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Finalement, je dédie cette thèse ma famille, ma femme, Xiaoyu Shi, et mon fils Steven.

iii





Résumé

L’apprentissage automatique concerne l’apprentissage de modèles prédictifs partir de

donnée. Pour bien generaliser, beaucoup d’algorithme d’apprentissage automatique sup-

pose que les prédictions des points proches sont similaires. En conséquence, comment

mesurer la proximitée des points de données devient donc un élément crucial d’algorithm

d’apprentissage. L’apprentissage de métrique résout se défi en apprenant une métrique

dépendantes des données. Pendant les dix dernière années, ceci a attiré beaucoup d’attention

et est devenu une des approches principales pour adresser des problèmes d’apprentissage

de distance/similarité.

L’approche la plus étudiée est l’apprentissage de métrique individuel. Cela apprend une

mesure de distance dans tout l’espace d’entrée des données. Cette approche est souvent

éfficace computationelement. Cependant, il peut ne pas etre suffisament flexible pour

bien apprendre la distance dans different voisinage de donnée. Tel que, la distance dans

different voisinage peut tre bien approximée. L’apprentissage de métrique non linéaire

suit une approche differente pour augmenter la complexitée du modèle. Il envoie d’abord

les points de donnée dans un nouvel espace de donnée par une application non linéaire

d’attribut puis une métrique individuel est apprise dans le nouvel espace de donnée.

Malgré le succès de differents algorithmes d’apprentissage de métrique, chaque algo-

rithme possède ses propres limitations. Dans cette thèse, nous nous concentrons dans leur

limitations et developpons de nouveau algorithme d’apprenttisage de métrique. Quatre dif-

ferent types d’algorithme d’apprentissage de métrique ont été contribué, incluant un algo-

rithme d’apprentissage de métrique individuel, un algorithme d’apprentissage de métrique

local et deux algorithmes d’apprentissages non linéaire. Les algorithmes d’apprentissage

de métrique developpé sont meilleur que les méthodes de l’état de l’art en terme de per-

formance predictive et de scalabilitées algorithmique.
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Abstract

Machine learning is about learning predictive models from data. To generalize well, many

machine learning algorithms assume that the predictions of the near by data points are

similar. Therefore, how to measure the closeness of data points becomes crucial in these

learning algorithms. Metric learning solves this challenge by learning a data-dependent

metric. Over the last ten years, it attracted a lot of attentions and becomes one of the

main approaches to addressing the distance/similarity learning problem.

The most studied approach is single metric learning. It learns one distance metric in

the whole input data space. This approaches is often computational efficient. However,

it might not be flexible enough to learn well the distance in different data neighborhoods.

This motivated local metric learning and nonlinear metric learning. In local metric learning

approach, the algorithm learns one distance metric in a neighborhood. Such that, distance

in different neighborhoods can be well fitted. The nonlinear metric learning follows a

different approach to increase the model complexity. It first maps data points into a new

data space through a nonlinear feature mapping and then a single metric is learned in the

new data space.

Despite the success of various metric learning algorithms, each algorithm comes with its

own set of limitations. In this thesis, we focus on their limitations and develop novel metric

learning algorithms. We focus on metric learning for Nearest Neighbor (NN) classification;

NN is one of the most well-known algorithms depending strongly on the distance metric.

Four different of metric learning algorithms are contributed, including one single metric

learning algorithm, one local metric learning algorithm and two nonlinear metric learning

algorithms. The developed metric learning algorithms improved over the state-of-the-arts

in terms of predictive performance and algorithmic scalability.
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Chapter 1

Introduction

Machine learning is about learning models from data. Its target is to generalize its learned

good predictive performance on the training data, the training error of the model, to that of

unseen data, the true error of the model. In doing so, it relies on a number of fundamental

assumptions. Probably, the most important one is that the given data points are assumed

to be independent and identically distributed (i.i.d.). As a result of this assumption, the

difference between the true error of the learned model and the training error is bounded in

terms of the model space complexity; the bound is monotonically increasing with the model

space complexity. Another important assumption is the smoothness assumption– the

near by data points are assumed to have similar predictions. As a result of the smoothness

assumption, the complexity of the model space and thus the error bound of learned models

is reduced. The true error of the learned model is close to the training error. However, how

to measure the closeness of data points is one of open questions in learning algorithms.

Often the Euclidean metric is the default choice. However, it may easily harm the

performance of learning algorithms, since the smoothness assumption on the data might

not always hold for Euclidean distance. A better way is learning a data-dependent

distance metric, such that the learned distance respects the smoothness assumption.

Metric learning follows exactly this idea. It has become a very active research field over

the last decade (23; 32; 37; 62; 64; 69; 83; 105; 107).

Most of the existing distance metric learning algorithms can be described as a two-

stage process. In the first stage, data points are mapped into a new space by learning a

mapping function–representation learning. In the second stage, the distance is computed

or learned in the new data space–distance learning. With different instantiations of the

two-stage process, different distance metric learning algorithms can be divided into three

categories.
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1.1. Main Contributions

The most studied and simplest form of metric learning is single metric learning (23; 32;

83; 105; 107). This approach first learns a linear function in the representation learning

stage followed by a default distance computation, e.g. Euclidean distance, in the new

space. Since the discriminatory power of the linear projection is limited, this approach is

often not flexible enough to learn well the distance in different regions.

The second category is local metric learning which learns in each neighborhood one

local metric (56; 73). In this approach, there is no learning process in the first stage. (The

mapping function is the identity function). Its distance metric is learned by learning the

local metrics in the original data space. When the local metrics vary smoothly in the data

space, learning local metrics is equivalent to learning the Riemannian metric on the data

manifold. Since the number of parameters of local metric learning is much larger than

that of single metric learning, this approach can be prone to overfitting.

The last category is nonlinear metric learning. It can be divided into two main

approaches, kernel-based methods (16; 46; 64) and deep neural network based meth-

ods (19; 66; 79). In kernelized metric learning, data points are first mapped into the

Reproducing-Kernel Hilbert Space (RKHS) by a kernel function and then a global Maha-

lanobis metric is learned in the RKHS space. There are two limitations in this approach.

The first one is that the kernel function most often is selected by cross-validation from

a predefined set of kernel functions. This limits the choice of mapping function in the

representation learning stage. The second one is that the kernel function must be Positive

Semi-Definite (PSD). This limits the application domain of this approach, since not all

learning problems can naturally construct a kernel function.

In the approach of deep neural network based metric learning, data points are first

mapped into new space through a learned deep neural network and then followed by a

default distance computation in the new data space (19; 66; 79). The main limitation of

this approach is that often large number of data points are required to fit well the deep

neural network.

1.1 Main Contributions

This thesis focuses on learning distance metrics for nearest neighbor (NN) classification.

It contributes a number of new metric learning algorithms for NN classification in different

categories, including single metric learning (103), local metric learning (100) and nonlinear

metric learning (99; 102), which go beyond the state of the art. More precisely, it contains:

1. A novel single metric learning method, described in Chapter 4, Learning Neighbor-



Chapter 1. Introduction

hood Metric Learning (LNML), where we learn the Mahalanobis metric as well as

the target neighborhoods. Our method outperforms the state of the art single metric

learning methods in terms of predictive accuracy (103).

2. A novel Multiple Kernel Learning (MKL) framework for metric learning, described

in Chapter 5, Metric Learning with Multiple Kernels (MKML), where we bring the

MKL framework from the context of SVMs into metric learning. Similar to MKL in

SVMs, our MKL method in metric learning achieves comparable empirical results

to kernelized metric learning where the best kernel is selected by cross validation,

while our method is computationally more efficient (99).

3. A novel local metric learning method, described in Chapter 6, Parametric Local

Metric Learning (PLML), in which we learn a smooth metric tensor function over the

data manifold. Using an approximation error bound of the metric tensor function, we

learn local metrics as linear combinations of basis metrics defined on anchor points

over different regions of the data space. Our metric learning method has excellent

performance both in terms of predictive power and scalability (100).

4. A novel two-stage metric learning method, described in Chapter 7, Similarity-Based

Fisher Information Metric Learning (SBFIML), where we first map data points onto

finite discrete distributions by computing their similarities to a set of anchor points.

Then, we define the distance in the input data space as the Fisher information

distance in the associated statistical manifold. In contrast to kernel function in

KML which must be PSD, the similarity function used in our SBFIML does not need

to be PSD. It can even be asymmetric. In terms of predictive power, our method

outperforms significantly other state-of-the-art metric learning methods (102).

1.2 Outline of the Thesis

The thesis is organized as follows. In chapter 2, Background, we cover the basic concept

of distance metric and its fundamental role in different machine learning algorithms. It

also reviews the state-of-the-art metric learning methods in different learning paradigms,

namely supervised, semi-supervised and unsupervised learning paradigms. Chapter 3 re-

views the state-of-the-art metric learning methods for NN classification. This is the most

studied distance metric learning setting over the last years. In chapter 4, we describe

our single metric learning algorithm, Learning Neighborhood Metric Learning. Chapter 5

presents the MKL framework for metric learning methods. In chapter 6 and 7, we present

3



1.2. Outline of the Thesis

our contributions in local metric learning and two-stages metric learning respectively. Fi-

nally, in chapter 8, we conclude this thesis and discuss some future directions of metric

learning. Note that, some remarks may be repeated over chapters so that each chapter is

self-contained.



Chapter 1. Introduction

1.3 Published Work

This thesis is mainly based on the following publications.

• Jun Wang, Adam Woznica, Alexandros Kalousis. “Learning Neighborhoods for

Metric Learning.” In European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases, 2012.

• Jun Wang, Huyen Do, Adam Woznica, Alexandros Kalousis. “Metric Learning with

Multiple Kernels.” In Advances in Neural Information Processing Systems, 2011.

• Jun Wang, Alexandros Kalousis, Adam Woznica. “Parametric Local Metric Learn-

ing for Nearest Neighbor Classification.” In Advances in Neural Information Process-

ing Systems, 2012.

• Jun Wang, Ke Sun, Fei Sha, Stephane.Marchand-Maillet, Alexandros Kalousis.

“Two-Stage Metric Learning”. In International Conference on Machine Learning,

2014.

• Phong Nguyen, Jun Wang, Melanie Hilario, Alexandros Kalousis. “Learning Het-

erogeneous Similarity Measures for Hybrid-Recommendations in Meta-Mining”. In

12th IEEE International Conference on Data Mining, 2012.

• Huyen Do, Alexandros Kalousis, Jun Wang, Adam Woznica. “A metric learning

perspective of SVM: on the relation of LMNN and SVM”. In Journal of Machine

Learning Research - Proceedings Track 22: Proceedings of the Fifteenth International

Conference on Artificial Intelligence and Statistics, 2012.
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Chapter 2

Background

In this chapter, we present the definition of distance metric and its role in the smoothness

assumption of machine learning algorithms. The critical role of distance metric in this

assumption serves as the main motivation of the development of distance metric learning.

We then review a number of different machine learning algorithms and see how distance

metric learning can improve their predictive performances.

7
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2.1 Distance Metrics

We first give the definition of a distance metric.

2.1.1 Definition

Definition 1. A distance metric on a set X is a pairwise function, d : X × X → R,

where R is the set of real numbers. For all points x,x′,x′′ ∈ X , this function satisfies the

following properties:

1. d(x,x′) ≥ 0 (non-negativity)

2. d(x,x′) = 0, if and only if x = x′ (identity of indiscernibles)

3. d(x,x′) = d(x′,x) (symmetry)

4. d(x,x′′) ≤ d(x,x′) + d(x′,x′′) (triangle inequality).

In distance metric learning, we often learn a pseudo-metric which satisifes all the

conditions except condition 2. Learning a pseudo-metric is useful for regularizing the

model complexity by eliminating irrelevant and redundant data subspaces (14; 61).

In the following section we present some of the most studied distance metrics.

2.1.2 Examples

Euclidean distance. Most probably, Euclidean distance is the most popular distance

metric used in different problems. Its definition is given by:

d2(x,x′) = (
d∑
i=1

(xi − x′i)2)
1
2 (2.1)

We can see that the Euclidean distance is the L2 norm of the difference of the two vectors x

and x’. From a machine learning point of view is assumes that all features are independent

and equally important. These two properties lead to two generalizations of Euclidean

distance, namely Minkowski and Mahalanobis distances.

Minkowski distances. Minkowski distances generalize the Euclidean distance through

the use of Lp norm, where (p ≥ 1). They are defined as:

dp(x,x
′) = (

d∑
i=1

(xi − x′i)p)
1
p (2.2)
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Mahalanobis distance. The Mahalanobis distance generalizes the Euclidean dis-

tance by taking into consideration the correlation and importance of features, parametrized

by a Positive Semi-Definite (PSD) matrix M � 0. Its definition is

dM(x,x′) = ((x− x′)TM(x− x′))
1
2 (2.3)

Since matrix M can be decomposed into M = LTL , it can also be rewritten as

dM(x,x′) = ((Lx− Lx′)T (Lx− Lx′))
1
2 , (2.4)

Over the last years, the Mahalanobis distance has been extensively studied in distance

metric learning (23; 32; 62; 105; 107). The Mahalanobis distance also has a close relation

with the multivariate normal distribution.

Riemannian Distance. The Riemannian Distance generalizes the distance definition

in the Euclidean space into the Riemannian manifold. In the following, we will briefly

introduce its definition. More details can be found in the monograph (58).

Let Md be a connected differential manifold of dimension d. A Riemannian metric

g on Md is a smooth function that defines the inner products of tangent vectors at any

point p ∈Md.

gp : TpMd × TpMd → R

where TpMd is the tangent space at p. Given a Riemannian metric g, let c : [a, b] be a

parametrized curve on Md. The length of c is defined as

Lba(c) :=

∫ b

a

√
g(5c(t),5c(t)) dt

where the 5c(t) is the derivative of c(t) at t.

The Riemannian distance between any two points x and x′ on Md is defined as

d(x,x′) = inf
γ∈Γ

L(γ)

where Γ is the set of all curves that begins at x and ends at x′.

The main difficulty about Riemannian distance is that its exact computation is of-

ten very expensive. It is approximated in various ways in Riemannian metric learing

algorithms (73).

In the following section, we give a brief introduction of machine learning and its two

fundamental assumptions. And then we will discuss the role of distance metric in various

9
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machine learning algorithms in section 2.3.

2.2 Machine Learning

Machine learning is about automatically learning predictive models from data. Its goal is

to predict well on future unseen data. For example, one can learn a model from emails

to categorize spam and non-spam email messages. The goal of the learned model is to

classify new email into spam and non-spam folders as accurately as possible.

2.2.1 Types of Machines Learning

We can roughly divide the machine learning paradigms into supervised learning, semi-

supervised learning (15), unsupervised learning and reinforcement learning (28). In this

thesis, we will mainly focus on the first three learning paradigms.

Supervised Learning. In supervised learning, we are given a number of independent

and identically distributed (i.i.d.) random learning pairs {(x1, y1), . . . , (xn, yn)}, generated

according to some unknown distribution p(x, y),x ∈ X , y ∈ Y, where x is a learning

instance in the X input data space and y is the associated output in the Y output space.

The target of supervised learning is to learn from some hypothesis space H a model h

which minimizes the expected loss

E(x,y)∼p(x,y)(L(h(x), y))

where h(x) is the output of the model h given an instance x and L is a loss function which

incurs a penalty if h(x) 6= y.

Most often, the input data spaces X is a d-dimensional Euclidean space Rd in which the

learning instances are represented by d-dimensional Euclidean vectors. The Y output space

varies depending in the different learning task. It can be a set of class labels {1, . . . , c} in

the classification task or the real numbers R in the regression task, or even more complex

structures such as trees, graphs in structured output prediction.

The choice of loss function also depends on the type of learning task. For example,

one of the appropriate loss functions L for classification task is the ”0 − 1” loss, defined

by

L(h(x), y) =

{
1 h(x) 6= y

0 h(x) = y

It measures the classification error of the given model h.
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Semi-Supervised Learning. Getting fully labeled data often involves a lot of expen-

sive human effort in many learning problems. However, it is very often easy to get large

amounts of unlabeled data. Semi-supervised learning is motivated by the availability of

large amounts of and uses them to improve the predictive performance. The improvement

strongly depends on the semi-supervised smoothness assumption: if two points x and x′

in a high-density region are close, then so should be the corresponding outputs

y and y′ (15). If this assumption does not hold, semi-supervised learning will not yield an

improvement over supervised learning. It might even harm the prediction accuracy. For

more details on this assumption, please refer to (15).

As a result, in the setting of semi-supervised learning, in addition to a number of i.i.d.

labeled learning pairs L = {(x1, y1), . . . , (xl, yl)} generated according to a distribution

p(x, y), we are given a number of i.i.d. learning instances U = {xl+1, . . . ,xn} from the

marginal distribution p(x). Similar to supervised learning, the target of semi-supervised

learning is to learn a model h which minimizes the expected loss

E(x,y)∼p(x,y)(L(h(x), y))

Unsupervised Learning. In the setting of unsupervised learning, we are only given

a number of i.i.d. learning instances {x1, . . . ,xn}. The target of unsupervised learning

is to find “interesting patterns” in the data . Similar to supervised learning process, we

learn from some hypothesis space H a model h which minimizes the expected loss

Ex∼p(x)L(h(x))

where h(x) is the output of the model h given an instance x.

The output h(x) can be the cluster labels in a clustering task, the new representation

of the learning instance x in dimensionality reduction or its density in density estimation.

Since in this setting there is no supervised signal, L is often a heuristic loss function.

As a result, this is a much less well-defined problem comparing to supervised and semi-

supervised learning paradigms.

2.2.2 Assumptions in Machine Learning

There is no free lunch in machine learning (28). Given finite learning instances, machine

learning must make assumptions on the data in order to predict well on future unseen

data. Two of these assumptions are the i.i.d. assumption on the generation process of

learning instances and the smoothness assumption on the predictions of close data points.

11
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I.I.D. Assumption. The i.i.d. assumption assumes that the given data are indepen-

dent and identically distributed according to an unknown distribution, p. This is the most

basic assumption in machine learning. Without this, the model learned from data cannot

generalize on future unseen data. Under the i.i.d. assumption we can derive generalization

error bounds such as the Probably Approximately Correct (PAC) bound which bounds

the generalization error with the training error and the VC dimension of the hypothesis

space (94).

Theorem 1. Let T = {(x1, y1), . . . , (xn, yn)} be n pairs of i.i.d. learning instances drawn

from some distribution p(x, y), H a continuous model space with VC dimension V C(H),

L is a loss function and δ > 0. For any h ∈ H, with probability 1− δ, we have:

E(x,y)∼p(x,y)(L(h(x), y)) ≤
∑

(x,y)∈T

L(h(x), y) +

√
V C(H)(ln 2n

V C(H) + 1) + ln 4
δ

n
(2.5)

Theorem 1 indicates that with high probability any model h can indeed generalize in

the order of O(

√
ln(n)
n ) based on the i.i.d. assumption on the given data. However, in

order to achieve small expected loss, we should minimize the sum of the empirical loss and

the model complexity in terms of the VC dimension of the model space.

Smoothness Assumption. The smoothness assumptions states that: if two points

x and x′ are close, then so should be the corresponding outputs y and y′. This

essentially assumes that the true model h∗ of the data gives similar predictions to learning

instances which are close to each other. As a result, the prediction of h∗ cannot vary too

much locally. Without this assumption, the complexity of the model space H containing

h∗ would be very large; as a result the learned model cannot generalize well with “limited”

data.

On the grounds that smoothness assumption strongly depends on the distance metric

(similarity measure) employed in learning algorithms, we now discuss the role of distance

metric in machine learning.

2.3 Distance Metrics in Machine Learning

The smoothness assumption states that close learning instances should have similar pre-

dictions. However, as described in section 2.1, there is a very large number of distance

metrics that can be used to measure the distance. This leads to two questions.

1. Which distance metric should be used to measure the distance of learning instances?
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2. If the smoothness assumption does not hold with one distance metric, how can we

discover/learn distance metrics for which the smoothness assumption holds?

The answers to these two questions depend on one feature of the learning algorithms

– whether their designs intrinsically assume a distance metric or not. If the learning

algorithms do, in this case the intrinsic metric must be used. For instance, in kernel-based

methods, the the Euclidean distance is intrinsically used due to the ’kernel trick’ (20; 26;

80). In order to improve these learning algorithms, we can learn a better feature space X ′

mapped from X ; the new feature space fits better the smoothness assumption. This gives

rise to the research field of kernel/representation learning (7).

In contrast, if the learning algorithms do not intrinsically assume a distance metric, in

this case the distance metric can be whichever metric we choose. Two popular examples of

these algorithms are k-NN classification and k-Means clustering. There are two approaches

to improve the smoothness assumption. First, as we do in the previous case, we can learn

a better data space X ′ through representation learning. Second, we can also learn a better

distance metric on the original data space X . Note that, these two approaches can be

used together.

We now describe in detail the role of distance metric in a number of classic machine

learning algorithms. Latter in this chapter, we present the corresponding distance metric

learning algorithms to improve the fit to the smoothness assumption.

2.3.1 Supervised Learning

k-Nearest Neighbor Classification. The k-Nearest Neighbor (NN) classifier is one

of the simplest and most classical non-linear classification algorithms (28). It is a non-

parametric method.

In k-NN classification, the posterior distribution of a given instance is defined based

on its k closest training instances in the data space X , given by

p(y|x) =

∑
x′∈kNei(x) Iy(y′)∑

y∈Y
∑

x′∈kNei(x) Iy(y′)
(2.6)

where kNei(x) is the set of k closest learning instances of x. The function Iy(y′) is the

indicator function. Its output is Iy(y′) = 1, if y = y′, otherwise 0. Following the decision

rule of maximum a posteriori (MAP), an instance is classified into the most common class

amongst its k nearest neighbors.

Theoretically, 1-NN is guaranteed to yield an error no worse than twice the Bayes error

as the number of instances approaches infinity. However, with finite learning instances, its

13
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performance strongly depends on the use of an appropriate distance metric. k-NN does not

assume an intrinsic distance metric. Consequently, in order to improve its performance,

we can learn a better distance metric and (or) learn a better representation of the learning

instances.

Learning with Kernels. Kernel-based learning methods have become one of the

most popular methods in machine learning over the last two decades (20; 26; 80). In

kernel-based learning methods, learning instances are mapped into the Reproducing-

Kernel Hilbert Space (RKHS) through an implicit feature map function induced by a

kernel function and then a model is learned in the RKHS space.

Consider a mapping φ(x) of instances x to some feature spaceH, i.e. φ : x→ φ(x) ∈ H.

The dimensionality of H can be infinite. The power of kernel-based methods rely on the

so called “kernel trick”. To compute the inner product of two learning instances in H,

〈φ(xi), φ(xj)〉, kernel methods do not necessarily compute the new representations φ(xi).

There exists an associated kernel function k(xi,xj) which computes exactly the inner

product of two instances in the H feature space, i.e. k(xi,xj) = 〈φ(xi), φ(xj)〉. Based

on this “kernel trick”, kernel-based methods can implicitly map learning instances into a

high dimensional space with low computational complexity. One of most often used kernel

functions is the Gaussian kernel function. It is defined as

k(xi,xj) = exp(−d
2
2(xi,xj)

σ2
) (2.7)

where d2
2(xi,xj) is the squared Euclidean distance between xi and xj and σ is the kernel

width. The dimensionality of its associated H space is infinite.

However, as kernel functions can only compute the inner product of instances in some

H space, kernel-based methods thus are designed based on the Euclidean Geometry, i.e.

the Euclidean distance is implicitly used in these methods according to

d2
2(φ(xi), φ(xj)) = 〈φ(xi), φ(xi)〉+ 〈φ(xj), φ(xj)〉 − 2〈φ(xi), φ(xj)〉

In this case, in order to improve the performance of kernel methods, we can only learn a

better representation of X . This can be done by learning a new representation of x ∈ X ,

representation learning, or learning a kernel function, kernel learning (4; 35). The latter

approach implicitly learns the representation induced by the kernel function.

SVM. One of the most famous kernel machines is Support Vector Machine (SVM). It

learns a linear model in some H space by maximizing the Euclidean margin between two
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classes (20). It solves the following optimization problem:

min
w,b

‖w‖22 +
∑
i

ξi (2.8)

s.t yi(w
Tφ(xi) + b) ≥ 1− ξi,∀i

ξi ≥ 0,∀i

where w is the linear model in the H space and yi ∈ {−1, 1} is the class label of xi. To

see the ’kernel trick’ clearly, the problem (2.8) should be reformulated into its dual form,

min
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjk(xi,xj) (2.9)

s.t
∑
i

αiyi = 0

αi ≥ 0, ∀i

As we see in (2.9), only the inner products of the learning instances, k(xi,xj), are computed

to solve the optimization problem.

After learning α, the threshold b can be obtained by solving the following linear system,

K̄α+ yb = 1 (2.10)

where K̄ is a n by n matrix, whose (i, j) entry is K̄ij = yiyjk(xi,xj).

According to Karush–Kuhn–Tucker (KKT) conditions, the optimal solution of linear

model w in H space is

w =
∑
i

αiyiφ(xi) (2.11)

and thus its binary prediction for a given instance x is

h(x) = sign(
∑
i

αiyik(xi,x) + b) (2.12)

where the function sign(a) is the signum function, whose output is 1, 0, or -1, correspond-

ing to a > 0, a = 0, and a < 0.
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2.3.2 Semi-supervised Learning

The success of semi-supervised learning strongly depends on the semi-supervised smooth-

ness assumption. A prominent category of semi-supervised learning algorithms are graph-

based learning algorithms (15).

