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Electromagnon dispersion probed by inelastic
X-ray scattering in LiCrO2

Sándor Tóth1,2, Björn Wehinger1,3, Katharina Rolfs4, Turan Birol5,6, Uwe Stuhr1, Hiroshi Takatsu7,8, Kenta Kimura9,

Tsuyoshi Kimura9, Henrik M. Rønnow2 & Christian Rüegg1,3

Inelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure

collective excitations in solids and liquids. In non-resonant scattering condition, the

cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to

probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled

to the phonons. The IXS spectrum of the coupled system contains not only the phonon

dispersion but also the so far undetected magnetic correlation function. Here we report

the observation of strong magnon–phonon coupling in LiCrO2 that enables the measurement

of magnetic correlations throughout the Brillouin zone via IXS. We find electromagnon

excitations and electric dipole active two-magnon excitations in the magnetically ordered

phase and heavily damped electromagnons in the paramagnetic phase of LiCrO2. We predict

that several (frustrated) magnets with dominant direct exchange and non-collinear

magnetism show surprisingly large IXS cross-section for magnons and multi-magnon

processes.
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T
he coupling between magnetic and lattice degrees of
freedom gives rise to many interesting effects. It can induce
multiferroic order with ferroelectric polarization coupled

to the magnetic structure1–3 or it can generate dynamic mixed
magnon–phonon excitations. If the magnon is coupled to a polar
phonon, the mixed mode, termed electromagnon, can be excited
by the electric field of light at the resonant frequency4–6. Previous
experiments showed that magnetization dynamics of materials
can be studied at ultrafast timescales by exciting electromagnons
via femtosecond light pulses7. Moreover, optical properties
of magnetoelectric materials at the resonant frequency can
be controlled via external magnetic field8,9. Measurement of
electromagnons is possible via THz spectroscopy. However, this
technique is able to probe only the centre of the Brillouin zone.
As we shall show, electromagnons can appear at finite
momentum, thus inaccessible to THz spectroscopy. Inelastic
neutron scattering can also identify the magnetic and phononic
component of an electromagnon excitation, however previous
studies found only small energy shifts of the magnons due to
magnon–phonon coupling10,11, while the transfer of spectral
weight between magnons and phonons could not be resolved so
far. Here we show that LiCrO2 is an exceptional material, where
the magnon–phonon coupling is strong enough to make the
transferred spectral weight from phonons to magnons visible for
inelastic X-ray scattering and thus enables the direct
measurement of the electromagnon dispersion. We also suggest
additional systems, where similarly strong effects can be present.

LiCrO2 is an excellent realization of the two-dimensional (2D)
S¼ 3/2 Heisenberg triangular lattice antiferromagnet (TLA)
model with only minimal corrections due to structure and
symmetry. Dzyaloshinskii–Moriya interactions are forbidden on
all bonds due to the space group symmetry of R�3m. Single-ion
anisotropy is expected to be small due to the octahedral
coordination of the Cr3þ ion, which have half-filled t2g shells
resulting in quenched orbital angular momentum. The interplane
interactions are weak due to the large separation of the triangular
layers. LiCrO2 develops long-range magnetic order at TN¼ 61.2 K
(ref. 12). The magnetic structure is an ac-plane helical order with
wavevectors of km¼ (1/3, 1/3, 0) and km¼ (� 2/3, 1/3, 1/2). The
angles between neighbouring spins on the triangular planes are
exactly 120� and the chirality is staggered along the c axis as a
result of the double-Q structure13. The staggered chirality implies
the appearance of a small symmetry breaking term in the spin
Hamiltonian below TN. The magnetic interactions in the plane
are dominated by direct exchange14. These interactions are
sensitive to the modulation of the bond length, similarly to
other Cr3þ compounds with short bonds such as ZnCr2O4

(refs 15,16) and MgCr2O4 (ref. 17). Furthermore, LiCrO2 shows a
pronounced anomaly in the dielectric constant at TN but no
ferroelectric polarization could be observed18 pointing towards an
antiferroelectric ground state induced by the staggered chirality of
the triangular layers19,20.

We report the spin and lattice excitation spectrum of LiCrO2

measured via inelastic X-ray scattering with meV energy
resolution (IXS) and inelastic neutron scattering (INS), and
a direct observation of an electromagnon. The data reveal a
surprisingly strong mixing between magnons and phonons. We
show that the observed electromagnon is the result of the strong
coupling between the phason spin wave mode and the long-
itudinal acoustic (LA) phonon in the magnetically ordered phase
of LiCrO2. We also present a model that describes both the
measured quasiparticle dispersion and the cross-sections for IXS
and INS at low temperature. This model shows that non-collinear
magnetic order and exchange striction (ES) can induce
linear coupling between magnons and phonons. Furthermore,
we report the observation of two-magnon (2M) excitations in the

ordered phase and strongly damped excitations above the Néel
temperature from our IXS data.

Results
Temperature-dependent IXS spectrum of LiCrO2. The IXS
spectrum of LiCrO2 measured at room temperature at Q¼ (1.5,
1.5, 0) shows three phonon modes at energies of 30.8(4), 34.6(2)
and 59.2(1) meV (Fig. 1 and Supplementary Fig. 1). The
measured Q-point is equivalent to the M0-point of the Brillouin
zone shifted by (1, 1, 0) (Fig. 2b). The lowest-energy mode has an
unusually large intrinsic width of 6.8(5) meV (see Methods for
details of the data analysis). On cooling, the phonon spectrum
goes through a marked change. The lowest phonon peak loses
almost all of its intensity and a new resonance develops gradually
below 10 meV. This new mode appears as a broad diffuse
scattering signal at 99 K, centred at about 8 meV. With decreasing
temperature, the peak becomes more pronounced accompanied
with increasing spectral weight and decreasing width. At the
lowest measured temperature of 7 K the peak position is at
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Figure 1 | Temperature evolution of the measured IXS spectrum at the

M0-point. Green dots denote experimental data normalized to the same

monitor. Red, yellow, green and grey filled areas are fitted electromagnon

(EM), paraelectromagnon (PEM), LA and optical phonon peaks (PH1 and

PH2), respectively. Light grey area shows the full width at half maximum of

the elastic line. Red lines are the theoretical spectrum of the coupled model

at 7 K and the pure phonon model at 295 K. Vertical purple lines show the

calculated quasiparticle energies. Error bars indicate 1 s.d.
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10.3(2) meV and it has a resolution limited width. To compare
directly the integrated intensities at different temperatures we
calculated the dynamical susceptibility for the lowest phonon
peak and the new resonance, shown in Fig. 3. It is clearly visible
that the lowest energy phonon transfers most of its spectral
weight to the new mode on cooling while the sum of the two is
temperature independent. The measured room-temperature
phonon energies are well reproduced by our ab initio calculation
(see Methods) shown as vertical purple lines in Fig. 1. The
calculated dispersion reveals that the observed phonon with
lowest energy is a LA branch while the two peaks at higher energy
correspond to optical branches (PH1 and PH2). While the
relative spectral weight of the two upper modes is well reproduced
by the calculation, the intensity of the LA phonon is strongly
underestimated (see red curve in Fig. 1). The calculated energy of
the LA phonon is 31.4 meV and its symmetry belongs to the Eu

polar representation.

Electromagnon dispersion in LiCrO2. To unambiguously
identify the new low-energy mode of LiCrO2 we measured the
excitation spectrum by INS along the (h, 1� 2h, 0) reciprocal
space direction equivalent to (h, h, 0) in the magnetic Brillouin
zone (Supplementary Fig. 2). At the M-point (equivalent to M0) a
single spin wave excitation was found in the helical phase at 1.5 K
centred at 10.3(1) meV. Since neutrons are sensitive to magnetic
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Figure 2 | Coupled magnon and phonon modes in LiCrO2. (a) A single triangle of Cr3þ spins is shown with the surrounding O6 octahedra. Purple arrows

depict the helical magnetic structure (rotated into the ab-plane for better visibility), the phonon and phason amplitude at the M0-point is shown by black

and red arrows, respectively. (b) Reciprocal space of the triangular lattice with black and dashed hexagons denoting the magnetic and crystallographic

