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World Income and Engel Curve Estimation

Jing Dai and Stefan Sperlich∗

Abstract

In both nonparametric density estimation and regression, the so-called boundary

effects, i.e. the bias and variance increase due to one sided data information, can

be quite serious. For estimation performed on transformed variables this problem

can easily get boosted and may distort substantially the final estimates, and

consequently the conclusions. After a brief review of some existing methods a

new, straightforward and most simple boundary correction is proposed, applying

local bandwidth variation at the boundaries. The statistical behavior is discussed

and the performance for density and regression estimation is studied for small and

moderate sample sizes. In a simulation study this method is shown to perform

very well. This method exhibits to be excellent for estimating the world income

distribution, and Engel curves in economics.
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local bandwidth.
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1 Introduction

Boundary effects are a well known problem in nonparametric estimation, no matter

if we think of density estimation or regression. Moreover, if the estimation has been

performed on transformed covariates as recommended in the literature, see Wand et al.

(1991), Ruppert and Cline (1994), Yang and Marron (1999), this problem may become

boosted in two ways. Following these articles, a most appropriate transformation

is the assignment xi →
∫ xi

−∞ p(x)dx with p being a parametric prior (maybe with

estimated parameters) of the density of X. First, after such a transformation we

definitely face boundaries (here 0 and 1) with especially heavy tails. Second, what

is just a boundary effect for the transformed data may then affect big and essential

parts of the untransformed model. But also when we estimate an untransformed model

directly, “boundaries” are not necessarily small nor they are mostly of minor interest.

The larger the noise to sample size ratio or the smoother the function, the larger is

the bandwidth and thus the affected boundary region. Furthermore, often right the

boundaries are of special interest; for example in poverty analysis, it is necessary to

have reliable estimates of the income distribution at the left side “close” to the natural

boundary 0. Similarly, when using nonparametric regression in econometrics, spill over

effects, flexible returns to scale or multiple (dynamic) equilibria can typically, if at all,

only be detected at or close to the boundaries. To conclude, if we are interested in risk,

in poverty and inequality, look at the performance of especially young or old people,

highly or lowly educated, compare large with small companies, etc. we always focus

(also) at boundaries. In this article we will be confronted with boundary problems

when studying the world income distribution, and when estimating the Engel curve for

food expenditures in a poor country (Indonesia in our case).

As can be seen from these examples, we are concerned about boundary correction

method for both kernel density and kernel regression estimation. A quick internet

search reveals that seemingly many boundary correction methods exist already, many

2



are referred to the linear correction for density estimation, see Jones (1993), and can

be considered as modifications of this method. A quite comprehensive discussion of

boundary correction methods for density estimation is given in Cheng et al. (1997).

In general, the existing methods can be divided in following groups:

The method of modifying the kernel. The majority goes for this option, including

Gasser et al. (1985), Jones (1993) and the local polynomial approaches (Cheng et al.

1997). Referring to the argument that local polynomial estimation would automatically

correct for boundary effects in regression (see for example Fan and Gijbels, 1992) they

apply this idea in density estimation. Effectively, however, a boundary correction

takes only place if the polynomial is of the “correct” order; else it can even aggravate

the boundary effect. In density estimation the use of local polynomial fitting has

not prevailed although Zhang and Karunamuni (1998, 2000) extended this method to

the case of density estimation in combination with a bandwidth-variation function.

Nevertheless, in many situations local polynomials are certainly an attractive remedy

for boundary effects in regression though the optimal weighting introduced by Cheng

et al. (1997) has not been applied (much) until now.

The second set of boundary correction methods modifies the bandwidth toward the

boundaries. This group is much smaller and less known. Among them, Rice (1984),

Gasser et al. (1985) and Müller (1991), see also Hall and Wehrly (1991), are maybe

the most practical ones. They consider the regression context and suggest to fix the

window size inside the support of the covariates. Somehow similar to this idea, the

loess and lowess smoother of Cleveland (1979, 1981) implemented in R and S, uses

a fixed span addressing automatically the boundary effects, see also Cleveland et al.

(1992).