Graph-Based Semi-Supervised Learning. In these learning algorithms, a similar-

ity graph is built before learning. Its nodes correspond to both the labeled and unlabeled

learning instances. Its edges encode similarities between learning instances. Essentially,

this graph can be seen as a tool of encoding the neighborhood structure of all instances,

such that close learning instances in high-density region are densely connected on the

similarity graph. The basic idea of graph-based learning algorithm is to propagate label

information through this predefined graph in order to label all the unlabeled learning in-

stances. Various graph-based learning algorithms have been proposed the last decade in

the literature (33; 49; 115; 117).

Very often the labeling (learning) process of graph-based learning algorithms is casted

as a quadratic minimization problem. For example, in the binary classification algorithm

of Harmonic Energy Minimization (HEM) (117), its quadratic optimization function is

defined as

min
f

∑
ij

Sij(fi − fj)2 (2.13)

where fi is the soft label, if instance xi is unlabeled, xi ∈ U , otherwise, fi is constrained

to be equal to the given label yi, fi = yi ∈ {0, 1}. The Sij ≥ 0 is the similarity between

instances xi and xj . Typically it is set by the Gaussian kernel of equation 2.7.

Setting the derivative of equation (2.13) to 0, the closed form solution of fU is obtained

as

fU = (I−PUU )−1PULfL (2.14)

where

P =

[
PLL PLU

PUL PUU

]
:= D−1S.

D is a diagonal matrix, whose entries Dii =
∑

j Sij .

Since yi ∈ {0, 1}, it can be shown that the soft labels fi are bounded by [0, 1], i.e.

0 ≤ fi ≤ 1. To predict the label of unlabeled instances, we can simply threshold the soft
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labels fU at 0.5 into binary class labels. 1

By solving the optimization problem (2.13), the HEM algorithm predicts similar labels

to instances with large Sij similarity. However, its performance depends on the similarity

measure of the graph. To improve its performance, we can learn a better similarity metric

for graph-based learning algorithms.

2.3.3 Unsupervised Learning

Clustering is one of the most popular unsupervised learning paradigms (28). Its target

is to partition n learning instances into k clusters, such that the (dis-)similarity betwen

instances within the same cluster is large(small). Obviously, the performance of clustering

algorithms relies on the (dis-)similarity measures used in the algorithms.

k-Means Clustering. k-means clustering is one of the most classic clustering methods

in machine learning (28). It partitions instances into k clusters by minimizing the following

objective.

min
Y,C

k∑
j=1

n∑
i=1

Yijd
2
2(xi, cj) =

k∑
j=1

n∑
i=1

Yij‖xi − cj‖22 = ‖X−YC‖2F (2.15)

s.t.
∑
j

Yij = 1, Yij ∈ {0, 1}

where the vector cj is the center of jth cluster. Yij ∈ {0, 1} is the cluster membership

indicator, Yij = 1 if instance xi belongs to the jth cluster, otherwise Yij = 0. It can be

solved by an iterative algorithm optimizing alternatively Y and C.

Spectral Relaxation of k-Means (54). We now present an another reformulation

of problem (2.15) which will be used in the section 2.4.3 of distance metric learning for

clustering. It is based on the fact that the optimal solution for the C matrix for a fixed

Y is C = (YTY)−1YTX.

Let B = Y(YTY)−1YT , we have the following reformulation of optimization problem

2.15,

min
B

‖X−BX‖2F = tr(XXT (I−B)) (2.16)

s.t. B ∈ Bk

where the feasible set Bk of matrix B is specified by two constraints. The first constraint

1Note that, this strategy could fail when the number of instances is unbalanced in different classes. In
(117), the authors proposed Class Mass Normalization (CMN) to considers the prior information on class
ratio.
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specifies that there exists an assignment matrix Y such that B = Y(YTY)−1YT . The

second constraint is tr(B) = k, the trace of matrix B is equal to the number of cluster, k.

Since the matrix B satisfies BTB = B, the problem (2.16) can be further rewritten as

max
B

tr(XXTB) (2.17)

s.t. B ∈ Bk

With this new formulation, we can solve the problem (2.17) based on the classic idea

of spectral relaxation, i.e. maximizing its upper bound,

max
B∈Bk

tr(XXTB) ≤ max
BTB=B,tr(B)=k

tr(XXTB) (2.18)

The matrix B of problem (2.18) has a closed form solution, B = UUT , where the ma-

trix U is a n×k matrix whose columns are the k largest eigenvectors of matrix XXT . The

final cluster membership of learning instances can be heuristically obtained by applying

k-means algorithm on matrix U, the k largest eigenvectors.

Note that, the inner product matrix XXT can be replaced with a general kernel matrix,

K, e.g. Gaussian kernel in equation (2.7).

Spectral Clustering (96). In addition to k-Means clustering, spectral clustering

is another important and popular clustering algorithm extensively studied over the last

decade(96). It separates learning instances into different clusters according to their pair-

wise similarity matrix, S, which is very often defined by Gaussian kernel, equation (2.7).

There are two types of spectral clustering, unnormalized (96) and normalized (68; 88).

The unnormalized spectral clustering is a spectral relaxation of the RatioCut mini-

mization problem (96), defined as

minRatioCut(C1, · · · , Ck) :=
1

2

k∑
i=1

W (Ci, C̄i)
|Ci|

(2.19)

where |C| is the number of instances in cluster C and the cut function is defined as

W (C, C̄) =
∑

xi∈C,xj /∈C Sij .

The minimization of RatioCut can be further reformulated as the following discrete
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optimization problem (96),

min
(C1,··· ,Ck)

tr(HTLH) (2.20)

s.t. HTH = I

Hij =


1√
|Cj |

xi ∈ Cj

0 xi /∈ Cj

where matrix L is the Laplacian matrix. It is defined by L = D−S, where D is a diagonal

matrix, whose entries Dii =
∑

j Sij .

This optimization problem is NP-hard. The unnormalized spectral clustering relaxes

this problem by removing the second constraint in problem (2.20) and the optimization

problem now becomes

min
H

tr(HTLH) (2.21)

s.t. HTH = I

where H is now a real value matrix with closed form solution H = U, where U is of

size n × k. Its columns are the k smallest eigenvectors of matrix L. After computing H,

the cluster membership of learning instances is heuristically obtained by considering each

row of matrix H as new representation of the learning instances and applying k-means

algorithm on them. The work of (50) provides a theoretical foundation of this heuristic.

Normalized Spectral Clustering (88). The normalized spectral clustering is the

spectral relaxation of the minimization of the Normalized cuts (Ncut) problem, defined as

minNCut(C1, · · · , Ck) :=
1

2

k∑
i=1

W (Ci, C̄i)
vol(Ci)

(2.22)

where vol(C) =
∑

xi∈C,xi 6=xj
Sij is the volume function. Since in Ncut the cut function is

normalized by the volumn of each instance, Ncut is a more appropriate measure than Rati-

oCut if the volume of the different instances differs significantly. Similar to the minimiza-

tion of RatioCut, the minimization of Ncut can be formulated as a discrete optimization
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problem (96),

min
(C1,··· ,Ck)

tr(HTLH) (2.23)

s.t. HTDH = I

Hij =


1√

vol(Cj)
xi ∈ Cj

0 xi /∈ Cj

where the diagonal matrix D is exactly the same as the D in RatioCut, problem (2.20).

By allowing H to be a real matrix and removing the second constraint of problem

(2.23), the normalized spectral clustering solves the following optimization,

min
H

tr(HTLH) (2.24)

s.t. HTDH = I

where the solution is H = U, the columns of which are the k smallest generalized eigen-

vectors of problem Lu = λDu.

By seting Q = D
1
2 H, the problem (2.24) is also equivalent to

min
Q

tr(QTD−
1
2 LD−

1
2 Q) (2.25)

= max
Q

tr(QTD−
1
2 SD−

1
2 Q)

s.t. QTQ = I

where the solution of Q consists of the k largest eigenvector of matrix D−
1
2 SD−

1
2 and

H = D−
1
2 Q.

In order to improve the performance of different clustering algorithms, we could learn

a better distance metric in problem (2.15) or similarity matrix in problems (2.18), (2.21)

and (2.25).

2.4 Distance Metric Learning

In the section of 2.3, we describes the critical role of distance metric (similarity measure)

in different learning paradigms. However, despite of its importance, very often only the
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Euclidean distance metric is used in various learning algorithms. This harms the perfor-

mance of learning algorithms, if the Euclidean distance metric is not appropriate for the

learning problem. In this section, we present different distance metric learning algorithms

that lift this limitation by learning a “data dependent” distance metric. We start with

distance metric learning for supervised learning.

2.4.1 Distance Metric Learning for Supervised Learning

In this section we will only present a distance metric learning algorithm for SVMs(108).

We will discuss the bulk of the distance metric learning work that took place in the nearest

neighbor setting in chapter 3.

SVML (108). Support Vector Metric Learning (SVML) learns a Mahalanobis dis-

tance based Gaussian kernel for SVM. It is motivated by the fact that very often the σ

parameter in equation (2.7) is selected by Cross Validation (CV). The authors propose to

learn the Mahalanobis metric by minimizing the classification error of SVM on a hold-out

dataset, an alternative way for parameter selection.

The Gaussian kernel equipped with Mahalanobis metric in (108) is defined as

kL(xi,xj) = exp(−(Lxi − Lxj)
T (Lxi − Lxj)) (2.26)

and the learning optimization problem is the following:

min
L

∑
x,y∈V

sa(yh(x)) + λ‖L− L0‖2F (2.27)

where the function sa is a soft approximation of “0-1” loss function, defined as

sa(z) =
1

1 + exp(az)

The parameter a controls the steepness of the sa function. V is the validation dataset.

Matrix L0 serves as a regularization parameter which penalizes the learned projection

matrix L deviating from L0; in (108), it is set to the initial estimate of L. h(x) is the

prediction function learned by SVM with Gaussian kernel kL, equation (2.26), on the

training dataset T . It can be obtained by solving the problems (2.9) and (2.10) with kL.

The whole optimization problem (2.27) is solved with conjugate gradient descent (72).

Compared to the best Gaussian kernel selected by CV, the Gaussian kernel with Ma-

halanobis distance is much more powerful because it considers the correlation of input

features. In (108), the authors empirically demonstrate that SVML achieves better pre-
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dictive performance than SVM with best Gaussian kernel selected by CV.

2.4.2 Distance Metric Learning for Semi-Supervised Learning

In this section, we present two distance metric learning algorithms which learn the weight

of input features for HEM, described in section 2.3.2. This is equivalent to learning a

diagonal Mahalanobis distance metric.

EntMin (117). The approach of Entropy Minimization (EntMin) learns the weights

of the input features by minimizing the entropy of unlabeled data. It is motivated by

the intuition that a good distance metric should produce a confident labeling, i.e. all

the unlabeled instances should have high predictive probability of belongin in of the two

classes.

Since the solution of the soft label fi is bounded in [0, 1], the predictive probability of

an unlabeled instance p(yi|xi) can be reasonably defined as

p(yi|xi) =

{
fi yi = 1

1− fi yi = 0

Based on the definition of predictive probability, the optimization problem of learning the

weights, w, the input features is given:

min
w
−
|U|∑
i=1

(fUi log fUi + (1− fUi) log(1− fUi)) (2.28)

where fU is a function of w, defined in equation (2.14). This optimization problem is

solved by gradient descend in (117). The main drawback of this approach is that the idea

of entropy minimization is rather a heuristic. It does not directly optimize the classification

error.

LOOHL (116). The approach of Leave-One-Out Hyper-parameter Learning (LOOHL)

learns the feature weights w by minimizing the leave-one-out error on labeled data. Ac-

cording to the closed form solution of fU , equation (2.14), the soft label fv of a validation

instance xv is computed by

fv = sT fvU

where

s = [1, 0, · · · , 0]T
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and

fvU = (I−Pv
UU )−1Pv

UL̄fL̄

The set L̄ includes all the training instances except xv. Accordingly, Pv
UU is defined as

Pv
UU =

[
Pvv PvU

PUv PUU

]
,

and, in a similar manner, Pv
UL̄ is defined as

Pv
UL̄ =

[
PvL̄
PUL̄

]
.

Given that, the objective of LOOHL is:

min
w

|L|∑
v=1

gv(fv) + λ
∑
i

(
1

wi
− 1

µ
)2 (2.29)

where function gv is the loss function. In (116), it is defined as

gv(fv) =

{
(1− fv)2 yv = 1

f2
v yv = 0

The second term of the objective function (2.29) is a regularization which protects from

degenerative solutions; µ is a predefined parameter.

Similar to MinEnt, the optimization problem (2.29) is solved by gradient descent. In

(116), the authors empirically show that LOOHL is effective in improving the performance

of HEM and outperforms its counterpart MinEnt in a statistically significant manner.

2.4.3 Distance Metric Learning for Unsupervised Learning

In this section, we present three distance metric learning approaches for clustering algo-

rithms, described in section 2.3.3.

Xing et al.(107). Xing’s distance metric learning method is one of the earliest

Mahalanobis distance learning algorithms. It learns a Mahalanobis distance metric to

improve the performance of k-means clustering by utilizing side information, i.e. must-

link and cannot-link constraints. Instances subject to a must-link constraint should belong

to the same cluster. And instances of a cannot-link constraint are forced into different

clusters.

23



2.4. Distance Metric Learning

Xing’s method is formulated based on a simple heuristic to fit these constraints. Specif-

ically, it minimizes the distance of instances in the must-link constraints while maximizes

the distance of instances in the cannot-link constraints. Accordingly, given a set of must-

link constraints, M, and a number of cannot-link constraints, C, it learns a Mahalanobis

metric, M, by solving the following optimization problem,

min
M

∑
(xi,xj)∈M

d2
M(xi,xj) (2.30)

s.t.
∑

(xi,xj)∈C

dM(xi,xj) ≥ 1

M � 0

where dM(xi,xj) is the Mahalanobis distance defined in equation (2.3). This optimization

problem is convex and thus has a global solution. Note that, in order to avoid a trivial

solution for M, the Mahalanobis distance instead of its square is used in the first constraint.

The authors propose an iterative projection algorithm to solve this optimization prob-

lem (2.30). After distance metric learning, the learned Mahalanobis distance, dM(xi,xj), is

plugged into k-means clustering algorithm, equation (2.15). In (107), the authors demon-

strate empirically that the learned metrics can be used to significantly improve clustering

performance. Its main drawback is that this method is based on a simple heuristic without

considering in its problem formulation the error of clustering algorithm.

Bach & Jordan (50). The work of Bach & Jordan learns a distance metric for

normalized spectral clustering, problem (2.25). More precisely, it learns the weight of the

input features of the Gaussian kernel, equation (2.7), by minimizing a error between the

true clustering partition and the solution of normalized spectral clustering.

Compared to Xing’s method (107), this approach requires complete supervised infor-

mation for all training instances. At first glance, this kind of fully supervised setting may

seem not be practical for clustering algorithms. However, for instance, in image segmenta-

tion tasks, where spectral clustering algorithms are often applied to segment images (88),

a number of fully labeled images are indeed easily available.

The error measure in (50) is defined based on the following observations. To obtain

the true clustering assignment matrix Y of size n by k, the target solution Q∗ of problem

(2.25) ideally should satisfy the following two constraints, 1) there exists a real matrix

Λ such that D−
1
2 Q∗ = YΛ, and 2) Q∗TQ∗ = I. Furthermore, note that the eigenspace

induced by the eigenvectors Q is rotation invariant. Therefore, the error measure in (88)
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is defined on the orthogonal projection operators, QQT , as

J(S,E) =
1

2
‖QQT −Q∗Q∗T ‖2F (2.31)

where Q∗Q∗T = D
1
2 YΛΛTYTD

1
2 = D

1
2 Y(YTDY)−1YTD

1
2 . It is easy to verify that

ΛΛT = (YTDY)−1, since Q̂T Q̂ = I. Q is the solution of normalized spectral clustering,

problem (2.25).

Minimizing this error with respect to the similarity matrix S yields an algorithm for

learning the similarity. As a result, given N training datasets and their target partitions,

{(X1,Y1), · · · , (XN ,YN )}, the following optimization problem is proposed to learn the

weight of the input features in the Gaussian kernel,

min
w

1

2

N∑
i=1

‖QiQ
T
i −Q∗iQ

∗
i
T ‖2F + λ‖w‖1 (2.32)

where the L1 regularization on the weight vector w encourages a sparse solution which

is useful to remove irrelevant input features. Qi and Q∗i are functions of S and D and

thus functions of w. However, since Q are the eigenvectors of the matrix D−
1
2 SD−

1
2 , it

is difficult to optimize QQT . In (50), the authors solve this problem by approximating it

based on the power method.

The authors empirically demonstrate on synthetic datasets that learning the weights

of the input features is robust to irrelevant input features and improves significantly the

performance of normalized spectral clustering.

LMMLP (54). The method of Large Margin Metric Learning for Partitioning (LMMLP)

learns a Mahalanobis distance for the spectral relaxation of the k-Means clustering, prob-

lem (2.18).

Similar to the work of Bach & Jordan, LMMLP assumes the availability of fully la-

beled datasets. It learns the distance metric based on the large margin idea following the

framework of structural SVM (92).

Specifically, by coupling the spectral relaxation of k-Means clustering, problem (2.18),

with Mahalanobis metric learning, we have the following optimization problem,

max
M,BTB=B,tr(B)=k

tr(XMXTB) = tr(MXTBX) (2.33)

where M is the Mahalanobis metric that will be learned.

Given N training datasets and their target partitions, {(X1,Y1), · · · , (XN ,YN )}, fol-

lowing the framework of structural SVM, the distance metric M is learned by the following
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optimization problem,

min
M,ξ

Ω(M) + λ

N∑
i=1

ξi (2.34)

s.t. ξi ≥ 0

ξi ≥ max
BTB=B,tr(B)=k

δ(Bi,B
∗
i ) + tr(MXT

i BiXi)− tr(MXT
i B∗iXi)

M � 0

where B∗i is the target matrix defined based on true partition matrix Yi according to

the k-Means problem (2.15), B∗i = Yi(Y
T
i Yi)

−1YT
i . The margin δ(Bi,B

∗
i ) is defined by

δ(Bi,B
∗
i ) = ‖Bi −B∗i ‖2F , which corresponds to a distance measure of partitions (54). Its

use is mainly motivated by the observation that a closed form solution of Bi in the second

constraint can be efficiently computed with this margin function, which is a classical

computational bottleneck in structural SVM. The regularization term of Ω(M) can be

instantiated with different regularizer, e.g. ‖M‖2F and tr(M). This problem (2.34) is

convex but not smooth. The authors solve it with projected subgradient method.

In addition to learning the Mahalanobis metric M in problem (2.34), in a similar

manner, LMMLP can learn the Mahalanobis metric of Gausian similarity matrix in the

following problem,

min
M,ξ

Ω(M) + λ
N∑
i=1

ξi (2.35)

s.t. ξi ≥ 0

ξi ≥ max
BTB=B,tr(B)=k

δ(Bi,B
∗
i ) + tr(SBi)− tr(SB∗i )

M � 0

where S is the pariwise similarity matrix, whose (i, j) entry is

Sij = exp(−(xi − xj)
TM(xi − xj)).

Unfortunately, the optimization problem (2.35) is concave-convex. Only a local conver-

gence can be obtained.

The authors experiment with these two approaches, problems (2.34) and (2.35), on

a number of datasets, including UCI datasets and image segmentation datasets. The

empirical results show that learning the distance metric improves the performance of

clustering algorithms.
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2.4.4 Discussions

Motivated by the fundamental role of the smoothness assumption in machine learning

algorithms, distance metric learning learns a ”data dependent” distance metric to fit better

the smoothness assumption. Most of the algorithms we reviewed in this section formulate

the learning problem by minimizing some approximation of the generalization error of a

target learning algorithm. In the learning process, the distance metric and the predictive

model are learned jointly. As a result, distance metric learning can be seen as adding one

more layer of learned structure on the base learning algorithm. The final model is learned

by optimizing the approximation of the generalization error.

2.5 Conclusion

In this chapter, we first presented the definition of distance metric and briefly reviewed

different types of machine learning. Then the importance of distance metric for vari-

ous machine learning algorithms is discussed. The importance of distance metric in the

smoothness assumption is the main motivation of the development of distance metric

learning over the last decade. We also reviewed a number of distance metric learning al-

gorithms and discuss their advantages and drawbacks. However we omitted probably the

most well studied distance metric learning setting that of nearest neighbor classification.

In the next chapter we will review these algorithms.
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Chapter 3

Metric Learning for Nearest

Neighbor Classification

In this chapter, we review distance metric learning for Nearest Neighbor (NN) classifi-

cation, the most studied distance metric learning algorithms. A considerable volume of

theoretical and empirical results have been established in this particular category of dis-

tance metric learning algorithm over the last decade. The structure of this chapter is as

follows. We first briefly describe the key concepts of distance metric learning for NN in

section 3.1. Then, we introduce different types of distance metric learning algorithms,

starting from simple linear metric learning in section 3.2, its kernelized counterpart, ker-

nelized metric learning, in section 3.3, and Riemannian metric learning in section 3.4. In

section 3.5, we discuss various structural regularizations on distance metric. Finally, we

review the works on distance metric learning theory.
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3.1 Elements of Distance Metric Learning for NN Classifi-

cation

We start this chapter with a big picture of distance metric learning for NN classification.

Very often a typical metric learning algorithm, h, learns a pseudo distance metric, d,

by solving an optimization problem of the following form:

min
d

Lh(Ch(d)) + Ωh(d) (3.1)

s.t. d is a pseudo distance metric

where Lh is the loss function of the h algorithm, defined based on a set of constraints Ch(d).

Lh can be a simple heuristic to improve the performance of NN or an approximation of

classification error of NN. Ωh(d) is a regularizer to prevent overfitting or to impose prior

knowledge on the distance metric, d.

For instance, the most studied Mahalanobis metric learning algorithm often results in

an optimization problem as

min
M

Lh(Ch(M)) + Ωh(M) (3.2)

s.t. M � 0

where Lh is a loss function of a set of constraints Ch(M) parametrized by the Mahalanobis

metric M. The regularizer Ωh(M) could be the squared Frobenius norm, ‖M‖2F , the

trace norm, tr(M), or the structured sparsity inducing norm (5; 60; 112). These various

regularizers will be discussed in section 3.5. The constraint, M � 0, ensures that the

learned Mahalanobis distance, equation (2.3), is a pseudo distance.

The loss function Lh varies with different forms of constraints Ch(d) considered in met-

ric learning algorithms. The two most popular forms of constraints are pairwise similarity

and dissimilarity constraints (23; 107) and large margin triplet constraints (105).

3.1.1 Similarity and Dissimilarity Constraints

A pair of instances subject to a similarity constraint should have small distance. On

the contrary, instance pair subject to a dissimilarity constraint should have large distance.

More precisely, given a set of similarity constraints, S, and a set of dissimilarity constraints,
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D, the optimization problem often has the following form:

min
d

∑
(xi,xj)∈S or D

ξij + Ωh(d) (3.3)

s.t. d(xi,xj) ≥ u+ ξij ,∀(xi,xj) ∈ D

d(xi,xj) ≤ l + ξij ,∀(xi,xj) ∈ S

ξij ≥ 0

d is a pseudo distance metric

where u and l are some constants, specifying the thresholds these constraints should satisfy.

ξij is a slack variable, incurring a penalty if a constraint is violated. The loss function Lh

is defined as the sum of these penalties. Note that, to be more flexible, different thresholds

uij and lij can be used for different pairs.

However, learning with similarity and dissimilarity constraints often leads to a heuristic

loss function, since these constraints are not directly related to the NN classification error.

These constraints are often used if only side information about instances are available.

3.1.2 Large Margin Triplet Constraints

The large margin triplet constraint originates from the classical large margin idea in ma-

chine learning (20). A large margin triplet constraint defined over triplets of instances

(xi,xj ,xk) requires that their distances respect the following relationship,

d(xi,xk) ≥ d(xi,xj) + γ,

where γ is the predefined margin distance. Similar to the optimization problem (3.3) with

similarity and dissimilarity constraints, we can use the triplet constraints to define the

following metric learning optimization problem given a set of L such constraints:

min
d

∑
(xi,xj ,xk)∈L

ξijk + Ωh(d) (3.4)

s.t. d(xi,xk)− d(xi,xj) ≥ γ + ξijk, ∀(xi,xj ,xk) ∈ L

ξijk ≥ 0

d is a pseudo distance metric

where ξijk is also a slack variable, and γ is often set by γ = 1. The loss function Lh in

this case is the sum of margin violations.
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The large margin triplet constraints are often defined based on class label information.

For instance, we can define for each instance xi a total of k1 ∗ k2 constraints. These

constraints are defined using its k1 same-class nearest neighbors and its k2 different-class

nearest neighbors and constraining the distance of each instance to its k2 different class

nearest neighbors to be larger than those to its k1 same class nearest neighbors with margin

γ. Note that, the k1 same-class nearest neighbors of each instance are also called its target

neighbors (105). When triplet constraints are defined in such way, the margin violations

can be seen as an approximation of the NN classification error. Learning distance metrics

with large margin constraints often achieves state-of-the-art NN predictive performance.

In the following sections, we will briefly describe different types of metric learning

algorithms always in the context of nearest neighbor classification. We will start from the

simplest form of metric learning, linear metric learning in section 3.2; linear in the sense

that the mapping that we learn is linear. And then we move to methods that lift the

linearity limitation either through the use of kernels, section 3.3, or by learning a number

of local metrics, section 3.4. We will also review briefly different regularization methods

for linear metric learning, section 3.5, and finally with a brief review of more theoretical

work on generalization error bounds for metric learning in section 3.6.