Brillouin zones, respectively. The upper-left and lower-right colour maps show the phason energy and the g jj ðkÞ value, respectively (see text). Green and

red dashed lines show the path of the IXS and INS measurement, respectively. (c) Comparison of the measured phonon dispersion at 7 K and the coupled

magnon–phonon model along the (h, h, 0) direction. The colour map on the left half shows the calculated IXS cross-section in a.u., while the filled green

circles and blue squares denote the measured quasiparticle energies using IXS and INS, respectively. The black dashed and red dashed lines denote the

magnon and longitudinal phonon dispersion of the uncoupled model, while the continuous black lines correspond to the coupled dispersion. The empty red
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fluctuations in the measured momentum range, we can conclude
that the low-energy resonance at ToTN has not only polar
phononic but also magnetic character, thus it is an electromagnon
with a finite momentum. Moreover, at intermediate temperatures
above TN the strongly damped low-energy excitation might be a
paraelectromagnon due to the lack of both magnetic and electric
dipole order. The origin of this excitation can be a phonon
coupled to the excitation of the 2D correlated magnetic state,
which persists above TN due to the low dimensionality of the
system13,21,22.

Two-magnon continuum. To determine the coupling mechan-
ism that drives the observed strong magnon–phonon mixing, we
measured IXS spectra at multiple points along the (h, h, 0)
reciprocal space direction at 7 K and fitted the phonon energies.
The electromagnon spectrum is reported in Fig. 4a–i (also in
Supplementary Fig. 3). Remarkably, the energy width of the

electromagnon excitation increases substantially around the
magnetic Bragg point (K-point). Since the one magnon
excitations are sharp at low temperature, the broad IXS peaks can
be due to phonons coupled to the 2M continuum that is intrin-
sically broad for dispersive magnons. The 2M continuum is a
purely quantum effect and the corresponding dynamical structure
factor is typically much smaller than that of the single magnon. It
is related to the longitudinal fluctuations of the ordered spins23.
To corroborate our argument, we calculated the non-interacting
2M dynamical structure factor for the TLA (ref. 23) with first-
and second-neighbour antiferromagnetic interactions
J1¼ 8.17 meV and J2¼ 0.556 meV, shown in Fig. 4j; and a cut
at (1.292, 1.292, 0) reciprocal space point is shown in Fig. 4e. The
2M dynamical structure factor is strongest close to the K-point,
and the centre of the 2M spectral weight is expected to be close to
the one-magnon energy. This can explain why the measured
electromagnon spectrum continuously changes from a sharp one
magnon–one phonon mode to a phonon mixed with the 2M
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continuum as its momentum gets closer to the K-point. In the
following we model only the single magnon–phonon spectrum.

Phason spin wave mode as electromagnon. The fitted peak
positions of both the INS and IXS data are presented in Fig. 2c,d
(Supplementary Tables 1–3) together with the model calculations,
which will be explained in the following. In general, helical mag-
netic structures have three spin wave modes: a phason mode with
rotation of all spins in the ordering plane and two canting modes
correspond to spins canting away from the ordering plane. Strik-
ingly, our measured electromagnon spectrum contains only one of
the three spin wave modes that according to its dispersion corre-
sponds to the phason mode of the helical magnetic structure.
Moreover, the two canting modes of the spin spiral are completely
decoupled from the phonons. Besides, the phason mode shows a
roton-like minimum at M0. Similar minima were previously
observed in several TLAs such as CuCrO2 (refs 24,25), a-CaCr2O4

(ref. 26) and LuMnO3 (ref. 27). This points towards a general
sensitivity of the magnon energy at the M-point to perturbations
such as quantum fluctuations28,29, further neighbour interactions
or magnon–phonon coupling30. The electromagnon in LiCrO2 has
large IXS scattering cross-section at both the G- and M0-points.