A quite old idea is the reflection method, introduced by Schuster (1985) and Silverman

(1986), and later on extended by Cline and Hart (1991). A further development of it are

the more recent methods of creating pseudo data to correct for edges, see Cowling and

Hall (1996). This method is more adaptive than the common data reflection approach
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in the sense that it corrects also for discontinuities in derivatives of the density. Zhang et

al. (1999) suggested a method of generating pseudo data combining the transformation

and reflection methods. In some sense one could also add here the idea of Hall and

Park (2002). They proposed an empirical translation of the argument of the kernels

and a bootstrap method to translate the boundary estimate towards the body of the

data set.

Finally we should mention again the transformation methods, see for example Wand

et al. (1991), Ruppert and Marron (1994), and Yang (2000).

It is surprising that in spite of their importance in practice and the considerable (though

not enormous) amount of theoretical studies, boundary correction methods are hardly

used neither in density estimation nor in regression. One obvious reason is the lack

of implementations in statistical and econometric software, another could be a disap-

pointingly small performance improvement when using them. Finally, practitioners are

often not willing to apply complex, sometimes seemingly non-intuitive methods.

For this reason we will concentrate mainly on comparing ours with Jones (1993) but

also compare with fixed window size, the pseudo data approach (in particular Cowling

and Hall, 1996) for densities, local linear for regression, and data transformation (in

an application). However, to the best of our knowledge, even the quite well known and

also reasonably well working method of Jones is neither much used nor implemented

in standard software packages. Beside the lack of software, another reason for the

scarce usage could be its complexity compared to the visible improvement in the final

estimate. As one will see, our method is much less complex and requires hardly more

computational effort than the estimation without boundary correction does.

Summarizing, we are looking for a quick and easy boundary correction method that

can at least compete with Jones (1993) and local polynomials in both, density and

regression problems. As usually, our method is driven by the idea of substantial bias

reduction, c.f. Hall and Park (2002). Although the simpleness of our method allows
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for a (serious) variance increase, in sum the boundary estimates improve in mean

squared error. We are not asking which method handles uniformly best the probability

mass at or near the boundaries. We introduce a new simple and practical method,

give asymptotic insight, a comprehensive simulation study, a comparison with existing

methods, and 2 applications.

2 Kernel Estimators and Boundary Correction

Suppose we want to estimate a probability density f nonparametrically based on a

random sample {X1, X2, . . . , Xn}, Xi ∈ Rd. For the ease of presentation we restrict

in the following notation to univariate models (d = 1) in both density estimation and

regression. The extensions to multivariate density and regression estimation is straight

forward. Then the standard kernel density estimator of f(x) is given by

f̂h(x) =
1

n

n∑
i=1

Kh(Xi − x), (1)

where Kh(•) = 1
h
K(•/h) could be any common symmetric kernel with support [−1, 1],

satisfying µ0(K) = 1, µ1(K) = 0, µ2(K) <∞, with µl(K) =
∫ 1

−1
ulK(u)du (l = 0, 1, 2;

u = X−x
h

) and h denoting the bandwidth. For such a kernel method to make sense, f

is supposed to be smooth, typically expressed in the assumption of an existing second

derivative f ′′.

However, if the support of f is bounded and has no exponentially falling tails, this

estimator is well known to suffer from the so-called “boundary effects”. This means,

for all points x being closer to the boundary than h, (1) underestimates (strongly) f(x)

since the kernel searches erroneously for information outside the support of f .

Now imagine we consider a random sample {(Yi, Xi)}ni=1 for the regression model

Yi = m(Xi) + εi, (2)
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where εi are random errors with expectation zero and finite variance σ2
i , and a smooth

regression function m(•) that is supposed to have second derivatives. Then, the local

polynomial estimator of degree α can be expressed as

m̂(v)(x) = (v!)eTv (ZTWZ)−1ZTWY , (3)

where m(v) denotes the v ≤ α derivative of m, Z is a (n×(α+1)) matrix with elements

Zik = (Xi − x)k−1, Y = (Y1, . . . , Yn), W = diag{Kh(Xi − x)}ni=1, and ev is a vector

of zeros with a 1 at position (v + 1). For v = 0 and α = 0 we get the popular and

simple Nadaraya-Watson estimator (Nadaraya, 1964). Also in this regression case, the

problem of boundary effects is well known and can become quite serious in practice.