3.2 Linear Metric Learning

Linear metric learning is probably the earliest and most studied metric learning paradigm

for kNN classification. Among all different metric lerning paradigms for kNN, it has the

simplest form of distance function parametrization. Very often the methods that follow

this paradigm learn a distance function of the following form:

dL(xi,xj) = d(Lxi,Lxj) (3.5)

The distance computation of equation (3.5) is a two-step process. In the first step, a

linear transformation L is applied on all the learning instance in the input space X . Then

a predefined distance metric d is used to compute the distance in the projected space.

Note that, the transformation matrix L is necessarily constrained to ensure the projected

instances Lx being eligible for the distance function d. For instance, the well-studied

Mahalanobis distance falls into this category by learning a linear transformation in the

Euclidean space.

In the following sections, we review linear metric learning methods motivated from

different aspects. We start with the two early works.
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3.2.1 Early Approaches

Schultz & Joachims (83). This work learns a restricted pseudo-metric with the follow-

ing form:

dW(xi,xj) = (xi − xj)
TAWAT(xi − xj) (3.6)

where A is a predefined linear transformation matrix. W is a non-negative diagonal

matrix that will be learned. Note that, this distance function can be a distance metric in

a kernel space if we set A = Φ(X), where Φ(X) are the images of the training instances

in the kernel space.

With this distance parametrization, the authors proposed to learn the diagonal matrix

W with large margin triplet constraints. This is also one of the earliest works that learns

a distance metric using large margin triplet constraints. However, its main drawback is

that the distance parametrization, equation 3.6, requires the use of a predefined A matrix

and learns only a diagonal matrix W.

POLA (84). Pseudo-metric Online Learning Algorithm (POLA) is the first online

Mahalanobis metric learning algorithm. It learns the distance metric by maintaining

a margin between distances of similar and dissimilar instances pairs; the distances of

similar instances should have smaller distances than those of dissimilar instances. More

specifically, the hinge loss function of POLA is defined as:

l(M, n,xi,xj , Sij) = max(0, Sij(dM(xi,xj)− b) + 1) (3.7)

where Sij = 1 if instances xi and xj are similar, otherwise Sij = −1. b is the distance

threshold indicating the separation of similar and dissimilar pairs. M is the Mahalanobis

metric. Note that, M � 0 is constrained to ensure the learned distance is a pseudo-metric.

It also constrains b ≥ 1 to ensure the loss being well-defined.

The optimization problem is solved by orthogonal projection. At the kth iteration,

given a pair of learning instances, (xi,xj), POLA first updates M and b to reduce the

loss of (xi,xj), equation 3.7. This is done by a orthogonal projection which projects

parameters Mk−1 and bk−1 onto the halfspace defined by Sij(dM(xi,xj)− b) + 1 ≤ 0. In

the second step, it maintains the feasibility of M and b by projecting them back to their

feasible region, defined by M � 0 and b ≥ 1.

Note that, even though in POLA there is a margin maintained between distances of

similar and dissimilar pairs, this margin definition is not directly related with the NN

classification error. It is rather closely related with the definition of the ”(dis)similar”
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concept in the learning problem.

3.2.2 Large Margin Approaches

In this section, we review three large margin linear metric learning algorithms. All of

them learn distance metrics with large margin triplet constraints. We start with the work

of Large Margin Nearest Neighbor (LMNN).

LMNN (105). LMNN learns a Mahalanobis metric M by optimizing the following

problem:

min
M

∑
(xi,xj ,xk)∈L

ξijk + µ
∑

xj∈Ne(xi),yi=yj

d2
M(xi,xj) (3.8)

s.t. d2
M(xi,xk)− d2

M(xi,xj) ≥ 1 + ξijk, ∀(xi,xj ,xk) ∈ L

ξijk ≥ 0

M � 0

where Ne(xi) is the k nearest neighbors of learning instance xi and d2
M(xi,xj) is the

squared Mahalanobis distance, defined by

d2
M(xi,xj) = (xi − xj)

TM(xi − xj).

ξijk is the slack variable incurring a penalty if the corresponding triplet constraints is

violated. The set of triplet constraints L is defined by {(xi,xj ,xk) : xj ∈ Ne(xi), yi =

yj , yi 6= yk}. Note that, xj is called the target neighbor of xi if xj ∈ Ne(xi), yi = yj .

Intuitively, the problem (3.8) learns a Mahalanobis metric by minimizing the sum

of the distances of each instance to its target neighbors while pushing all different class

instances out of its target neighborhood. By learning a full Mahalanobis metric, LMNN

successfully lifted the limitation of (83), section 3.2.1, and become one of the state-of-the-

art Mahalanobis metric learning methods.

MLSVM (69). MLSVM differs slightly from LMNN by solving the following problem:

min
M

∑
i

ξi + µ‖M‖2F (3.9)

s.t. min
xk∈Ne(xi),yi 6=yk

d2
M(xi,xk)− max

xj∈Ne(xi),yi=yj
d2

M(xi,xj) ≥ 1 + ξi

ξi ≥ 0

M � 0
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where ‖ · ‖F is the Frobenius norm. Compared to the margin definition in LMNN, the

margin of each instance defined in MLSVM is the margin between its furthest same class

nearest neighbors and its nearest different class nearest neighbors. This margin definition

is more closer to the margin definition in SVM. Motivated by this fact, the authors solve

this problem with Pegasos (85), a SVM QP solver in the primal form. At each iteration,

the Positive Semi-Definite property of M is maintained by an orthogonal projection step

which projects M onto the PSD cone. In terms of predictive performance, the authors

show MLSVM achieves slightly better results than that of LMNN.

χ2-LMNN (53). The two previous works, LMNN and MLSVM, learn the Maha-

lanobis metric in the Euclidean space. χ2 LMNN learns the χ2 distance on the probability

simplex. The main motivation of χ2 LMNN is that there are many histogram datasets

in computer vision, where each instance, xi ∈ {xi :
∑

k xik = 1, xik ≥ 0, ∀k}, lies on the

more restricted probability simplex rather than the Euclidean space. To learn a distance

for these datasets, it would be better if we use the geometry structure of the simplex.

Specifically, χ2 LMNN learns the a modified χ2 distance, defined by

χ2
L(xi,xj) = χ2(Lxi,Lxj) (3.10)

where

χ2(xi,xj) =
1

2

∑
k

(xik − xjk)2

xik + xjk
.

Furthermore, the constraints
∑

i Lik = 1, L ≥ 0 are added to ensure the projected learning

instance Lxi being on the simplex.

With this new distance parametrization on the simplex, χ2 LMNN learns the χ2 dis-

tance by solving an optimization similar to problem (3.8), where the Mahalanobis distance

d2
M is replaced by χ2 distance in equation (3.10). By utilizing the geometrical structure

of simplex, the authors show that χ2 LMNN improves significantly the predictive perfor-

mance for histogram datasets over that of LMNN. Note that, this is one of the first metric

learning works that goes beyond distance metric learning in Euclidean space or kernel

space.
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3.2.3 Stochastic Approaches

In this section, we present metric learning approaches that follow the so-called stochastic

approach. The key concept here is that of the stochastic nearest neighbor defined as:

pd(xj |xi) =
e−d

2(xi,xj)∑
k 6=i e

−d2(xi,xk)
(3.11)

where d is a distance metric. Intuitively, the conditional probability pd(xj |xi) can be

interpreted as the probability of xj being the nearest neighbor of xi under the distance

metric d.

NCA (34). Neighborhood Component Analysis (NCA) approximates the NN classifi-

cation error based on the concept of stochastic nearest neighbor. Specifically, NCA defines

the probability pd(ŷi = yi|xi) of xi being correctly classified under metric d as:

pd(ŷi = yi|xi) =
∑
yi=yj

pd(xi|xj)

where ŷi is the predicted label of xi. Thus, the approximated NN error can be defined as∑
i

(1− pd(ŷi = yi|xi)) (3.12)

The optimization problem of NCA is to learn a linear transformation L by minimizing

the approximated NN error, equation 3.12, under the distance metric

d2
L(xi,xj) = (xi − xj)

TLTL(xi − xj)

Compared to the large margin approach, section 3.2.2, which approximates the NN

error based on predefined target neighborhood (triplet constraints), NCA bypasses need

for a predefined neighborhoods by directly approximated NN error using the stochastic

nearest neighbor concept. However, the main drawback of NCA is that the computational

complexity of stochastic nearest neighbor is O(n2), where n is the number of instances.

Furthermore, the optimization problem is not convex. In contrast, the optimization prob-

lem of LMNN is convex with computational complexity O(n).

MCML (32). The algorithm of Maximally Collapsing Metric Learning (MCML) uses

the stochastic nearest neighbor in a different manner. MCML learns a distance metric d

to match, as well as possible, its induced conditional distribution pd(xj |xi) to an ideal
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distribution, defined as:

p0(xj |xi) ∝

{
1 yi = yj

0 yi 6= yj
(3.13)

This ideal distribution corresponds to the scenario that all points in the same class were

mapped to a single point and infinitely far from points in different classes. Specifically,

MCML learns a Mahalanobis metric M by solving the following problem:

min
M

∑
i

KL(p0(·|xi)|pdM(·|xi)) (3.14)

s.t. M � 0

where KL(p0|pdM) is the Kullback-Leibler divergence between ideal distribution p0 and

pdM .

The main advantage of MCML over NCA is that its optimization problem (3.14) is

convex. However, the ideal target of MCML is over constrained for NN error minimization.

In terms of predictive performance, MCML often performs worse than NCA.

3.2.4 Information Theoretic Approach

The third class of linear metric learning we will review is motivated from information the-

ory. This approach proposes a better way on measuring the distance between Mahalanobis

metrics, i.e. PSD matrices, by considering their PSD structure.

ITML (23). The work of Information-Theoretic Metric Learning (ITML) pioneers

this approach. It is motivated by the fact that there exists a bijection between the set of

Mahalanobis distances and the set of equal mean multivariate Gaussian distributions,

f(M)→ p(x,M) =
1

Z
e−

1
2
dM(x,µ)

where x is the random variable of multivariate Gaussian distribution. µ is the mean of

random variable and Z is the normalization constant. With this bijection, the authors

propose to measure the distance between two Mahalanobis distances M0 and M by the

Kullback-Leibler divergence between their corresponding multivariate Guassians p(x,M0)

and p(x,M), defined as:

KL(p(x,M0), p(x,M)) =
1

2
dLogDet(M,M0) = tr(MM−1

0 )− LogDet(MM−1
0 )− n
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where dLogDet is the logdet divergence.

Its optimization problem of learning Mahalanobis metric M is formulated by mini-

mizing the logdet divergence between M and a predefined target matrix M0 subject to a

number of similarity and dissimilarity constraints, S and D,

min
M

dLogDet(M,M0) + γ
∑
ij

ξij (3.15)

s.t. dM(xi,xj) ≤ l + ξij , (i, j) ∈ S

dM(xi,xj) ≥ u− ξij , (i, j) ∈ D

where very often matrix M0 is set to identity matrix.

Comparing to previous algorithms, ITML is fast and scalable, since it does not need

eigen-decomposition computations or semi-denite programming in LMNN. Furthermore,

thanks to the bijection between the multivariate Gaussians and the PSD covariance ma-

trices, the logdet divergence measure also considers the PSD structure of the Mahalanobis

metrics. This is missed in other approaches. Note that, the logdet divergence has been

recently used in different metric learning algorithms (65; 75; 106).

3.3 Kernelized Metric Learning

In section 3.2, we discussed linear metric learning algorithms which learns a linear trans-

formation in the original data space. However, very often a linear transformation cannot

adequately represent the inherent complexities of a problem at hand. To address this lim-

itation various works proposed kernelized versions of metric learning algorithms in order

to learn a non-linear distance metric. In this section, we briefly review work falling into

this category, starting from the early work.

3.3.1 Early Work

Since the dimensionality of kernel space might be infinite, early works of Kernelized Metric

Learning (KML) learn a low rank Mahalanobis metric parametrized in a specific form.

Schultz & Joachims (83). As discussed in section 3.2.1, this work learns a restricted

pseudo-metric with the following form:

dW(xi,xj) = (xi − xj)
TAWAT(xi − xj) (3.16)

where A is a predefined matrix. W is a diagonal matrix. Under this parametrization, the
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pseudo-distance of φ(xi) and φ(xj) in a kernel space H can be effectively computed by

defining A = Φ(X),

dW(φ(xi), φ(xj)) = (φ(xi)− φ(xj))
TΦ(X)WΦ(X)T(φ(xi)− φ(xj)) (3.17)

= (Ki −Kj)
TW(Ki −Kj)

where Ki is the ith row of kernel matrix K, whose (i, j) entry Kij = φ(xi)
Tφ(xj).

With the distance parametrization of equation (3.17), learning the distance in the

kernel space can be done in the same manner as learning the distance in the original input

data space.

LMCA Large Margin Component Analysis (LMCA) (91) is the kernelized version

of LMNN discussed in 3.2.2. LMNN learns an unrestricted Mahalanobis metric in the

original input data space, defined as

d2
M(xi,xj) = (xi − xj)

TM(xi − xj).

Similar to the work of Schultz & Joachims (83), LMCA learns a specific form of M =

Φ(X)BΦ(X)T . However, the B matrix here is a PSD matrix rather than a restricted

diagonal matrix. Under this parametrization, the Mahalanobis distance in the kernel

space can be defined as:

d2
B(φ(xi), φ(xj)) = (φ(xi)− φ(xj))

TΦ(X)BΦ(X)T (φ(xi)− φ(xj)) (3.18)

= (Ki −Kj)
TB(Ki −Kj)

Pluging euqation (3.18) into problem 3.8, LMCA learns a non-linear distance in the kernel

space. Note that, the distance parametrization of equation (3.18) has also been used in

MCML(32) and MLSVM (69).

ITML (23) The distance parametrization of kernelized ITML is slightly different from

equations (3.17) and (3.18). It is motivated by the learning algorithm of ITML itself, i.e.

Algorithm 1 in (23). More precisely, in the ITML learning algorithm, the Mahalanobis

metric Mk+1 at k + 1 iteration is updated by

Mk+1 = Mk + βMk(xi − xj)(xi − xj)
TMk

where β is a stepsize-like parameter. By unrolling the matrix M, we have

M = M0 + M0XBXTM0
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where B is PSD matrix. M0 is the predefined target matrix in problem 3.15.

As a result, the Mahalanobis distance metric M in kernelized ITML is parametrized

by

M = M0 + M0Φ(X)BΦ(XT )M0

where M0 is the target Mahalanobis distance metric in kernel space, often set by M0 = I.

The distance in kernel space, if M0 = I, is defined as

d2
B(φ(xi), φ(xj)) = (φ(xi)− φ(xj))

T (I + Φ(X)BΦ(XT ))(φ(xi)− φ(xj)) (3.19)

= (Kii + Kjj − 2Kij) + (Ki −Kj)
TB(Ki −Kj)

Note that, there is an equivalence between learning the kernel matrix K and learning the

Mahalanobis distance d in the kernel space, since

d2(φ(xi), φ(xj)) = Kii + Kjj − 2Kij

In (23), kernelized ITML learns the distance in the kernel space by learning a new kernel

matrix K.

3.3.2 KPCA Approach

The early work discussed in section 3.3.1 kernelizes the metric learning algorithms by

optimizing a specific form of metric matrix in the kernel space. Depending on their

objective functions, different learning algorithms might learn metric matrices of different

forms. The work of (16) proposes an alternative way to kernelize the metric learning

algorithms. This simple two step approach first applies Kernel PCA on all the learning

instances and then it learns a non-linear distance in the kernel space by applying one linear

metric learning algorithm on the projected learning instances, i.e. the output of applying

Kernel PCA on learning instances.

The authors prove that for any objective function f of a metric learning algorithm, the

optimal value of f using as input the learning instances φ(xi) is equal to the optimal value

of f using as input the projected learning instances zi, where zi is the new representation

of φ(xi) after applying Kernel PCA.

Comparing to the approaches we presented in section 3.3.1, this approach does not

require the use of metric matrices of a given structure. Also the code of linear metric

learning can be reused.
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3.3.3 A Representer Theorem for Metric Learning

Recently, the work of (46) proposed a representer theorem for kernelized metric learning

algorithms. It is based on the following problem setting.

Most kernelized metric learning algorithm can be summarized into the following opti-

mization problem,

min
M

f(M) (3.20)

s.t. M � 0

gi(Φ(X)TMΦ(X)) ≤ bi, i ∈ {1, · · · ,m}

where M is Mahalanobis matrix in the kernel space, gi is a function to produce the pairwise

or triplet constraints used in metric learning algorithms and f is the objective function.

To state the representer theorem, we need the definition of the spectral function.

Definition 2. (46) f : Rn×n → R is a spectral function if f(M) =
∑

i fs(λi), where

λ1, · · · , λn are the eigenvalues of M and fs : R→ R is a real-value scalar function. Note

that, if fs is a convex scalar function, then f is also convex.

Now, we can present the following theorem that gives the optimal parametrization

form of M, i.e. the representer theorem of M.

Theorem 2. (46) Assume that f in problem 3.20 is a spectral function and the global

minimum of the corresponding strictly convex scalar function fs is α > 0. Let M∗ be an

optimal solution of problem 3.20, then we have

M∗ = αI + Φ(X)BΦ(X)T (3.21)

where B is a PSD matrix.

As a result of Theorem 2, most of metric learning algorithms can be easily kernelized.

For instance, the optimal solutions of LMNN(105), POLA(84), MCML(32) and MLSVM

(69) have a constant α = 0.

3.4 Local Metric Learning

To lift the limitation of linear metric learning, kernelized metric learning learns implicitly

a non-linear distance metric by learning a linear metric in the kernel space. In this section,

we review an alternative approach, Local Metric Learning (Local ML). It directly learns
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a non-linear distance by learning a linear metric on each neighborhood. When the local

metrics vary smoothly in the input data space, then learning them is equivalent to learning

the Riemannian metric on the data manifold. As before we start by reviewing the early

work that follows this approach.

3.4.1 Discriminative Adaptive Nearest Neighbor

Discriminative Adaptive Nearest Neighbor (DANN) (38) is one of the earliest (local) metric

learning algorithms. It extends the idea of Linear Discriminant Analysis (LDA) into local

metric learning. More precisely, the local metric Mi of instance xi is iteratively learned

by the following equation,

Mi = W− 1
2 (W− 1

2 BW− 1
2 + λI)W− 1

2 (3.22)

where W and B are the between and within sum-of-squares matrices computed based on

the neighborhood of xi. λ is a regularizer. Note that, at each iteation the neighborhood

is updated according to the learned local metric M. Intuitively, the learned local metric

Mi will shrink neighborhoods in directions orthogonal to the local decision boundaries

and enlarge the neighborhoods parallel to the boundaries. However, since DANN is in

fact a local LDA, it has the main limitations as LDA. Also it learns the local metrics

independently with no regularization between them which makes it prone to overfitting.

3.4.2 MM-LMNN

Multiple Metric LMNN (MM-LMNN) is a variant of LMNN discussed in section 3.2.2

(105). Unlike DANN that learns for each instance one local metric, MM-LMNN simplifies

the learning problem by learning one local metric for each cluster of learning instances

to also address the fact the LMNN is much more computationally expensive compared to

LDA.

Concretelly, MM-LMNN learns a number of local metrics {M1, · · · ,Mm} by solving

the following optimization problem,

min
M1,...,Mm,ξ

∑
ijk

ξijk + µ
∑
ij

d2
Mclus(xj)

(xi,xj) (3.23)

s.t. d2
Mclus(xk)

(xi,xk)− d2
Mclus(xj)

(xi,xj)) ≥ 1− ξijk ∀i, j, k

ξijk ≥ 0; ∀i, j, k Mi � 0; ∀i

where clus(xj) is the index of the cluster in which instance xj belongs to. Note that, in
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MM-LMNN, the distance between xi and xj is defined by

d2
Mclus(xj)

(xi,xj) = (xi − xj)
TMclus(xj)(xi − xj).

This ‘distance’ in fact is not not symmetric, since Mclus(xj) might be different from

Mclus(xi). In (105), the authors show that MM-LMNN successfully improves the pre-

dictive performance of LMNN. However, similar to DANN, MM-LMNN learns the metrics

independently for each region making it also prone to overfitting since the local metrics

will be overly specific to their respective regions.

3.4.3 GLML

Similar to DANN, Generalized Local Metric Learning (GLML) learns for each instance

one local metric (73). Its local metric learning is motivated by the minimization of the

expected NN classification error under a Multivariate Gaussian assumption for the learning

instances of each class. GLML learns the local metric M of instance x by solving the

following problem,

min
M

(tr(M−1B))2 (3.24)

s.t. |Mi| = 1

Mi � 0

where | · | is the determinant. B is a matrix defined by

B =

C∑
i=1

∇2pi(x)(
∑
j 6=i

p2
j (x)− pi(xi)

∑
j 6=i

pj(x))

where pi(x) is the probability density of ith class at x. ∇2pi(x) is its Hessian matrix at

x. In the case of Multivariate Gaussian distribution,

∇2pi(x) = pi(x)(Σ−1
i (x− µi)(x− µi)TΣ−1

i − Σ−1
i )

where Σi and µi are respectively the covariance matrix and mean of density function pi(·).

GLML theoretically minimizes the expected NN classification error; however, the

strong Multivariate Gaussian model assumptions do not hold for many real world learning

problems.

43



3.5. Structured Regularization

3.5 Structured Regularization

The sparsity assumption is one of the most studied assumptions in machine learning over

the last years. In this section, we review metric learning algorithms that exploit various

sparse patterns on the metric matrix.

3.5.1 Off-Diagonal L1 Regularization

The work of (75) proposes to learn a Mahalanobis metric with sparse off-diagonal elements.

This is motivated by the fact that the off-diagonal elements of the inverse of the covariance

matrix in a high dimensional space are often very small and can be ignored. Specifically,

it learns the distance metric M by solving the following optimization problem:

min
M

tr(MM−1
0 )− LogDet(MM−1

0 ) + λ‖M‖1,off + ηL(S,D) (3.25)

s.t. M � 0

where ‖M‖1,off =
∑

i 6=j |Mij | is the L1 off-diagonal regularization, tr(MM−1
0 )−LogDet(MM−1

0 )

is the logdet divergence following ITML(23), discussed in section 3.2.4, and L(S,D) is a

loss function defined based on similarity and dissimilarity constraints. To simplify the

optimization problem, in (75), the authors define

L(S,D) :=
∑

(i,j)∈S

d2
M(xi,xj)−

∑
(i,j)∈D

d2
M(xi,xj)

Finally, the authors propose an efficient block coordinate descent algorithm to solve prob-

lem 3.25.

3.5.2 L2,1 Regularization

The work of (61) studies the use of L2,1 regularization for Mahalanobis distance metric

learning. It is motivated by the fact that metric learning algorithms perform poorly when

the input data contains a lot of irrelevant features. By adding an L2,1 regularization on the

metric matrix, irrelevant features are removed by setting their corresponding coefficients

to 0. The L2,1 norm of M is defined as

‖M‖2,1 =
∑
i

‖Mi·‖2

where ‖Mi·‖2 is the L2 norm of ith row of matrix M.
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The authors applied this regularization to the metric-learning-to-rank problem (64).

The method learns a Mahalanobis metric by solving the optimization problem, defined as:

min
M

tr(M) + λ‖M‖2,1 + µ
∑
q∈Q

ξq (3.26)

s.t. tr(MTφ(q, yq))− tr(MTφ(q, y)) ≥ δ(yq, y)− ξq,∀y ∈ Y,∀q ∈ Q

ξq ≥ 0

M � 0

where Q is the query space and Y is the permutation space of all documents to be ranked.

tr(MTφ(q, y)) can be intuitively interpreted as a match between query q and the per-

mutation y of all documents, yq is the target permutation of query q, and δ(yq, y) is a

predefined scalar, indicating the desired margin between y and yq. In (61), the prob-

lem 3.26 are efficiently solved with alternating direction method of multipliers (ADMM)

method (13).

The L2,1 regularization will force whole rows and columns of M to be 0. In contrast,

the trace norm regularization will force the PSD matrix M to be low rank. The work

of (112) studies the trace norm regularization and solve the optimization problem with

efficient Nesterov method (67).

3.6 Distance Metric Learning Theory

Learning theory studies the theoretical behavior of learning algorithms, e.g. their gener-

alization error bounds. In this section, we briefly discuss work on distance metric learning

theory. All such work focuses on the generalization error of ”similar” and ”dissimilar”

pairs.

3.6.1 Generalization Error Bounds for Metric Learning

Regularized Distance Metric Learning(48) The work of (48) pioneered the study

of generalization error bounds for distance metric learning. The authors consider the

foilowing regularized metric learnign problem:

min
M

1

2
‖M‖F +

2C

n(n− 1)

∑
i<j

g(yij(1− d2
M(xi,xj)) (3.27)

s.t. M � 0

tr(M) ≤ η(d)
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where d and n are, respectively, the number of input features and the number of instances.

yij ∈ {−1, 1} indicates the relationship between instance xi and xj ; yij = 1 if (xi,xj) ∈ S,

otherwise yij = −1. g is the convex loss function and Lipschitz continuous with Lipschitz

constant L. η(d) is a constant controlling the size of matrix M.

The target here is to derive an estimation error bound between empirical loss and

expected loss, defined by

I(MD)− ID(MD)

where the empirical loss of MD on the given data D is

ID(MD) =
2

n(n− 1)

∑
i<j

g(yij(1− d2
MD

(xi,xj))

and the expected loss is

I(MD) = E(xi,xj ,yij)g(yij(1− d2
MD

(xi,xj))

Note that MD is the metric learned on data D by solving problem 8.1.

Since the instance pairs (xi,xj) are not i.i.d., the authors establish the generalization

error bound based on stability analysis (11). The main result is given in the following

theorem.

Theorem 3. (48) Let D be a collection of n randomly selected instances, and MD be

the distance metric learned by solving problem 8.1. With probability 1 − δ, we have the

following bound for the expected loss function I(MD),

I(MD)− ID(MD) ≤ 32CL2R4

n
+ (32CL2R4 + 4Ls(d) + 2g0)

√
ln(2

δ )

2n

where R is the upper bound of the norm of the instances, i.e. supx ‖x‖2 ≤ R, g0 measures

the largest loss when metric is 0, i.e. g0 = supxi,xj ,yij |g(yij(1 − d2
0(xi,xj))|, and s(d) =

min(
√

2dg0C, η(d)).

According to Theorem 3, the estimation error converges in the order of O( s(d)√
n

).

Empirical Loss Minimization (9) In the work of (9), the authors study the distance
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metric learned by minimizing the empirical loss,

min
M,γ

2

n(n− 1)

∑
i<j

g(yij(γ − d2
M(xi,xj)) (3.28)

s.t. M � 0

γ ≥ 0

where γ is a positive variable denoting the decision threshold.

Similar to (48), this work also shows that the empirical loss of converges to the expected

loss in the order of O( 1√
n

), i.e.

I(MD, γD)− ID(MD, γD) = O(
1√
n

), ∀(M, γ) ∈ {(M, γ) : M � 0, γ ≥ 0}

Furthermore, they also show that the metric MD learning by solving problem 3.28 is

consistent, i.e.

E(I(MD, γD)− I(M∗, γ∗))2 = O(
1√
n

)

where (M∗, γ∗) is the optimal value that minimizes the expected loss.

Regularized Distance Metric Learning with General Matrix Norm (14) In

(14) the authors extend the work of (48) and consider distance metric learning with general

forms of matrix metric regularization, more concretely they examine cost functions of the

following form:

min
M,b

λ‖M‖+
1

n(n− 1)

∑
i 6=j

[yij(d
2
M(xi,xj)− b)]+ (3.29)

s.t. M � 0

b ≥ 0

where ‖ · ‖ is a general matrix norm, which could be trace norm, L2,1 norm, Frobenious

norm and element-wise L1 norm and [·]+ = max(0, ·) is the hinge loss function.

The main results of this work is given in the following theorem.

Theorem 4. (14) Let (MD, bD) be the solution of problem 3.29. Then, for any 0 < δ < 1,

with probability 1− δ, we have that

I(MD, bD)− ID(MD, bD) ≤ 4Rn√
λ

+
4(3 + 2X∗/

√
λ)√

n
+ 2(1 + X∗/

√
λ)

√
2 ln(1

δ )

n

47



3.7. Conclusion

where Rn is the Radmemcher complexity for metric learning and X∗ = maxxi,xj‖(xi −
xj)(xi − xj)

T ‖∗, ‖ · ‖∗ is the dual norm of ‖ · ‖.

For different matrix norm regularizers for input data space x ∈ [0, 1]d, we have

• Frobenius-norm: X∗ = d and Rn ≤ 2d√
n

• L1 norm: X∗ = 1 and Rn ≤ 4
√
e log d√
n

• L2,1 norm: X∗ =
√
d and Rn ≤ 4

√
ed log d√
n

These results indicate that when d is large, the generalization error bound with element-

wise L1 norm regularization is much better.

3.7 Conclusion

In this chapter we reviewed metric learning algorithms across different dimensions, we

started with linear metric learning in the context of the standard kNN classification al-

gorithm or in stochastic kNN, then we moved to non-linear variants, such as kernelized

versions and local metric learning, and finally to regularization and error bounds for metric

learning. In the following chapters we will present the main contributions of the thesis and

how these are addressing limitations in the state of the art. We will show in chapter 4 how

we address the sensitivity of LMNN to the original given target neighborhood structure

by actually making it a part of the learning problem, developing a new method that is

similar in spirit to NCA but less computationally expensive. Then in chapter 5 we will

show how we go beyond standard kernelized metric learning and learn the kernel that is

optimal for a given problem. In the chapter 6 we propose yet another non-linear metric

learning method, one that relies on smooth local metric learning. Finally in chapter 7

we propose a two-stage non-linear metric learning method which improves over kernelized

metric learning and local metric learning methods.



Chapter 4

Learning Neighborhood Metric

Learning

In this chapter, we propose a novel formulation of the metric learning problem that in-

cludes in the learning process the learning of the local target neighborhood relations. The

formulation is based on the fact that many metric learning algorithms can be seen as

directly maximizing the sum of some quality measure of the target neighbor relationships

under an explicit parametrization of the target neighborhoods. We cast the process of

learning the neighborhood as a linear programming problem with a totally unimodular

constraint matrix (89). An integer 0-1 solution of the target neighbor relationship is guar-

anteed by the totally unimodular constraint matrix. The number of the target neighbors

does not need to be fixed, the formulation allows the assignment of a different number

of target neighbors for each learning instance according to the instance’s quality. We

propose a two-step iterative optimization algorithm that learns the target neighborhood

relationships and the distance metric. The proposed neighborhood learning method can

be coupled with standard metric learning methods to learn the distance metric, as long

as these can be cast as instances of our formulation.

The chapter is organized as follows. In Section 4.1, we discuss the moviation of the pro-

posed learning neighborhood metric learning. In Section 4.2 we present the optimization

problem of the Learning Neighborhoods for Metric Learning algorithm (LNML) and in

Section 4.3 we discuss the properties of LNML. In Section 4.4 we instantiate our neighbor-

hood learning method on LMNN and MCML. In section 4.5, we discuss in more detail the

related work. In Section 4.6 we present the experimental results and we finally conclude

with Section 4.7.
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4.1 Motivation

Metric learning for classification relies on two interrelated concepts, similarity and dissim-

ilarity constraints, and the target neighborhood. The latter defines for any given instance

the instances that should be its neighbors and it is specified using similarity and dissimilar-

ity constraints. In the absence of any other prior knowledge the similarity and dissimilarity

constraints are derived from the class labels; instances of the same class should be similar

and instances of different classes should be dissimilar.

The target neighborhood can be constructed in a global or local manner. With a

global target neighborhood all constraints over all instance pairs are active; all instances

of the same class should be similar and all instances from different classes should be

dissimilar (32; 107). These admittedly hard to achieve constraints can be relaxed with

the incorporation of slack variables (23; 62; 69; 83). With a local target neighborhood

the satisfiability of the constraints is examined within a local neighborhood (34; 69; 104;

105). For any given instance we only need to ensure that we satisfy the constraints that

involve that instance and instances from its local neighborhood. The resulting problem

is considerably less constrained than what we get with the global approach and easier to

solve. However, the appropriate definition of the local target neighborhood becomes now a

critical component of the metric learning algorithm since it determines which constraints

will be considered in the learning process. (105) defines the local target neighborhood

of an instance as its k, same-class, nearest neighbors, under the Euclidean metric in the

original space. Goldberger et al. (34) initialize the target neighborhood for each instance

to all same-class instances. The local neighborhood is encoded as a soft-max function of a

linear projection matrix and changes as a result of the metric learning. With the exception

of (34), all other approaches whether global or local establish a target neighborhood prior

to learning and keep it fixed throughout the learning process. Thus the metric that will

be learned from these fixed neighborhood relations is constrained by them and will be a

reflection of them. However, these relations are not necessarily optimal with respect to

the learning problem that one is addressing.

In this chapter, we propose a novel formulation of the metric learning problem that in-

cludes in the learning process the learning of the local target neighborhood relations. The

proposed neighborhood learning method can be coupled with standard metric learning

methods to learn the distance metric, as long as these can be cast as instances of our for-

mulation. We experiment with two instantiations of our approach where the Large Margin

Nearest Neighbor (LMNN) (105) and Maximally Collapsing Metric Learning (MCML) (32)

algorithms are used to learn the metric; we dub the respective instantiations LN-LMNN
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and LN-MCML. We performed a series of experiments on a number of classification prob-

lems in order to determine whether learning the neighborhood relations improves over

only learning the distance metric. The experimental results show that this is indeed the

case. In addition, we also compared our method with other state-of-the-art metric learning

methods and show that it improves over the current state-of-the-art performance.

4.2 Learning Target Neighborhoods for Metric Learning

Given a set of training instances {(x1, y1), (x2, y2) , . . . , (xn, yn)} where xi ∈ Rd and the

class labels yi ∈ {1, 2, . . . , c}, the Mahalanobis distance between two instances xi and xj

is defined as:

DM(xi,xj) = (xi − xj)
TM(xi − xj) (4.1)

where M is a Positive Semi-Definite (PSD) matrix (M � 0) that we will learn.

We can reformulate many of the existing metric learning methods, such as (32; 69; 83;

105; 107), by explicitly parametrizing the target neighborhood relations as follows:

min
M,Ξ

∑
ij,i6=j,yi=yj

Pij · Fij(M,Ξ) (4.2)

s.t. constraints of the original problem

The matrix P,Pij ∈ {0, 1}, describes the target neighbor relationships which are estab-

lished prior to metric learning and are not altered in these methods. Pij = 1, if xj is the

target neighbor of xi, otherwise, Pij = 0. Note that the parameters Pii and Pij : yi 6= yj

are set to zero, since an instance xi cannot be a target neighbor of itself and the tar-

get neighbor relationship is constrained to same-class instances. This is why we have

i 6= j, yi = yj in the sum, however, for simplicity we will drop it from the following equa-

tions. Fij(M,Ξ) is the term of the objective function of the metric learning methods that

relates to the target neighbor relationship Pij , M is the Mahalanobis metric that we want

to learn, and Ξ is a set of other parameters in the original metric learning problems, e.g.

slack variables. Regularization terms on the M and Ξ parameters can also be added into

Problem 4.2 (69; 83).

The Fij(M,Ξ) term can be seen as the ’quality’ of the target neighbor relationship Pij

under the distance metric M; a low value indicates a high quality neighbor relationship

Pij . The different metric learning methods learn the M matrix that optimizes the sum of

the quality terms based on the a priori established target neighbor relationships; however,

there is no reason to believe that these target relationships are the most appropriate for
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learning.

To overcome the constraints imposed by the fixed target neighbors we propose the

Learning the Neighborhood for Metric Learning method (LNML) in which, in addition

to the metric matrix M, we also learn the target neighborhood matrix P. LNML has as

objective function the one given in Problem 4.2 which we now optimize also over the target

neighborhood matrix P. We add some new constraints in Problem 4.2 which control for

the size of the target neighborhoods. The new optimization problem is the following:

min
M,Ξ,P

∑
ij

Pij · Fij(M,Ξ) (4.3)

s.t.
∑
i,j

Pij = Kav ∗ n

Kmax ≥
∑
j

Pi,j ≥ Kmin

1 ≥ Pij ≥ 0

constraints of the original problem

Kmin and Kmax are the minimum and maximum numbers of target neighbors that an

instance can have. Thus the second constraint controls the number of target neighbor

that xi instance can have. Kav is the average number of target neighbor per instance. It

holds by construction that Kmax ≥ Kav ≥ Kmin. We should note here that we relax the

target neighborhood matrix so that its elements Pij take values in [0, 1] (third constraint).

However, we will show later that a solution Pij ∈ {0, 1} is obtained, given some natural

constraints on the Kmin, Kmax and Kav parameters.

4.2.1 Target neighbor assignment rule

Unlike other metric learning methods, e.g. LMNN, in which the number of target neighbors

is fixed, LNML can assign a different number of target neighbors for each instance. As we

saw the first constraint in Problem 4.3 sets the average number of target neighbors per

instance to Kav, while the second constraint limits the number of target neighbors for each

instance between Kmin and Kmax. The above optimization problem implements a target

neighbor assignment rule which assigns more target neighbors to instances that have high

quality target neighbor relations. We do so in order to avoid overfitting since most often

the ’good’ quality instances defined by metric learning algorithms (32; 105) are instances

in dense areas with low classification error. As a result the geometry of the dense areas

of the different classes will be emphasized. How much emphasis we give on good quality
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instances depends on the actual values of Kmin and Kmax. In the limit one can set the

value of Kmin to zero; nevertheless the risk with such a strategy is to focus heavily on

dense and easy to learn regions of the data and ignore important boundary instances that

are useful for learning.

4.3 Optimization

4.3.1 Properties of the Optimization Problem

We will now show that we get integer solutions for the P matrix by solving a linear

programming problem and analyze the properties of Problem 4.3.

Lemma 1. Given M,Ξ, and Kmax ≥ Kav ≥ Kmin then Pij ∈ {0, 1}, if Kmin, Kmax and

Kav are integers.

Proof. Given M and Ξ, Fij(M,Ξ) becomes a constant. We denote by p the vectorization

of the target neighborhood matrix P which excludes the diagonal elements and Pij :

yi 6= yj , and by f the respective vectorized version of the Fij terms. Then we rewrite

Problem 4.3 as:

min
p

pT f

s.t. (Kmax, · · · ,Kmax︸ ︷︷ ︸
n

,Kav ∗ n)T ≥ Ap ≥

(Kmin, · · · ,Kmin︸ ︷︷ ︸
n

,Kav ∗ n)T

1 ≥ pi ≥ 0 (4.4)

The first and second constraints of Problem 4.3 are reformulated as the first constraint in

Problem 4.4. A is a (n+ 1)× (
∑

cl
n2
cl
− n) constraint matrix, where ncl is the number of

instances in class cl

A =



1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

1 1 · · · 1


where 1 (0) is the vector of ones (zeros). Its elements depends on the its position in the

matrix A. In its ith column, all 1 (0) vectors have ni−1 elements, where ni is the number
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of instances of class cj with cj = ypi . According to the sufficient condition for total

unimodularity (Theorem 7.3 in (89)) the constraint matrix A is a totally unimodular

matrix. Thus, the constraint matrix B = [I,−I,A,−A]T in the following equivalent

problem also is a totally unimodular matrix (pp.268 in (81)).

min
p

pT f

s.t. Bp ≤ e

e = ( 1, · · · , 1︸ ︷︷ ︸∑
cl
n2
cl
−n

, 0, · · · , 0︸ ︷︷ ︸∑
cl
n2
cl
−n

,Kmax, · · · ,Kmax︸ ︷︷ ︸
n

,

Kav ∗ n,−Kmin, · · · ,−Kmin︸ ︷︷ ︸
n

,−Kav ∗ n)T (4.5)

Since e is an integer vector, providedKmin, Kmax, andKav, are integers, and the constraint

matrix B is totally unimodular, the above linear programming problem will only have

integer solutions (Theorem 19.1a in (81)). Therefore, for the solution p it will hold that

pi ∈ {0, 1} and consequently Pij ∈ {0, 1}.

Although the constraints to control the size of the target neighborhood are convex,

the objective function in Problem 4.3 is not jointly convex in P and (M,Ξ). However, as

shown in Lemma 1, the binary solution of P can be obtained by a simple linear program

if we fix (M,Ξ). Thus, Problem 4.3 is individually convex in P and (M,Ξ), if the original

metric learning method is convex; this condition holds for all the methods that can be

coupled with our neighborhood learning method (32; 69; 83; 105; 107).

4.3.2 Optimization Algorithm

Based on Lemma 1 and the individual convexity property we propose a general and easy to

implement iterative algorithm to solve Problem 4.3. The details are given in Algorithm 1.

At the first step of the kth iteration we learn the binary target neighborhood matrix P(k)

under a fixed metric matrix M(k−1) and Ξ(k−1), learned in the k−1th iteration, by solving

the linear programming problem described in Lemma 1. At the second step of the iteration

we learn the metric matrix M(k) and Ξ(k) with the target neighborhood matrix P(k) using

as the initial metric matrix the M(k−1). The second step is simply the application of a

standard metric learning algorithm in which we set the target neighborhood matrix to

the learned P(k) and the initial metric matrix to M(k−1). The convergence of proposed

algorithm is guaranteed if the original metric learning problem is convex (8). In our

experiment, it most often converges in 5-10 iterations.
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Algorithm 1 LNML

Input: X, Y, M0,Ξ0, Kmin, Kmax and Kav

Output: M
repeat

P(k)=LearningNeighborhood(X,Y,M(k−1),Ξ(k−1)) by solving Problem 4.4
(M(k),Ξ(k))=MetricLearning(M(k−1),P(k))
k := k + 1

until convergence

4.4 Instantiating LNML

In this section we will show how we instantiate our neighborhood learning method with

two standard metric learning methods, LMNN and MCML, other possible instantiations

include the metric learning methods presented in (69; 83; 107).

4.4.1 Learning the Neighborhood for LMNN

The optimization problem of LMNN is given by:

min
M,ξ

∑
ij

Pij{(1− µ)DM(xi,xj) + µ
∑
l

(1−Yil)ξijl} (4.6)

s.t. DM(xi,xl)−DM(xi,xj) ≥ 1− ξijl
ξijl > 0

M � 0

where the matrix Y,Yij ∈ {0, 1}, indicates whether the class labels yi and yj are the

same (Yij = 1) or different (Yij = 0). The objective is to minimize the sum of the

distances of all instances to their target neighbors while allowing for some errors, this

trade off is controlled by the µ parameter. This is a convex optimization problem that

has been shown to have good generalization ability and can be applied to large datasets.

The original problem formulation corresponds to a fixed parametrization of P where its

non-zero values are given by the k nearest neighbors of the same class.

Coupling the neighborhood learning framework with the LMNN metric learning method
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results in the following optimization problem:

min
M,P,ξ

∑
ij

Pij · Fij(M, ξ) (4.7)

= min
M,P,ξ

∑
ij

Pij{(1− µ)DM(xi,xj) + µ
∑
l

(1−Yil)ξijl}

s.t. Kmax ≥
∑
j

Pi,j ≥ Kmin∑
i,j

Pij = Kav ∗ n

1 ≥ Pij ≥ 0

DM(xi,xl)−DM(xi,xj) ≥ 1− ξijl
ξijl > 0

M � 0

We will call this coupling of LNML and LMNN LN-LMNN. The target neighbor assignment

rule of LN-LMNN assigns more target neighbors to instances that have small distances

from their target neighbors and low hinge loss.

4.4.2 Learning the Neighborhood for MCML

MCML relies on a data dependent stochastic probability that an instance xj is selected

as the nearest neighbor of an instance xi; this probability is given by:

pM(j|i) =
e−DM(xi,xj)

Zi
=

e−DM(xi,xj)∑
k 6=i e

−DM(xi,xk)
, i 6= j

(4.8)

MCML learns the Mahalanobis metric that minimizes the KL divergence distance between

this probability distribution and the ideal probability distribution p0 given by:

p0(j|i) =
Pij∑
k Pik

, p0(i|i) = 0 (4.9)
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where Pij = 1, if instance xj is the target neighbor of instance xi, otherwise, Pij = 0.

The optimization problem of MCML is given by:

min
M

∑
i

KL[p0(j|i)|pM(j|i)] (4.10)

= min
M

∑
i,j

Pij
(DM(xi,xj) + logZi)∑

k Pik

s.t. M � 0

Like LMNN, this is also a convex optimization problem. In the original problem formula-

tion the ideal distribution is defined based on class labels, i.e. Pij = 1, if instances xi and

xj share the same class label, otherwise, Pij = 0.

The neighborhood learning method cannot learn directly the target neighborhood for

MCML, since the objective function of the latter cannot be rewritten in the form of the

objective function in Problem 4.3, due to the denominator
∑

k Pik. However, if we fix

the size of the neighborhood to
∑

k Pi,k = Kav = Kmin = Kmax the two methods can be

coupled and the resulting optimization is given by:

min
M,P

∑
ij

Pij · Fij(M) (4.11)

= min
M,P

∑
i,j

Pij
(DM(xi,xj) + logZi)

Kav

s.t.
∑
j

Pi,j = Kav

M � 0

We will dub this coupling of LNML and MCML as LN-MCML. The original MCML

method follows the global approach in establishing the neighborhood, with LN-MCML we

get a local approach in which the neighborhoods are of fixed size Kav for every instance.

4.5 Related Work

The early work of Xing et al., (107), learns a Mahalanobis distance metric for clustering

that tries to minimize the sum of pairwise distances between similar instances while keep-

ing the sum of dissimilar instance distances greater than a threshold. The similar and

dissimilar pairs are determined on the basis of prior knowledge. Globerson & Roweis, (32)

introduced the Maximally Collapsing Metric Learning (MCML). MCML uses a stochastic
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nearest neighbor selection rule which selects the nearest neighbor xj of an instance xi

under some probability distribution. It casts the metric learning problem as an optimiza-

tion problem that tries to minimize the distance between two probability distributions, an

ideal one and a data dependent one. In the ideal distribution the selection probability is

always one for instances of the same class and zero for instances of different class, defining

in that manner the similarity and dissimilarity constraints under the global target neigh-

borhood approach. In the data dependent distribution the selection probability is given

by a soft max function of a Mahalanobis distance metric, parametrized by the matrix

M to be learned. In a similar spirit Davis et al., (23), introduced Information-Theoretic

Metric Learning. ITML learns a Mahalanobis metric for classification with similarities and

dissimilarities constraints that follow the global target neighborhood approach. In ITML

all same-class instance pairs should have a distance smaller than some threshold and all

different-class instance pairs should have a distance larger than some threshold. In addi-

tion the objective function of ITML seeks to minimize the distance between the learned

metric matrix and a prior metric matrix, modelling like that prior knowledge about the

metric if such is available. The optimization problem is cast as a distance of distributions

subject to the pairwise constraints and finally expressed as a Bregman optimization prob-

lem (minimizing the LogDet divergence). In order to be able to find a feasible solution

they introduce slack variables in the similarity and dissimilarity constraints.

The so far discussed metric learning methods follow the global target neighborhood

approach in which all instances of the same class should be similar under the learned

metric, and all pairs of instances from different classes dissimilar. This is a rather hard

constraint and assumes that there is a linear projection of the original feature space that

results in unimodal class conditional distributions. Goldberger et al., (34), proposed the

NCA metric learning method which uses the same stochastic nearest neighbor selection

rule under the same data-dependent probability distribution as MCML. NCA seeks to

minimize the soft error under its stochastic nearest neighbor selection rule. It uses only

similarity constraints and the original target neighborhood of an instance is the set of

all same-class instances. After metric learning some, but not necessarily all, same class

instances will end up having high probability of been selecting as nearest neighbors of a

given instance, thus having a small distance, while the others will be pushed further away.

NCA thus learns the local target neighborhood as a part of the optimization. Nevertheless

it is prone to overfitting, (109), and does not scale to large datasets. The large margin

nearest neighbor method (LMNN) described in (104; 105) learns a distance metric which

directly minimizes the distances of each instance to its local target neighbors while keeping

a large margin between them and different class instances. The target neighbors have to
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be specified prior to metric learning and in the absence of prior knowledge these are the

k same class nearest neighbors for each instance.

4.6 Experiments

With the experiments we wish to investigate a number of issues. First, we want to ex-

amine whether learning the target neighborhood relations in the metric learning process

can improve predictive performance over the baseline approach of metric learning with

an apriori established target neighborhood. Second, we want to acquire an initial un-

derstanding of how the parameters Kmin and Kmax relate to the predictive performance.

To this end, we will examine the predictive performance of LN-LMNN with two fold in-

ner Cross Validation (CV) to select the appropriate values of Kmin and Kmax, method

which we will denote by LN-LMNN(CV), and that of LN-LMNN, with a default setting of

Kmin = Kmax = Kav. Finally, we want to see how the method that we propose compares

to other state of the art metric learning methods, namely NCA and ITML. We include as

an additional baseline in our experiments the performance of the Euclidean metric (Eu-

cMetric). We experimented with twelve different datasets: seven from the UCI machine

learning repository, Sonar, Ionosphere, Iris, Balance, Wine, Letter, Isolet; four text min-

ing datasets, Function, Alt, Disease and Structure, which were constructed from biological

corpora (51); and MNIST (57), a handwritten digit recognition problem. A more detailed

description of the datasets is given in Table 4.1.

Since LMNN is computationally expensive for datasets with large number of features

we applied principal component analysis (PCA) to retain a limited number of principal

components, following (105). The datasets to which this was done were the four text

mining datasets, Isolet and MNIST. For the two latter 173 and 164 principal components

were respectively retained that explain 95% of the total variance. For the text mining

datasets more than 1300 principal components should be retained to explain 95% of the

total variance. Considering the running time constraints, we kept the 300 most important

principal components which explained 52.45%, 47.57%, 44.30% and 48.16% of the total

variance for respectively Alt, Disease, Function and Structure. We could experiment

with NCA and MCML on full tranining datasets only with datasets with a small number

of instances due to their computational complexity. For completeness we experimented

with NCA on large datasets by undersampling the training instances, i.e. the learning

process only involved 10% of full training instances which was the maximum number we

could experiment for each dataset. We also applied ITML on both versions of the larger

datasets, i.e. with PCA-based dimensionality reduction and the original ones.
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For ITML, we randomly generate for each dataset the default 20c2 constraints which

are bounded repectively by the 5th and 95th percentiles of the distribution of all available

pairwise distances for similar and dissimilar pairs. The slack variable γ is chosen form

{10i}4i=−4 using two-fold CV. The default identity matrix is employed as the regularization

matrix. For the different instantiations of the LNML method we took care to have the same

parameter settings for the encapsulated metric learning method and the respective baseline

metric learning. For LN-LMNN, LN-LMNN(CV) and LMNN the regularization parameter

µ that controls the trade-off between the distance minimization component and the hinge

loss component was set to 0.5 (the default value of LMNN). For LMNN the default number

of target neighbors was used (three). For LN-LMNN, we set Kmin = Kmax = Kav = 3,

similar to LMNN. To explore the effect of a flexible neighborhood, the values of the Kmin

and Kmax parameters in LN-LMNN(CV) were selected from the sets {1, 4, 3} and {2, 5, 3}
respectively, while Kav was fixed to three. Similarly for LN-MCML we also set Kav = 3.

The distance metrics for all methods are initialized to the Euclidean metric. As the

classification algorithm we used 1-Nearest Neighbor.

We used 10-fold cross validation for all datasets to estimate classification accuracy, with

the exception of Isolet and MNIST for which the default train and test split was used. The

statistical significance of the differences were tested with McNemar’s test and the p-value

was set to 0.05. In order to get a better understanding of the relative performance of the

different algorithms for a given dataset we used a ranking schema in which an algorithm

A was assigned one point if it was found to have a significantly better accuracy than

another algorithm B, 0.5 points if the two algorithms did not have a significantly different

performance, and zero points if A was found to be significantly worse than B. The rank of

an algorithm for a given dataset is simply the sum of the points over the different pairwise

comparisons. When comparing N algorithms in a single dataset the highest possible score

is N − 1 while if there is no significant difference each algorithm will get (N − 1)/2 points.

4.6.1 Results

The results are presented in Table 6.1. Examining whether learning also the neighborhood

improves the predictive performance compared to plain metric learning, we see that in the

case of LN-MCML, and for the five small datasets for which we have results, learning the

neighborhood results in a statistically significant deterioration of the accuracy in one out

of the five datasets (balance), while for the remaining four the differences were not statis-

tically significant. If we now examine LN-LMNN(CV), LN-LMNN and LMNN we see that

here learning the neighborhood does bring a statistically significant improvement. More
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precisely, LN-LMNN(CV) and LN-LMNN improve over LMNN respectively in six (two

small and four large) and four (two small and two large) out of the 12 datasets. Moreove,

by comparing LN-LMNN(CV) and LN-LMNN, we see that learning a flexible neighbor-

hood with LN-LMNN(CV) improves significantly the performance over LN-LMNN on two

datasets. The low performance of LN-MCML on the balance dataset was intriguing; in

order to take a closer look we tried to determine automatically the appropriate target

neighborhood size, Kav, by selecting it on the basis of five-fold inner cross validation from

the set Kav = {3, 5, 7, 10, 20, 30}. The results showed that the default value of Kav was

too small for the given dataset, with the average selected size of the target neighborhood

at 29. As a result of the automatic tunning of the target neighborhood size the predictive

performance of LN-MCML jumped at an accuracy of 93.92% which represented a signif-

icant improvement over the baseline MCML for the balance dataset. For the remaining

datasets it turned out that the choice of Kav = 3 was a good default choice. In any

case, determining the appropriate size of the target neighborhood and how that affects

the predictive performance is an issue that we wish to investigate further. In terms of

the total score that the different methods obtain the LN-LMNN(CV) achieves the best in

both the small and large datasets. It is followed closely by NCA in the small datasets and

by LN-LMNN in the large datasets.

4.7 Conclusion and Future Work

In this chapter, we presented LNML, a general Learning Neighborhood method for Metric

Learning algorithms which couples the metric learning process with the process of estab-

lishing the appropriate target neighborhood for each instance, i.e. discovering for each

instance which same class instances should be its neighbors. With the exception of NCA,

which cannot be applied on datasets with many instances, all other metric learning meth-

ods whether they establish a global or a local target neighborhood do that prior to the

metric learning and keep the target neighborhood fixed throughout the learning process.

The metric that is learned as a result of the fixed neighborhoods simply reflects these orig-

inal relations which are not necessarily optimal with respect to the classification problem

that one is trying to solve. LNML lifts these constraints by learning the target neigh-

borhood. We demonstrated it with two metric learning methods, LMNN and MCML.

The experimental results show that learning the neighborhood can indeed improve the

predictive performance.

The target neighborhood matrix P is strongly related to the similarity graphs which

are often used in semi-supervised learning (47), spectral clustering (97) and manifold
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learning (78). Most often the similarity graphs in these methods are constructed in the

original space, which nevertheless can be quite different from true manifold on which the

data lies. These methods could also profit if one is able to learn the similarity graph

instead of basing it on some prior structure.
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Chapter 5

Metric Learning with Multiple

Kernels

The choice of the appropriate kernel function is a fundamental problem in kernelized metric

learning. In this chapter, we show how to perform the Mahalanobis Metric Learning (ML)

with Mutiple Kernel Learning (MKL). We propose a general framework of ML with MKL

which can be instantiated with virtually any Mahalanobis ML algorithm h provided that

the latter satisfies some stated conditions. Our approach can be seen as the counterpart

of MKL with SVMs (55; 77; 90) for ML.

This chapter is organized as follows. In Section 5.1, we discuss the motivation of the

proposed work. To be self-contained, we introduce the useful notations and preliminaries

on ML and MKL in Section 5.2. Next, in Section 5.3 we present the framework of ML

with MKL and describe the MLh-MKL{µ|P} optimization problems, as well as the non-

regularized extension NR-MLh-MKL. In Section 5.4 we analyze the MLh-MKL{µ|P} and

NR-MLh-MKL optimization problems and in Section 5.5 we describe the LMNN based

instantiation. Finally, we present the experimental results in Section 5.6 and conclude

with Section 5.7.
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5.1. Motivation

5.1 Motivation

Very often a linear projection cannot adequately represent the inherent complexities of a

problem at hand. To address this limitation various works proposed kernelized versions of

ML methods in order to implicitly compute a linear transformation and Euclidean metric

in some non-linear feature space; this computation results in a non-linear projection and

distance computation in the original input space (23; 32; 69; 105; 107). However, we are

now faced with a new problem, namely that of finding the appropriate kernel function and

the associated feature space matching the requirements of the learning problem.

The simplest approach to address this problem is to select the best kernel from a pre-

defined kernel set using internal cross-validation. The main drawback of this approach is

that only one kernel is selected which limits the expressiveness of the resulting method.

Additionally, this approach is limited to a small number of kernels–due to computational

constraints–and requires the use of extra data. Multiple Kernel Learning (MKL) (55; 77)

lifts the above limitations by learning a linear combination of a number of predefined ker-

nels. The MKL approach can also naturally handle the multiple-source learning scenarios

where instead of combining kernels defined on a single input data, which depending on

the selected kernels could give rise to feature spaces with redundant features, we combine

different and complementary data sources.

In this chapter, we show how to perform the Mahalanobis ML with MKL. We first

propose a general framework of ML with MKL which can be instantiated with virtually

any Mahalanobis ML algorithm h provided that the latter satisfies some stated condi-

tions. We examine two parametrizations of the learning problem that give rise to two

alternative formulations, denoted by MLh-MKLµ and MLh-MKLP. Our approach can be

seen as the counterpart of MKL with SVMs (55; 77; 90) for ML. Since the learned metric

matrix has a regularized form (i.e. it has internal structure) we propose a straightforward

non-regularized version of ML with MKL, denoted by NR-MLh-MKL; however, due to

the number of free parameters the non-regularized version can only scale with very small

number of kernels and requires ML methods that are able to cope with large dimensional-

ities. We performed a number of experiments for ML with MKL in which, for the needs of

this work, we have chosen the well known Large Margin Nearest Neighbor (105) (LMNN)

algorithm as the ML method h. The experimental results suggest that LMNN-MKLP

outperforms LMNN with an unweighted kernel combination and the single best kernel

selected by internal cross-validation.



Chapter 5. Metric Learning with Multiple Kernels

5.2 Preliminaries

In the different flavors of metric learning we are given a matrix of learning instances

X : n × d, the i-th row of which is the xTi ∈ Rd instance, and a vector of class labels

y = (y1, . . . , yn)T , yi ∈ {1, . . . , c}. Consider a mapping Φl(x) of instances x to some feature

space Hl, i.e. x→ Φl(x) ∈ Hl. The corresponding kernel function kl(xi,xj) computes the

inner product of two instances in the Hl feature space, i.e. kl(xi,xj) = 〈Φl(xi),Φl(xj)〉.
We denote dimensionality ofHl (possibly infinite) as dl. The squared Mahalanobis distance

of two instances in the Hl space is given by

d2
Ml

(Φl(xi),Φl(xj)) = (Φl(xi)−Φl(xj))
TMl(Φl(xi)−Φl(xj))

, where Ml is a Positive Semi-Definite (PSD) metric matrix in the Hl space (Ml � 0).

For some given ML method h we optimize (most often minimize) some cost function Fh

with respect to the Ml metric matrix1 under the PSD constraint for Ml and an additional

set of pairwise distance constraints Ch({d2
Ml

(Φl(xi),Φl(xj)) | i, j = 1, . . . , n}) that depend

on the choice of h, e.g. similarity and dissimilarity pairwise constraint (23) and relative

comparison constraint (105). In the reminder of this chapter, for simplicity, we denote this

set of constraints as Ch(d2
Ml

(Φl(xi),Φl(xj))). The kernelized ML optimization problem

can be now written as:

min
Ml

Fh(Ml) (5.1)

s.t. Ch(d2
Ml

(Φl(xi),Φl(xj)))

Ml � 0

Kernelized ML methods do not require to learn the explicit form of the Mahalanobis

metric Ml. It was shown in (44) that the optimal solution of the Mahalanobis metric Ml is

in the form of Ml = ηhI+Φl(X)TAlΦl(X), where I is the identity matrix of dimensionality

dl×dl, Al is a n×n PSD matrix, Φl(X) is the matrix of learning instances in the Hl space

(with instances in rows), and ηh is a constant that depends on the ML method h. Since

in the vast majority of the existing ML methods (32; 42; 69; 82; 84; 105; 107) the value

of constant ηh is zero, in this work we only consider the optimal form of Ml with ηh = 0.

Under the optimal parametrization of Ml = Φl(X)TAlΦl(X) the squared Mahalanobis

1The optimization could also be done with respect to other variables of the cost function and not only
Ml. However, to keep the notation uncluttered we parametrize the optimization problem only over Ml.
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5.3. Metric Learning with Multiple Kernel Learning

distance becomes:

d2
Ml

(Φl(xi),Φl(xj)) = (Ki
l −Kj

l )
TAl(K

i
l −Kj

l ) = d2
Al

(Φl(xi),Φl(xj)) (5.2)

where Ki
l is the i-th column of kernel matrix Kl, the (i, j) element of which is Klij =

kl(xi,xj). As a result, (5.1) can be rewritten as:

min
Al

Fh(Φl(X)TAlΦl(X)) (5.3)

s.t. Ch(d2
Al

(Φl(xi),Φl(xj)))

Al � 0

In MKL we are given a set of kernel functions Z = {kl(xi,xj) | l = 1 . . .m} and the

goal is to learn an appropriate kernel function kµ(xi,xj) parametrized by µ under a cost

function Q. The cost function Q is determined by the cost function of the learning method

that is coupled with multiple kernel learning, e.g. it can be the SVM cost function if one

is using an SVM as the learning approach. As in (55; 77) we parametrize kµ(xi,xj) by a

linear combination of the form:

kµ(xi,xj) =
m∑
i=l

µlkl(xi,xj), µl ≥ 0,
m∑
l

µl = 1 (5.4)

We denote the feature space that is induced by the kµ kernel by Hµ, feature space which is

given by the mapping x → Φµ(x) = (
√
µ1Φ1(x)T , . . . ,

√
µmΦm(x)T )T ∈ Hµ. We denote

the dimensionality of Hµ by d; it can be infinite. Finally, we denote by H the feature space

that we get by the unweighted concatenation of the m feature spaces, i.e. ∀µi, µi = 1,

whose representation is given by x→ Φ(x) = (Φ1(x)T , . . . ,Φm(x)T )T .

5.3 Metric Learning with Multiple Kernel Learning

The goal is to learn a metric matrix M in the feature space Hµ induced by the mapping

Φµ as well as the kernel weight µ; we denote this metric by d2
M,µ. Based on the optimal

form of the Mahalanobis metric M for metric learning method learning with a single kernel

function (44), we have the following lemma:

Lemma 2. Assume that for a metric learning method h the optimal parameterization

of its Mahalanobis metric M∗ is Φl(X)TA∗Φl(X), for some A∗, when learning with a

single kernel function kl(x,x
′). Then, for h with multiple kernel learning the optimal
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parametrization of its Mahalanobis metric M∗∗ is given by Φµ(X)TA∗∗Φµ(X), for some

A∗∗.

The proof of the above Lemma is similar to the proof of Theorem 1 in (44) (it is not

presented here due to the lack of space). Following Lemma 2, we have:

d2
M,µ(Φµ(xi),Φµ(xj)) = (Φµ(xi)−Φµ(xj))

TΦµ(X)TAΦµ(X)(Φµ(xi)−Φµ(xj))(5.5)

=
∑
l

µl(K
i
l −Kj

l )
TA

∑
l

µl(K
i
l −Kj

l ) = d2
A,µ(Φµ(xi),Φµ(xj))

Based on (5.5) and the constraints from (5.4), the ML optimization problem with MKL

can be presented as:

min
A,µ

Fh(Φµ(X)TAΦµ(X)) (5.6)

s.t. Ch(d2
A,µ(Φµ(xi),Φµ(xj)))

A � 0

µl ≥ 0
m∑
l

µl = 1

We denote the resulting optimization problem and the learning method by MLh-MKLµ;

clearly this is not fully specified until we choose a specific ML method h.

Let B =

 (Ki
1 −Kj

1)T

. . .

(Ki
m −Kj

m)T

. We note that d2
A,µ(Φµ(xi),Φµ(xj)) from (5.5) can also

be written as:

d2
A,µ(Φµ(xi),Φµ(xj)) = µTBABTµ = tr(PBABT) = d2

A,P(ΦP(xi),ΦP(xj)) (5.7)

where P = µµT and tr(·) is the trace of a matrix. We use ΦP(X) to emphasize the explicit

the dependence of Φµ(X) to P = µµT . As a result, instead of optimizing over µ we can

also use the parametrization over P; the new optimization problem can now be written
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as:

min
A,P

Fh(ΦP(X)TAΦP(X)) (5.8)

s.t. Ch(d2
A,P(ΦP(xi),ΦP(xj)))

A � 0∑
ij

Pij = 1

Pij ≥ 0

Rank(P) = 1

P = PT

where the constraints
∑

ij Pij = 1, Pij ≥ 0, Rank(P) = 1, and P = PT are added so that

P = µµT . We call the optimization problem and learning method (5.8) as MLh-MKLP; as

before in order to fully instantiate it we need to choose a specific metric learning method

h.

Now, we derive an alternative parametrization of (5.5). We need two additional matri-

ces: Cµiµj = µiµjI, where the dimensionality of I is n×n, and Φ
′
(X) which is an mn× d

dimensional matrix:

Φ
′
(X) =

 Φ1(X) . . . 0

. . . . . . . . .

0 . . . Φm(X)


We have:

d2
A,µ(Φµ(xi),Φµ(xj)) = (Φ(xi)−Φ(xj))

TM
′
(Φ(xi)−Φ(xj)) (5.9)

where:

M
′

= Φ
′
(X)TA′Φ

′
(X) (5.10)

and A′ is a mn×mn matrix:

A′ =

 Cµ1µ1A . . . Cµ1µmA

. . . . . . . . .

Cµmµ1A . . . CµmµmA

 . (5.11)

From (5.9) we see that the Mahalanobis metric, parametrized by the M or A matrix, in

the feature space Hµ induced by the kernel kµ, is equivalent to the Mahalanobis metric in
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the feature space H which is parametrized by M′ or A′. As we can see from (5.11), MLh-

MKLµ and MLh-MKLP learn a regularized matrix A′ (i.e. matrix with internal structure)

that corresponds to a parametrization of the Mahalanobis metric M
′

in the feature space

H.

5.3.1 Non-Regularized Metric Learning with Multiple Kernel Learning

We present here a more general formulation of the optimization problem (5.6) in which

we lift the regularization of matrix A′ from (5.11), and learn instead a full PSD matrix

A′′:

A′′ =

 A11 . . . A1m

. . . . . . . . .

A1m . . . Amm

 (5.12)

where Akl is an n × n matrix. The respective Mahalanobis matrix, which we denote by

M′′, still have the same parametrization form as in (5.10), i.e. M′′ = Φ
′
(X)TA′′Φ

′
(X).

As a result, by using A′′ instead of A′ the squared Mahalanobis distance can be written

now as:

d2
A′′(Φ(xi),Φ(xj)) = (Φ(xi)−Φ(xj))

TM
′′
(Φ(xi)−Φ(xj)) (5.13)

= [(Ki
1 −Kj

1)T , . . . , (Ki
m −Kj

m)T ]A′′[(Ki
1 −Kj

1)T , . . . , (Ki
m −Kj

m)T ]T

= [ΦZ(xi)−ΦZ(xj)]
TA′′(ΦZ(xi)−ΦZ(xj)]

where ΦZ(xi) = ((Ki
1)T , . . . , (Ki

m)T )T ∈ HZ. What we see here is that under the M′′

parametrization computing the Mahalanobis metric in the H is equivalent to computing

the Mahalanobis metric in the HZ space. Under the parametrization of the Mahalanobis

distance given by (5.13), the optimization problem of metric learning with multiple kernel

learning is the following:

min
A′′

Fh(Φ
′
(X)TA′′Φ

′
(X)) (5.14)

s.t. Ch(d2
A′′(Φ(xi),Φ(xj)))

A′′ � 0

We call this optimization problem NR-MLh-MKL. We should note that this formulation

has scaling problems since it has O(m2n2) parameters that need to be estimated, and it
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clearly requires a very efficient ML method h in order to be practical.

5.4 Optimization

5.4.1 Analysis

The NR-MLh-MKL optimization problem obviously has the same convexity properties

as the metric learning algorithm h that will be used, since the parametrization M′′ =

Φ
′
(X)TA′′Φ

′
(X) used in NR-MLh-MKL is linear with A′′, and the composition of a func-

tion with an affine mapping preserves the convexity property of the original function (12).

This is also valid for the subproblems of learning matrix A in MLh-MKLµ and MLh-MKLP

given the weight vector µ.

Given the PSD matrix A, we have the following two lemmas for optimization problems

MLh-MKL{µ|P}:

Lemma 3. Given the PSD matrix A the MLh-MKLµ optimization problem is convex with

µ if metric learning algorithm h is convex with µ.

Proof. The last two constraints on µ of the optimization problem from (5.6) are linear,

thus this problem is convex if metric learning algorithm h is convex with µ.

Since d2
A,µ(Φµ(xi),Φµ(xj)) is convex quadratic of µ, which can be easily proved based

on the PSD property of matrix BABT in (5.7), many of the well known metric learning

algorithms, such as Pairwise SVM (95), POLA (84) and Xing’s method (107) satisfy the

conditions in Lemma 3.

The MLh-MKLP optimization problem (5.8) is not convex given a PSD A matrix

because the rank constraint is not convex. However, when the number of kernel m is

small, e.g. 20, there is an equivalent convex formulation.

Lemma 4. Given the PSD matrix A, the MLh-MKLP optimization problem (5.8) can

be formulated as an equivalent convex problem with respect to P if the ML algorithm h is

linear with P and the number of kernel m is small.

Proof. Given the PSD matrix A, if h is linear with P, we can formulate the rank constraint
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problem with the help of the two following convex problems (22):

min
P

Fh(ΦP(X)TAΦP(X)) + w · tr(PTW) (5.15)

s.t. Ch(d2
A,P(ΦP(xi), ΦP(xj)))

A � 0

P � 0∑
ij

Pij = 1

Pij ≥ 0

P = PT

where w is a positive scalar just enough to make tr(PTW) vanish, i.e. global convergence

defined in (5.17), and the direction matrix W is an optimal solution of the following

problem:

min
W

tr(P∗TW) (5.16)

s.t. 0 �W � I

tr(W) = m− 1

where P∗ is an optimal solution of (5.15) given A and W and m is the number of kernels.

Problem (5.16) has a closed form solution W = UUT , where U ∈ Rm×m−1 is the eigen-

vector matrix of P∗ whose columns are the eigenvectors which correspond to the m − 1

smallest eigenvalues of P∗. The two convex problems are iteratively solved until global

convergence, defined as:

m∑
i=2

λ(P∗)i = tr(P∗TW∗) = λ(P∗)Tλ(W∗) ≡ 0 (5.17)

where λ(P∗)i is the i-th largest eigenvalue of P∗. This formulation is not a projection

method. At global convergence the convex problem (5.15) is not a relaxation of the

original problem, instead it is an equivalent convex problem (22).

Now we proof the convergence of problem (5.15). Suppose the objective value of

problem (5.15) is fi at iteration i. Since both problem (5.15) and (5.16) minimize the

objective value of (5.15), we have fj < fi for any iteration j > i. Since the infimum f∗

of objective value of problem (5.15) corresponds to the optimal objective value of (5.15)

73



5.4. Optimization

Algorithm 2 MLh-MKLµ, MLh-MKLP

Input: X, Y, A0, µ0, and matrices K1, . . . ,Km

Output: A and µ
repeat
µ(i)=WeightLearning(A(i−1))
Kµ(i) =

∑
k µ

i
kKk

A(i)=MetricLearningh(A(i−1),X,Kµ(i))
i := i+ 1

until convergence

when the second term is removed. Thus the nonincreasing sequence of objective value is

bounded below and as a result convergent because any bounded monotonic sequence in R
is convergent. Now the local convergence of problem (5.15) is established.

Only local convergence can be established for problem (5.15) because objective tr(PTW)

is generally multimodal (22). However, as indicated in section 7.2 (22), when the size of

m is small, the global optimal of problem (5.15) can be often achieved. It can be simply

verified by comparing the difference between infimum f∗ and optimal objective value f of

problem (5.15).

For a number of known metric learning algorithms, such as LMNN (105), POLA (84),

MLSVM (69) and Xing’s method (107) linearity with respect to P holds given A � 0.

5.4.2 Optimization Algorithms

The NR-MLh-MKL optimization problem can be directly solved by any metric learning

algorithm h on the space HZ when the optimization problem of the latter only involves

the squared pairwise Mahalanobis distance, e.g. LMNN (105) and MCML (32). When

the metric learning algorithm h has regularization term on M, e.g. trace norm (42) and

Frobenius norm (69; 84), most often the NR-MLh-MKL optimization problem can be

solved by a slightly modification of original algorithm.

We now describe how we can solve the optimization problems of MLh-MKLµ and

MLh-MKLP. Based on Lemmas 3 and 4 we propose for both methods a two-step iterative

algorithm, Algorithm 2, at the first step of which we learn the kernel weighting and at

the second the metric under the kernel weighting learned in the first step. At the first

step of the i-th iteration we learn the µ(i) kernel weight vector under fixed PSD matrices

A(i−1), learned at the preceding iteration (i − 1). For MLh-MKLµ we solve the weight

learning problem using Lemma 3 and for MLh-MKLP using Lemma 4. At the second step

we apply the metric learning algorithm h and we learn the PSD matrices A(i) with the
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Kµ(i) =
∑

l µ
(i)
l Ki kernel matrix using as the initial metric matrices the A(i−1). We should

make clear that the optimization problem we are solving is only individually convex with

respect to µ given the PSD matrix A and vice-versa. As a result, the convergence of the

two-step algorithm (possible to a local optima) is guaranteed (36) and checked by the

variation of µ and the objective value of metric learning method h. In our experiments

(Section 5.6) we observed that it most often converges in less than ten iterations.

5.5 LMNN-Based Instantiation

We have presented two basic approaches to metric learning with multiple kernel learning:

MLh-MKLµ (MLh-MKLP) and NR-MLh-MKL. In order for the approaches to be fully

instantiated we have to specify the ML algorithm h. In this work we focus on the LMNN

state-of-the-art method (105).

Due to the relative comparison constraint, LMNN does not satisfy the condition of

Lemma 3. However, as we already mentioned LMNN satisfies the condition of Lemma 4

so we get the MLh-MKLP variant of the optimization problem for LMNN which we denote

by LMNN-MKLP. The resulting optimization problem is:

min
A,P,ξ

∑
ij

Sij{(1− γ)d2
A,P(ΦP(xi),ΦP(xj)) + γ

∑
k

(1−Yik)ξijk} (5.18)

s.t. d2
A,P(ΦP(xi),ΦP(xk))− d2

A,P(ΦP(xi),ΦP(xj)) ≥ 1− ξijk
ξijk > 0

A � 0∑
kl

Pkl = 1

Pkl ≥ 0

Rank(P) = 1

P = PT

where the matrix Y,Yij ∈ {0, 1}, indicates if the class labels yi and yj are the same

(Yij = 1) or different (Yij = 0). The matrix S is a binary matrix whose Sij entry is non-

zero if instance xj is one of the k same class nearest neigbors of instance xi. The objective is

to minimize the sum of the distances of all instances to their k same class nearest neighbors

while allowing for some errors, trade of which is controlled by the γ parameter. As the

objective function of LMNN only involves the squared pairwise Mahalanobis distances, the

instantiation of NR-MLh-MKL is straightforward and it consists simply of the application
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of LMNN on the space HZ in order to learn the metric. We denote this instantiation by

NR-LMNN-MKL.

5.6 Experiments

In this section we perform a number of experiments on real world datasets in order to

compare the two of the LMNN-based instantiations of our framework, i.e. LMNN-MKLP

and NR-LMNN-MKL. We compare these methods against two baselines: LMNN-MKLCV

in which a kernel is selected from a set of kernels using 2-fold inner cross-validation (CV),

and LMNN with the unweighted sum of kernels, which induces the H feature space, de-

noted by LMNNH. Additionally, we report performance of 1-Nearest-Neighbor, denoted as

1-NN, with no metric learning. The PSD matrix A and weight vector µ in LMNN-MKLP

were respectively initialized by I and equal weighting (1 divided by the number of kernels).

The parameter w in the weight learning subproblem of LMNN-MKLP was selected from

{10i | i = 0, 1, . . . , 8} and was the smallest value enough to achieve global convergence. Its

direction matrix W was initialized by 0. The number of k same class nearest neighbors

required by LMNN was set to 5 and its γ parameter to 0.5. After learning the metric and

the multiple kernel combination we used 1-NN for classification.

5.6.1 Benchmark Datasets

We first experimented with 12 different datasets: five from the UCI machine learning

repository, i.e. Sonar, Ionosphere, Wine, Iris, and Wdbc; three microarray datasets, i.e.

CentralNervous, Colon, and Leukemia; and four proteomics datasets, i.e. MaleFemale,

Stroke, Prostate and Ovarian. The attributes of all the datasets are standardized in

the preprocessing step. The Z set of kernels that we use consists of the following 20

kernels: 10 polynomial with degree from one to ten, ten Gaussians with bandwidth σ ∈
{0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20} (the same set of kernels was used in (31)). Each basic

kernel Kk was normalized by the average of its diag(Kk). LMNN-MKLP, LMNNH and

LMNN-MKLCV were tested using the complete Z set. For NR-LMNN-MKL due to its

scaling limitations we could only use a small subset of Z consisting of the linear, the

second order polynomial, and the Gaussian kernel with the kernel width of 0.5. We use

10-fold CV to estimate the predictive performance of the different methods. To test the

statistical significance of the differences we used McNemar’s test and we set the p-value to

0.05. To get a better understanding of the relative performance of the different methods

for a given dataset we used a ranking schema in which a method A was assigned one point
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Table 5.1: Accuracy results. The superscripts +−= next to the accuracies of NR-LMNN-
MKLand LMNN-MKLPindicate the result of the McNemar’s statistical test of their com-
parison to the accuracies of LMNNHand LMNN-MKLCV and denote respectively a sig-
nificant win, loss or no difference. The number in the parenthesis indicates the score of
the respective algorithm for the given dataset based on the pairwise comparisons of the
McNemar’s statistical test.

Datasets NR-LMNN-MKL LMNN-MKLP LMNNH LMNN-MKLCV 1-NN

Sonar 88.46+=(3.0) 85.58==(2.0) 82.21(1.0) 88.46(3.0) 82.21(1.0)
Wine 98.88==(2.0) 98.88==(2.0) 98.31(2.0) 96.07(2.0) 97.19(2.0)
Iris 93.33==(2.0) 95.33==(2.0) 94.67(2.0) 94.00(2.0) 95.33(2.0)
Ionosphere 93.73==(2.5) 94.87=+(3.0) 92.59(2.5) 90.88(2.0) 86.89(0.0)
Wdbc 94.90−=(1.0) 97.36=+(3.5) 97.36(3.0) 95.96(1.5) 95.43(1.0)
CentralNervous 55.00==(2.0) 63.33==(2.0) 65.00(2.0) 65.00(2.0) 58.33(2.0)
Colon 80.65==(2.0) 85.48+=(2.5) 66.13(1.5) 79.03(2.0) 74.19(2.0)
Leukemia 95.83+=(2.5) 94.44+=(2.5) 70.83(0.0) 95.83(2.5) 88.89(2.5)
MaleFemale 86.57==(2.5) 88.81+=(3.0) 80.60(1.5) 89.55(3.0) 58.96(0.0)
Ovarian 95.26+=(3.0) 94.47+=(3.0) 90.51(0.5) 94.47(3.0) 87.35(0.5)
Prostate 79.50==(2.0) 80.43==(2.5) 79.19(2.0) 78.88(2.0) 76.71(1.5)
Stroke 69.71==(2.0) 72.12==(2.0) 71.15(2.0) 70.19(2.0) 65.38(2.0)

Total Score 26.5 30.0 20.0 27.0 16.5

if its accuracy was significantly better than that of another method B, 0.5 points if the

two methods did not have a significantly different performance, and zero points if A was

found to be significantly worse than B.

The results are reported in Table 6.1. First, we observe that by learning the kernel

inside LMNN-MKLP we improve performance over LMNNH that uses the unweighted

kernel combination. More precisely, LMNN-MKLP is significantly better than LMNNH in

four out of the thirteen datasets. If we now compare LMNN-MKLP with LMNN-MKLCV ,

the other baseline method where we select the best kernel with CV, we can see that

LMNN-MKLP also performs better being statistically significant better in two dataset.

If we now examine NR-LMNN-MKL and LMNNH we see that the former method, even

though learning with only three kernels, is significantly better in two datasets, while it is

significantly worse in one dataset. Comparing NR-LMNN-MKL and LMNN-MKLCV we

observe that the two methods achieve comparable predictive performances. We should

stress here that NR-LMNN-MKL has a disadvantage since it only uses three kernels, as

opposed to other methods that use 20 kernels; the scalability of NR-LMNN-MKL is left

as a future work. In terms of the total score that the different methods obtain the best

one is LMNN-MKLP followed by LMNN-MKLCV and NR-LMNN-MKL.
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Table 5.2: Accuracy results on the multiple source datasets.

Datasets LMNN-MKLP LMNNH LMNN-MKLCV 1-NN

Multiple Feature 98.79++(3.0) 98.44(1.5) 98.44(1.5) 97.86(0.0)
Oxford Flowers 86.01++(3.0) 85.74(2.0) 65.46(0.0) 67.38(1.0)

5.6.2 Multiple Source Datasets

To evaluate the proposed method on problems with multiple sources of information we

also perform experiments on the Multiple Features and the Oxford flowers datasets (71).

Multiple Features from UCI has six different feature representations for 2,000 handwritten

digits (0-9); each class has 200 instances. In the preprocessing step all the features are

standardized in all the data sources. Oxford flowers dataset has 17 category flower images;

each class has 80 instances. In the experiment seven distance matrices from the website2

are used; these matrices are precomputed respectively from seven features, namely clus-

tered HSV values, SIFT features on the foreground region, SIFT features on the foreground

boundary, HOG features and three vocabularies derived from color, shape and texture.

The details of these features are described in (70; 71). For both datasets Gaussian kernels

are constructed respectively using the different feature representations of instances with

kernel width σ0, where σ0 is the mean of all pairwise distances. We experiment with 10

random splits where half of the data is used for training and the other half for testing.

We do not experiment here with NR-LMNN-MKL here due to its scaling limitations.

The accuracy results are reported in Table 5.2. We can see that by learning a linear

combination of different feature representations LMNN-MKLP achieves the best predictive

performance on both datasets being significantly better than the two baselines, LMNNH

and LMNN-MKLCV . The bad performance of LMNN-MKLCV on the Oxford flowers

dataset could be explained by the fact that the different Gaussian kernels are complemen-

tary for the given problem, but in LMNN-MKLCV only one kernel is selected.

5.7 Conclusions

In this chapter we combine two recent developments in the field of machine learning,

namely metric learning and multiple kernel learning, and propose a general framework

for learning a metric in a feature space induced by a weighted combination of a number

of individual kernels. This is in contrast with the existing kernelized metric learning

2http://www.robots.ox.ac.uk/∼vgg/data/flowers/index.html
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techniques which consider only one kernel function (or possibly an unweighted combination

of a number of kernels) and hence are sensitive to the selection of the associated feature

space. The proposed framework is general as it can be coupled with many existing metric

learning techniques. In this work, to practically demonstrate the effectiveness of the

proposed approach, we instantiate it with the well know LMNN metric learning method.

The experimental results confirm that the adaptively induced feature space does bring an

advantage in the terms of predictive performance with respect to feature spaces induced

by an unweighted combination of kernels and the single best kernel selected by internal

CV.
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Chapter 6

Parametric Local Metric Learning

In this chapter we propose the Parametric Local Metric Learning method (PLML) which

learns a smooth metric matrix function over the data manifold. It is motivated by the fact

that most of the existing local metric learning algorithms learn the metrics independently

for each region making them also prone to overfitting.

This chapter is organized as follows. In Section 6.1, we discuss the motivation of this

work. In Section 6.2 we introduce the necessary notations and metric learning concepts

to be self-contained. In Section 6.3 we show how to learn the metric matrix function. In

Section 7.4 we present the experimental results and we conclude with Section 7.5.
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6.1. Motivation

6.1 Motivation

Mahalanobis metric learning (24; 43; 48; 98; 105; 112) learns a global distance metric

which determines the importance of the different input features and their correlations.

However, since the discriminatory power of the input features might vary between different

neighborhoods, learning a global metric cannot fit well the distance over the data manifold.

Thus a more appropriate way is to learn a metric on each neighborhood and local metric

learning (10; 30; 38; 105) does exactly that. It increases the expressive power of standard

Mahalanobis metric learning by learning a number of local metrics (e.g. one per each

instance).

Local metric learning has been shown to be effective for different learning scenarios.

One of the first local metric learning works, Discriminant Adaptive Nearest Neighbor

classification (38), DANN, learns local metrics by shrinking neighborhoods in directions

orthogonal to the local decision boundaries and enlarging the neighborhoods parallel to

the boundaries. It learns the local metrics independently with no regularization between

them which makes it prone to overfitting. The authors of LMNN-Multiple Metric (LMNN-

MM) (105) significantly limited the number of learned metrics and constrained all instances

in a given region to share the same metric in an effort to combat overfitting. In the

supervised setting they fixed the number of metrics to the number of classes; a similar

idea has been also considered in (10). However, they too learn the metrics independently

for each region making them also prone to overfitting since the local metrics will be overly

specific to their respective regions. The authors of (110) learn local metrics using a least-

squares approach by minimizing a weighted sum of the distances of each instance to apriori

defined target positions and constraining the instances in the projected space to preserve

the original geometric structure of the data in an effort to alleviate overfitting. However,

the method learns the local metrics using a learning-order-sensitive propagation strategy,

and depends heavily on the appropriate definition of the target positions for each instance,

a task far from obvious. In another effort to overcome the overfitting problem of the

discriminative methods (38; 105), Generative Local Metric Learning, GLML, (73), propose

to learn local metrics by minimizing the NN expected classification error under strong

model assumptions. They use the Gaussian distribution to model the learning instances

of each class. However, the strong model assumptions might easily be very inflexible for

many learning problems.

In this work we propose the Parametric Local Metric Learning method (PLML) which

learns a smooth metric matrix function over the data manifold. More precisely, we

parametrize the metric matrix of each instance as a linear combination of basis metric
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matrices of a small set of anchor points; this parametrization is naturally derived from an

error bound on local metric approximation. Additionally we incorporate a manifold reg-

ularization on the linear combinations, forcing the linear combinations to vary smoothly

over the data manifold. We develop an efficient two stage algorithm that first learns the

linear combinations of each instance and then the metric matrices of the anchor points.

To improve scalability and efficiency we employ a fast first-order optimization algorithm,

FISTA (6), to learn the linear combinations as well as the basis metrics of the anchor

points. We experiment with the PLML method on a number of large scale classification

problems with tens of thousands of learning instances. The experimental results clearly

demonstrate that PLML significantly improves the predictive performance over the current

state-of-the-art metric learning methods, as well as over multi-class SVM with automatic

kernel selection.

6.2 Preliminaries

We denote by X the n×d matrix of learning instances, the i-th row of which is the xTi ∈ Rd

instance, and by y = (y1, . . . , yn)T , yi ∈ {1, . . . , c} the vector of class labels. The squared

Mahalanobis distance between two instances in the input space is given by:

d2
M(xi,xj) = (xi − xj)

TM(xi − xj)

where M is a PSD metric matrix (M � 0). A linear metric learning method learns a

Mahalanobis metric M by optimizing some cost function under the PSD constraints for

M and a set of additional constraints on the pairwise instance distances. Depending on

the actual metric learning method, different kinds of constraints on pairwise distances

are used. The most successful ones are the large margin triplet constraints. A triplet

constraint denoted by c(xi,xj ,xk), indicates that in the projected space induced by M

the distance between xi and xj should be smaller than the distance between xi and xk.

Very often a single metric M can not model adequately the complexity of a given

learning problem in which discriminative features vary between different neighborhoods.

To address this limitation in local metric learning we learn a set of local metrics. In most

cases we learn a local metric for each learning instance (38; 73), however we can also learn

a local metric for some part of the instance space in which case the number of learned

metrics can be considerably smaller than n, e.g. (105). We follow the former approach

and learn one local metric per instance. In principle, distances should then be defined

as geodesic distances using the local metric on a Riemannian manifold. However, this is
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computationally difficult, thus we define the distance between instances xi and xj as:

d2
Mi

(xi,xj) = (xi − xj)
TMi(xi − xj)

where Mi is the local metric of instance xi. Note that most often the local metric Mi

of instance xi is different from that of xj . As a result, the distance d2
Mi

(xi,xj) does not

satisfy the symmetric property, i.e. it is not a proper metric. Nevertheless, in accordance

to the standard practice we will continue to use the term local metric learning following

(73; 105).

6.3 Parametric Local Metric Learning

We assume that there exists a Lipschitz smooth vector-valued function f(x), the output

of which is the vectorized local metric matrix of instance x. Learning the local metric

of each instance is essentially learning the value of this function at different points over

the data manifold. In order to significantly reduce the computational complexity we will

approximate the metric function instead of directly learning it.

Definition 3. A vector-valued function f(x) on Rd is a (α, β, p)-Lipschitz smooth function

with respect to a vector norm ‖·‖ if ‖f(x)− f(x′)‖ ≤ α ‖x− x′‖ and
∥∥f(x)− f(x′)−∇f(x′)T (x− x′)

∥∥ ≤
β ‖x− x′‖1+p, where ∇f(x′)T is the derivative of the f function at x′. We assume α, β > 0

and p ∈ (0, 1].

(113) have shown that any Lipschitz smooth real function f(x) defined on a lower

dimensional manifold can be approximated by a linear combination of function values

f(u),u ∈ U, of a set U of anchor points. Based on this result we have the following

lemma that gives the respective error bound for learning a Lipschitz smooth vector-valued

function.

Lemma 5. Let (γ,U) be a nonnegative weighting on anchor points U in Rd. Let f be an

(α, β, p)-Lipschitz smooth vector function. We have for all x ∈ Rd:∥∥∥∥∥f(x)−
∑
u∈U

γu(x)f(u)

∥∥∥∥∥ ≤ α
∥∥∥∥∥x−∑

u∈U

γu(x)u

∥∥∥∥∥+ β
∑
u∈U

γu(x) ‖x− u‖1+p (6.1)

The proof of the above Lemma 5 is similar to the proof of Lemma 2.1 in (113); for lack

of space we omit its presentation. By the nonnegative weighting strategy (γ,U), the PSD

constraints on the approximated local metric is automatically satisfied if the local metrics

of anchor points are PSD matrices.
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Lemma 5 suggests a natural way to approximate the local metric function by param-

eterizing the metric Mi of each instance xi as a weighted linear combination, Wi ∈ Rm,

of a small set of metric basis, {Mb1 , . . . ,Mbm}, each one associated with an anchor point

defined in some region of the instance space. This parametrization will also provide us

with a global way to regularize the flexibility of the metric function. We will first learn

the vector of weights Wi for each instance xi, and then the basis metric matrices; these

two together, will give us the Mi metric for the instance xi.

More formally, we define a m× d matrix U of anchor points, the i-th row of which is

the anchor point ui, where uTi ∈ Rd. We denote by Mbi the Mahalanobis metric matrix

associated with ui. The anchor points can be defined using some clustering algorithm, we

have chosen to define them as the means of clusters constructed by the k-means algorithm.

The local metric Mi of an instance xi is parametrized by:

Mi =
∑
bk

WibkMbk , Wibk ≥ 0,
∑
bk

Wibk = 1 (6.2)

where W is a n×m weight matrix, and its Wibk entry is the weight of the basis metric Mbk

for the instance xi. The constraint
∑

bk
Wibk = 1 removes the scaling problem between

different local metrics. Using the parametrization of equation (6.2), the squared distance

of xi to xj under the metric Mi is:

d2
Mi

(xi,xj) =
∑
bk

Wibkd
2
Mbk

(xi,xj) (6.3)

where d2
Mbk

(xi,xj) is the squared Mahalanobis distance between xi and xj under the basis

metric Mbk . We will show in the next section how to learn the weights of the basis metrics

for each instance and in section 6.3.2 how to learn the basis metrics.

6.3.1 Smooth Local Linear Weighting

Lemma 5 bounds the approximation error by two terms. The first term states that x should

be close to its linear approximation, and the second that the weighting should be local. In

addition we want the local metrics to vary smoothly over the data manifold. To achieve

this smoothness we rely on manifold regularization and constrain the weight vectors of

neighboring instances to be similar. Following this reasoning we will learn Smooth Local

Linear Weights for the basis metrics by minimizing the error bound of (6.1) together with a

regularization term that controls the weight variation of similar instances. To simplify the
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objective function, we use the term
∥∥x−∑u∈U γu(x)u

∥∥2
instead of

∥∥x−∑u∈U γu(x)u
∥∥.

By including the constraints on the W weight matrix in (6.2), the optimization problem

is given by:

min
W

g(W) = ‖X−WU‖2F + λ1tr(WG) + λ2tr(W
TLW) (6.4)

s.t. Wibk ≥ 0,
∑
bk

Wibk = 1,∀i, bk

where tr(·) and ‖·‖F denote respectively the trace norm of a square matrix and the Frobe-

nius norm of a matrix. The m× n matrix G is the squared distance matrix between each

anchor point ui and each instance xj , obtained for p = 1 in (6.1), i.e. its (i, j) entry

is the squared Euclidean distance between ui and xj . L is the n × n Laplacian matrix

constructed by D−S, where S is the n×n symmetric pairwise similarity matrix of learn-

ing instances and D is a diagonal matrix with Dii =
∑

k Sik. Thus the minimization of

the tr(WTLW) term constrains similar instances to have similar weight coefficients. The

minimization of the tr(WG) term forces the weights of the instances to reflect their local

properties. Most often the similarity matrix S is constructed using k-nearest neighbors

graph (114). The λ1 and λ2 parameters control the importance of the different terms.

Since the cost function g(W) is convex quadratic with W and the constraint is simply

linear, (6.4) is a convex optimization problem with a unique optimal solution. The con-

straints on W in (6.4) can be seen as n simplex constraints on each row of W; we will use

the projected gradient method to solve the optimization problem. At each iteration t, the

learned weight matrix W is updated by:

Wt+1 = Proj(Wt − η∇g(Wt)) (6.5)

where η > 0 is the step size and ∇g(Wt) is the gradient of the cost function g(W) at Wt.

The Proj(·) denotes the simplex projection operator on each row of W. Such a projection

operator can be efficiently implemented with a complexity of O(nm log(m)) (27). To

speed up the optimization procedure we employ a fast first-order optimization method

FISTA, (6). The detailed algorithm is described in Algorithm 3. The Lipschitz constant β

required by this algorithm is estimated by using the condition of g(Wi) ≤ g̃β,Yi(Wi) (3).

At each iteration, the main computations are in the gradient and the objective value with

complexity O(nmd+ n2m).

To set the weights of the basis metrics for a testing instance we can optimize (6.4) given

the weight of the basis metrics for the training instances. Alternatively we can simply set



Chapter 6. Parametric Local Metric Learning

Algorithm 3 Smoothl Local Linear Weight Learning

Input: W0, X, U, G, L, λ1, and λ2

Output: matrix W
define g̃β,Y(W) = g(Y) + tr(∇g(Y)T (W −Y)) + β

2 ‖W −Y‖2F
initialize: t1 = 1, β = 1,Y1 = W0, and i = 0
repeat
i = i+ 1, Wi = Proj((Yi − 1

β∇g(Yi)))

while g(Wi) > g̃β,Yi(Wi) do
β = 2β, Wi = Proj((Yi − 1

β∇g(Yi)))
end while

ti+1 =
1+
√

1+4t2i
2 , Yi+1 = Wi + ti−1

ti+1
(Wi −Wi−1)

until converges;

them as the weights of its nearest neighbor in the training instances. In the experiments

we used the latter approach.

6.3.2 Large Margin Basis Metric Learning

In this section we define a large margin based algorithm to learn the basis metrics Mb1 , . . . ,Mbm .

Given the W weight matrix of basis metrics obtained using Algorithm 3, the local met-

ric Mi of an instance xi defined in (6.2) is linear with respect to the basis metrics

Mb1 , . . . ,Mbm . We define the relative comparison distance of instances xi, xj and xk

as: d2
Mi

(xi,xk) − d2
Mi

(xi,xj). In a large margin constraint c(xi,xj ,xk), the squared dis-

tance d2
Mi

(xi,xk) is required to be larger than d2
Mi

(xi,xj) + 1, otherwise an error ξijk ≥ 0

is generated. Note that, this relative comparison definition is different from that defined

in LMNN-MM (105). In LMNN-MM to avoid over-fitting, different local metrics Mj and

Mk are used to compute the squared distance d2
Mj

(xi,xj) and d2
Mk

(xi,xk) respectively,

as no smoothness constraint is added between metrics of different local regions.

Given a set of triplet constraints, we learn the basis metrics Mb1 , . . . ,Mbm with the

following optimization problem:

min
Mb1

,...,Mbm ,ξ
α1

∑
bl

||Mbl ||
2
F +

∑
ijk

ξijk + α2

∑
ij

∑
bl

Wibld
2
Mbl

(xi,xj) (6.6)

s.t.
∑
bl

Wibl(d
2
Mbl

(xi,xk)− d2
Mbl

(xi,xj)) ≥ 1− ξijk ∀i, j, k

ξijk ≥ 0; ∀i, j, k Mbl � 0; ∀bl

where α1 and α2 are parameters that balance the importance of the different terms. The
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large margin triplet constraints for each instance are generated using its k1 same class

nearest neighbors and k2 different class nearest neighbors by requiring its distances to the

k2 different class instances to be larger than those to its k1 same class instances. In the

objective function of (6.6) the basis metrics are learned by minimizing the sum of large

margin errors and the sum of squared pairwise distances of each instance to its k1 nearest

neighbors computed using the local metric. Unlike LMNN we add the squared Frobenius

norm on each basis metrics in the objective function. We do this for two reasons. First we

exploit the connection between LMNN and SVM shown in (25) under which the squared

Frobenius norm of the metric matrix is related to the SVM margin. Second because adding

this term leads to an easy-to-optimize dual formulation of (6.6) (86).

Unlike many special solvers which optimize the primal form of the metric learning

problem (87; 105), we follow (86) and optimize the Lagrangian dual problem of (6.6). The

dual formulation leads to an efficient basis metric learning algorithm. Introducing the

Lagrangian dual multipliers γijk, pijk and the PSD matrices Zbl to respectively associate

with every large margin triplet constraints, ξijk ≥ 0 and the PSD constraints Mbl � 0 in

(6.6), we can easily derive the following Lagrangian dual form

max
Zb1 ,...,Zbm ,γ

∑
ijk

γijk −
∑
bl

1

4α1
· ‖Zbl +

∑
ijk

γijkWiblCijk − α2

∑
ij

WiblAij‖2F (6.7)

s.t. 1 ≥ γijk ≥ 0; ∀i,j,k Zbl � 0; ∀bl

and the corresponding optimality conditions: M∗
bl

=
(Z∗bl

+
∑
ijk γ

∗
ijkWibl

Cijk−α2
∑
ijWibl

Aij)

2α1

and 1 ≥ γijk ≥ 0, where the matrices Aij and Cijk are given by xTijxij and xTikxik−xTijxij

respectively, where xij = xi − xj .

Compared to the primal form, the main advantage of the dual formulation is that the

second term in the objective function of (6.7) has a closed-form solution for Zbl given a

fixed γ. To drive the optimal solution of Zbl , let Kbl = α2
∑

ijWiblAij−
∑

ijk γijkWiblCijk.

Then, given a fixed γ, the optimal solution of Zbl is Z∗bl = (Kbl)+, where (Kbl)+ projects

the matrix Kbl onto the PSD cone, i.e. (Kbl)+ = U[max(diag(Σ)),0)]UT with Kbl =

UΣUT.

Now, (6.7) is rewritten as:

min
γ

g(γ) = −
∑
ijk

γijk +
∑
bl

1

4α1
‖(Kbl)+ −Kbl‖

2
F (6.8)

s.t. 1 ≥ γijk ≥ 0;∀i, j, k

And the optimal condition for Mbl is M∗
bl

= 1
2α1

((K∗bl)+−K∗bl). The gradient of the objec-
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tive function in (6.8),∇g(γijk), is given by: ∇g(γijk) = −1+
∑

bl
1

2α1
〈(Kbl)+ −Kbl ,WiblCijk〉.

At each iteration, γ is updated by: γi+1 = BoxProj(γi − η∇g(γi)) where η > 0 is the

step size. The BoxProj(·) denotes the simple box projection operator on γ as specified in

the constraints of (6.8). At each iteration, the main computational complexity lies in the

computation of the eigen-decomposition with a complexity of O(md3) and the computa-

tion of the gradient with a complexity of O(m(nd2 + cd)), where m is the number of basis

metrics and c is the number of large margin triplet constraints. As in the weight learning

problem the FISTA algorithm is employed to accelerate the optimization process; for lack

of space we omit the algorithm presentation.