Model of the magnon–phonon coupling. The microscopic
mechanism that couples the magnons and phonons in LiCrO2 is
the symmetric ES, since the antisymmetric exchange is too weak
being a relativistic correction31. In the following we will show that
the measured electromagnon dispersion and IXS cross-section
can be well described on a single triangular layer assuming strong
ES between first-neighbour chromium atoms. We will show that
in non-collinear magnets ES gives a linear coupling between
magnons and phonons thus can generate a strong mixing
(for a detailed description see Supplementary Note 1). For a
quantitative description, we propose the following Hamiltonian
that couples spins to phonons, taking into account the ideal
isotropic nature of the spins in LiCrO2:

H ¼ JðrÞ
X
m;n

Sm � SnþHL; ð1Þ

where J(r) is the Heisenberg exchange between first-neighbour
spins as a function of the bond length r, Sm is the spin vector
operator on the mth magnetic atom and HL is the Hamiltonian of
the lattice vibrations. To simplify equation (1), we keep only the
constant and linear term from the Taylor expansion of J(r) around
the r0 equilibrium bond length. The constant term J1 describes the
spin wave dynamics in the absence of phonons, while the linear
coefficient Jmp gives the leading magnon–phonon coupling term:

Hmp ¼ Jmp

X
m;n

d̂mn � ðum�unÞSm � Sn; ð2Þ

where um is the displacement vector of atom m and d̂mn is the
unit bond vector pointing from atom m to atom n. In the
magnetically ordered phase if the order is non-collinear Hmp
linearly couples the phonon and magnon bosonic operators al(k)
and b(k). After applying the linear Holstein–Primakoff
approximation and using a rotating coordinate system for the
spins23,29,32 the equation simplifies to

Hmp ¼ i
X
k;l

glðkÞalðkÞ byðkÞ� bð� kÞ
� �

þ h:c:; ð3Þ

where l indexes the phonon modes. The coupling term gl(k) is
given by

glðkÞ ¼ �
3
4

JmpS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S‘

MolðkÞ

s
elðkÞ � gðkÞ; ð4Þ

where M is the mass of the magnetic atom, ol(k) and el(k) are
the energy and amplitude of the l phonon on the chromium
atom. The g(k) geometrical factor for the Bravais lattice of
magnetic atoms reads

gðkÞ ¼
X

d

d̂ sinð2pkm � dÞ cosð2pk � dÞ� 1½ �; ð5Þ

where the sum runs through bonds denoted by d (with ES). The
linear coupling vanishes for collinear magnetic order, because g(k)
is zero for km¼ 0. It is also zero at the k¼ km reciprocal space
point, explaining why no one-magnon excitation is visible on the
IXS spectrum close to the K-point. The coupled model can be
solved using Bogoliubov transformation, and the corresponding
neutron and X-ray scattering cross-sections can be calculated
(Supplementary Note 1). The inactivity of the additional two
canting spin wave modes of the helical structure in the IXS
spectrum can be explained within our model as follows. The
exchange interactions in the system can be thought of as effective
magnetic fields acting on each magnetic site and being equal to the
sum of the neighbouring moments times the exchange constant J1.
In the absence of phonons, the field is parallel to the moment
direction on every site as illustrated by purple arrows in Fig. 2a.
However, when a phonon perturbs the system and modulates the
uniform J1 via ES, the effective magnetic field will not be parallel to
the moment direction any more but points somewhere within the
plane of the spin spiral. This will induce a modulation of the phase
of the spins within the spiral as spins reorient themselves to
minimize the total energy. This phase modulation is exactly the
phason spin wave mode that we see in our data.