To avoid confusion we shall assume (at least in the notation) that global bandwidths

hglobal were used if not stated differently, especially for the estimation at all interior

points. Henceforth, the lower boundary - if exists - is called a, and the upper boundary

- if exists - is denoted by c. In other words, the interior region is [a+ hglobal, c− hglobal]

while Bl = {x : a ≤ x < (a + hglobal)} and Br = {x : (c− hglobal) < x ≤ c} are the left

and right boundary regions.

Many methods have been proposed to correct for boundary effects, see Section 1. The

probably most popular one is the method of Gasser and Müller (1979), revitalized by

and named after Jones (1993), the local linear estimation. Jones (1993) proposed to

borrow more strength from inside of the support. More specific, if f is supported on

[a, c], then the used kernel is given by

K∗(u) =
w3 − w2u

w1w3 − (w2)2
K(u)11[c2,c1], (4)

where the re-normalizing moments wj are defined by

wj =

∫ c1

c2

(
t− x
hglobal

)j−1

K

(
t− x
hglobal

)
dt,
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with c1 = min(c, x + hglobal) and c2 = max(a, x − hglobal). Then the density estimate

applying his linear boundary corrector is f̂ in (1) but with the linearly corrected kernel

K∗(u). Similarly, for the regression estimator (3) we would use K∗(u) in the definition

of W .

An alternative is to choose local bandwidths in the boundary area. Typically, one

would say it is obvious that larger bandwidths should be used there. Rice (1984) and

Gasser et al. (1985) suggested choosing a bandwidth that keeps the window width fixed

at the boundary, see also Hall and Wehrly (1991). To reach this we simply use for all

boundary points a local bandwidth defined by

hx =


2hglobal − (x− a) for a < x < (a+ hglobal),

2hglobal − (c− x) for (c− hglobal) < x < c,

hglobal otherwise.

(5)

Hall and Wehrly (1991) extended this idea to first generate pseudo-data (with a kind

of extrapolating bootstrap) and then estimate in the boundary region using the set of

real and pseudo data. In the context of estimating a regression function m(•), Rice

(1984) used a kind of Richardson extrapolation proposing a linear combination of not

corrected estimators m̂hglobal
and corrected estimators m̂hx . I.e. for all boundary points

x = a+ hρ, ρ < 1 he set

m̃(x) = (1 + βρ)m̂hglobal
(x)− βρm̂hx(x), (6)

with m̂ as in (3) with α = 0, hx as in (5), and

βρ =
w1(ρ)w−1

0 (ρ)

(2− ρ)w1

(
ρ

2−ρ

)
w−1

0

(
ρ

2−ρ

)
− w1w

−1
0

for wk(v) =

∫ v

−1

ukK(u)du.

In contrast to the idea of enlarging the bandwidth at the boundary, we suggest to

reduce the bandwidth in the boundary regions. Our local bandwidth hx for a ≤ x ≤ c
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can be indicated by

hx =


max(x− a, ε) if a ≤ x < (hglobal + a),

max(c− x, ε) if (c− hglobal) < x ≤ c,

hglobal otherwise.

(7)

where ε > 0 is just added for numerical reasons going to zero for n→∞. For theoretical

discussion one could even skip ε and define hx only for a < x < c such that the density

or regression estimator is not defined at the boundaries but arbitrarily close to them.

Inserting hx, no matter whether (5) or (7) into (1), we have

f̂hx(x) =
1

nhx

n∑
i=1

K

(
Xi − x
hx

)
(8)

for the kernel density estimator. As we can see, the local bandwidths hx are adjusted

within the boundary region while f̂hx(x) is identical to the usual kernel density esti-

mator (1) if x is in the interior region. This also corresponds to Jones’ method. It

should be emphasized that the index x of hx refers to a given point at which we wish

to estimate the density or regression function. When we insert hx into the regression

estimator (3), we adjust only weight W . However, Jones’ method is identical to (3)

with global bandwidth inside the interior region but using K∗ in W .

We concentrate here on the situation where the boundary is (naturally) given, see also

our applications in Section 4. For given boundaries and x the bandwidths hx are neither

in the interior nor at the boundary random. Therefore the statistical behavior of our

resulting estimators is as simple as the method is. One might also imagine situations

where the boundary is unknown and has to be estimated. Sometimes in the literature,

people set the boundaries equal to the smallest and largest observation. Especially

for density estimation, however, this is a quite questionable procedure to estimate the

boundaries. In those cases the statistical behavior of our final estimate (density and

regression) complicates a lot for the reason of having then a random bandwidth. One
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would first have to establish assumptions and conditions on the boundary estimates etc.