6.4 Experiments

In this section we will evaluate the performance of PLML and compare it with a number

of relevant baseline methods on six datasets with large number of instances, ranging from

5K to 70K instances; these datasets are Letter, USPS, Pendigits, Optdigits, Isolet and

MNIST. We want to determine whether the addition of manifold regularization on the

local metrics improves the predictive performance of local metric learning, and whether

the local metric learning improves over learning with single global metric. We will compare

PLML against six baseline methods. The first, SML, is a variant of PLML where a single

global metric is learned, i.e. we set the number of basis in (6.6) to one. The second,

Cluster-Based LML (CBLML), is also a variant of PLML without weight learning. Here

we learn one local metric for each cluster and we assign a weight of one for a basis metric

Mbi if the corresponding cluster of Mbi contains the instance, and zero otherwise. Finally,

we also compare against four state of the art metric learning methods LMNN (105),

BoostMetric (87)1, GLML (73) and LMNN-MM (105)2. The former two learn a single

global metric and the latter two a number of local metrics. In addition to the different

metric learning methods, we also compare PLML against multi-class SVMs in which we

use the one-against-all strategy to determine the class label for multi-class problems and

select the best kernel with inner cross validation.

Since metric learning is computationally expensive for datasets with large number of

features we followed (105) and reduced the dimensionality of the USPS, Isolet and MINIST

datasets by applying PCA. In these datasets the retained PCA components explain 95%

of their total variances. We preprocessed all datasets by first standardizing the input

features, and then normalizing the instances to so that their L2-norm is one.

1http://code.google.com/p/boosting
2http://www.cse.wustl.edu/∼kilian/code/code.html.
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PLML has a number of hyper-parameters. To reduce the computational time we do

not tune λ1 and λ2 of the weight learning optimization problem (6.4), and we set them

to their default values of λ1 = 1 and λ2 = 100. The Laplacian matrix L is constructed

using the six nearest neighbors graph following (114). The anchor points U are the means

of clusters constructed with k-means clustering. The number m of anchor points, i.e.

the number of basis metrics, depends on the complexity of the learning problem. More

complex problems will often require a larger number of anchor points to better model the

complexity of the data. As the number of classes in the examined datasets is 10 or 26,

we simply set m = 20 for all datasets. In the basis metric learning problem (6.6), the

number of the dual parameters γ is the same as the number of triplet constraints. To

speedup the learning process, the triplet constraints are constructed only using the three

same-class and the three different-class nearest neighbors for each learning instance. The

parameter α2 is set to 1, while the parameter α1 is the only parameter that we select

from the set {0.01, 0.1, 1, 10, 100} using 2-fold inner cross-validation. The above setting

of basis metric learning for PLML is also used with the SML and CBLML methods. For

LMNN and LMNN-MM we use their default settings, (105), in which the triplet constraints

are constructed by the three nearest same-class neighbors and all different-class samples.

As a result, the number of triplet constraints optimized in LMNN and LMNN-MM is

much larger than those of PLML, SML, BoostMetric and CBLML. The local metrics

are initialized by identity matrices. As in (73), GLML uses the Gaussian distribution

to model the learning instances from the same class. Finally, we use the 1-NN rule to

evaluate the performance of the different metric learning methods. In addition as we

already mentioned we also compare against multi-class SVM. Since the performance of

the latter depends heavily on the kernel with which it is coupled we do automatic kernel

selection with inner cross validation to select the best kernel and parameter setting. The

kernels were chosen from the set of linear, polynomial (degree 2,3 and 4), and Gaussian

kernels; the width of the Gaussian kernel was set to the average of all pairwise distances.

Its C parameter of the hinge loss term was selected from {0.1, 1, 10, 100}.
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(a) LMNN-MM (b) CBLML

(c) GLML (d) PLML

Figure 6.1: The visualization of learned local metrics of LMNN-MM, CBLML, GLML and
PLML.
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(a) Letter (b) Pendigits (c) Optdigits

(d) USPS (e) Isolet (f) MNIST

Figure 6.2: Accuracy results of PLML and CBLML with varying number of basis metrics.

To estimate the classification accuracy for Pendigits, Optdigits, Isolet and MNIST we

used the default train and test split, for the other datasets we used 10-fold cross-validation.

The statistical significance of the differences were tested with McNemar’s test with a p-

value of 0.05. In order to get a better understanding of the relative performance of the

different algorithms for a given dataset we used a simple ranking schema in which an

algorithm A was assigned one point if it was found to have a statistically significantly

better accuracy than another algorithm B, 0.5 points if the two algorithms did not have

a significant difference, and zero points if A was found to be significantly worse than B.

6.4.1 Results

In Table 6.1 we report the experimental results. PLML consistently outperforms the

single global metric learning methods LMNN, BoostMetric and SML, for all datasets

except Isolet on which its accuracy is slightly lower than that of LMNN. Depending on

the single global metric learning method with which we compare it, it is significantly

better in three, four, and five datasets ( for LMNN, SML, and BoostMetric respectively),

out of the six and never singificantly worse. When we compare PLML with CBLML

and LMNN-MM, the two baseline methods which learn one local metric for each cluster

and each class respectively with no smoothness constraints, we see that it is statistically
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significantly better in all the datasets. GLML fails to learn appropriate metrics on all

datasets because its fundamental generative model assumption is often not valid. Finally,

we see that PLML is significantly better than SVM in two out of the six datasets and it

is never significantly worse; remember here that with SVM we also do inner fold kernel

selection to automatically select the appropriate feature speace. Overall PLML is the best

performing methods scoring 37 points over the different datasets, followed by SVM with

automatic kernel selection and SML which score 32.5 and 28.5 points respectively. The

other metric learning methods perform rather poorly.

Examining more closely the performance of the baseline local metric learning methods

CBLML and LMNN-MM we observe that they tend to overfit the learning problems.

This can be seen by their considerably worse performance with respect to that of SML

and LMNN which rely on a single global model. On the other hand PLML even though

it also learns local metrics it does not suffer from the overfitting problem due to the

manifold regularization. The poor performance of LMNN-MM is not in agreement with

the results reported in (105). The main reason for the difference is the experimental

setting. In (105), 30% of the training instance of each dataset were used as a validation

set to avoid overfitting.

To provide a better understanding of the behavior of the learned metrics, we applied

PLML LMNN-MM, CBLML and GLML, on an image dataset containing instances of four

different handwritten digits, zero, one, two, and four, from the MNIST dataset. As in

(105), we use the two main principal components to learn. Figure 7.1 shows the learned

local metrics by plotting the axis of their corresponding ellipses(black line). The direction

of the longer axis is the more discriminative. Clearly PLML fits the data much better than

LMNN-MM and as expected its local metrics vary smoothly. In terms of the predictive

performance, PLML has the best with 82.76% accuracy. The CBLML, LMNN-MM and

GLML have an almost identical performance with respective accuracies of 82.59%, 82.56%

and 82.51%.

Finally we investigated the sensitivity of PLML and CBLML to the number of basis

metrics, we experimented with m ∈ {5, 10, 15, 20, 25, 30, 35, 40}. The results are given

in Figure 6.2. We see that the predictive performance of PLML often improves as we

increase the number of the basis metrics. Its performance saturates when the number

of basis metrics becomes sufficient to model the underlying training data. As expected

different learning problems require different number of basis metrics. PLML does not

overfit on any of the datasets. In contrast, the performance of CBLML gets worse when

the number of basis metrics is large which provides further evidence that CBLML does

indeed overfit the learning problems, demonstrating clearly the utility of the manifold
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regularization.

6.5 Conclusions

Local metric learning provides a more flexible way to learn the distance function. However

they are prone to overfitting since the number of parameters they learn can be very large.

In this chapter we presented PLML, a local metric learning method which regularizes local

metrics to vary smoothly over the data manifold. Using an approximation error bound of

the metric matrix function, we parametrize the local metrics by a weighted linear combi-

nations of local metrics of anchor points. Our method scales to learning problems with

tens of thousands of instances and avoids the overfitting problems that plague the other

local metric learning methods. The experimental results show that PLML outperforms

significantly the state of the art metric learning methods and it has a performance which

is significantly better or equivalent to that of SVM with automatic kernel selection.
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Chapter 7

Two-Stage Metric Learning

Over the last years various metric learning algorithms have been shown to perform well in

different learning problems, however, each comes with its own set of limitations. In this

chapter, we propose a novel two-stage metric learning algorithm, Similarity-Based Fisher

Information Metric Learning (SBFIML). It has a few advantages comparing to existing

metric learning methods. SBFIML is flexible and general; it can be applied to different

types of data spaces with various non-negative similarity functions. Comparing to KML,

SBFIML does not require the similarity measure to form a PSD matrix. Moreover, SB-

FIML can be interpreted as a local metric learning algorithm. Compared to the previous

local metric learning algorithms which produce a non-metric distance (73; 101), the dis-

tance approximation in SBFIML is a well defined distance function with a closed form

expression.

This chapter is organized as follows. In Section 7.1, we discuss the motivation of

this work. In Section 7.2 we introduce statistical manifold and Fisher Information metric

concepts to be self-contained. In Section 7.3 we present our two-stage metric learning

algorithm. In Section 7.4 we present the experimental results and we conclude with Section

7.5.
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7.1. Motivation

7.1 Motivation

Over the last years various metric learning algorithms have been shown to perform well in

different learning problems, however, each comes with its own set of limitations. Learning

the distance metric with one global linear transformation is called single metric learn-

ing (24; 105). In this approach the distance computation is equivalent to applying on the

learning instances a learned linear transformation followed by a standard distance metric

computation in the projected space. Since the discriminatory power of the input features

might vary locally, this approach is often not flexible enough to fit well the distance in

different regions.

Local metric learning addresses this limitation by learning in each neighborhood one

local metric (73; 101). When the local metrics vary smoothly in the feature space, learning

local metrics is equivalent to learning the Riemannian metric on the data manifold (39).

The main challenge here is that the geodesic distance endowed by the Riemannian metric

is often computationally very expensive. In practice, it is approximated by assuming that

the geodesic curves are formed by straight lines and the local metric does not change along

these lines (73; 101). Unfortunately, the approximation does not satisfy the symmetric

property and therefore the result is a non-metric distance.

Kernelized Metric Learning (KML) achieves flexibility in a different way (45; 99).

In KML learning instances are first mapped into the Reproducing-Kernel Hilbert Space

(RKHS) by a kernel function and then a global Mahalanobis metric is learned in the

RKHS space. By defining the distance in the input feature space as the Mahalanobis

distance in the RKHS space, KML is equivalent to learning a flexible non-linear distance

in the input space. However, its main limitation is that the kernel matrix induced by the

kernel function must be Positive Semi-Definite (PSD). Although Non-PSD kernel could

be transformed into PSD kernel (17; 111), the new PSD kernel nevertheless cannot keep

all original similarity information.

In this work, we propose a novel two-stage metric learning algorithm, Similarity-Based

Fisher Information Metric Learning (SBFIML). It first maps instances from the data

manifold into finite discrete distributions by computing their similarities to a number of

predefined anchor points in the data space. Then, the Fisher information distance on

the statistical manifold is used as the distance in the input feature space. This induces

a new family of Riemannian distance metric in the input data space with two important

properties. First, the new Riemannian metric is robust to density variation in the original

data space. Without such robustness, an objective function can be easily biased towards

data regions the density of which is low and thus dominates learning of the objective
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function. Second, the new Riemannian metric has largest distance discrimination on

the manifold of anchor points and no distance in the directions being orthogonal to the

manifold. So, the effect of locally irrelevant dimensions of anchor points is removed. To

the best of our knowledge, this is the first metric learning algorithm that has these two

important properties. We evaluate SBFIML on a number of datasets. The experimental

results show that it outperforms in a statistically significant manner both metric learning

methods and SVM.

7.2 Preliminaries

We are given a number of learning instances {x1, . . . ,xn}, where each instance xTi ∈ X
is a d-dimensional vector, and a vector of associated class labels y = (y1, . . . , yn)T , yi ∈
{1, . . . , c}. We assume that the input feature space X is a smooth manifold. Different

learning problems can have very different types of data manifolds with possibly different

dimensionality. The most commonly used manifold in metric learning is the Euclidean

space Rd (105). The probability simplex space Pd−1 has also been explored (21; 53; 56).

We propose a general two-stage metric learning algorithm which can learn a flexible

distance in different types of X data manifolds, e.g. Euclidean, probability simplex, hy-

persphere, etc. Concretely, we first map instances from X onto the statistical manifold

S through a similarity-based differential map, which computes their non-negative simi-

larities to a number of predefined anchor points. Then we define the Fisher information

distance as the distance on X . We have chosen to do so, since this induces a new family of

Riemannian distance metric which enjoys interesting properties: 1) The new Riemannian

metric is robust to density variations in the original data space, which can be produced for

example by different intrinsic variabilities of the learning instances in the different cate-

gories. Distance learning over this new metric is hence robust to density variation. 2) The

new Riemannian distance metric has largest distance discrimination on the manifold of

the anchor points and has no distance in the directions being orthogonal to that manifold.

So, the new distance metric can remove the effect of locally irrelevant dimensions of the

anchor point manifold, see Figure 7.1 for more detials. In the remainder of this section, we

will briefly introduce the necessary terminology and concepts. More details can be found

in the monographs (2; 58).

Statistical Manifold. We denote byMn a n-dimensional smooth manifold. For each

point p on Mn, there exists at least one smooth coordinate chart (U , ϕ) which defines a

coordinate system to points on U , where U is an open subset of Mn containing p and

ϕ : U −→ Θ is a smooth coordinate map ϕ(p) = θ ∈ Θ ⊂ Rn. θ is the coordinate of p
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defined by ϕ.

A statistical manifold is a smooth manifold whose points are probability distributions.

Given a n-dimensional statistical manifold Sn, we denote by p(ξ|θ) a probability distri-

bution in Sn, where θ = (θ1, . . . , θn) ∈ Θ ⊂ Rn is the coordinate of p(ξ|θ) under some

coordinate map ϕ and ξ is the random variable of the p(ξ|θ) distribution taking values

from some set Ξ. Note that, all the probability distributions in Sn share the same set Ξ.

In this work, we are particularly interested in the n-dimensional statistical manifold

Pn, whose points are finite discrete distributions, denoted by

Pn = {p(ξ|θ = (θ1, . . . , θn)) :
n∑
i=1

θi < 1,∀i, θi > 0} (7.1)

where ξ is the discrete random variable taking values in the set Ξ = {1, . . . , n + 1} and

θ ∈ Θ ⊂ Rn is called the m-affine coordinate (2). The probability mass of p(ξ|θ) is

p(ξ = i) = θi if i 6= n+ 1, otherwise p(ξ = n+ 1) = 1−
∑n

k=1 θk.

Fisher Information Metric. The Fisher information metric is a Riemannian met-

ric defined on statistical manifolds and endows a distance between probability distribu-

tions (76). The explicit form of the Fisher information metric at p(ξ|θ) is a n×n positive

definite symmetric matrix GFIM (θ), the (i, j) element of which is defined by:

Gij
FIM (θ) =

∫
Ξ

∂ log p(ξ|θ)
∂θi

∂ log p(ξ|θ)
∂θj

p(ξ|θ)dξ (7.2)

where the above integral is replaced with a sum if Ξ is discrete. The following lemma gives

the explicit form of the Fisher information metric on Pn.

Lemma 6. On the statistical manifold Pn, the Fisher information metric GFIM (θ) at

p(ξ|θ) with coordinate θ is

Gij
FIM (θ) =

1

θi
δij +

1

1−
∑n

k=1 θk
,∀i, j ∈ {1, . . . , n} (7.3)

where δij = 1 if i = j, otherwise δij = 0.

Properties of Fisher Information Metric. The Fisher information metric enjoys

a number of interesting properties. First, the Fisher information metric is the unique Rie-

mannian metric induced by all f -divergence measures, such as the Kullback-Leibler (KL)

divergence and the χ2 divergence (1). All these divergences converge to the Fisher infor-

mation distance as the two probability distributions are approaching each other. Another

important property of the Fisher information metric from a metric learning perspective
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is that the distance it endows can be approximated by the Hellinger distance, the cosine

distance and all f -divergence measures (52). More importantly, when Sn is the statistical

manifold of finite discrete distributions, e.g. Pn, the cosine distance is exactly equivalent

to the Fisher information distance (56; 59).

Pullback Metric. Let Mn and Nm be two smooth manifolds and TpMn be the

tangent space of Mn at p ∈ Mn. Given a differential map f : Mn −→ Nm and a

Riemannian metric G on Nm, the differential map f induces a pullback metric G∗ at

each point p on Mn defined by:

〈v1,v2〉G∗(p) = 〈Dpf(v1), Dpf(v2)〉G(f(p)) (7.4)

where Dpf : TpMn −→ Tf(p)Nm is the differential of f at point p ∈ Mn, which maps

tangent vectors v ∈ TpMn to tangent vectors Dpf(v) ∈ Tf(p)Nm.

Given the coordinate systems Θ and Γ of U ⊂Mn and U ′ ⊂ Nm respectively, defined

by some smooth coordinate maps ϕU and ϕU ′ respectively, then the explicit form of the

pullback metric at point p ∈ U ⊂Mn with coordinate θ = ϕU (p) is:

G∗(θ) = JTG(γ)J (7.5)

where γ = ϕU ′(f(p)) is the coordinate of the f(p) ∈ U ′ ⊂ Nm and J is the Jacobian

matrix of the function ϕU ′ ◦f ◦ϕ−1
U : Θ −→ Γ at point θ. Since G is a Riemannian metric,

the pullback metric G∗ is in general at least a PSD metric.

The following lemma gives the relation between the geodesic distances on Mn and

Nm.

Lemma 7. Let G∗ be the pullback metric of a Riemannian metric G induced by a dif-

ferential map f : Mn −→ Nm, dG∗(p
′, p) be the geodesic distance on Mn endowed

by G∗ and dG(f(p′), f(p)) the geodesic distance on Nm endowed by G, then, it holds

limp′→p
dG(f(p′),f(p))
dG∗ (p′,p) = 1

Proof. Let θ be the coordinate of p ∈ U ⊂Mn under some smooth coordinate map ϕU and

γ be the coordinate of f(p) ∈ U ′ ⊂ Nm under some smooth coordinate map ϕU ′ . Since p′

approaches p, we have θ′ = θ+dθ, where θ′ is the coordinate of p′ under the coordinate map

ϕU and dθ is an infinitesimal small change approaching 0. Furthermore, since f :Mn −→
Nm is a differential map, the function ϕU ′ ◦ f ◦ϕ−1

U : Θ −→ Γ, which we will denote by g,

is also differentiable. According to the Taylor expansion, we have γ′ = g(θ′) = g(θ+dθ) =

g(θ)+5g(θ)dθ+Rg(dθ, θ) = γ+Jdθ+Rg(dθ, θ), where γ′ is the coordinate of f(p′) under

the coordinate map ϕU ′ , J is the Jacobian matrix of the function g at point θ and Rg(dθ, θ)
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is the remainder term of linear approximation. Finally, according to the definition of

pullback metric, we have limdθ→0
dG(γ)(γ

′,γ)

dG∗(θ)(θ′,θ)
= limdθ→0

(Jdθ+Rg(dθ,θ))TG(γ)(Jdθ+Rg(dθ,θ))
dθTJTG(γ)Jdθ

=

1. This ends the proof.

In addition to approximating dG∗(p
′, p) directly onMn by assuming that the geodesic

curve is formed by straight lines as previous local metric learning algorithms do (73; 101),

Lemma 7 allows us to also approximate it with dG(f(p′), f(p)) on Nm. Note that, both

approximations have the same asymptotic convergence result.

7.3 Similarity-Based Fisher Information Metric Learning

We will now present our two-stage metric learning algorithm, SBFIML. In the following,

we will first present how to define the similarity-based differential map f : X −→ P and

then how to learn the Fisher information distance.

7.3.1 Similarity-Based Differential Map

Given a number of anchor points {z1, . . . , zn}, zi ∈ X , we denote by s = (s1, . . . , sn) :

X −→ R+n the differentiable similarity function. Each sk : X −→ R+ component is

a differentiable function the output of which is a non-negative similarity between some

input instance xi and the anchor point zk. Based on the similarity function s we define

the similarity-based differential map f as:

f(xi) = p(ξ|( s1(xi)∑n
k=1 sk(xi)

, . . . ,
sn−1(xi)∑n
k=1 sk(xi)

)) (7.6)

= (s̄1(xi), . . . , s̄n−1(xi))

where f(xi) is a finite discrete distribution on manifold Pn−1. From now on, for simplic-

ity, we will denote f(xi) by pi(ξ). The probability mass of the kth outcome is given by:

pi(ξ = k) = s̄k(xi) = sk(xi)∑n
k=1 sk(xi)

. In order for f to be a valid differential map, the simi-

larity function s must satisfy
∑

k sk(xi) > 0, ∀xi ∈ X . This family of differential maps is

very general and can be applied to any X space where a non-negative differentiable sim-

ilarity function s can be defined. The finite discrete distribution representation, pi(ξ), of

learning instance, xi, can be intuitively seen as an encoding of its neighborhood structure

defined by the similarity function s. Note that, the idea of mapping instances onto the

statistical manifold P has been previously studied in manifold learning, e.g. SNE (40) and

t-SNE (93).
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Akin to the appropriate choice of the kernel function in a kernel-based method, the

choice of an appropriate similarity function s is also crucial for SBFIML. In principle, an

appropriate similarity function s should be a good match for the geometrical structure of

the X data manifold. For example, for data lying on the probability simplex space, i.e.

X = Pd−1, the similarity functions defined either on Rd or on Pd−1 can be used. However,

the similarity function on Pd−1 is more appropriate, because it exploits the geometrical

structure of Pd−1, which, in contrast, is ignored by the similarity function on Rd (53).

The set of anchor points {z1, . . . , zn} can be defined in various ways. Ideally, anchor

points should be similar to the given learning instances xi, i.e. anchor points follow the

same distribution as that of learning instances. Empirically, we can use directly training

instances or cluster centers, the latter established by clustering algorithms. Similar to

the current practice in kernel methods we will use in SBFIML as anchors points all the

training instances.

Similarity Functions on Rd. We can define the similarity on Rd in various ways. In

this work we will investigate two types of differentiable similarity functions. The first one

is based on the Gaussian function, defined as:

sk(xi) = exp(−‖xi − zk‖22
σk

) (7.7)

where ‖ · ‖2 is the L2 norm. σk controls the size of the neighborhood of the anchor point

zk, with large values producing large neighborhoods. Note that the different σks could

be set to different values; if all of them are equal, this similarity function is exactly the

Gaussian kernel. The second type of similarity function that we will look at is:

sk(xi) = 1− 1

π
arccos(

xTi zk
‖xi‖2 · ‖zk‖2

) (7.8)

which measures the normalized angular similarity between xi and zk. This similarity

function can be explained as we first projecting all points from Rd to the hypersphere

and then applying the angular similarity to points on a hypersphere. As a result, this

similarity function is useful for data which approximately lie on a hypersphere. Note that

this similarity function is also a valid kernel function (41).

One might say we can also achieve nonlinearity by mapping instances into the proximity

space Q using the following similarity-based map g : X −→ Q:

g(x) = (s1(x), . . . , sn(x)) (7.9)
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(a) G∗Q(x) (b) G∗P(x)

(c) G∗Q(x) (d) G∗P(x)

Figure 7.1: The visulization of equi-distance curves of pullback metrics G∗Q(x) and G∗P(x).

We now compare our similarity-based map f , equation 7.6 against the similarity-based

map g, equation 7.9, in two aspects, namely representation robustness and pullback metric

analysis.

Representation Robustness. Compared to the representation induced by the similarity-

based map g, equation 7.9, our representation induced by the similarity-based map f ,

equation 7.6, is more robust to density variations in original data space, i.e. the density of

the learning instances varies significantly between different regions. This can be explained

by the fact that the finite discrete distribution is essentially a representation of the neigh-

borhood structure of a learning instance normalized by a ”scaling” factor, the sum of

similarities of the learning instance to the anchor points. Hence the distance implied by

the finite discrete distribution representation is less sensitive to the density variations of

the different data regions. This is an important property. Without such robustness, an
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objective function based on raw distances can be easily biased towards data regions the

density of which is low and thus dominates learning of the objective function. One example

of this kind of objective is that of LMNN (105), which we will also use later in SBFIML

to learn the Fisher information distance.

Pullback Metric Analysis. We also show how the two approaches differ by compar-

ing the pullback metrics induced by the two similarity-based maps f and g. In doing so, we

first need to specify the Riemannian metrics GQ in the proximity space Q and GP on the

statistical manifold Pn−1. Following the work of similarity-based learning (18), we use the

Euclidean metric as the GQ in the proximity space Q. On the statistical manifold Pn−1

we use the Fisher information metric GFIM defined in equation 7.3 as GP . To simplify

our analysis, we assume X = Rd. However, note that this analysis can be generalized to

other manifolds, e.g. Pd−1. We use the standard Cartesian coordinate system for points

in Rd and Q and use m-affine coordinate system, equation 7.1, for points on Pn−1.

The pullback metric induced by these two differential maps are given in the following

lemma.

Lemma 8. In Rd, at x with Cartesian coordinate, the form of the pullback metric G∗Q(x)

of the Euclidean metric induced by the differential map g of equation 7.9 is:

G∗Q(x) = ∇g(x)∇g(x)T =
n∑
i=1

∇si(x)∇si(x)T (7.10)

where the vector ∇si(x) of size d × 1 is the differential of ith similarity function si(x).

The form of the pullback metric G∗P(x) of the Fisher information metric induced by the

differential map f of equation 7.6 is:

G∗P(x) =
n∑
i=1

1

s̄i(x)
(∇s̄i(x)∇s̄i(x)T ) (7.11)

where ∇s̄i(x) = s̄i(x) (∇ log(si(x))− E (∇ log(si(x)))) and the expectation of ∇ log(si(x))

is E(∇ log(si(x))) =
∑n

k=1 s̄k(x)∇ log(si(x)) .