Discussion
For a full interpretation of the IXS spectrum of LiCrO2, we start
with the pure phonon spectrum in the paramagnetic phase
determined from ab initio calculation. The dispersion of the
longitudinal phonons are shown in Fig. 2c,d by black dashed lines
and the full phonon spectrum in Supplementary Fig. 4. The
calculated dispersion relation agrees well with the measured
phonon energies showing that the magnon–phonon coupling
introduces only minor energy shifts. The introduction of Jmp will
mix the phason and phonon amplitudes. The strongest mixing is
calculated to be between the LA and transverse acoustic phonon
branches of the 2D triangular planes and the phason spin wave
mode of the helical magnetic structure in agreement with the
experiment. The wavevector-dependent intensity of the IXS
electromagnon signal is proportional to g jj ðkÞ ¼ gðkÞ � k̂, which
is largest along the (h, h, 0) in reciprocal space and zero at lattice
and magnetic Bragg points (Fig. 2b). It is important to note that
although gkðkÞ is zero at the M-point, the coupled dispersion is the
same as at M0 just both g(k) and e(k) vectors are rotated by 90�
thus invisible for IXS. The largest mixing amplitude is expected at
G and M0 in agreement with our experimental results. Remarkably,
the strong coupling causes a roton-like minimum of the spin wave
dispersion at M0 downwards renormalizing the phason energy by
42%, when compared with the decoupled model, even though the
lowest phonon mode is 20 meV higher in energy.

To determine the parameters of the coupled model, we fitted
the experimental electromagnon dispersions using J1 and Jmp as
parameters. The best model parameters are J1¼ 6.00(25) meV
and Jmp¼ 65(4) meV Å� 1. Including an additional second-
neighbour exchange interaction in the triangular planes results in
zero within error bar. The optimized coupled model describes
both the measured dispersion (see black lines in Fig. 2c) and the
IXS cross section (see red line in Fig. 1) very well. Some deviation
close to the G-point is due to the overestimation of the speed of
sound from the ab initio calculation. The real-space dynamics of
the strong coupling at the M0-point is visualized in Fig. 2a. At this
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wavevector the LA phonon (black arrows) shortens and lengthens
the S1–S2 and S2–S3 bonds, respectively. The excited phason mode
is in phase with the phonon that makes the S1–S2 bond
stronger (J1þ dJ) while the S2–S3 bond weaker (J1þ dJ). Thus, a
ferromagnetic fluctuation on the longer bond and antiferro-
magnetic fluctuation on the shorter bond is energetically
favourable if ES is present. This explains the reduction of the
phason energy and the roton-like minimum. The S1–S2 bond is
inactive at this wavevector since it changes neither length nor
relative spin orientation. The largest electromagnon cross-section
is predicted close to the G-point in agreement with experiment.
Although the g(k) coupling term vanishes at G, the decreasing
energy separation between the LA phonon and the phason mode
overcomes this reduction towards the zone centre.

There are potentially many other magnetic correlated systems
where the magnon–phonon coupling is present and matrix
elements are allowed by symmetry. However, for a measurable
hybridization between magnetic and lattice fluctuations a large
coupling is necessary that makes only a few of them suitable for
studying magnetism via IXS. For example, ZnCr2O4 and MgCr2O4

with pyrochlore structures have ES values comparable to LiCrO2. It
is also possible that the observed molecular resonance-like
magnetic signal in these systems33–36 is related to hybridized
magnon–phonon modes. Besides, large magnon–phonon coupling
is expected for magnetic 5d systems, where the extended d orbitals
can support large modulation of the superexchange interaction due
to ligand vibrations. For example, in NaOsO3 an upward shift of
the optical phonon energy by 5 meV was attributed to the onset of
magnetic correlations37. 5d systems are especially promising for
IXS studies as the general lack of large single crystals prohibits
detailed INS experiments.

In conclusion, we reported inelastic X-ray scattering data on
LiCrO2 that revealed a dispersive electromagnon. Our analysis
showed that it is the phason mode of the helical spin order
coupled to a LA phonon. We identified the exchange striction
between first-neighbour chromium ions as the microscopic
coupling mechanism. Fitting the model parameters to the
measured electromagnon dispersion we could reproduce both
the experimental dispersion and the dynamical structure factor
for inelastic X-ray scattering. Beside the one-magnon process we
also found signature of coupling between the acoustic phonon
branches and the 2M continuum around the magnetic Bragg
points that can be explained by including higher-order correc-
tions to our linear theory. In the paramagnetic phase we observed
a heavily damped electromagnon that might be stabilized by the
low-dimensional magnetic correlations of the 2D triangular
lattice. By accessing the momentum dependence, our results shed
light on a much richer physics of electromagnons that is beyond
the reach of THz light experiments. The reported measurement
also shows how inelastic X-ray scattering can be used to probe
magnetic correlations with high energy and momentum resolu-
tion in certain systems with large enough magnon–phonon
coupling. This study will open a route towards measuring
magnetic correlations at extreme conditions using diamond anvil
cells. Indeed, IXS can be performed with samples as thin as 10–
20 mm, which allow extending such studies up to Mbar pressure38.
It is furthermore possible to work with evanescent wave fields in
grazing angle conditions, which allows surface sensitive studies,
measurements on thin films and multilayer systems39,40.

Methods
Crystal growth. LiCrO2 single crystals were grown by the Li2O–B2O3 flux or
Li2O–PbO–B2O3 flux methods for IXS and INS measurements, respectively.
A typical growth was done by a mixture of Li2O, Cr2O3 and B2O3 or with
additional PbO. The mixture was heated at 1,300 �C and then slowly cooled down
to 800 or 900 �C, respectively.

Inelastic X-ray scattering. IXS was measured on the ID28 beamline at the
European Synchrotron Radiation Facility along the reciprocal space direction
(h, h, 0) at temperatures 295, 99, 69, 40 and 7 K using incident photon energy of
17.794 keV (l¼ 0.6968 Å) produced by the (9, 9, 9) Si Bragg reflection and beam
size of 50� 50mm2. Since the sample was a thin plate perpendicular to (0, 0, 1), we
choose the (h, h, l) scattering plane to minimize absorption. The ID28 instrumental
energy resolution has a pseudo-Voigt profile with 2.71(2) and 3.3(1) meV full
width at half maximum of the Gaussian and Lorentzian components and a mixing
parameter of 0.63(2). The momentum resolution of the ID28 spectrometer is
close to rectangular with 0.027 and 0.076 Å� 1 horizontal and vertical width
perpendicular to the momentum transfer, while the longitudinal momentum
resolution is at least two orders of magnitude better than the transverse.

Inelastic neutron scattering. INS was measured on the EIGER triple-axis
spectrometer at SINQ at the Paul Scherrer Institut using fixed final neutron energy
of 14.7 meV, double focusing graphite monochromator and horizontal focusing
graphite analyser. To eliminate spurious scattering a pyrolytic graphite filter was
applied after the sample. We have used a 50 mg single crystal of LiCrO2 and
performed measurements at 1.5 K. Owing to the small sample size, the spin wave
signal was only collected close to the magnetic Bragg points along the (h, 1–2h, 0)
direction and at (1/2, 1/2, 0) in reciprocal space. The spin wave peak as a function
of neutron energy transfer was fitted with a Gaussian function.

Curve fitting. All constant momentum transfer scans were fitted with a line shape
that is the instrumental energy resolution convoluted with a Lorentzian to model
the finite lifetime of the excitations. In the main text all intrinsic line width are
given by the full width at half maximum of the Lorentzian component. All given
error are 1 s.d., originating from the statistical error of the detector counts.

Phonon calculation. Lattice dynamics calculations were performed using the finite
displacement method within density functional theory (DFT)41. Distorted atomic
configurations were generated and the induced forces of a 4� 4� 4 supercell were
computed by total energy calculations using Projector Augmented Waves method as
implemented in VASP42–44. A shifted 4� 4� 4 momentum grid is used for the ionic
relaxations and the calculation of Born Effective charges by perturbation theory45 in
the primitive unit cell. While the internal ionic coordinates are relaxed, the lattice
constant is kept fixed to the experimental value to reduce the error due to unit cell
volume. The valence electrons are treated explicitly by the VASP PAW potentials are
1s22s2sp1 for Li, 3p63d54s1 for Cr and 2s22p4 for O. A plane wave cutoff of 500 eV,
which is 25% larger than suggested, is used and tested to provide good convergence.
PBEsol exchange correlation functional46,47 is used for all calculations. To account for
the underestimation of on-site correlations by generalized gradient approximation
(GGA), the DFTþU approximation48 is used with a U of 3 eV, which has previously
been shown to faithfully reproduce the spin-phonon properties of Cr oxides in the
same implementation49. Dynamical matrices throughout the Brillouin zone were
computed using Fourier transformation as implemented in Phonopy50 and non-
analytical term corrections due to finite Born charges were applied. A shifted
4� 4� 4 momentum grid has been used for sampling the electronic structure of the
primitive unit cell.

