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Abstract

We develop a framework that integrates natural advantage, agglomeration economies, and firm

selection to explain why large cities are both more productive and more unequal than small towns.

Our model highlights interesting complementarities among those factors and it matches a number

of key stylised facts about cities. A larger city size increases productivity via a selection process,

and higher urban productivity provides incentives for rural-urban migration. Tougher selection

increases both the returns to skills and earnings inequality in cities. We numerically illustrate a

multi-city version of the model and explore the formation of new cities, the growth of existing

cities, and changes in income inequality.
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Montréal, Canada; cirpée, Canada; and cepr, United Kingdom. E-mail: behrens.kristian@uqam.ca
†
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1 Introduction

Large cities are more productive and more unequal than small towns. In a 2007 sample of 356 us

cities, for instance, doubling city size is associated with an increase of value added per employee

of 8.5% and with an increase of the Gini coefficient of city earnings of 1.2%. This paper introduces

a multi-city, heterogeneous firms framework that integrates agglomeration economies, natural ad-

vantage, and selection to explain these facts. Agglomeration economies or indivisibilities – either

internal or external to firms – are necessary for cities to exist. They lead to productivity that is

increasing in city size. Natural advantage – which is especially important for early urban develop-

ment – helps pin down city locations, raises productivity and earnings, and thereby attracts people

and firms. Finally, larger cities also make for larger market places. Since selection is tougher in

large markets, only the most productive firms may profitably operate there, and earnings inequal-

ity increases with city size.

The positive relationship between city size and productivity is better documented and better

understood than the positive relationship between city size and urban inequality. Our aim is to

study these facts jointly, and the novelty of our paper is to integrate agglomeration economies, nat-

ural advantage, and selection into a unified theoretical framework in which cities are determined

endogenously. Three features of this exercise are noteworthy.

First, it highlights interesting complementarities among natural advantage, agglomeration, and

selection. Natural advantage attracts firms and people to a city, and local increasing returns raise

productivity: natural advantage induces agglomeration. The larger number of firms in larger cities

implies tougher competition: agglomeration induces selection. In turn, the most productive firms

get larger market shares and pay higher wages in big cities than in small towns and the opposite

is true for the least productive surviving firms: selection induces inequality. The presence of more

productive firms increases average productivity and lowers consumer prices, thereby attracting

more people. This further strengthens agglomeration economies.

Second, our model matches a number of key stylised facts about cities. The effect of city popu-

lation on productivity is causal (Rosenthal and Strange, 2004), even after controlling for sorting and

selection (Combes, Duranton, Gobillon, Puga, and Roux, 2012). The returns to skills and income

inequality increase with city population, even after controlling for the socioeconomic composition

of cities (Wheeler, 2001; Glaeser, Resseger, and Tobio, 2008; Baum-Snow and Pavan, 2012). The dis-

tribution of firm productivity in any city is non-degenerate, with fewer low-productivity firms in

larger cities (Combes et al., 2012). Finally, goods are cheaper and come in more numerous varieties

in large cities than in small towns (Glaeser, Kolko, and Saiz, 2001; Handbury and Weinstein, 2012).

Third, our model is amenable to comparative static exercises and to numerical simulations. We

characterise all the properties of the symmetric equilibrium – as well as some of the asymmetric

equilibria – analytically. We then use numerical simulations to explore the quantitative properties

of the model for an equilibrium that matches some moments of our sample of us cities. We
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find that everything that makes cities more productive and urban life more desirable makes the

emergence of cities more likely and allows for larger cities in a way that is consistent with the

historical analysis of Bairoch (1988) and others. We also stress the role of trade in increasing the

relevant market size, which reinforces urban selection, sustains larger cities, and raises earnings

inequality within cities.

1.1 Preview of analysis

We use the monopolistic competition framework of Ottaviano, Tabuchi, and Thisse (2002), as

extended by Asplund and Nocke (2006) and Melitz and Ottaviano (2008) to heterogeneous en-

trepreneurs, borrowing from Lucas (1978). We then embed this production structure in a system

of cities where urban costs increase in a standard ‘Alonso-Mills-Muth’ fashion with city popu-

lation. All individuals are ex ante homogeneous and each individual initially chooses a location

among several cities and a countryside. Cities form endogenously. In our model, individuals ac-

quire the necessary skills to become entrepreneurs in cities only, since cities are places that favour

learning and nurture innovation (Glaeser and Maré, 2001; Duranton and Puga, 2001). Firms are

operated by entrepreneurs whose productivity is revealed after the irreversible location decision is

made. Individuals select ex post into entrepreneurship or consume from their initial endowment.

In our model, selection operates on the goods markets and it affects entrepreneurial earnings only.

In other words, all workers are entrepreneurs. This is a convenient shortcut, for selection may

also arise in labor markets. An alternative model, in which the variable component of production

uses labor and in which fair wage considerations would result in rent sharing between manage-

ment and production workers (as in Egger and Kreickemeier, 2009), would produce similar results:

large cities would be more selective and more unequal.

Cities result from a tradeoff between agglomeration economies and urban costs as in Hender-

son (1974). Entrepreneurial profit increases with productivity and city population. Hence, more

productive entrepreneurs benefit the most from being in larger cities. Since urban costs do not

depend on entrepreneurial productivity but only on city size, less productive entrepreneurs enjoy

lower profits and smaller market shares in larger cities. The complementarity between productiv-

ity and city population leads to a positive equilibrium relationship between city size and earnings

inequality. Tougher selection in larger cities also increases firm productivity. This complementarity

leads to a positive relationship between city population and average earnings.

The simple one-city version of our model is consistent with facts that have attracted attention

in the literature. First, anything that makes cities more attractive – like lower commuting costs or

a larger range of available products – makes their emergence more likely and also makes them

bigger. Historically, more product differentiation makes urban production more valuable. Lower

commuting costs brought about by the introduction of streetcars, cars, and elevators all allow for

an increasing density and population of cities. Our model is well suited to the analysis of episodes
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of urbanisation like the growth of manufacturing centres in 18th century England or the urban

explosion in developing countries during the 20th century. In our framework, city formation and

growth is driven by rural-urban migration that is especially relevant in those contexts.

The multi-city version of our model emphasises the role of transportation and trade in un-

derstanding where cities form and why they grow. Think about Yokohama, a village populated

by fishermen before Japan reopened to international trade in the mid-19th century. As the major

port on the Tokyo bay, it is now Japans’ largest municipality and it hosts a population of almost

4 million. Buenos Aires, Hong Kong, Lagos, London or New York’s predominant roles have also

to do with them being – or having been – major ports. Many cities developed and are developing

around river mouths or transportation network nodes (Bleakley and Lin, 2012). The location of

Samarkand and Xi’an on the silk road and the designation of Kiakhta as the only trading point

between Tsarist Russia and the Qing empire in the 18th and 19th centuries also underscore the

role of transportation and trade for the fate of cities. More prosaically, Duranton and Turner (2012)

estimate that the elasticity between a city’s stock of interstate highway and its population is about

15% in their 1983–2003 panel of us cities.

Our model can also shed light on the growth of cities in the Third World, where the relatively

high urbanisation rates coexists with severe urban poverty (the Harris-Todaro puzzle). Indeed,

after entry, entrepreneurs who fail in the city have lower nominal and real incomes than workers

in the countryside, while their consumer surplus exceeds that in the countryside. The reason is

that they have access to urban consumption diversity even if they failed as entrepreneurs. This

aspect is taken into account in the entry decision in our model.

Finally, cities that have unfavourable fundamentals are small and not very productive at equi-

librium. In that case, urban migration is primarily motivated by urban wages (entrepreneurs’

profits in the model) that are large relative to rural wages. Furthermore, the ‘failure rate’ is rela-

tively low, i.e., the mass of unsuccessful entrepreneurs is small. These cities are ‘producer cities’.

The consumer surplus is rather small in this case. By contrast, cities with good underlying eco-

nomic conditions are large, productive, and fiercely competitive: expected profits are no longer

the primary driver of urban life – the failure rate is large – but the city’s local and specific service

and product mixes work like local amenities that attract consumers who display preference for

diversity. These cities are ‘consumer cities’.

1.2 Relation to extant literature

The main innovation of our paper is to integrate natural advantage, agglomeration, and selection in

a model with endogenous cities.1 Our model builds on and expands the large theoretical literature

on agglomeration economies (see Duranton and Puga, 2004, for a review). The theoretical literature

1We ignore an additional reason: spatial selection, which is the focus of a complementary paper by Behrens,

Duranton, and Robert-Nicoud (2012).
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on selection in cities is much smaller. Baldwin and Okubo (2006) and Ottaviano (2012) develop

models that are related to ours. In their models, there are only two locations that are dots on

the map, there is no urban structure, and firms/entrepreneurs may relocate after learning their

productivity. By contrast, the number of cities is endogenously determined and location choices

are irreversible in our model.

The theoretical literature on sorting and inequality in cities is thinner still. Behrens, Duranton,

and Robert-Nicoud (2012), Davis and Dingle (2012), and Eeckhout, Pinheiro, and Schmidheiny

(2010) are three exceptions. The first analysis focuses on an equilibrium in which income inequality

is invariant in city size; the second paper analytically establishes a positive equilibrium relationship

between city size and inequality in a two-city variant of the model only; whereas the third analysis

imposes some assumptions on the output elasticity of skills to generate fatter tails in the income

distribution of big cities. Unlike ours, these papers focus mainly on spatial selection – also known

as sorting – that is, situations in which more productive agents tend to disproportionately locate in

large cities.

Extant empirical work on the existence and scope of agglomeration economies is abundant

and consistent (see Rosenthal and Strange, 2004, for a review). Empirical evidence on selection

effects is more mixed. Syverson (2004) finds that selection is increasing in market size in the

us concrete industry, but Combes et al. (2012) find that productivity differences across French

metropolitan areas are mostly explained by agglomeration economies. Our model allows for both

mechanisms to play a role. Glaeser, Kahn, and Rappaport (2008) and Baum-Snow and Pavan (2012)

document the positive relationship between urban population and earnings inequality for us cities.

We provide a theoretical foundation for it. Finally, our model also stresses the role of intercity trade

for urban size, urbanisation, and inequality, a rather neglected topic until now.

The remainder of the paper is organised as follows. Section 2 presents the model. Section 3

solves for its equilibrium considering a single city in isolation. Section 4 allows for multiple trading

cities and studies the properties of the urban system. It also illustrates numerically some of the

key features of our model. Section 5 concludes. We relegate most proofs and additional details to

an extensive set of appendices.

2 The model

Consider a two-sector economy endowed with a large population, L, of ex ante undifferentiated

workers. There are several potential sites for cities, but in this section we study only a single

city in isolation. This allows us to save on notation and to investigate the relationships between

urbanisation and inequality in a parsimonious setting. We postpone the analysis of interactions

among cities to Section 4.
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Workers initially reside in the countryside, a location we label l = 0, and they can potentially

move to the city, which we label l = 1. All workers are endowed with a large quantity of a

homogeneous good and one unit of labor, which can be used either for producing that good or

for acquiring skills. Skills are essential to the production of a differentiated good (more on this

below). Acquiring them is costly and requires that workers move to the city, which provides

an environment amenable to ‘learning’. Learning in cities has an outcome that is uncertain: some

workers will be more productive than others as a consequence of learning, and competition among

skilled workers implies that only the most skilled can survive there.

There are two sectors in the economy. The first one produces a homogeneous good, whereas the

second produces a large range of varieties of a differentiated good. Production of the homogeneous

good is carried out by the workers who did not acquire skills and occurs under constant returns

to scale. That good is traded in a competitive market that is perfectly integrated across locations.

Hence, its price is the same everywhere, which makes it a natural choice for the numéraire. The

differentiated good is only produced in the city by skilled workers using their ‘entrepreneurial

skills’ as a fixed component and the numéraire as a variable component. The latter is obtained

from the residents’ endowments.2

2.1 Timing

The timing of the model is the following. First, workers decide whether to move to the city to

acquire skills or to stay in the countryside and not acquire skills. We denote the mass of workers

who chose to acquire skills in the city by H , which we refer to as the city size. To become skilled,

they incur a sunk cost fE > 0, paid in terms of the numéraire, which includes both the opportunity

cost of foregoing the wage prevailing in the numéraire sector and the cost of moving to the city.

The superscript ‘E’ is a mnemonic for ‘education’ or ‘entrepreneur’. Living in a city gives rise to

extra costs and benefits, which will be made precise below. Second, agents discover a variety and

nature draws the marginal cost c at which they can produce this variety from some common and

known distribution G. Third, upon observing their draws, agents chose whether to produce or

not (and, in the multi-city extension of Section 4, which market(s) to serve).3 Those who produce

2We assume that each worker’s initial endowment of the homogeneous good is large enough so that: (i) this good

is supplied in all cities in sufficient quantity for production of the differentiated good to occur; and (ii) all consumers

have positive demand for the numéraire, which rules out income effects for the differentiated good in our quasi-linear

specification below. As we explain later we assume, for simplicity, that migration from the countryside to the city is

the only exchange between cities and the countryside. There is no trade between the two.
3We model selection from a product-market perspective. An alternative approach is to adopt a labor-market

perspective by assuming that skilled workers supply differentiated labor but are not entrepreneurs. Workers move

to cities to acquire education and demand for their skills is a priori uncertain. Having acquired education, workers

above some threshold get the skilled jobs, whereas the others work in the numéraire sector. This approach leaves

the product market and product variety aspects out of the picture, yet raises the question of how to model demand
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maximise profits and all markets clear.