Gaussian Similarity Function. The form of pullback metrics G∗Q(x) and G∗P(x)

depends on the explicit form of the similarity function si(x). We now study their differ-

ences using the Gaussian similarity function with kernel width σ, equation 7.7. We first

show the difference between G∗Q(x) and G∗P(x) by comparing their m largest eigenvectors,

the directions in which metrics have the largest distance discrimination.
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The m largest eigenvectors UQ(x) of G∗Q(x) are:

UQ(x) = arg max
UTU=I

tr(UTG∗Q(x)U) (7.12)

= arg max
UTU=I

m∑
k=1

n∑
i=1

4

σ2
(uTk si(x)(x− zi))

2

where tr(·) is the trace norm and uk is the kth column of matrix U. The m largest

eigenvectors UP(x) of the pullback metric G∗P(x) are:

UP(x) = arg max
UTU=I

tr(UTG∗P(x)U) (7.13)

= arg max
UTU=I

m∑
k=1

n∑
i=1

4s̄i(x)

σ2
(uTk (zi − E(zi))

2

where E(zi) =
∑n

k=1 s̄k(x)zk

We see one key difference between UP(x) and UQ(x). In equation 7.13, UP(x) are

the directions which maximize the sum of expected variance of uTk zi, k ∈ {1, . . . ,m},
with respected to its expected mean. In contrast, the directions of UQ(x) in equation 7.12

maximize the sum of the unweighted ”variance” of uTk si(x)(x−zi), k ∈ {1, . . . ,m}, without

centralization. Their difference can be intuitively compared to the difference of doing local

PCA with or without centralization. Therefore, UP(x) is closer to the principle directions

of local anchor points. Second, since G∗P(x) =
∑n

i=1
4s̄i(x)
σ2 (zi − E(zi))(zi − E(zi))

T , it is

also easy to show that G∗P(x) has no distance in the orthogonal directions of the affine

subspace spanned by the weighted anchor points of s̄i(x)zi. So, G∗P(x) removes the effect

of locally irrelevant dimensions to the anchor point manifold.

To show the differences of pullback metrics G∗Q(x) and G∗P(x) intuitively, we visualize

their equi-distance curves in Figure 7.1, where the Guassian similarity function, euqation

7.7, is used to define the similarity maps in equations 7.9 and 7.6. As shown in Figure 7.1,

we see that the pullback metric G∗P(x) emphasizes more the distance along the principle

direction of the local anchor points than the pullback metric G∗Q(x). Furthermore, in

Figure 7.1(b) we see that G∗P(x) has a zero distance in the direction being orthogonal

to the manifold of anchor points, the straight line which the (green) anchor points lie

on. Therefore, G∗P(x) is more discriminative on the manifold of the anchor points. To

explore the effect of these differences, we also experimentally compare these two approaches

in section 7.4 and the results show that learning the Fisher information distance on P
outperforms in a significant manner learning Mahalanobis distance in proximity space Q.
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7.3.2 Large Margin Fisher Information Metric Learning

By applying on the learning instances the differential map f of equation (7.6) we map

them on the statistical manifold Pn−1. We are now ready to learn the Fisher information

distance from the data.

Distance Parametrization. As discussed in section 7.2, the Fisher information

distance on Pn−1 can be exactly computed by the cosine distance (56; 59):

dFIM (pi,pj) = 2 arccos(
√

pi
T√

pj) (7.14)

where pi is the probability mass vector of the finite discrete distribution pi(ξ). To

parametrize the Fisher information distance, we apply on the probability mass vector pi a

linear transformation L. The intuition is that, the effect of the optimal linear transforma-

tion L is equivalent to locating a set of hidden anchor points such that the data’s similarity

representation is the same as the transformed representation. Thus the parametric Fisher

information distance is defined as:

dFIM (Lpi,Lpj) = 2 arccos(
√

Lpi
T√

Lpj) (7.15)

s.t. L ≥ 0,
∑
i

Lij = 1,∀j

L has size k × n. k is the number of hidden anchor points. To speedup the learning

process, in practice we often learn a low rank linear transformation matrix L with small

k. The constraints L ≥ 0 and
∑

i Lij = 1,∀j are added to ensure that each Lpi is still a

finite discrete distribution on the manifold Pk−1.

Learning. We will follow the large margin metric learning approach of (105) and

define the optimization problem of learning L as:

min
L

∑
ijk∈C(i,j,k)

[εijk]+ + α
∑
i,j→i

dFIM (Lpi,Lpj) (7.16)

s.t. L ≥ 0∑
i

Lij = 1; ∀j

εijk = dFIM (Lpi,Lpj) + γ − dFIM (Lpi,Lpk)

where α is a parameter that balances the importance of the two terms. Unlike LMNN (105),

the margin parameter γ is added in the large margin triplet constraints following the

107



7.3. Similarity-Based Fisher Information Metric Learning

work of (53), since the cosine distance is not linear with LTL. The large margin triplet

constraints C(i, j, k) for each instance xi are generated using its k1 same-class nearest

neighbors and its k2 different-class nearest neighbors in the X space and constraining the

distance of each instance to its k2 different class neighbors to be larger than those to its

k1 same class neighbors with γ margin. In the objective function of (7.16) the matrix L is

learned by minimizing the sum of the hinge losses and the sum of the pairwise distances

of each instance to its k1 same-class nearest neighbors.

Optimization. Since the cosine distance defined in equation (7.14) is not convex,

the optimization problem (7.16) is not convex. However, the constraints on matrix L

are linear and we can solve this problem using a projected sub-gradient method. At each

iteration, the main computation is the sub-gradient computation with complexity O(mnk),

where m is the number of large margin triplet constraints. n and k are the dimensions of

the L matrix. The simplex projection operator on matrix L can be efficiently computed

with complexity O(nk log(k)) (27). Note that, learning distance metric on P has been

previously studied by Riemannian Metric Learning (RML) (56) and χ2-LMNN (53). In χ2-

LMNN, a symmetric χ2 distance on P is learned with large margin idea similar to problem

7.16. SBFIML differs from χ2-LMNN in that it uses the cosine distance to measure the

distance on P. As described in section 7.2, the cosine distance is exactly equivalent to

the Fisher information distance on P, while the χ2 distance is only an approximation.

In contrast to SBFIML and χ2-LMNN, the work of RML focuses on unsupervised Fisher

information metric learning. More importantly, both RML and χ2-LMNN can only be

applied in problems in which the input data lie on P, while SBFIML can be applied

to general data manifolds via the similarity-based differential map. Finally, note that

SBFIML can also be applied to problems where we only have access to the pairwise instance

similarity matrix, since it needs only the probability mass of finite discrete distributions

as its input.

Local Metric Learning View of SBFIML. SBFIML can also be interpreted as

a local metric learning algorithm. SBFIML defines the local metric on X as the pull-

back metric of the Fisher information metric induced by the following similarity-based

parametric differential map fL : X −→ Pk−1:

fL(xi) = L · pi, s.t. L > 0,
∑

i Lij = 1,∀j (7.17)

where as before pi is the probability mass vector of the finite discrete distribution pi(ξ)

defined in equation (7.6). SBFIML learns the local metric by learning the parameters

of fL. The explicit form of the pullback metric G∗ can be computed according to the
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equation (7.5). Given the pullback metric we can approximate the geodesic distance on X
by assuming that the geodesic curves are formed by straight lines as local metric learning

methods (73; 101) do, which would result in a non-metric distance. However, Lemma 7

allows us to approximate the geodesic distance on X by the Fisher information distance

on Pk−1. SBFIML follows the latter approach. Compared to the non-metric distance

approximation, this new distance is a well defined distance function which has a closed

form expression. Furthermore, this new distance approximation has the same asymptotic

convergence result as the non-metric distance approximation.
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7.4 Experiments

We will evaluate the performance of SBFIML on ten datasets from the UCI Machine

Learning and mldata1 repositories. The details of these datasets are reported in the first

column of Table 7.1. All datasets are preprocessed by standardizing the input features.

We compare SBFIML against three metric learning baseline methods: LMNN (105)2,

KML (99)3, GLML (73), and PLML (101). The former two learn a global Mahalanobis

metric in the input feature space Rd and the RKHS space respectively, and the last two

learn smooth local metrics in Rd. In addition, we also compare SBFIML against Similarity-

based Mahalanobis Metric Learning (SBMML) to see the difference of pullback metrics

G∗Q(x), equation 7.10, and G∗P(x), equation 7.11. SBMML learns a global Mahalanobis

metric in the proximity space Q. Similar to SBFIML, the metric is learned by optimizing

the problem 7.16, in which the cosine distance is replaced by Mahalanobis distance. The

constraints on L in problem 7.16 are also removed. To see the difference between the cosine

distance used in SBFIML and the χ2 distance used in χ2 LMNN, we compare SBFIML

against χ2 LMNN. Note that, both methods solve exactly the same optimization problem

7.16 but with different distance computations. Finally, we also compare SBFIML against

SVM for binary classification problems and against multi-class SVMs for multiclass clas-

sification problems. In multi-class SVMs, we use the one-against-all strategy to determine

the class label.

KML, SBMML and χ2 LMNN learn a n×n PSD matrix and are thus computationally

expensive for datasets with large number of instances. To speedup the learning process,

similar to SBFIML, we can learn a low rank transformation matrix L of size k × n. For

all methods, KML, SBMML, χ2 LMNN and SBFMIL, we set k = 0.1n in all experiments.

The matrix L in KML and SBMML was initialized by clipping the n× n identity matrix

into the size of k × n. In a similar manner, in χ2 LMNN and SBFIML the matrix L was

initialized by applying on the initialization matrix L in KML a simplex projector which

ensures the constraints in problem (7.16) are satisfied.

The LMNN has one hyper-parameter µ (105). We set it to its default value µ = 1.

As in (73), GLML uses the Gaussian distribution to model the learning instances of a

given class. The hyper-parameters of PLML was set following (101). The SBFIML has

two hyper-parameters α and γ. Following LMNN (105), we set the α parameter to 1.

We select the margin parameter γ from {0.0001, 0.001, 0.01, 0.1} using a 4-fold inner Cross

1http://mldata.org/.
2http://www.cse.wustl.edu/∼kilian/code/code.html.
3http://cui.unige.ch/∼wangjun/.
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Validation (CV). The selection of an appropriate similarity function is crucial for SBFIML.

We choose the similarity function with a 4-fold inner CV from the angular similarity,

equation (7.8), and the Gaussian similarity in equation (7.7). We examine two types of

Gaussian similarity. In the first we set all σk to σ which is selected from {0.5τ, τ, 2τ}, τ
was set to the average of all pairwise distances. In the second we set the σk for each anchor

point zk separately; the σk was set by making the entropy of the conditional distribution

p(xi|zk) = sk(xi)∑n
i=1 sk(xi)

equal to log(nc) (40), where n is the number of training instances

and c was selected from {0.8, 0.9, 0.95}.
Since χ2 LMNN and SBFIML apply different distance parametrizations to solve the

same optimization problem, the parameters of χ2 LMNN are set in exactly the same

way as SBFIML, except that the margin parameter γ of χ2 LMNN was selected from

{10−8, 10−6, 10−4, 10−2}, because χ2 LMNN uses the squared χ2 distance (53). The best

similarity map for χ2 LMNN is also selected using a 4-fold inner CV from the same

similarity function set as that of SBFIML.

Akin to SBFIML, the performance of KML and SVM depends heavily on the selection

of the kernel. We select automatically the best kernel with a 4-fold inner CV. The kernels

are chosen from the linear, the set of polynomial (degree 2,3 and 4), the angular similarity,

equation (7.8), and the Gaussian kernels with widths {0.5τ, τ, 2τ}, as in SBFIML τ was

set to the average of all pairwise distances. In addition, we also select the margin param-

eter γ of KML from {0.01, 0.1, 1, 10, 100}. The C parameter of SVM was selected from

{0.01, 0.1, 1, 10, 100}. SBMML does not have any constraints on the similarity function,

thus we select its similarity function with a 4-fold inner CV from a set which includes

all kernel and similarity functions used in SBFIML and KML. As in KML, we select the

margin parameter γ of SBMML from {0.01, 0.1, 1, 10, 100}. For all methods, except GLML

and SVM which do not involve triplet constraints, the triplet constraints are constructed

using three same-class and ten different-class nearest neighbors for each learning instance.

Finally, we use the 1-NN rule to evaluate the performance of the different metric learning

methods.

To estimate the classification accuracy we used 5 times 10-fold CV. The statistical

significance of the differences were tested using Student’s t-test with a p-value of 0.05. In

order to get a better understanding of the relative performance of the different algorithms

for a given dataset we used a simple ranking schema in which an algorithm A was assigned

one point if it was found to have a statistically significantly better accuracy than another

algorithm B, 0.5 points if the two algorithms did not have a significant difference, and

zero points if A was found to be significantly worse than B.

Results. In Table 7.1 we report the accuracy results. We see that SBFIML out-
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Table 7.2: Accuracy results on large datasets.

Datasets(#Inst./#Feat./#Class) SBFIML SBMML χ2 LMNN

German(1000/20/2) 69.40==(1.0) 69.30(1.0) 69.10(1.0)
Image(2310/18/2) 98.05==(1.0) 98.18(1.0) 97.79(1.0)
Splice(3175/60/2) 90.93+=(1.5) 90.55(0.5) 90.87(1.0)
Isolet(7797/617/26) 95.45==(1.0) 95.19(1.0) 95.70(1.0)
Pendigits(10992/16/10) 98.08++(2.0) 97.68(0.5) 97.77(0.5)

Total Score 6.5 4.0 4.5

performs in a statistical significant manner the single metric learning method LMNN

and the local metric learning methods, GLML and PLML, in seven, eight and six out

of ten datasets respectively. When we compare it to KML and SBMML, which learn

a Mahalanobis metric in the RKHS and proximity space, respectively, we see that it is

significantly better than KML and SBMML in four datasets and significantly worse in

one dataset. Compared to χ2 LMNN, SBFIML outperforms χ2-LMNN on eight datasets,

being statistically significant better on three, and it never loses in statistical significant

manner. Finally, compared to SVM, we see that SBFIML is significantly better in two

datasets and significantly worse in one dataset. In terms of the total score, SBFIML

achieves the best predictive performance with 50 point, followed by SVM ,which scores

46.5 point, and χ2-LMNN with 42 point. The local metric learning method GLML is the

one that performs the worst. A potential explanation for the poor performance of GLML

could be that its Gaussian distribution assumption is not that appropriate for the datasets

we experimented with.

To provide a better understanding of the predictive performance difference between

SBFIML, SBMML, and χ2 LMNN, we applied them on five large datasets. To speedup

the learning process, we use as anchor points 20% of randomly selected training instances.

Moreover, the parameter k of low rank transformation matrix L was reduced to k = 0.05n,

where n is the number of anchor points. The kernel function and similarity map was

selected using 4-fold inner CV. The classification accuracy of Isolet and Pendigits are

estimated by the default train and test split, for other three datasets we used 10-fold

cross-validation. The statistical significance of difference were tested with McNemar’s test

with p-value of 0.05.

The accuracy results are reported in Table 7.2. We see that SBFIML achieves statistical

significant better accuracy than SBMML on the two datasets, Splice and Pendigits. When

compare it to χ2 LMNN, we see it is statistical significant better on one dataset, Pendigits.

In terms of total score, SBFIML achieves the best score, 6.5 points, followed by χ2 LMNN.
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7.5 Conclusion

In this chapter we present a two-stage metric learning algorithm SBFIML. It first maps

learning instances onto a statistical manifold via a similarity-based differential map and

then defines the distance in the input data space by the Fisher information distance on

the statistical manifold. This induces a new family of distance metrics in the input data

space with two important properties. First, the induced metrics are robust to density

variations in the original data space and second they have largest distance discrimination

on the manifold of the anchor points. Furthermore, by learning a metric on the statistical

manifold SBFIML can learn distances on different types of input feature spaces. The

similarity-based map used in SBFIML is natural and flexible; unlike KML it does not need

to be PSD. In addition SBFIML can be interpreted as a local metric learning method with

a well defined distance approximation. The experimental results show that it outperforms

in a statistical significant manner both metric learning methods and SVM.



Chapter 8

Conclusion and Future Work

8.1 Conclusions

The choice of distance metric is essential for machine learning algorithms. Distance metric

learning addresses this challenge by learning a data-dependent distance metric. In this

thesis, we focus on distance metric learning for nearest neighbor classification. Four metric

learning algorithms are proposed to optimize the nearest neighbor classification.

In the work of Learning Neighborhood for Metric Learning (LNML), we propose a novel

formulation of metric learning problem that includes in the learning process the learning of

the local target neighborhood relations. This lifts the limitation that most metric learning

algorithms predefines the target neighborhood, which are not necessarily optimal, and keep

it fixed in the learning process. A two-step iterative optimization algorithm is proposed to

learn the target neighborhood and the distance metric alternatively. However, the main

limitation of LNML is that it learns a single linear distance metric for a learning problem.

As a result, it might not perform well for learning problem with nonlinear complexity.

Obviously, to address this limitation, a nonlinear distance metric learning algorithm is

necessary.

Kernelized metric learning is one approach to achieve nonlinear distance learning. Its

basic idea is to learn a linear distance metric in a nonlinear feature space induced by a

kernel function. This results a nonlinear distance metric in the original input data space.

However, how to select an appropriate kernel function is crucial for kernelized metric

learning. In the work of Metric Learning with Multiple Kernels (MKML), we address the

kernel selection problem by multiple kernel learning. It learns together a kernel function

and a distance metric in the feature space induced by the learned kernel function. The

kernel function we learn is a linear combination of a number of predefined kernels. Similar
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to LNML, a two-step iterative learning algorithm is proposed to learn alternatively the

linear combination weight and distance metric.

Another approach to achieve nonlinear distance metric learning is local metric learning.

Unlike single metric learning learns one single distance metric for the whole input data

space, local metric learning learns a metric on each neighborhood. However, most previous

works learn a number of local unrelated distance metrics. With the increasing of model

complexity, these algorithms are easy to overfit the learning problem. In the work of

Parametric Local Metric Learning (PLML), we address the overfitting problem by learning

a smooth metric tensor function in the input data space. Since learning directly the metric

tensor function is computational expensive, we approximate it by learning local metrics

as linear combinations of basis metrics defined on anchor points over different regions

of input data space; where the linear combination weight is learned by optimizing an

approximation error bound. Such that, only the linear combination weight and basis

metrics are necessarily learned. An efficient two-stage learning algorithm is proposed to

learn first the linear combination weight and then the distance metrics of anchor points.

Finally, in the work of two-stage metric learning, we propose a novel nonlinear Rie-

mannian metric learning algorithm, namely Similarity-Based Fisher Information Metric

Learning (SBFIML). It first maps instance from the input data manifold into finite dis-

crete distributions by computing non-negative simialrities to a number of predefined anchor

points on the input data manifold. Then, the Fisher information distance on the statis-

tical manifold is used as the nonlinear distance in the input data space. One advantage

of SBFIML is that it is robust to the density variation in the original input data space.

Furthermore, unlike kernelized metric learning, SBFIML does not require the similarity

function being a PSD kernel. Finally, it can be interpreted as a local metric learning

algorithm which has a closed form expression for distance approximation.

In these four works, we have continuously improved the state-of-the-art predictive

performance of nearest neighbor classification with the help of learning a data-dependent

distance metric.

8.2 Future Works

In this section, we discuss the limitations of current distance metric learning algorithms

and propose some open issues as future works.
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8.2.1 Limitations

We see the following two main limitations of the current distance metric learning algo-

rithms.

Representation Learning. Distance metric learning in fact can be seen as a two-

step process. In the first step, we map instance from the input space into another space,

i.e. learning a new representation. Then, in the second step, we compute the distance in

the new space. For instance, in the approach of MKML, chapter 5, we learn the new repre-

sentation of instances by multiple kernel learning and then a Mahalanobis distance metric

is learned in the new feature space induced by the learned kernel function. However, with

few exceptions, so far most distance metric learning algorithms only focus on the second

step, i.e. learning a good distance metric in a given data space. Since a good represen-

tation is crucial for the latter distance learning step, we see the missing of representation

learning in current distance metric learning algorithms is one of the major limitations.

Non-Metric Learning. Distance metric learning algorithms often learn a distance

metric in a given input data space to satisfy predefined (dis)similarity or triplet large

margin constraints. As a result, it implicitly assumes that there exists an appropriate

distance metric that can fit well the relationship between learning instances. However,

this assumption might not hold in some learning problems. For example, in the problem

of learning a dissimilarity measure of songs, two songs could be labeled as being similar due

to one of the following reasons, 1) the two songs are from the same genre, 2) the two songs

are in the same album, and 3) two songs are describing the similar story. In this scenario,

if the reason of xi and xj being similar is different from that of xj and xk being similar.

The relationship between xi and xk might be dissimilar. In these problems, an appropriate

dissimilarity measure between learning instances is not any more a valid metric. Therefore,

we see the missing of non-metric dissimilarity learning is another limitation of current

distance metric learning algorithms.

8.2.2 Representation Learning

To address the challenge of representation learning in distance metric learning, one ba-

sic idea is to learn a new instance representation through dictionary learning method

(63). Dictionary learning is a matrix factorization based nonlinear representation learning

method. Most often, it learns the new representation of learning instances by the following
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optimization problem,

min
Θ

∑
i

‖xi −DΘi‖22 + λ‖Θ‖1 (8.1)

where Θ is the new representation of learning instances. Its ith column corresponds to

representation instance xi. Matrix D is the dictionary matrix, where its ith column is the

ith basis. Note that, to encourage a sparse representation, L1 norm regularization is added

on matrix Θ. Intuitively, the idea of dictionary learning is to learn a sparse representation

for all the learning instances. This is accord with the assumption of manifold data, which

assumes data points are sampled from low dimensional manifold and then embedded into

a high dimensional space. As a result, dictionary learning is often used to learn a new

sparse representation of manifold data. By using dictionary learning to learn new instance

representation, distance metric learning algorithms can naturally be extended to learn

distance for manifold data.

Another idea is to learn a new instance representation through gradient boosted trees

(29). Gradient boosted trees is a nonlinear nonparametric regression method. As a result,

it can be used to learn a nonlinear representations of learning instances. Specifically, it

learns a new representation θ(xi) for each instance xi by learning a number of trees,

θ(xi) =
∑
k

γkθk(xi)

where θk(xi) is the output of the kth tree. γk is the weight for the output of kth tree. At

kth step, the kth tree is learned by fitting the pairs, defined by

{(x1, z1), . . . , (xn, zn)}

where

zi =
∂L(θ(xi), yi)

∂θ(xi)

∣∣∣θ(xi)=∑k−1
j=1 θj(xi)

is the partial derivative of the loss function L with respect to θ(xi). Intuitively, the

methodology of gradient boosted tree minimizes the loss function L by at each step learning

a weak regression tree to model the partial derivative of each instances and then updating

the parameters by a global step size. Comparing to dictionary learning, gradient boosted

trees is computational efficient and can easily handle millions of learning instances. Using

gradient boosted trees to learn new instance representation, distance metric learning can

be extended to learn nonlinear distance for very large scale data.
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Learning the representation of instances in fact is learning a nonlinear mapping func-

tion whose outputs are the new instance representations. This adds distance metric

learning algorithms powerful tool to manipulate data. However, with increasing model

complexity, the learned model may easily overfit the data. To prevent from overfitting,

various regularization techniques could be useful to constrain the new representations. For

instance, the smooth regularization can be used to preserve the local geometry structure

of instances and reduce the variance of mapping function. Also, as discussed in dictionary

learning, sparse regularization can used to ensure each instance only has few active coordi-

nates, which follows the assumption of manifold data. In short, the representation learning

should be well regularized with respected to the structural prior information about data

in hand.

8.2.3 Non-Metric Dissimilarity Learning

To address the non-metric dissimilarity learning challenge, the key problem is to learn a

family of dissimilarity measure satisfies

Dis(xi,xk) is large.

s.t. Dis(xi,xj) and Dis(xj ,xk) are small.

where Dis(xi,xk) is the dissimilarity between instances xi and xj .

One idea is to learn a (p, q) Minkowski dissimilarity, defined as,

Dis(xi,xj) =

p∑
k=1

(xik − xjk)2 −
p+q∑

k=p+1

(xik − xjk)2 = (xi − xj)
T

[
Ip 0

0 −Iq

]
(xi − xj) (8.2)

where p + q = d is the number of input features of learning instances. Ip is a p × p

identity matrix. It is easy to verify the Minkowski dissimilarity is symmetric. In term of

dissimilarity computation, it is very similar to the Euclidean distance computation, but

it has negative contribution for the last q component. Thus, a negative dissimilarity is

possible between two points. Note that, this is different from the Minkowski distance

discussed in section 2.1.

To learn the Minkowski dissimilarity, we can define the parametric Minkowski dissim-
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ilarity as

DisL(xi,xj) = (Lxi − Lxj)
T

[
Ip 0

0 −Iq

]
(Lxi − Lxj) (8.3)

Then, similar to Mahalanobis distance metric learning, the Minkowski dissimilarity learn-

ing can be learned with respected to similarity and dissimilarity constraints. One of small

drawback here is that the signature (p, q) should be selected appropriately.

This methodology is quite general. It can be applied in a similar manner to all learning

problems, whose targets are to learn a model with respect to non-metric similarity and

dissimilarity constraints. For instance, one potential application is to learn the binary

hash function for large scale information indexing (74).
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