Model of the magnon–phonon coupling. The spin wave model and the coupled
magnon–phonon model was solved numerically using a modified version of SpinW
(ref. 32).

Data availability. All relevant data that support the findings of this study are
available from the corresponding author on request.
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22. Alexander, L. K., Büttgen, N., Nath, R., Mahajan, A. V. & Loidl, A. 7Li NMR
studies on the triangular lattice system LiCrO2. Phys. Rev. B 76, 064429 (2007).

23. Coldea, R., Tennant, D. & Tylczynski, Z. Extended scattering continua
characteristic of spin fractionalization in the two-dimensional frustrated quantum
magnet Cs2CuCl4 observed by neutron scattering. Phys. Rev. B 68, 134424 (2003).

24. Poienar, M., Damay, F., Martin, C., Robert, J. & Petit, S. Spin dynamics in the
geometrically frustrated multiferroic CuCrO2. Phys. Rev. B 81, 104411 (2010).

25. Frontzek, M. et al. Magnetic excitations in the geometric frustrated multiferroic
CuCrO2. Phys. Rev. B 84, 094448 (2011).

26. Toth, S. et al. Magnetic soft modes in the distorted triangular antiferromagnet
a-CaCr2O4. Phys. Rev. Lett. 109, 127203 (2012).

27. Oh, J. et al. Magnon breakdown in a two dimensional triangular lattice
Heisenberg antiferromagnet of multiferroic LuMnO3. Phys. Rev. Lett. 111,
257202 (2013).

28. Zheng, W., Fjærestad, J., Singh, R., McKenzie, R. H. & Coldea, R. Anomalous
excitation spectra of frustrated quantum antiferromagnets. Phys. Rev. Lett. 96,
057201 (2006).

29. Chernyshev, A. & Zhitomirsky, M. E. Spin waves in a triangular lattice
antiferromagnet: decays, spectrum renormalization, and singularities. Phys.
Rev. B 79, 144416 (2009).

30. Kim, J. & Han, J. Coupling of phonons and spin waves in a triangular
antiferromagnet. Phys. Rev. B 76, 054431 (2007).

31. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism.
Phys. Rev. 120, 91–98 (1960).

32. Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate
magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015).

33. Lee, S.-H., Broholm, C., Kim, T. H., Ratcliff, W. & Cheong, S.-W. Local spin
resonance and spin-peierls-like phase transition in a geometrically frustrated
antiferromagnet. Phys. Rev. Lett. 84, 3718–3721 (2000).

34. Lee, S.-H. et al. Emergent excitations in a geometrically frustrated magnet.
Nature 418, 856–858 (2002).

35. Tomiyasu, K. et al. Molecular spin resonance in the geometrically frustrated magnet
MgCr2O4 by inelastic neutron scattering. Phys. Rev. Lett. 101, 177401 (2008).

36. Tomiyasu, K. et al. Emergence of highly degenerate excited states in the
frustrated magnet MgCr2O4. Phys. Rev. Lett. 110, 077205 (2013).

37. Calder, S. et al. Enhanced spin-phonon-electronic coupling in a 5d oxide. Nat.
Commun. 6, 8916 (2015).

38. Antonangeli, D. et al. Elasticity of cobalt at high pressure studied by inelastic
X-ray scattering. Phys. Rev. Lett. 93, 215505 (2004).

39. Murphy, B. M. et al. Phonon modes at the 2H–NbSe2 surface observed by
grazing incidence inelastic X-ray scattering. Phys. Rev. Lett. 95, 256104 (2005).

40. Serrano, J. et al. InN thin film lattice dynamics by grazing incidence inelastic
X-ray scattering. Phys. Rev. Lett. 106, 205501 (2011).

41. Parlinski, K., Li, Z. Q. & Kawazoe, Y. First-principles determination of the soft
mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063 (1997).
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