We assume that production occurs where agents live, i.e., agents who entered the city in the

first stage produce and consume there. We also assume that agents are immobile after making

their location choices. Hence, city dwellers cannot move back to the countryside if they get a bad

draw. Our timing enables us to model the pervasiveness of mobility frictions in a parsimonious

way: agents are freely mobile before observing their c, and fully immobile afterwards. The lack of

ex post mobility after productivity is revealed implies that we do not allow for spatial sorting along

skills. We do so mostly for analytical convenience as modelling selection and spatial sorting at the

same time is difficult and beyond the scope of this paper (see Behrens et al., 2012).4 Furthermore,

empirical evidence suggests that most entrepreneurs are ‘local’ and that entrepreneurship is a

relatively immobile factor (Michelacci and Silva, 2007).

In the remainder of this section, we lay out explicit microeconomic building blocks – prefer-

ences, technology, urban structure – for the model and solve for all endogenous variables taking

city size H as given. We endogenise city size and solve for the spatial equilibrium in the next section.

2.2 Preferences and urban structure

Following Asplund and Nocke (2006) and Melitz and Ottaviano (2008), all agents have identical

quasi-linear preferences over the homogeneous good and a continuum V of varieties of horizon-

tally differentiated urban goods and services. For simplicity, we assume that the latter are available

exclusively in the city, while the homogeneous good is sold everywhere. Although this is a stark

assumption, it fits with the observation that one of the key benefits of cities is indeed the ac-

cess to a large range of mostly local goods and services they provide (Glaeser et al., 2001; Lee,

2010).5 Varieties of the differentiated good available in the city are indexed by ν. We denote by

N the endogenously determined mass of varieties consumed in the city. The sub-utility over the

differentiated varieties is assumed to be quadratic, so that utility for an urban resident is given by

U = α

∫

V
d(ν)dν − γ

2

∫

V
d(ν)2dν − η

2

[∫

V
d(ν)dν

]2

+ d0, (1)

where α, η, γ > 0 are preference parameters; and where d0 and d(ν) stand for the consumption

of the numéraire and of variety ν, respectively. Both depend, in general, on the skill level c. The

for skills. One possibility is to follow Ethier (1982) and to use a ces production function that aggregates skill types

city-wide to produce a homogeneous good under increasing returns to scale.
4We could instead assume that, upon observing their draw c, agents may migrate back to the countryside at a cost

fM . Our main results would still hold as long as fM is strictly positive. By contrast, assuming fM = 0 would imply

that a city’s equilibrium income distribution is independent of its size (see Supplemental Appendix A.1 for details).

This runs counter the empirical facts we know.
5We show in Supplemental Appendix A.2 that our qualitative results continue to hold true when the urban goods

are available in the countryside at an extra cost. We show below that rural dwellers renounce to consume urban goods

if this cost is larger than α2/(2η). We henceforth impose this parameter restriction.
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utility level of rural residents is simply equal to d0 since they consume the numéraire good only.

To keep the analysis simple, we assume that urban costs, defined as the sum of commuting and

housing costs, borne by a worker in a city of size H are given by θH , where θ > 0 is a parameter.

Linearly increasing per capita urban costs is a standard result in urban economics (see Appendix

A.1 for microeconomic foundations). In sum, becoming an urban dweller involves two types of

costs: the exogenous sunk cost fE , and the endogenous urban costs θH .

Let Π(c) denote the entrepreneurial profit of a city dweller with ability c, and let d
0

be her

initial endowment of the numéraire. The budget constraint of that agent is then given by

d0 +
∫

V
p(ν)d(ν)dν + θH = d

0
+Π(c)− (fE − w). (2)

The left-hand side of (2) consists in total spending on the numéraire, the differentiated good, and

urban costs, respectively; the right-hand side consists in income from the endowment and en-

trepreneurial profits net of the sunk cost. Recall that the definition of fE includes the opportunity

cost of foregoing the wage w in the numéraire sector.

Maximising (1) subject to (2) yields the indirect utility of urban dwellers as V (c) = d
0
+ w +

CS +Π(c)− θH − fE , where CS denotes the consumer surplus (see Appendix A.2 for computa-

tional details).

2.3 Production, profit maximisation, and selection

Production of the differentiated good requires the numéraire as an intermediate input. That input

is available at unit cost everywhere. Let p(c) and q(c) denote the price set and the quantity sold

by an entrepreneur with marginal cost c. Operating profits are equal to π(c) ≡ [p(c)− c] q(c). At

equilibrium, only entrepreneurs with c smaller than some cutoff c1 are productive enough to sell

in the city. Since agents are atomistic, they have a negligible impact on the equilibrium market

aggregates. They therefore accurately take all other agents’ decisions as given.

In order to keep the analysis tractable, we impose some assumptions on the distribution G of

cost draws. We follow standard practice in the theoretical literature and assume that productivity

draws 1/c in the city follow a Pareto distribution with a lower productivity bound 1/cmax and

shape parameter k ≥ 1 (Helpman, Melitz, and Yeaple, 2004; Melitz and Ottaviano, 2008). This

implies a distribution of cost draws given by G(c) = (c/cmax)k for c ∈ [0, cmax], with α > cmax.6

As shown in Appendix A.3, under the Pareto assumption the equilibrium prices that en-

trepreneurs set for their varieties can be expressed as

p(c) =
c1 + c

2
, where c1 ≡ 2αγ + ηNc

2γ + ηN
and c =

k

k+ 1
c1 (3)

6Observe that Pareto is a good approximation of the upper tail of the productivity distribution, but a rather poor

one of the lower tail (Combes et al., 2012). However, analytical results using a distribution like the log-normal are

unavailable in virtually any model in which locations have asymmetric sizes and productivities. Such distributions

prove intractable in deriving the equilibrium expressions of our model.
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denote the domestic cost cutoff in the city and the average marginal cost of entrepreneurs, respectively.

The consumer price in the city is decreasing in the degree of competition, itself inversely related

to c1 as can be seen from expression (4) below. The cost cutoff c1 is such that only entrepreneurs

with marginal cost c lower than c1 manage to serve the urban market. This cutoff satisfies the

zero-profit condition p(c1) = c1. Using expressions (3), the mass of entrepreneurs actually selling

in the city is given by:

N ≡ HG(c1) =
2γ(k + 1)(α− c1)

ηc1
. (4)

Expression (4) establishes a positive equilibrium relationship between the mass of competitors N

selling in the city and the toughness of selection prevailing there: the larger the mass of competi-

tors, the smaller the share G(c1) of workers that can make it into entrepreneurship. We henceforth

refer to 1 −G(c1) as the ‘failure rate’ in the city.

2.4 Equilibrium payoffs

Using expressions (3) and (4), as well as the results in Appendix A.2, the consumer surplus can be

expressed very compactly as follows:

CS ≡ α− c1

2η

(
α− k+ 1

k+ 2
c1

)
. (5)

The inverse productivity cutoff c1 is proportional to the average inverse productivity c by (3); as

such, it is a sufficient statistic to analyse the impact of any parameter change on consumer welfare.

Clearly, consumer surplus is decreasing in the inverse productivity cutoff, namely, ∂CS/∂c1 < 0

since c1 ≤ α holds by (4). The consumer surplus is bounded above by α2/(2η). Hence, imposing

shopping costs for rural dwellers that exceed α2/(2η) for urban goods implies that rural consumers

choose to not consume the urban goods at equilibrium. We assume throughout this section that

this condition holds.

We next use the profit-maximising prices (3) to express entrepreneurial profits as follows:

Π(c) = [p(c)− c] q(c) =
H

4γ
(c1 − c)2. (6)

The masses of sellers obey the identity (4). The latter can be rewritten as:

α− c1

Aηck+1
1

≡ H , (7)

where A ≡ 1/[2ckmax(k + 1)γ] is a recurrent bundle of parameters that captures the natural advan-

tage of location l = 1 to host a city. We can also think about A as being urban tfp. Note that A is

decreasing in the upper bound cmax of the support of G and in the shape parameter k. As k rises,

the mass of low-productivity entrepreneurs rises relative to the mass of highly productive ones,
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and so a higher k implies a lower underlying productivity A. Observe that A also encapsulates the

love-for-variety parameter γ: a higher γ means that consumers value variety more highly which,

in equilibrium, implies that more firms operate at a smaller scale (see Ottaviano et al., 2002; Peng,

Thisse, and Wang, 2006).

The indirect utility differential between moving to the city or remaining in the countryside is

∆V (c) ≡ Π(c) + CS − θH − fE , (8)

and it depends on each agent’s c, which is still unknown when the location decision is made.

Ultimately, a worker decides to move to a city if her expected indirect utility is larger than the

certain equivalent that she could secure in the numéraire sector in the countryside. Using (5) and

as shown in Appendix A.4, the expected value of (8) is given by:

E(∆V ) = A
Hck+2

1

k + 2
+

α− c1

2η

(
α− k + 1

k + 2
c1

)
− θH − fE . (9)

Entry into the city takes place as long as it is profitable so that E(∆V ) ≤ 0 holds at equilibrium,

which we henceforth refer to as the ex ante rationality constraint. In words, at equilibrium expected

profits and the urban consumer surplus of the marginal city dweller balance urban and entry costs.

3 Spatial equilibrium and urban income inequality

We now endogenize city size by imposing a no-arbitrage condition among locations. This is con-

ventionally referred to as a spatial equilibrium. At a spatial equilibrium: (i) all agents optimally

choose whether to move to the city or to remain in the countryside; (ii) urbanites optimally choose

whether they want to be entrepreneurs or not; (iii) all entrepreneurs set profit-maximising prices

for their products; (iv) all consumers maximise utility; and (v) all markets clear. Formally, a spatial

equilibrium is given by a city size, H , and a marginal cost cutoff, c1, such that: (i) entrepreneurs

with c ≥ c1 fail to produce profitably; (ii) the identity (7) holds; and (iii) the ex ante rationality

constraint (9) is satisfied. Put differently, at a spatial equilibrium, agents are either indifferent be-

tween the two locations if a city emerges, or they strictly prefer the countryside so that no city can

form. Formally, either E(∆V ) = 0 if H > 0, or H = 0 if E(∆V ) < 0.

A spatial equilibrium also satisfies the ex post rationality constraint ∆V (c) ≥ 0 if, conditional on

the realisation of c, no agent wants to change location. This will be the case in the presence of

urban-to-rural migration costs when those costs are high. In what follows, we disregard the issue

of return migration by assuming that the associated costs are large enough.7

7Formally, let fM denote urban-to-rural migration costs. There is no return migration from the city to the coun-

tryside if and only if Π (c) + CS− θH ≥ −fM . At an interior spatial equilibrium with E(∆V ) = 0, this condition is

equivalent to E[Π(c)]−Π (c1) ≤ fM + fE . Obviously, choosing a sufficiently large fM ensures that ex post rationality

holds as return migration is too costly.
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3.1 Spatial equilibria with one region: ‘Urbanisation’

Only two types of spatial equilibria may arise in the case of an isolated city: an equilibrium in

which no city forms and an equilibrium in which a city forms. We refer to the former as a rural

equilibrium (H∗ = 0, and thus c∗1 = α), and to the latter as an urban equilibrium (H∗ > 0, and thus

0 < c∗1 < α).

The set of equilibria of the model is determined by the free entry condition and the identity

which pins down the mass of entrepreneurs. Using expression (7) to substitute for H in (9) yields

the free entry condition as a function of c1 alone:

f(c1) ≡
α− c1

2η

[
α− k − 1

k + 2
c1 −

2θ

A
c
−(k+1)
l

]
− fE ≤ 0. (10)

Condition (10) is central to studying the number and nature of spatial equilibria. An urban equi-

librium is such that f(c∗1) = 0, whereas a rural equilibrium is such that f(α) ≤ 0. As is standard

in the literature, we will focus on stable equilibria only. A spatial equilibrium is (locally) stable if

and only if any small perturbation of the population distribution is self-correcting and brings the

economy back to its initial situation. A rural equilibrium is always stable whenever it exists since

fE > 0, whereas an urban equilibrium is locally stable if and only if ∂f(c∗1)/∂c1 > 0.

We first establish the existence of a spatial equilibrium in our model and characterise the num-

ber of possible equilibria. We then derive their comparative static properties and discuss under

which conditions what type of equilibrium arises. Concerning existence, we can show the follow-

ing results:

Proposition 1 (existence and number of spatial equilibria) The function f has either one or three

positive roots, of which at most two are in [0,α). Consequently, there exist at most two stable spatial

equilibria: an urban equilibrium and the rural equilibrium. If no stable urban equilibrium exists, then the

rural equilibrium is unique. The spatial equilibrium associated with the smallest value of c1 is always stable.

Proof. See Appendix B.1.

Proposition 1 establishes that whenever a rural equilibrium does not exist there exists at least one

stable urban equilibrium; this holds by continuity. Also, whenever a smallest root of f exists –

which corresponds to the largest equilibrium city size – it is a stable spatial equilibrium as in

Henderson (1974). The next proposition establishes that all equilibria have the same comparative

static properties:

Proposition 2 (equilibrium properties) At any stable spatial equilibrium, 1/c∗1 and H∗ are both non-

increasing in θ and fE and non-decreasing in α and A.

Proof. See Appendix B.2.
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As shown by Proposition 2, lower commuting costs θ, a stronger preference α for the differentiated

good, and a better natural advantage or urban productivity A all weakly increase city size and city

productivity at any stable spatial equilibrium.8

We next investigate under what conditions which type of spatial equilibrium arises. Obviously,

for any fE > 0, the rural equilibrium exists and is stable: no single agent wants to sink fE if

nobody else enters the city. Conversely, when fE is small enough, both rural and urban equilibria

may coexist and coordination failures may arise. If θ ≥ θR and fE ≥ fR, where

θR ≡ 3Aαk+2

2(k + 2)
> 0 (11)

and

fR ≡ α2

2η

k− 1

k+ 2
> 0, (12)

then the rural equilibrium is the unique spatial equilibrium. Note that the sufficient conditions

fE ≥ fR and θ ≥ θR for the rural equilibrium to be the unique stable spatial equilibrium are less

likely to hold if urban productivity A is high and if consumers value urban output a lot, i.e., α is

large. Otherwise, there exists a threshold θU (fE), with θU (fE) < θR and limfE→0 θ
U (fE) = θR,

such that there is at most one stable urban equilibrium if θ ≤ θU (fE). There also exists an urban

productivity threshold Amin such that H = 0 for all A < Amin. To see this, note that the utility

differential f(c1) in (10) is negative for all c1 ∈ [0,α] at the limit A → 0: cities cannot arise if urban

productivity is too low. Appendix B.3 summarizes the equilibrium structure of the model.

We depict the equilibrium structure of the model in Figure 1, which plots the equilibrium city

size H against the urban cost θ. We use bold lines to denote stable spatial equilibria (the dashed

schedule illustrates the unstable urban equilibrium). As one can see, H is non-increasing in θ and

H = 0 is the unique equilibrium beyond some threshold θU < θR. Also, the rural equilibrium

H = 0 is a stable equilibrium for any θ.

We can summarise the key properties of the model by focusing on the ‘urbanisation threshold’

θU . No city can emerge for θ ≥ θU and/or for A ≤ Amin. Any improvement in the benefits of living

in cities, either as consumers or entrepreneurs, makes the emergence of cities more likely and maps

into larger equilibrium city sizes and higher city productivity. These findings are consistent with

8Recall that A is decreasing in love-for-variety γ so that stronger love-for-variety reduces city sizes in our model.

This is in contrast to the representative-firm models of Ottaviano et al. (2002) and Peng et al. (2006). To understand

this striking difference, note that γ does not enter the equilibrium consumer surplus directly in (5). Instead, a more

pronounced taste for variety relaxes competition among entrepreneurs by making demands less elastic, thereby re-

laxing selection pressures by decreasing the equilibrium productivity cutoff 1/c1. Having on average less productive

firms reduces the consumer surplus, thus giving agents less incentives to agglomerate in big cities. We thank an

anonymous referee for pointing this out to us. Note that Behrens, Mion, Murata, and Südekum (2012) obtain a related

counterintuitive result in a very different model. There, smaller urban costs ceteris paribus reduce productivity in cities,

for any given city size, by making the survival of low productivity firms easier. The reason is that consumers become

richer when urban costs fall, so that firms face less elastic demands.

12
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Figure 1: Equilibrium structure of the model with a single city

the three ‘classical’ conditions stressed in the literature for cities to emerge and to develop (e.g.,

Bairoch, 1988). First, there must be some demand for urban goods and services: the extent of this

demand is captured by the parameter α and urban production is more valuable if it is produced

at a larger scale in equilibrium. Second, the urban population must supply goods and services to

sustain itself. It is able to produce more of these, the stronger its natural advantage, A. Last, any

reduction in urban costs that stems from an improvement in urban transportation is conducive to

urban development (Duranton and Turner, 2012). To sum up, a large α and low γ, θ, fE or cmax

are all conducive to the emergence of large cities.

3.2 Selection and urban income inequality

In our model, larger cities are more productive because of selection. What does this imply for

the relationships between city size and city per capita income, and between city size and city

income inequality? These are not trivial questions since only a share G(c1) of agents survive as

entrepreneurs, whereas the remaining ones exit the market and consume from their endowments.

The failure rate 1−G(c1) thus influences both moments of the income distribution of any city. We

now show that selection increases both per capita income and urban inequality, two predictions

that are robustly borne out by the U.S. data.

We first compute the average operating profit of all urbanites, including those who end up

failing as entrepreneurs at equilibrium.9 It is given by:

Π = A
Hck+2

1

k+ 2
=

c1(α− c1)
η(k + 2)

, (13)

9Recall that those who fail consume from their endowment and earn zero income. Hence, the average operating

profit provides a measure of urban per capita income in our model.
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Figure 2: City size dilates the income distribution, larger cities have higher Gini coefficients.

where the second equality follows from the equilibrium size-productivity relationship (7). It is

readily verified that ∂Π/∂c1 = (α− 2c1)/[η(2 + k)]. Hence, Π is ∩-shaped. The relationship is

non-monotonic because operating in a large city involves both costs and benefits that are reflected

in average profits: a large market size increases profits (the ‘H’ component in the expression for Π)

but it also induces tougher competition, thereby reducing markups and profits (the ‘c1’ component

in the expression for Π).

The foregoing results suggest that selection makes larger cities more unequal. To measure

inequality formally, define first ΠQ as the average profit earned by the top Q% of the distribution

and let σQ ≡ ΠQ/Π define the average income of the top Q% of the distribution relative to the

overall average. We show in Appendix B.4 that σQ is equal to

σQ =
k(k + 1)(k + 2)

2

(
c1

cmax

)−k
[

1

k
− 2

k + 1

q

c1
+

1

k + 2

(
q

c1

)2
]

, (14)

where q ≡ G−1(Q) for q ≤ c1 and σQ1
= (c1/cmax)−k > 1 holds by definition (i.e. successful

entrepreneurs represent only a fraction (c1/cmax)k of the urban population but they earn all its

income). We also compute the Gini coefficient of the income distribution in the city (see Appendix

B.4 for details):

Gini(k, cmax, c1) = 1 − k+ 2

4k+ 2

(
c1

cmax

)k

. (15)

We are interested in the equilibrium relationship between city size and income inequality. It turns

out that urban income inequality and city size are positively related for any of the foregoing

measures of inequality:

Proposition 3 (city size and urban income inequality) City size disproportionately benefits agents of

the highest quintiles: for all q < c1, ∂σQ/∂H > 0. The Gini coefficient is: (i) increasing at an increasing

rate in the productivity cutoff 1/c1; and (ii) increasing at a decreasing rate in city size H . Furthermore,

conditional on c1, the Gini coefficient is (iii) decreasing in k; and (iv) increasing in cmax.
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Proof. See Appendix B.5.

Proposition 3 establishes three results. First, there is a ‘superstar’ effect whereby the elasticity of

quantile income with respect to city size increases as we move up the income distribution. This

relationship is illustrated by Figure 2 for a sample of us msa’s (see Supplemental Appendix C

for more details on the data and the empirical implementation). As can be seen from the left

panel of Figure 2, the elasticity of quintile mean income with respect to city size is positive for

both the 1st and the 5th quintiles of the income distribution, and the elasticity pertaining to the

5th quintile is larger than the elasticity pertaining to the 1st quintile: the skill premium is increasing

in city size. Second, larger cities are more unequal as measured by the income Gini coefficient.

This relationship is depicted in the right panel of Figure 2. Last, Proposition 3 suggests that the

expansion of the share of income accruing to the wealthiest comes at the expense of both the

bottom half of the population of successful entrepreneurs and of those who simply fail. Thus, the

positive relationship between city size and inequality is driven by both the top and the bottom of

the income distribution.

To summarise our key findings, larger urban areas generate more wealth and are at the same time

more unequal than smaller cities.10 Our model suggests that the observed 40-year rise of the incomes

of the ‘working rich’ relative to the population as a whole (Piketti and Saez, 2003) may at least

be partly correlated with the intensive margin of urbanisation documented in the introduction,

i.e., city growth. To the best of our knowledge, little attention has thus far been devoted to this

aspect (see Moretti, 2013, for a complementary explanation based on the spatial sorting of college

graduates).

4 Urban systems, trade, and income inequality

We have shown in the foregoing section that everything that makes cities more attractive favours

their emergence, increases their equilibrium sizes, and makes them more unequal. Although

we derived these results in a setting with a single city, we now show that the same logic goes

through in an environment with numerous cities that trade with each other. More specifically,

we extend our analysis to a symmetric environment with multiple cities and transportation costs

in subsection 4.1, and we establish that lower transportation costs favour urbanization and the

size of cities. It also makes them more unequal. We then illustrate the behavior of the model in

an asymmetric setting in subsection 4.2. Since few clear analytical results are available here, we

provide some numerical simulations using us data to illustrate the novel effects that arise in this

environment, such as cities that are more centrally located may be bigger than more peripheral

ones, how trade integration affects urban income inequality, and how lower transportation costs

10Glaeser et al. (2009) show that access to public transportation explains why central cities attract more poor people

than the suburbs. Their analysis focuses on the determinants of the intra-city distribution of poverty, not inequality.
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favour both margins of urbanization: the number and the size of cities.

Formally, consider an economy with Λ locations that can potentially host cities. We use sub-

scripts l to denote variables that pertain to specific cities. Cities may differ in their underlying

urban productivity, Al, and in their bilateral transportation costs, modelled as iceberg trade costs

and denoted by τhl for all city pairs: only one unit for every τhl > 1 units of the urban good

shipped from city h are actually delivered at city l. The equilibrium expressions for prices, quanti-

ties, profits, and therefore the expression of the consumer surplus (5) that pertains to the one-city

case, namely, CS = (2η)−1(α− c1) [α− cl(k + 1)/(k + 2)], remain valid in this new environment.

Appendices A.2–A.4 provide the computational details.

4.1 Symmetric urban systems

To set the stage, assume that locations are symmetric in two ways. First, they are equally amenable

to urban development in the sense that Al = A > 0 for all l = 1, 2, . . . ,Λ. Put differently, cities have

the same underlying productivity distribution and there are no differences in natural advantage.

Second, cities may trade their urban goods with each other at a common iceberg cost τ > 1. We

define the trade ‘freeness’ between any two cities as φ ≡ τ−k ∈ (0, 1), with φ = 0 when trade costs

are prohibitive and φ = 1 in the absence of trade frictions.

We start by rewriting the expression governing the equilibrium relationship between the cutoffs,

cl, and city sizes, Hl, which replaces expression (7) in the previous section, as follows:

α− cl

Aηck+1
l

= Hl + φ ∑
h ̸=l

Hh. (16)

We can apply (16) to any two cities, e.g. l = 1, 2, and take the difference between the two resulting

expressions to obtain:
α− c1

Aηck+1
1

− α− c2

Aηck+1
2

= (H1 −H2)(1 + φ).

It then follows by inspection that H1 > H2 if and only if c1 < c2, that is, the larger city is also the

most selective and thus the most productive. Note that city size differences translate into larger

equilibrium productivity differences if trade is relatively free. We have thus shown:

Proposition 4 (size, selection, and productivity in an urban system) Consider a symmetric environ-

ment with Al = A > 0 for all cities l and bilateral iceberg costs equal to τ ∈ (1,+∞) for all city pairs. Then

selection is tougher and productivity is higher in larger cities at any spatial equilibrium:

cl ≤ ch ⇐⇒ Hl ≥ Hh

and ∂Hl/∂cl < 0 and ∂Hl/∂ch > 0.

Proof. See Appendix C.1.
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Proposition 4 establishes three important results. First, when accessibility differences are small

enough, selection is tougher and, as a result, average productivity is higher in larger cities. This

holds true irrespective of the number of cities in the urban system.11 Second, the positive relation-

ship between the number of available varieties and the toughness of selection in (16) implies the

existence of a hierarchy of cities: larger cities offer a larger range of goods and services. Finally,

while tougher selection in any city is beneficial to its own size, it negatively impacts the size of

other nearby cities. We refer to this negative dependence as the ‘cannibalisation effect’ of cities

(Dobkins and Ioannides, 2000). This is in line with the empirical results of Partridge, Rickman,

Ali, and Olfert (2009) who find that quite large nearby cities cast ‘agglomeration shadows’, i.e.,

they inhibit the growth of other nearby cities.

A symmetric equilibrium exists in this symmetric environment. We denote the inverse pro-

ductivity cutoff, common to all cities, and the common city size by c1 and H , respectively. Let

Φ ≡ (Λ − 1)φ be a measure of overall market integration, with Φ = 0 in the one-city case of

Section 3, and Φ = Λ − 1 in the limiting case of no trade frictions. It turns out that Φ and

urban productivity A enter all equilibrium expression jointly as (1 + Φ)A. Indeed, expected

profits are equal to (1 + Φ)AHck+2
1 /(k + 2) and the market clearing condition (16) simplifies to

(α− c1)/[(1 + Φ)Aηck+1
1 ] = H . Plugging these into the free-entry condition (9) yields

α− c1

2η

[

α− k − 1

k + 2
c1 −

2θ

(1 + Φ)Ack+1
1

]

− fE ≡ f(c1) ≤ 0. (17)

Rural and urban equilibria are defined as in the single-city case of Section 3. The whole analysis

pertaining to the role of A in relation to the types and stability of equilibria and the comparative

statics of the previous section readily extend to the role of Φ. The positive implications of a

decrease in transport costs are isomorphic to those of an increase in the underlying productivity of

the whole economy, thus implying that lower transport costs increase city productivity. Note that

this result may not be as obvious as it sounds. Indeed, from the perspective of entrepreneurs in

each city, lower inter-city trade costs and a larger number of trading partners mean both a better

market access and tougher competition from entrepreneurs established in other cities. As it turns

out, Proposition 5 below establishes that the agglomeration effect dominates in equilibrium:12

Formally:

11We show in Appendix C.1 that the result of Proposition 4 extends to a situation of asymmetric trade costs when

k is large enough. Note that Proposition 4 pertains to the equilibrium relationship between size and selection: at any

multi-city equilibrium, size and productivity move in the same direction. Proposition 4, however, makes no statement

as to which changes in exogenous parameters induce the change in city size and productivity in the first place.
12Using the German division and reunification as a natural experiment, Redding and Sturm (2008) establish a causal

relationship between market access, which depends on trade frictions, and the size and growth of cities. Brülhart,

Carrère, and Trionfetti (2012) establish a similar result for Austrian border regions using the fall of the Iron Curtain as

an exogenous source of variation in market access.
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Proposition 5 (city size, productivity, and inequality at the symmetric equilibrium) A larger Φ (lower

trade costs τ and/or more trading partners Λ), a larger A, or a lower θ: (i) are conducive to the emergence of

cities (‘extensive margin’ of urban development); and (ii) they weakly increase the equilibrium sizes of cities

(‘intensive margin’). In addition, (iii) lower trade costs are associated with a more unequal distribution of

earnings in all cities: ∂Gini/∂τ < 0.

Proof. See Appendix C.2.

Part (iii) of Proposition 5 is a novel result relative to the one-city model. It establishes that lower

trade frictions among symmetric cities make these cities more unequal. To establish this formally,

we compute the Gini coefficient evaluated at the symmetric equilibrium and we write it as follows:

Gini(Λ, τ , k; c1) = 1 − λ(Λ, τ , k)

(
c1

cmax

)k

, (18)

where λ(·) is a bundle of parameters too unwieldy to be revealing (its expression is relegated to

Appendix C.3). The effect of trade integration on inequality in cities is threefold. First, cheaper

transportation has a pro-competitive effect and this hurts the profits of every producer. Second,

tougher selection raises the failure rate, i.e., (c1/cmax)k falls. Last, lower transport costs also open

distant markets to some entrepreneurs – the exporters. As a result, a lower τ unambiguously raises

the exporters’ share of profits in each city. Since only the most productive entrepreneurs export,

it follows logically that lower transport costs increase income inequality by shifting profits from

non-exporters to exporters.

4.2 Asymmetric urban systems

Though insightful, the ability of the symmetric equilibrium pattern to illustrate the fate of hetero-

geneous cities is limited. The analysis of asymmetric urban systems when cities interact through

trade is quite involved (Fujita, Krugman, and Venables, 1999; Tabuchi, Thisse, and Zeng, 2005).

By way of making progress, this subsection presents three numerical examples involving data on

us cities (Supplemental Appendix B describes the data and the numerical procedure). We use

information for 356 metropolitan and micropolitan statistical areas in the year 2007 that includes

population size, total employment, city gdp, latitude, longitude, city surface, aggregate rent, and

the Gini coefficient of income inequality. We approximate trade costs by τhl = dδhl, where the dis-

tance dhl is computed as the great circle distance between msa centroids (by definition, dhl = dlh).

In the numerical application, we relax the assumption that there are no trade costs internal to

cities. More precisely, we approximate the internal distances by using the formula suggested by

Redding and Venables (2004). We pick the distance elasticity of trade costs from Duranton et al.

(2012), who estimate it for a sample of large us cities using Commodity Flow Survey data, and set

it to δ = 0.81. Calibrating the preference parameters (α, η, γ), as well as the shape parameter k and
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the sunk entry cost fE is difficult in this model and beyond the scope of our illustrative exercise.

Hence, we somewhat arbitrarily set (α, η, γ, k, fE) = (30, 1, 5.2, 2.3, 2.2). The qualitative results are

not sensitive to that choice of parameter values.13

We first ‘fit’ the model to the initial observed distribution of city size and urban productivity,

using the observed spatial structure between cities. We then selectively change either the distance

elasticity δ or pairwise distances between cities and compute the implied equilibrium responses of

city populations and productivities. We also report changes in Gini coefficients.

Illustration 1: Falling distance elasticity of trade costs. We first decrease the distance elasticity

of trade costs by 10%, which can be viewed as an economy-wide improvement in transportation

technology. The total increase in urban population is of 33,920,656 people, about 13.56% of the

initial urban population. This corresponds to the intensive margin of urbanisation since the total

number of cities is held fixed at 356. The average (unweighted) change in the cutoffs across msas

is -11.16% which, given our value of k=2.3, corresponds to a productivity gain of 7.78%. The

unweighted average change in population across msas is 19.36%. It is worth pointing out that

small cities grow more than large cities in relative terms, so the size distribution tilts slightly.

However, it generally remains fairly stable. Table 1 shows the five cities that move up the most

ranks in the hierarchy, as well as the five cities that move down the most ranks. Cities that move up

the size distribution tend to be relatively central, while cities that move down the size distribution

tend to be located closer to the coasts: market access matters. It is further worth pointing out that

changes in rankings take place in the bottom of the distribution, whereas – as expected - the top of

the distribution remains very stable. Figure 3 summarises the changes in cutoffs and populations.

Result (iii) in Proposition 5 suggests that this increased market integration should also increase

income inequality in cities. Computing the implied changes in the Gini coefficients, the average

(unweighted) change across the 356 msas is of 0.87%. In words, the result whereby deeper trade

integration exacerbates income inequality in cities, continues to in the current asymmetric setup.

The changes in the Gini coefficients are positive for all but one of the 356 cities. Small cities are

especially prone to increasing inequality, being those whose population grows the most and that

benefit the most from better access to markets. The distribution of changes in the Gini coefficients

are depicted in the left panel of Figure 5.

Illustration 2: Rising distance elasticity of trade costs. We next increase the distance elasticity

of trade costs by 5%. The aim of this exercise is to reveal the importance of cheap transportation

for the sizes of cities and for the extent of urbanisation in general. The total decrease in urban

population is of 35,223,500 people, about 14.09% of the initial urban population. The size of the

13We focus on the intensive margin of urbanisation, holding the number of cities fixed. Since the number of cities

is fixed and because the shocks to trade costs are relatively small, the issue of multiple equilibria is crucial to none of

our three numerical illustrations.
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Table 1: Top five cities moving up or down the urban hierarchy (Numerical illustration 1).

MSA name Initial population Final population Initial rank Final rank Change in rank

Flagstaff, AZ 127.450 176.734 291 262 -29

Cumberland, ML-WV 99.316 138.623 339 312 -27

Dothan, AL 139.499 188.421 270 244 -26

Brownsville-Harlingen, TX 387.210 553.005 127 102 -25

St. George, UT 133.791 184.264 278 253 -25

...
...

...
...

...
...

Santa Fe, NM 142.955 161.381 267 286 19

Jacksonville, NC 162.745 182.865 235 255 20

Hanford-Corcoran, CA 148.875 171.846 255 275 20

Yuba City, CA 164.138 184.641 230 252 22

Napa, CA 132.565 147.448 279 303 24

Notes: Population values are reported in 1000s. There are 356 cities in our numerical illustrations. Negative rank

changes indicate cities that move up in the urban hierarchy.
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Figure 3: Summary results on productivity and size for Illustration 1.
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Figure 4: Summary results on productivity and size for Illustration 2.

total effect clearly reveals how important cheap transportation is for urbanisation and for the sizes

of individual cities. The average (unweighted) change in the cutoffs across msas is 11.99% which,

given our value of k=2.3, corresponds to a productivity loss of 8.36%. The unweighted average

change in population across msas is -19.42%. It is worth pointing out that small cities lose more

than large cities in relative terms, which is in line with the empirical findings of Brülhart, Carrère

and Robert-Nicoud (2013). The size distribution remains, however, fairly stable again. Changes

in rankings take place at the bottom of the distribution, whereas – as expected - the top of the

distribution remains very stable. Figure 4 summarises the changes in cutoffs and populations.

Again, we compute the implied changes in the Gini coefficients. The average (unweighted) change

across the 356 msas is of -0.41%. In words, less trade reduces income inequality in cities in this

asymmetric setup, which is in line with the formal result in Proposition 5, albeit derived in a

symmetric environment. This reduction in earnings inequality is especially strong in large cities,

as those lose more population and, therefore, see their market size shrink more (in absolute terms)

than small cities. The changes in the Gini coefficients are negative for 352 cities and positive for

the remaining 4. The distribution of changes in the Gini coefficients are depicted in the right panel

of Figure 5.

Illustration 3: Transport improvements between New York and Chicago. We then reduce the

distance between New York and Chicago by 50%, keeping all other distances and the distance

elasticity of trade constant. This exercise can be viewed as simulating the impacts of a specific

transportation infrastructure project that would make trade between selected city pairs more effi-

cient. The average (unweighted) change in the cutoffs across msas is barely -0.001% which, given

our value of k = 2.3, corresponds to a very small productivity gain. The changes for New York

and Chicago – which are directly affected by the change in distance – are of course ‘much’ larger,

namely -0.057% and -0.162% respectively. Changes in cutoffs in third cities can go in either di-

rection: as Chicago and NYC grow, they provide both larger markets and tougher competition to
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Figure 5: Summary of changes in the Gini coefficients (Illustration 1, left; Illustration 2, right).

nearby cities. In our numerical exercise, there are 75 cities for which productivity decreases. The

unweighted average change in population across msas is -.0012%. Yet, New York and Chicago

grow by 0.076% and 0.066%, respectively; this population gain that results from improved market

access is in line with the empirical findings of Redding and Sturm (2008) and Brülhart et al. (2012,

2013). Note that 25 other msas also grow, whereas the 329 remaining ones actually lose population.

Last, total urban population still increases by about 0.007%, which corresponds to 17,953 people.

It is worth pointing out that our illustration reveals the presence of ‘agglomeration shadows’, as

highlighted in subsection 4.1: although the total urban population increases and although New

York, Chicago, and some other places grow, the better connection between New York and Chicago

hurts the majority of other cities.

In all of the foregoing, the total number of cities was held fixed. In our final numerical example

we relax that assumption and look in more depth at the extensive margin of urbanisation. That

margin seems especially relevant in the context of the developing world, where new cities emerge

and where small villages can quickly transform into major urban centres.

Illustration 4: Extensive margin of urban development. Small reductions in trade frictions may

lead to ‘massive urbanisation’ in a more general asymmetric environment. To see this, we con-

sider a comparative statics exercise that consists in comparing different equilibria as parameter

values change. We decompose the passage from one equilibrium to another into several steps for

illustrative purposes. Each of those steps highlights the interactions between the extensive and

the intensive margins of urbanisation. The reader should keep in mind that there is no structural

dynamic interpretation within our modelling framework.

Consider four asymmetrically located regions. Population is measured in thousands. The top

panel of Figure 6 illustrates the initial configuration of the space-economy when trade costs are
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relatively high.14 The initial equilibrium configuration is of the ‘core-periphery’ type, with a single,

relatively small city of about 60,000 inhabitants. The remaining three locations are empty as no

city can form there at this stage.15 Consider now a uniform decrease in all τhl of 0.1. The initial

‘core-periphery’ configuration is no longer stable: the indirect utility differential in regions 3 and

4 remains negative, but the indirect utility differential in location 2 turns positive. Hence, a second

city forms in region 2. Imposing this configuration, we obtain H∗
1 = H∗

2 = 85.59 and c∗1 = c∗2 = 2.33.

In words, a new city has formed (extensive margin), and the existing city has grown (intensive

margin). In addition, these larger city sizes put downward pressure on the equilibrium cutoffs,

i.e., there are productivity gains in the economy.

This is not the end of the story, however. This new two-city configuration is not an equilibrium

as the indirect utility differential in regions 3 and 4 has become positive, too: the rise of city 1 and

the emergence of city 2 offer additional and expanding markets for urban goods that locations 3

and 4 may produce. In turn, this yields rural-urban migration to regions 3 and 4 and two addi-

tional cities appear. The final stable equilibrium configuration is depicted in the bottom panel of

Figure 6, and it has four large cities: 103, 590 inhabitants, 102, 780 inhabitants, 101, 050 inhabitants,

and 101, 870 inhabitants, respectively. As one can also see from the figure, there have been large

productivity gains between the initial equilibrium and the new equilibrium. Observe also that the

size-productivity relationship, highlighted in Proposition 4, holds in our example.

In this example, the quantitative effect of a small change in trade costs on both population

and productivity is substantial. Indeed, decreasing trade costs make city 1 grow by almost 73%,

whereas the overall increase in the urban population amounts to 583%. Put differently, there is

‘massive urbanisation’ and the intensive margin contributes about 73% to urban growth, whereas

the extensive margin contributes about 510% to that growth. Last, productivity in city 1 also

increased substantially between the initial and the final configuration, namely by about 74%.

5 Conclusions

All empirical studies reveal that the elasticity of worker and firm productivity with respect to city

size is positive and typically falls in the 3%–8% range. Less well known is the fact that larger

cities are also more unequal: the average incomes of the highest income quantiles are magni-

fied by city size, so that income inequality is increasing with urban size. The model we develop

establishes clear links between city size, productivity, and inequality. It can shed light on phe-

nomena such as urbanisation, and allows us to investigate the impacts of trade integration on city

size and inequality. It is further able to cope with the various two-way interactions between size

and productivity: a larger city size increases productivity via a selection process, whereas higher

14We use α = 12.2 , γ = 2 , η = 2, θ = .1, cmax = 10, fE = 21 and k = 1.3 throughout this numerical example.
15See Supplemental Appendix C for the procedure used to check the stability of equilibria.
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Figure 6: A case of massive urbanization with Λ = 4 regions (top = initial, bottom = final).

productivity increases city size by providing incentives for rural-urban migration. This circularity

plays an important role in explaining episodes of rapid urbanisation and productivity gains, where

both the number of cities and the size of individual cities rapidly change.

Avenues for future research include combining agglomeration, selection, and sorting in a unify-

ing framework. To our knowledge, such a model is missing to date (in Behrens et al., 2012, selection

is trivial once sorting is controlled for). The theoretical analysis presented in this paper has also

largely left untouched issues that can only be addressed in a rigorous manner by studying in a

general way the asymmetric equilibria of the model. Studying the resulting urban hierarchies is a

notoriously hard task but which is certainly worthwhile to undertake in order to garner additional
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insights into the emergence and the evolution of urban systems. To sum up, there are plenty of

theoretical and empirical avenues to be explored further, and we leave them open for future work

in these directions.
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Appendix material

This extensive Appendix is structured as follows. Appendix A contains the guide to various

calculations, Appendices B and C contain various proofs. In Appendix A.1, we spell out the urban

structure and derive the urban costs. In Appendix A.2, we derive the expression of the consumer

surplus. In Appendix A.3 we derive the price equilibrium of the model. In Appendix A.4, we

establish the expression for expected profits of an urban entrepreneur. In all these appendices, we

provide the proofs for the general case with mulitple cities, but their adaption to the single-city

case is straightforward. In Appendices B.1 and B.2 we prove Propositions 1 and 2, respectively.

Appendix B.3 summarises the equilibrium structure with a single city and characterises all equi-

libria. Appendix B.4 provides details on the computation of the Gini coefficient, and Appendix

B.5 contains the proof of Proposition 3. In Appendices C.1 and C.2, we prove Propositions 4 and 5,

respectively. Last, Appendix C.3 contains various compuations for the Gini coefficient in the case

of symmetric trading cities and derives the comparative static results.
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A. Guide to calculations

A.1. Urban costs. Assume that all city dwellers consume one unit of land, as in standard fixed lot-

size models (see Fujita, 1989). Assume further that working in cities and consuming differentiated

goods requires urban dwellers to commute to the ‘Central Business District’ (cbd). This cbd is

located at x = 0, so that a city of size H stretches out from −H/2 to H/2. Without loss of generality,

we normalise the opportunity cost of land at the urban fringe to zero: R(H/2) = R(−H/2) = 0.

Each city dweller commutes to the cbd at constant unit-distance cost ξ > 0. Hence, an agent

located at x incurs a commuting cost of ξ|x|. Because expected profits and consumer surplus do

not depend on city location (see Section 2), the sum of commuting costs and land rent must be

identical across locations at a residential equilibrium. This implies that

R

(
H

2

)

︸ ︷︷ ︸
=0

+ξ
H

2
= R(x) + ξ|x|,

for all x, which yields the equilibrium land rent schedule R(x) = ξ (H/2 − |x|). The aggregate

land rent is thus given by

ALR =
∫ H

2

−H
2

R(x)dx =
ξ

4
H2.

When ALR is equally redistributed to all agents, equilibrium total urban costs are given by

−ALR

H
+R(x) + ξ|x| = ξ

4
H .

Letting θ ≡ ξ/4 > 0 then yields the expression θH for urban costs.

A.2. Consumer surplus. Denote by D ≡
∫
V d(ν)dν the demand for all varieties of the differ-

entiated good supplied in the city. As can be seen from equation (1), marginal utility at zero

consumption is bounded for each variety. Hence, consumers need not have positive demand for

all of them. The inverse demand for each variety ν of that good is obtained by maximising (1)

subject to (2) and can be expressed as follows:

p(ν) = α− γd(ν)− ηD (A.1)

whenever d(ν) ≥ 0. Expression (A.1) can be inverted to yield a linear demand system as follows:

q(ν) ≡ Hd(ν) = H

[
α

ηN + γ
− p(ν)

γ
+

ηN

ηN + γ

p

γ

]
, ∀ν ∈ V , (A.2)

where p ≡ (1/N)
∫
V p(ν)dν stands for the average price. By definition, V is the set of varieties

satisfying

p(ν) ≤ γα+ ηNp

ηN + γ
≡ pd. (A.3)
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For any given value of love for variety γ, lower average prices p or a larger number of competing

varieties N increase the price elasticity of demand and decrease the price bound pd defined in

(A.3). Stated differently, a lower p or a larger N generate a ‘tougher’ competitive environment,

thereby reducing the maximum price at which entrepreneurs still face positive demand. Letting

phl(ν) stand for the price of variety ν produced in h and sold in l, and Vhl be the set of varieties

produced in h and consumed in l, the consumer surplus is given by:

CSl =
α2Nl

2(ηNl + γ)
− α

ηNl + γ ∑
h

∫

Vhl

phl(ν)dν

+
1

2γ ∑
h

∫

Vhl

p2
hl(ν)dν −

η

2γ(ηNl + γ)

[

∑
h

∫

Vhl

phl(ν)dν

]2

. (A.4)

The expression with a single city is obtained by letting Vhl = V , phl = p, Nl = N , and by eliminat-

ing the sum across h.

A.3. Price equilibrium. Let πhl(c) = [phl(c)− τhlc] qhl(c) denote operating profits, expressed as

a function of the entrepreneur’s inverse productivity c. The firms sets prices in order to maximise

these profits for each market separately. Then, the profit maximising prices and output levels must

satisfy (for h ̸= l, with τhl = 1 substituted for when h = l):

phl(c) =
γα+ ηNlpl
2(ηNl + γ)

+
τhlc

2
and qhl(c) =

Hl

γ
[phl(c)− τhlc] . (A.5)

Integrating the prices in (A.5) over all available varieties, summing across regions and rearranging

yields the average delivered price in market l as follows:

pl =
γα+ ηNlpl
2(ηNl + γ)

+
cl
2

⇒ pl =
γα+ (γ + ηNl)cl

2γ + ηNl
, (A.6)

where

cl ≡
1

Nl
∑
h

τhl

∫

Vlh

c dG(c)

stands for the average delivered cost of surviving firms selling to l. Plugging (A.6) into (A.5), some

straightforward rearrangements show that the equilibrium prices can then be expressed as follows:

phl(c) =
cl + τhlc

2
, where cl ≡

2αγ + ηNlcl
2γ + ηNl

denotes the domestic cost cutoff in region l. Only entrepreneurs with c ‘sufficiently smaller’ than cl

are productive enough to sell in city l. This can be seen by expressing qhl in (A.5) more compactly

as follows:

qhl(c) = Hl
cl − τhlc

2γ
. (A.7)
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Clearly, selling in a ‘foreign’ market l when producing in h requires that c ≤ cl/τhl, whereas the

analogous condition for selling in the ‘domestic’ market is given by c ≤ cl. In what follows, we

denote by chl the export cost cutoff for firms producing in region h and selling to region l. This cutoff

must satisfy the zero-profit cutoff condition chl = sup {c | πhl(c) > 0}. From expressions (3) and

(A.7), this condition can be expressed as either phl(chl) = τhlchl or qhl(chl) = 0, which then yields:

chl = cl/τhl. Clearly, chl ≤ cl since τhl ≥ 1. Put differently, trade barriers make it harder for

exporters to break even relative to their local competitors because of higher market access costs.

Since pdl = pll(cl) = cl, the zero-profit cutoff condition (A.3) can be expressed as follows:

γα+ ηNlpl
ηNl + γ

= cl, with pl =
αγ + (γ + ηNl)cl

2γ + ηNl
.

We can thus solve for the mass of entrepreneurs selling in region l as follows:

Nl =
2γ

η

α− cl
cl − cl

. (A.8)

Using the Pareto parametrisation of Section 3.3, the average price and the average marginal cost in

region l are computed as follows: pl =
2k+1
2k+2cl and cl =

k
k+1cl, i.e., they are both proportional to the

domestic cutoff. Using this expression, as well as (A.8), we can then express the mass of sellers in

l as follows:

Nl ≡ ∑
h

HhG(chl) =
2γ(k + 1)(α− cl)

ηcl
,

where the first equality comes from the definition of Nl. The consumer surplus is finally derived

by substituting the equilibrium prices into (A.4) given in Appendix A.2.

A.4. Expected profits and sales. The expected profit in region l in the symmetric case under the

Pareto parametrisation is given as follows:

E(Πl) =
1

Hl

[

∑
h

Hh

4γ

∫ ch
τlh

0
(ch − τlhc)

2 HldGl(c)

]

=
c−k

max[∑h τ
−k
lh Hhc

k+2
h ]

2γ(k + 1)(k + 2)
= A

∑h τ
−k
lh Hhc

k+2
h

k+ 2
.

Using this expression, and noting that neither the consumer surplus nor the urban costs depend

on the entrepreneur’s ability, we readily obtain expression (9). By the same token, the per capita

sales (R for ’revenue’) are equal to

E(Rl) =
1

Hl

[

∑
h

Hh

4γ

∫ ch
τlh

0
(c2

h − (τlhc)
2) HldGl(c)

]

= (k + 1)E(Πl).

Appendix B. Proofs for Section 3

We prove all propositions of Section 3 for a single city, and all propositions in Section 4 for an

arbitrary number Λ of symmetric cities, one per region. Since the model is perfectly symmetric by

31



assumption, an equilibrium where all regions have the same size Hl ≡ H and the same cutoff cl

always exists. Let Φ ≡ (Λ− 1)τ−k denote the ‘freeness’ of trade. The single-city case corresponds

to the situation where Φ = 0 (since Λ = 1), which also applies when τ → ∞ (trade is prohibitive).

More generally, Φ is increasing in Λ and decreasing in τ and takes value Φ = Λ− 1 when τ = 1

(trade is costless). The reader can readily verify that all the proofs in this appendix apply to the

special case where Φ = 0, as in Section 3; and to the more general case where Φ > 0, as in Section

4. It turns out that Φ and A enter all expressions together as (1+Φ)A so that all comparative static

exercises pertaining to the effect of a change in A readily extend to the effects of changes in the

freeness of trade.

In the symmetric case with trade and with Λ regions, the free-entry condition (9) in each region

reduces to:
(1 + Φ)A
k+ 2

Hck+2
l +

α− cl
2η

[
α− k+ 1

k+ 2
cl

]
− fE − θH ≤ 0. (B.1)

Likewise, the identity (7) becomes

H =
1

(1 + Φ)Aη
α− cl

ck+1
l

. (B.2)

Substituting (B.2) into (B.1), and rearranging, we then obtain (17).

B.1. Proof of Proposition 1. Rewriting f(·) in decreasing order of its powers in c1, we obtain:

f(c1) = K1c
2
1 −K2c1 ±K3 +K4c

−k
1 −K5c

−k−1
1 ,

where all coefficients Ki are strictly positive. Note that the constant K3 (which is associated with

c1 to the power 0) may a priori be positive or negative, hence the ± sign in front of it. As one

can see, in all cases there are at most three sign changes from positive to negative or vice versa between

the coefficients of the consecutive powers. Let the number of positive roots be n and the number

of sign changes be s. By Laguerre’s (1883) generalisation of Descartes’ rule of signs, we know that

n ≤ s (i.e., there are at most as many positive roots as sign changes) and (s − n) is an even

number if n < s. Hence, there are either 3 or 1 positive roots in our case. Applying Laguerre’s

generalisation of Descartes’ rule to the first and second derivatives of f(·) reveals that f ′ changes

sign at most twice and that f ′′ changes signs at most once. The final part of the proposition results

from the fact that f(·) increases from −∞ at c1 = 0. Hence, ∂f/∂c1 must be strictly positive

at the smallest root (whenever one exists). By continuity, and the changes in the signs of the

derivatives when there are multiple roots, it follows that there at most two stable equilibria. To

see that the third root of f(·) is outside the relevant range [0,α], since c1 > α implies a negative

city size which does not make any economic sense, it is sufficient to know that f(α) = −fE and

limc1→+∞ f(c1) = limc1→+∞ f ′(c1) = +∞. Thus, the largest root of f(·) is (strictly) larger than α if

(and only if) the parameter fE is (strictly) positive.
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B.2. Proof of Proposition 2. Turning to the comparative static results, using (10), it is readily

verified that, for any given value of c1, f(·) is strictly increasing in α or A and decreasing in θ.

Assume that c∗1 ∈ (0,α] is a stable equilibrium. Two cases may arise: either f(c∗1) ≤ 0 (with c∗1 = α

and H∗ = 0), which corresponds to the rural equilibrium; or f(c∗1) = 0 with 0 < c∗1 < α and H∗ > 0

at an urban equilibrium. Consider first an increase in θ. Then f(·) shifts down everywhere, so it

must be that f(c∗1) < 0 in the first case: the rural equilibrium remains stable, and H∗ = 0 is trivially

non-increasing from its initial value. In the second case, f(c∗1) < 0 after the shift. Since stability

implies ∂f(c∗1)/∂c1 > 0 and by continuity of f(·), the new equilibrium must lie to the right of

the previous one, hence c∗1 increases and H∗ falls by (7). Consider next an increase in α or A. A

symmetric argument to the foregoing ensures that c∗1 falls. The overall effect of a rise of A or α on

H∗ now involves a direct effect, seen in (7), that reinforces the indirect effect in the case of α but that

works in the opposite direction in the case of A. This is because a more productive differentiated

goods sector requires fewer entrepreneurs to produce the same quantity of output, ceteris paribus.

In turn, fewer urban dwellers make it less costly to live in cities, thus triggering urban entry. The

net effect turns out to be unambiguous, which can be established by contradiction. Assume that

dA > 0 but that dH∗ < 0. From (10), dH∗ < 0 implies that (α− c1) [α− (k − 1)c1/(k + 2)] must

fall. It turns out that this term is decreasing in c1 over (0,α], thus dH∗ < 0 implies dc∗1 > 0

by (10). However, we have previously established that ∂c∗1/∂A < 0, a contradiction. Therefore,

∂H∗/∂A > 0.

In addition, all stable symmetric equilibrium city sizes H∗ are non-decreasing in trade freeness Φ

by the same token (remember that in the symmetric trading cities model, (1 + Φ)A replaces the

term A in the one-city model). The rest of the proof is identical. !

B.3. Types of equilibria. This appendix characterises under what conditions which type of equi-

librium emerges. Although we restrict ourselves to the case where fE > 0 in the main text, we

also discuss the limit case where fE = 0 in this appendix.

Proposition 6 (existence and stability of the rural equilibrium) (i) The rural equilibrium exists and

is stable for any fE > 0. (ii) If θ ≥ θR and fE ≥ fR, where

θR ≡ 3Aαk+2

2(k + 2)
> 0 and fR ≡ α2

2η

k− 1

k+ 2
> 0, (B.3)

then the rural equilibrium is the unique spatial equilibrium. (iii) If fE = 0 then the rural equilibrium exists

and is a stable spatial equilibrium if and only if θ ≥ θR.

Proof. (i) Condition (7) implies that H∗ = 0 if and only if c∗1 = α. Plugging this result into (10)

shows that this inequality holds for any fE > 0. Local stability of the rural equilibrium then

immediately follows from the strict inequality. It is useful to show (iii) next. If fE = 0, local

33



stability of the rural equilibrium requires that ∂f/∂c1 > 0 when evaluated at {H∗, c∗1} = {0,α}.

Using (10), some straightforward computations show that this is equivalent to θ > θR, where θR is

defined in (B.3). This establishes the stability of the rural equilibrium. To show its existence and

to derive a sufficient condition for it to be the only equilibrium, add and subtract (B.3) in (7) to

obtain:

f(c1) =
α− c1

2η

[

α− k − 1

k + 2
c1 −

3α

k + 2

(
α

c1

)k+1

+ 2
θR − θ

Ack+1
1

]

− fE (B.4)

<
α− c1

2η

[

(α− c1)
k− 1

k+ 2
+ 2

θR − θ

Ack+1
1

]

− fE ,

where the inequality stems from c1 < α. Imposing θ ≥ θR, we further have

α− c1

2η

[

(α− c1)
k − 1

k + 2
+ 2

θR − θ

Ack+1
1

]

− fE <
α

2η

[
α
k− 1

k+ 2
− 2

θ− θR

Aαk+1

]
− fE ≤ fR − fE , (B.5)

where the first inequality in (B.5) is due to c1 < α and where the second inequality comes from

θ ≥ θR. Consequently, when the right-hand side of (B.5) is (weakly) negative, then f(c1; ·) < 0 for

all values of c1. In that case, the rural equilibrium is the unique equilibrium. A sufficient condition

for this to be so is fE ≥ fR, where fR ≡ α2

2η
k−1
k+2 . This establishes the result.

Proposition 7 (existence and stability of the urban equilibrium) (i) If fE = 0 and θ ∈ (0, θR),

then there exists a stable urban equilibrium. (ii) If fE > 0, then there exists a θ, denoted as θU (fE)

with θU (fE) < θR and limfE→0 θ
U (fE) = θR, such that there is at most one stable urban equilibrium if

θ ≤ θU (fE) . (iii) There exists Amin such that H = 0 for all A < Amin.

Proof. (i) Let fE ≥ fR and θ ≥ θR; then the rural equilibrium H∗ = 0 is the unique equilibrium.

(ii) Let fE = 0 and θ > θR; then H∗ = 0 is the unique stable equilibrium. (iii) Let fE = 0

and θ ∈ (0, θR); then there exists a unique pair {H∗, c∗1} in R++ × (0,α) that constitutes a stable

equilibrium (the urban equilibrium). (iv) Let fE > 0; then there exists a θ, denoted as θU (fE) with

θU (fE) < θR and limfE→0 θ
U (fE) = θR, such that there is at most one pair {H∗, c∗1} in R++× (0,α)

that constitutes a stable equilibrium if θ ≤ θU (fE).

Parts (i) and (ii) are a re-statement of Proposition 6. (iii) We are looking for a candidate equilibrium

with α > c1. In this case, (10) is equivalent to

2θ

A
≥ ck+1

1

(
α− k − 1

k + 2
c1

)
, (B.6)

the right-hand side of which is strictly concave in c1, increasing at the limit c1 → 0, and its

maximum value on (0,α] is given by 3αk+2/(k + 2). Therefore, the condition θ < θR is also

sufficient to ensure that there exists a pair {H∗, c∗1} with c∗1 ∈ (0,α) and H∗ = H(c∗1) from (7) that
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is compatible with an equilibrium. We finally invoke the continuity of f(·) to establish (iv): at the

limit fE → 0, there exists a finite θU (fE) by (ii) such that a stable urban equilibrium exists, with

limfE→0 θ
U (fE) = θR. Since f(·) is continuously differentiable in both fE and θ, it must be the

case that θU (fE) is positive in the neighbourhood of fE = 0 and, by ∂f/∂fE < 0 and ∂f/∂θ < 0,

that θU (fE) is smaller than θR for any fE . (iv) If A > Amin ≡ θαk+2/(k + 2), then (5) holds with a

strict inequality for any c1 ∈ [0,α] and no urban equilibrium exists as a result.

To extend the foregoing proofs to the multi-city case of Section 5, it suffices to replace θR by θRΦ
and A by (1 + Φ)A in the proof above.

B.4. Measures of earnings inequality. We first show how to get the equilibrium share of earnings

of the Qth quintile, in expression (14). Recall σQ ≡ ΠQ/Π , where the average profit of the top

quantile Q is defined as (and equal to)

ΠQ(H , c1) ≡
1

G(q)

∫ q

0
Π(c)dG(c) = k

H

4γ

(
c2

1

k
− 2c1q

k + 1
+

q2

k+ 2

)

. (B.7)

Dividing this expression by (13) yields (14) in the text.

We next derive the Gini coefficient of income inequality as given by (15). Since all agents with

c ≥ c1 have zero income, aggregate income in city l across all draws c is given by

Wl(c1) ≡ HlG(c1)Π(Hl, c1) = A
H2

l c
k+2
1

k+ 2
,

where Π(Hl, c1) is from (13). The total income accruing to agents with draw q ≤ c1 is thus given

by

Wl(q) ≡ HlG(c1)Πq(Hl, c1) =
kH2

l

4γ

(
q

cmax

)k
(
c2

1

k
− 2q

k + 1
+

q2

k + 2

)

,

where Πq(Hl, c1) is from (B.7), and their income share is Wl(q)/Wl(c1). To compute the Gini

coefficient, we have to link the income share with the population share. To do so, we need to

switch to the distribution in terms of population shares (and not in terms of cost levels c). Let

y ≡ (q/cmax)k, i.e., q = y1/kcmax. Using this change in variables, the new upper bound for

integration is given by y = (c1/cmax)k , and we obtain the integral of the Lorenz curve for the

surviving agents as follows:

∫ ( c1
cmax )

k

0

Wl(y)
Wl(c1)

dy −
∫ ( c1

cmax )
k

0
xdx =

2 + 7k

4 + 8k

(
c1

cmax

)k

− 1

2

(
c1

cmax

)2k

(B.8)

To finally obtain the Gini coefficient, we need to add the integral of the Lorenz curve for the agents

who do not produce. This is given by

∫ 1

( c1
cmax )

k
(1 − x)dx =

1

2

[(
c1

cmax

)k

− 1

]2

(B.9)
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Summing (B.9) and (B.8) then yields the Gini coefficient of the income distribution as follows:

Gini(k, c1) = 1 − k + 2

4k+ 2

(
c1

cmax

)k

. (B.10)

B.5. Proof of Proposition 3. To establish the first part of the proposition, let us differentiate (B.7)

with respect to c1; we obtain

∂σQ
∂c1

= −k(k + 1)(k + 2)
2c1

(
c1

cmax

)−k (
1 − q

c1

)2

< 0

for all q < c1, and thus ∂σq/∂H > 0 by ∂H/∂c1 < 0. !

Let us next turn to the Gini coefficient: (i) It can be readily verified that ∂(Gini)/∂c1 < 0 and

∂2(Gini)/∂c2
1 < 0. (ii) ∂(Gini)/∂H > 0 readily follows from the monotonicity of (7) and (15). To

obtain the concavity of Gini with respect to H , invert (15) to get an expression for c1 as a function

of Gini, and substitute this for c1 into (7). Then, standard algebra reveals that ∂2H/∂(Gini)2 > 0

and thus ∂2(Gini)/∂H2 < 0. (iii) Using (15) again, we obtain:

∂(Gini)
∂k

(k, c1) = [1 − Gini(k, c1)]

[

− 3

(k + 2)(2k + 1)
+ ln

(
c1

cmax

)k
]

,

which is negative by inspection (recall that c1 < cmax). (iv) The last part of the proposition imme-

diately follows by inspection of (15). !

Appendix C. Proofs for Section 4

C.1. Proof of Proposition 4. The conditions in equation (16) hold at any spatial equilibrium.

Rewriting these conditions for the multi-city case with heterogeneous bilateral trade costs in matrix

form yields ⎡

⎢⎢⎢⎢⎣

1 φ12 . . . φ1Λ

φ21 1 . . . φ2Λ
...

. . .
...

φΛ1 φΛ2 . . . 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Fφ

⎡

⎢⎢⎢⎢⎣

H1

H2
...

HΛ

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
h

=
1

Aη

⎡

⎢⎢⎢⎢⎣

(α− c1)c
−(1+k)
1

(α− c2)c
−(1+k)
2

...

(α− cΛ)c
−(1+k)
Λ

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

, (C.1)

where Fφ is a Λ-dimensional square matrix and h and x are both Λ-dimensional vectors. Straight-

forward rearrangement of (16) for regions h and l in the symmetric case yields

α− cl
α− ch

(
ch
cl

)1+k

=
(1 − φ)Hl + φ∑iHi

(1 − φ)Hh + φ∑iHi
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which implies that

cl < ch ⇐⇒ Hl > Hh.

To get the second set of results, recall that the solution to the linear system Fh = x is given by

h = det(F)−1cof(F)T x, where cof(F) denotes the matrix of cofactors associated with F. Hence

∂Hl

∂cl
=

(−1)2l det(Fl,l)
det(F)

∂xl
∂cl

,

where det(Fl,l) is the minor of the (Λ− 1)× (Λ− 1) square matrix cut down from F by removing

its lth column and its lth row. The matrix Fl,l, like F, has only 1’s on its main diagonal and φ off its

main diagonal. Thus, its determinant is also positive, i.e. det(Fl,l) = (1 − φ)Λ−2[1 + (Λ− 2)φ] > 0.

Since ∂xl/∂cl < 0, the result follows. By the same token,

∂Hl

∂ch
=

(−1)h+l det(Fh,l)
det(F)

∂xh
∂ch

.

One can verify that for any row h and any m > 1, Fh,l and Fh,l+m (with l ̸= h and l+m ̸= h) differ

by exactly m row and/or column permutations. Hence, we know from the permutation properties

of the determinants that det(Fh,l) = (−1)m det(Fh,l+m), which implies that (−1)h+l det(Fh,l) =

(−1)h+l+m det(Fh,l+m). In words, ∂Hl/∂ch has a constant sign for all h ̸= l. To obtain that sign, we

can proceed as follows. Take an arbitrary row h, and choose an adjacent column to the diagonal.

Form the minor of Fh,h−1 or Fh,h+1. This has the same structure than Fh,h, except for one term

on the diagonal that has been replaced by φ. Now perform a column expansion on that column

to see that det(Fh,h) = det(Fh,l) + (1 − φ)det(F̃), where F̃ has the same structure than F but is

a Λ− 2 square matrix. Using the determinants, we then obtain that det(Fh,h−1) = det(Fh,h+1) =

φ(1 − φ)Λ−2. This then shows that

∂Hl

∂cl+1
=

(−1)2l+1φ(1 − φ)Λ−2

det(F)︸ ︷︷ ︸
<0

∂xh
∂ch

.

which, together with ∂xh/∂ch < 0 and the invariance of the sign of ∂Hl/∂ch for h ̸= l, completes

the proof.

To obtain the limit result for large values of k, observe that the ith row-sum of non-diagonal

elements of Fφ is given by ∑j ̸=i d
−γk
ij . Clearly, this sum limits zero as k gets large, so that Fφ is

diagonal dominant for k large enough. Since Fφ is symmetric and positive, diagonal dominance

then implies that the matrix is positive definite. Hence det(Fφ) > 0. Furthermore, all minors Fφ
l,l

on the main diagonal are positive as they are also associated with a positive diagonal-dominant

and symmetric (i.e., positive definite) sub-matrix. This establishes the result. !
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C.2. Proof of Proposition 5. We first show that a smaller value of Φ makes the rural equilibrium

more likely to occur. Note that when fE = 0, local stability of the rural equilibrium requires that

∂f/∂cl > 0 when evaluated at {H∗, c∗l } = {0,α}. This is equivalent to θ > θRΦ , where θRΦ is given by

θRΦ ≡ (1 + Φ)3A
αk+2

2(k + 2)
= (1 + Φ)θR.

As in the single-city case, the rural equilibrium exists and is stable for all θ ≥ θRΦ , whereas the

urban equilibrium is the unique stable equilibrium when θ < θRΦ . Clearly, θRΦ is increasing in Φ (i.e.,

with freer trade), which proves our claim. Turn next to the case where fE > 0. We have already

established in the proof of Proposition 7 that f(·) is continuously decreasing in both fE and θ,

which implies that the equilibrium city size is decreasing in fE and increasing in Φ at the stable

urban equilibrium. !

C.3. Gini coefficient and comparative statics. By inspection of (18), Ginil is decreasing in both

cl and λ(·). Thus, to establish the result, it is sufficient to show that ∂λ/∂τ < 0. Let z(Λ, τ , k) ≡
−λ(Λ, τ , k)/2 so that (18) may be rewritten as

Ginil(Λ, τ , k; cl) = 1 + 2z(Λ, τ , k)

(
cl

cmax

)k

,

with z(·) < 0 for all Λ, τ and k. Fastidious calculations similar to those leading to (B.8) in appendix

C.6 yield

z(Λ, τ , k) = −1 +
φ

2(1 + 2k)

(Λ− 1)
[
(τ − 1)2(1 + 2k)(2 + k)(1 + k) + 2(τ − 1)(2 + k)(1 + 3k) + 2 + 7k

]

2τ2 + (Λ− 1) [(τ − 1)2(2 + k)(1 + k) + 2(τ − 1)(2 + k) + 2]

+
1

2(1 + 2k)
(2 + 7k)τ2

2τ2 + (Λ− 1) [(τ − 1)2(2 + k)(1 + k) + 2(τ − 1)(2 + k) + 2]

from which it follows that −2z(1, τ , k) = (2+ k)/(2+ 4k) and that −2z(Λ, 1, k) = (2+ k)/(2+ 4k).

We are now equipped to prove the result. Differentiating z(Λ, τ , k) with respect to τ yields:

∂z(Λ, τ , k)
∂τ

= −k(Λ− 1)
1 + 2k

{
φ
[
τ2κ2 + τκ1 + κ0

]

{(Λ− 1) [τ2(1 + k)(2 + k)− τ(2 + k)2k + (1 + k)k] + 2τ2}2

+
τ(2 + 7k) [(τ − 1)(2 + k) + 1]

{(Λ− 1) [τ2(1 + k)(2 + k)− τ(2 + k)2k + (1 + k)k] + 2τ2}2

−∂φ

∂τ

1

k

(τ − 1)2(1 + k)(2 + k)(1 + 2k) + 2(τ − 1)(2 + k)(3k + 1) + (2 + 7k)
(Λ− 1) [τ2(1 + k)(2 + k)− τ(2 + k)2k + (1 + k)k] + 2τ2

}

where κ2 ≡ (Λ − 1)(1 + k)(2 + k)2 − 4k(2 + k), κ1 ≡ 3(Λ − 1)(1 + k)(2 + k) − 2k(7 + 2k) and

κ0 ≡ (Λ − 1)(2 + k) − 6k all have ambiguous signs; therefore, the term in the first line of the

right-hand side above cannot be signed a priori. By contrast, the terms on the second and third
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lines are positive by inspection. However, if φ
[
τ2κ2 + τκ1 + κ0

]
is negative, then it is larger than

τ2κ2 + τκ1 + κ0 and, adding the terms of the first and second lines, implies that

φ
[
τ2κ2 + τκ1 + κ0

]
+ τ(2 + 7k) [(τ − 1)(2 + k) + 1]

> τ2κ2 + τκ1 + κ0 + τ(2 + 7k) [(τ − 1)(2 + k) + 1]

= (2 + k)(Λ− 1)
[
(1 + k)(2 + k)(τ − 1)2 + 3(1 + k)(τ − 1) + 1

]

+(2 + k)
[
(2 + 3k)(τ − 1)2 + 3(1 + k)(τ − 1) + 1

]
> 0

which in turn implies that ∂z(Λ, τ , k)/∂τ < 0 for all Λ, τ and k. We have already established in

Proposition 5 that selection gets tougher as trade gets freer (∂cl/∂τ > 0), therefore ∂(Ginil)/∂τ ≡
2 [cl(·)/cmax]

k
{
∂z(·)/∂τ + z(·)c−1

l ∂cl(·)/∂τ
}

< 0. !

For the sake of completeness, note that

∂z(Λ, τ , k)
∂Λ

= − 1

1 + 2k

{
−τ2φ

[
(1 + k)(2 + k)(1 + 2k)(τ − 1)2 + 2(2 + k)(1 + 3k)(τ − 1) + 2 + 7k

]

{(Λ− 1) [τ2(1 + k)(2 + k)− τ(2 + k)2k + (1 + k)k] + 2τ2}2

+
(2 + 7k)τ2

[
(1 + k)(2 + k)(τ − 1)2 + 2(2 + k)(τ − 1) + 2

]

2 {(Λ− 1) [τ2(1 + k)(2 + k)− τ(2 + k)2k + (1 + k)k] + 2τ2}2

}

< − k

1 + 2k

τ2(τ − 1)(2 + k) [3(1 + k)(τ − 1) + 2]

2 {(Λ− 1) [τ2(1 + k)(2 + k)− τ(2 + k)2k + (1 + k)k] + 2τ2}2 < 0.

Therefore, given cl, granting access to more urban markets increases wages of the less productive

exporters relative to the wages of the most productive ones; this positive effect is strong enough to

overcome the negative one on income inequality that arises as a result of the wages of all successful

entrepreneurs going up. However, since selection gets tougher as trade gets freer (∂cl/∂τ > 0), the

two effects work in opposite directions. Our numerical simulations suggest that the latter indirect

effect always dominates the former, direct effect. More precisely, the fact that a larger Λ increases

the Gini coefficient is entirely due to the increase in selection. By contrast, the fact that a lower τ

increases the Gini is due to the increase in selection and to the increase of the profits of the most

productive entrepreneurs relative to those of the least productive entrepreneurs.
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Supplemental Appendix with Extra Material for

“Survival of the Fittest in Cities”

A. Theoretical extensions

A.1. Return migration and inequality. Assume that, upon learning their inverse ability c, en-

trepreneurs who fail to be successful may return to the countryside at no cost. Assume further

that all agents know this piece of information and include it in their entry decision. Starting from

the equilibrium conditions of the benchmark model, the mass of people staying in the city is now

G(c1)H with G(c1) = (c1/cmax)
k. Let Ã ≡ 1/[2(k + 1)γ]. The market clearing condition, which

characterises the mass of varieties actually supplied to consumers, may be rewritten as:

α− c1

Ãηc1
= G(c1)H .

Next, the profit is given by Π(c) = G(c1)
H
4γ (c1 − c)2, so that the average profits of the stayers may

be written as

Π̃ =
∫ c1

0

α− c1

4γc1Ãη
(c1 − c)2k

ck−1

c1
k

dc =
1

η(2 + k)
(α− c1)c1. (A.1)

Note that (A.1) is positive and concave, as well as decreasing in c1 over (α/2,α). Furthermore, it

is readily verified that

Π̃(q) ≡
∫ q

0

α− c1

4γc1Ãη
(c1 − c)2k

ck−1

ck1
dc

=
(α− c1)k(k + 1)

2η

[
c1

−k+1qk

k
− 2c1

−kqk+1

k+ 1
+

c−k−1
1 qk+2

k+ 2

]

,

so that the share of profits accruing to entrepreneurs with a draw smaller than q is given by

σ(q) ≡ Π̃(q)

Π̃
=

k(k + 1)(k + 2)
2

[
c1

−kqk

k
− 2c1

−k−1qk+1

k + 1
+

c−k−2
1 qk+2

k+ 2

]

,

which depends on the inverse average productivity c1. For any given q, the income share is larger

in larger cities (smaller c1). The Gini coefficient can then finally be computed as follows:

Gini = 1 − 2

[
1 −

∫ cl

0
σ(q)k

qk−1

c1
k

dq

]
=

3k

4k+ 2
, (A.2)

which is independent of city size and solely depends on the distributional parameter k ≥ 1,

despite the fact that σ(q) is a function of c1. Thus, the model with return migration delivers the

counterfactual prediction that city size does not matter for income inequality.
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A.2. Costly access to urban diversity in the countryside. Assume, contrary to what we did in

the main body of the paper, that each region l has its own countryside (and not a ‘common pool’).

Consumers in the countryside associated with city l , henceforth denoted by l0, can access all goods

that are available in the city, but at a higher cost. More precisely, if residents in city l can access

goods from city h at trade cost τhl, rural residents have to pay τhl0 = ξτhl, with ξ > 1. We assume

that ξ is common to all countrysides, but this assumption is immaterial for our analysis and we

could easily relax it.

Let us subscript all expressions for the countryside l0 by 0. It can readily be verified using ap-

pendices A.2 and A.3 that all expressions remain basically unchanged. In particular, the consumer

surplus in the countryside is given by:

CSl0 ≡ CS(cl0) =
α− cl0

2η

(
α− k+ 1

k+ 2
c0

)
. (A.3)

The number of sellers in countryside l0 must satisfy

α− cl0
A0ηc

k+1
l0

≡ ∑
h

τ−k
hl Hh, (A.4)

where A0 = ξ−kA < A. The indirect utility differential between remaining in the countryside or

moving to city l, given by

∆Vl(c) ≡ Πl(c) + (CSl − CSl0)− θHl − fE , (A.5)

is obviously always smaller than when access to urban goods is prohibitive in the countryside.

When urban goods are available in the countryside, cities will grow less strongly since the urban

consumption premium decreases. This is one explanation for urban giants in the Third World –

access to all sorts of goods and services that are just inexistent outside of cities.

Let cl0 ≡ c0 for simplicity. In the case of a single city, the free entry condition reduces to

f (H , c1, c0) ≡ 1

k + 2

[
AHck+2

1 +A0(L−H)ck+2
0

]
+

α− c1

2η

[
α− k+ 1

k+ 2
c1

]

−α− c0

2η

[
α− k+ 1

k+ 2
c0

]
− θH − fE ≤ 0 (A.6)

with the complementary slackness condition Hf (H , c1, c0) = 0. The first term (expected profits)

is strictly increasing with H since access to urban consumers increases entrepreneurs’ profits. The

second term is always positive, but less so the smaller is ξ (in the limit, when c0 → α, it boils down

to the corresponding expression in the main body of the paper; or it vanishes if ξ = 1, in which

case only the profits/urban costs tradeoff matters).

Turning to condition (A.4), it can be solved for H as follows in the countryside:

H =
α− c0

A0ηc
k+1
0

, (A.7)
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and for H as follows in the city:

H =
α− c1

Aηck+1
1

. (A.8)

The foregoing conditions (A.7) and (A.8) reveal that c0 > c1 for all ξ > 1, i.e., the consumer surplus

is lower in the countryside. Clearly, c0 can be expressed as a function of the city cutoff, c0 = f(c1).

We thus have

f (H , c1, c0) ≡ 1

k+ 2

[
AHck+2

1 +A0(L−H)f(c1)
k+2
]
+

α− c1

2η

[
α− k + 1

k + 2
c1

]

−α− f(c1)
2η

[
α− k + 1

k + 2
f(c1)

]
− θH − fE ≤ 0 (A.9)

which we need to examine – combined with (A.8) – to determine the cutoffs c1 and the city size H .

The remaining variables (rural population and rural cutoff) can then be readily retrieved.