For simpler situations there can be found some discussions about random bandwidths

e.g. in Abramson (1982), Hall (1983) or Hall and Marron (1988).

Recall that in our notation, a point x belongs to the boundary region when its distance

to the boundary is smaller than hglobal. In asymptotic theory a boundary point is a

point x being closer to the boundary than the bandwidth used to estimate f(x) or

m(x) respectively. In this sense, our method turns all support points into interior

points and the asymptotics therefore remain unchanged. This was also the original

idea of the reflection and the pseudo data approach; they changed therefore artificially

the support, we change the bandwidth. Then, for the kernel density estimator (1) one

obtains

Bias{f̂hx(x)} =
h2
x

2
f ′′(x)µ2(K) + op(h

2
x), (9)

with µ2(K) =
∫ 1

−1
u2K(u)du, and

V ar{f̂hx(x)} =
1

nhx
f(x)‖K‖22 + op(

1

nhx
), (10)

with ‖K‖22 =
∫
K2(u)du. For the regression (3) one obtains

Bias{m̂hx(x)} =
h2
x

2

{
m′′(x) + 2

m′(x)f ′(x)

f(x)

}
µ2(K) + op(h

2
x) (11)

for the Nadaraya-Watson estimator with α = 0, and

Bias{m̂hx(x)} =
h2
x

2
m′′(x)µ2(K) + op(h

2
x) (12)

for the local linear estimator with α = 1, both with

V ar{m̂hx(x)} =
1

nhx

σ2(x)

f(x)
‖K‖22 + op(

1

nhx
). (13)

For consistency one needs hx → 0 and nhx → ∞ for n → ∞. It is clear that our
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proposal of hx, given in (7), gives full preference to the bias reduction at the cost of the

variance. This becomes evident when we compare it with the methods of Jones (1993)

and fixed window sizes. Nevertheless, in sum this can easily yield a mean squared error

decrease, cf. with our simulations in the next section. The pseudo data approach is

constructed to control for both bias and variance at the edges.

Let us consider the asymptotics of a kernel density estimator when the method of Jones

(1993) is applied. Without loss of generality imagine we have a lower bound a. Recall

that we consider kernels bounded on [−1, 1]. We skip the index global of bandwidth

h and define implicitly a scalar p depending on x and a via x = p(a + h). Then,

for al(p) =
∫ min{1,p}
−1

ulK(u)du and b(p) =
∫ min{1,p}
−1

K2(u)du the asymptotics can be

approximated by

Bias{f̂h(x)} ' f(x)(a0(p)− 1)− ha1(p)f
′(x) +

h2

2
f ′′(x)a2(p), (14)

with

V ar{f̂h(x)} ' 1

nh
f(x)b(p) . (15)

Note that for all interior points, the asymptotics coincide with the common expressions

(9) and (10) respectively. In order to achieve a bias of order h2 near the boundary as

well as in the interior, Jones (1993) defined a linear combination of K and a closely

related function to obtain boundary kernel (4) such that a0(p) =
∫ min{1,p}
−1

K∗(u)du = 1

and a1(p) =
∫ min{1,p}
−1

uK∗(u)du = 0. Similar observations can be made for regression

and the other boundary correcting methods.

This however, are asymptotic statements. In the next section we will study how these

methods compare for finite samples of different sizes. We should emphasize once again

that in the past it has been stressed a lot that local polynomial estimators do auto-

matically correct for boundary effects. We mentioned already in Section 1 that this is

only true if the order of polynomials is chosen accordingly. We should further remark

that local polynomial estimators (in practice and theory) need larger bandwidths for
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increasing degrees. In boundary regions where data are sparse, it can even be rec-

ommendable to choose degree ≤ 1, i.e. to use the Nadaraya-Watson or local linear

estimator. Applying Jones’ or our method for local linear smoothers yielded pretty

bad numerical performance and is therefore skipped in the simulation section. The

proposal of Cheng et al. (1997) extending the local polynomial estimator by an addi-

tional weighting, turns out to be rather complex in practice and still needs a reasonable

amount of data.

We will also compare these simple methods with the reflection or pseudo data approach

of Cowling and Hall (1996). