addition of calcium or 
manganese. 

The maximum effect of calcium 
the millimolar range (10, 17). 
appear rather high, could mean that 

requires an ion concentration in 
This concentration, which can 
the binding only occurs in 

cell compartments which contain such concentrations. It can be 
noticed that receptors for glycoproteins in animal cells exhibit 
the same calcium requirement to be active (19). It is tempting to 
hypothesize that the binding of peroxidases is due to calcium 
(and/or manganese) dependent receptors involved in the control of 
the subcellular localization of the cathodic isoperoxidase. As a 
next step, the existence of such receptors should be demonstrated. 
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Peroxidase secretion 

Cell wall usually contains a great part of the peroxidase 
activity of a plant cell, another part being found in vacuoles 
(14). The role of wall peroxidases could be important, owingto 
their ability to cross-link or polymerize many molecules (3, 11). 
These peroxidases must be transported across the plasmalemma. 
Several works have given indications that this transport is, at 
least partly, achieved by a calcium-dependent secretory mechanism 
(1, 8, 9, 22). 

Conclusion 

The experimental facts presented above emphasize the complexity 
of the effects of calcium on peroxidases. It is too early to 
consider the role of these mechanisms in the control of peroxidase 
activity in cells. However, regarding the cathodic 
isoperoxidase (s), we can imagine that, following biosynthesis, its 
transfer toward cell wall or vacuole could be determined by the 
activity of the putative calcium-dependent receptors, and by the 
secretory machinery which is under the control of cytosolic 
calcium. Once they have reached their final destination, these 
isoperoxidases would be dependent on the local calcium 
concentration for their activity. As it was reported that free 
calcium readily exchanges with the cathodic isoperoxidase of 
horseradish (6) and is essential for maintaining the protein 
structure in the heme environment (13), the modulation of their 
catalytic activity by changes in calcium concentrations cannot be 
ruled out. On the contrary, acidic isoperoxidases, which cannot 
exchange their calcium and regain activity upon calcium addition 
if calcium has been removed (6), have another mode of regulation. 
Some of them, however, are likely to be controlled by calcium 
either through binding to membranes (20), or through secretion. 
This difference in the control of the two groups of isoperoxidases 
has already been discussed (4). 
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