Let us look at the equilibrium structure numerically. A preliminary investigation confirms a

few results. First, as shown above, c0 > c1 (which is obvious). Second, the structure of equilibria

seems to be the same as the one in the main body of the paper. There is always a rural equilibrium

(obvious), and at most one stable urban equilibrium. We can depict an example as follows in the

two panels of Figure 7 below. The dashed curve is the loci of (c1, c0) such that f (H , c1, c0) = 0,

where we have replaced H by its expression in (A.8). All points below that curve (to the south-

west) are such that f < 0, whereas all points above that curve (to the north-east) are such that

f > 0. The solid curve depicts the loci of (c1, c0) that satisfy (A.7) and (A.8). Clearly, that loci lies

above the 45 degree line for all admissible couples (i.e., such that c1 ≤ α and c0 ≤ α). Actually, in

the example below, α = 10 and the solid bold loci must cut the 45 degree line at c1 = α and c0 = α.

Below those values, it is always above the 45 degree line, i.e., c0 > c1 as it must be.

In the left panel of Figure 7, there is only a rural equilibrium. This is easy to see since the bold

locus lies always in the zone where f < 0. In words, for all values of c1 < α and c0 < α, people

want to stay in the countryside. Hence, the equilibrium is such that f(α,α) < 0 and H = 0 (with

L people remaining in the countryside). The left panel of Figure 7 is drawn for a high value of the

fixed entry costs fE = 100.

Now keep all parameters unchanged and decrease the fixed entry costs fE to 10. In that case,

as can be seen from the right panel of Figure 7, the dashed locus shifts down, whereas the solid

locus remains the same. We now have an intersection between the two loci, i.e., a point where

f = 0 and (A.7) and (A.8) hold. At that point, c1 and c0 are such that agents are indifferent at the

margin between staying in the countryside or being in the city. Moving up the solid locus raises

c1 (thus shrinking the city) and yields f > 0: hence, if people would leave the city, they would

be willing to move back. Moving down the locus decreases c1 (thus making the city bigger) and

yields f < 0: hence, if people would enter the city, they would be worse off and willing to move

back. The intersection between the solid and the dashed loci thus yields the unique stable urban

equilibrium. The rural equilibrium at (α,α) is obviously unstable. Observe that decreasing fE
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Figure 7: Only a rural equilibrium exists (left panel); urban equilibrium exists (right panel)

shifts down the dashed locus, which corresponds to smaller values of c1 and c0 and, therefore,

larger equilibrium city sizes Hl.

B. Data for empirics and numerical illustrations

Our data on msa sizes, average hourly wages, mean wages by income quintiles, aggregate rent,

and income inequality comes from the us Census Bureau’s American Community Survey 2007.

The data on employment comes from the bls, whereas metropolitan gdp comes from the bea. The

geographical data comes from the 2000 us Census Gazetteer county geography file. We aggregate

up to the msa-level using the county-to-msa concordance tables for 2007. The geographical coordi-

nates of an msa are county-population weighted average centroids of the counties in the msa. The

msa surface area – land surface only – is obtained from the same data source as the sum across

constituent counties.

Following Corcos, Del Gatto, Mion, and Ottaviano (2012) and Behrens, Mion, Murata, and

Südekum (2012), and using the properties of the Pareto distribution, the cutoffs are computed as

follows:

cl =
k + 1

k

1

gdpc l

,

where gdpcl is gdp per employee in msa l. Following Redding and Venables (2004), internal trade

costs in a city are approximated by: : dii = (2/3)
√

surfacei/π. The numerical procedure we use to

simulate the model is then as follows:
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1. We back out the unobservable Al terms from the identity (7) as follows:

Âl =
α− cl

ηck+2
l

1

∑h d
−kδ
hl Hh

. (B.1)

2. Using the values of Âl, we compute the corresponding upper bounds:

ĉl,max =

[
1

2Âl(k + 1)γ

]1/k

. (B.2)

Observe that since there are trade costs within each city, the ‘domestic cutoff’ is not given by

cl but by cl/τll. We makes sure in the application that cl/τll < ĉl,max for all l.

3. We then use the free entry conditions to get the unobservable θ̂l terms:

Âl

k+ 2 ∑
h

δ−δk
lh Hhc

k+2
h +

α− cl
2η

[
α− k + 1

k + 2
cl

]
− θ̂lHl − fE = 0. (B.3)

We make sure in the application that θ̂l is positive for all l.

4. Finally, we can run numerical illustrations. To this end, we proceed as follows. First, we

either reduce δ – the distance elasticity of trade costs – by 10%, or increase it by 5%, or we

reduce the distance dhl between New York and Chicago by 50%. Then, for each case we solve

the system of 2 ×K equations given by (B.1) and (B.3) for the 2 ×K unknowns Hh and ch

that would be observed in the new equilibrium. The upper bounds, ĉl,max, the commuting

costs, θ̂l, and the parameters (α, η, γ, k, fE) are all held constant in those exercises.

We compute the Gini index for all cities as follows. Take an arbitrary city ℓ. Define the accessi-

bility of destination cities from ℓ as cj/τℓj , rank destination cities from the most accessible to the

least accessible (assuming ties away without loss of generality so as to simplify notation) and drop

the origin subscript ℓ from τℓh (where h is the destination city) for simplicity so that

c1/τ1 > c2/τ2 > ... > cN/τN ,

with N = 356 in our case. Obviously, if firm c is more productive than firm z, then c serves at

least as many markets as z. We then consider N + 1 = 357 firm categories, with firms in category

n serving n markets, n ∈ {0, ..,N}.

The aggregate earnings of all categories taken together are equal to

Πℓ ≡
c−k
ℓ,max

2γ(1 + k)(2 + k)

N

∑
h=1

τ−k
h Hhc

2+k
h . (B.4)
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Now, consider the earnings of firms serving exactly one market (the most accessible of all), i.e.

market 1. These are equal to

Π1
ℓ ≡ 1

4γ

∫ c1/τ1

c2/τ2

H1 (c1 − cτ1)
2 dG(c)

By this logic, it follows that the aggregate earnings of firms serving markets 1 to n (that is, the

earnings of firms serving the n most accessible markets) are equal to

Π1,...,n
ℓ ≡ 1

4γ

n

∑
h=1

Hh

∫ ch/τh

cn+1/τn+1

(ch − cτh)
2 dG(c)

=
k

4γckℓ,max

n

∑
h=1

Hh
c2
h

k

[(
ch
τh

)k

−
(
cn+1

τn+1

)k
]

− k

4γckℓ,max

n

∑
h=1

Hh
2chτh
1+ k

[(
ch
τh

)1+k

−
(
cn+1

τn+1

)1+k
]

+
k

4γckℓ,max

n

∑
h=1

Hh
τ2
h

2 + k

[(
ch
τh

)2+k

−
(
cn+1

τn+1

)2+k
]

, (B.5)

for all n < N , with cn+1/τn+1 = 0 for n = N . Using (B.4) and (B.5) yields the following expression

for the earnings share of firms of categories 1 to n:

Lℓ(n) ≡
Π1,...,n

ℓ

Πℓ

=
(1 + k)(2 + k)

2

1

∑
N
h=1 τ

−k
h Hhc

2+k
h

n

∑
h=1

Hhc
2
h

[(
ch
τh

)k

−
(
cn+1

τn+1

)k
]

− k(2 + k)
1

∑
N
h=1 τ

−k
h Hhc

2+k
h

n

∑
h=1

Hhchτh

[(
ch
τh

)1+k

−
(
cn+1

τn+1

)1+k
]

+
k(1 + k)

2

1

∑
N
h=1 τ

−k
h Hhc

2+k
h

n

∑
h=1

Hhτ
2
h

[(
ch
τh

)2+k

−
(
cn+1

τn+1

)2+k
]

,

with cN+1/τN+1 = 0. A little bit of algebra confirms that Lℓ(N) = 1 holds, as should be the case.

Let q0 ≡ Pr(c > c1/τ1) = 1 − [c1/(cℓ,maxτ1)]k denote the fraction of entrepreneurs who fail to

serve any market and let qn ≡ Pr(c > cn+1/τn+1) = 1 − [cn+1/(cℓ,maxτn+1)]k denote the fraction of

entrepreneurs who serve at most n markets, with qN = 1. Then, for all n ∈ {1, ...,N − 1},

Lℓ (qn) =
(1 + k)(2 + k)

2

1

∑
N
h=1 τ

−k
h Hhc

2+k
h

n

∑
h=1

Hhc
2
h

[(
ch
τh

)k

− 1 + qnc
k
ℓ,max

]

− k(2 + k)
1

∑
N
h=1 τ

−k
h Hhc

2+k
h

n

∑
h=1

Hhchτh

[(
ch
τh

)1+k

−
(

1 − qnc
k
ℓ,max

)1+1/k
]

+
k(1 + k)

2

1

∑
N
h=1 τ

−k
h Hhc

2+k
h

n

∑
h=1

Hhτ
2
h

[(
ch
τh

)2+k

−
(

1 − qnc
k
ℓ,max

)1+2/k
]

, (B.6)
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and Lℓ (qN ) = Lℓ (1) = 1. This is a Lorenz curve.

We compute the Lorenz curve numerically as follows: the vector of city sizes {Hh} is the em-

pirical one, the vector of inverse productivity cutoffs {ch} comes from (B.2), and the vector {cℓ,max}
comes from Step 2 above. We pick k = 2.3 and we compute the vector of bilateral trade costs as

τh = d0.81
ℓh for h ̸= ℓ (otherwise we use dℓℓ = (2/3)

√
surfaceℓ/π), as we explain in the text. Finally,

we compute the vector qn plugging these values into the definition qn ≡ 1 − [cn+1/(cℓ,maxτn+1)]k.

Finally, we can use expression (B.6) to construct a piecewise linear approximation of the Gini

in city ℓ as

Ĝiniℓ ({ch}, {Hh}) = 1 −
N

∑
n=1

[L(qn)− L(qn−1](qn − qn−1). (B.7)

We compute counterfactual Ginis following the same procedure.

C. Numerical procedure to check stability of equilibria

In the numerical application of Section 4.2, we can check the stability of any potential equilibrium

candidate (including arbitrary corner solutions) as follows. Let Ω+ and Ω0 denote the sets of

regions with and without a city at equilibrium, respectively. Assume that there are z regions

without a city. The numerical procedure for constructing equilibria and for checking their stability

is then as follows.

Let c = (c1 c2 . . . cΛ) and let H = (H1 H2 . . . HΛ). First, the non-positive expected profit is

given by

E(∆Vl) =
A

k+ 2 ∑
h∈Ω+

φlhH
∗
hc

∗2+k
h +

(α− c∗l )

2η

[
α− 1 + k

2 + k
c∗l

]
− fE − θH∗

l ≡ fl(c, H) ≤ 0 (C.1)

for any region. Condition (C.1) must hold with equality for all l ∈ Ω+ and with strict inequality

for all l ∈ Ω0. Second, for any l, the identity for the masses of sellers can be rewritten as:

gl(c, H) ≡ A
α− c∗l
ηc∗1+k

l

− ∑
h∈Ω+

φhlH
∗
h ≡ 0 (C.2)

Conditions (C.1) for l ∈ Ω+ and conditions (C.2) for all l = 1, 2, . . . ,Λ constitute a system of 2Λ− z

equations in the 2Λ− z unknowns {Hl}Ω+ and {cl}Λ. Denote by (c∗, H∗) a solution to that system.

If fl(c∗, H∗) < 0 for all l ∈ Ω0, this solution is an equilibrium candidate.

To check whether this solution is a stable equilibrium we proceed as follows. We can uniquely

solve the set of equations gl(c, H) = 0 for all l ∈ Ω+ for the Hl = Hl(cΩ+) for l ∈ Ω+. Note that

cΩ+ denotes the Λ− z dimensional vector of the {cl}Ω+ . We can thus substitute out the {Hl}Ω+

in (C.1). Since Hl = 0 for l ∈ Ω0, we obtain a system of Λ− z equations in the Λ variables cl.
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To check whether no deviation from one city to another is profitable, we have to make sure that

the Jacobian associated with {fl}Ω+ in the variables {cl}Ω+ is positive definite at c∗ (recall that we

already substituted out the Hl) on the subset generated by the constraints (C.2) for l ∈ Ω0. After

substituting the positive Hl into (C.2), the constraints are given by

gl(c) ≡ A
α− cl

ηc1+k
l

− ∑
h∈Ω+

φhlHh(cΩ+) ≡ 0 (C.3)

for all l ∈ Ω0. These constraints define on a one-to-one basis the equilibrium relationships between

any ci with i ∈ Ω0 and the set of variables cl with l ∈ Ω+. Applying the implicit function theorem,

we then obtain dcl/dci for l ∈ Ω0 and i ∈ Ω+. This finally allows to compute the Λ− z square

matrix of the Jacobian of {fl}Ω+ in {cl}Ω+ , taking into account the general equilibrium constraints via the

dcl/dci terms. It can readily be evaluated at the equilibrium candidate (c∗, H∗). The equilibrium

candidate is (locally) stable if this Jacobian is positive definite (which is the higher-dimensional

extension of the simple stability condition df(·)/dcl > 0 used in the simple cases).
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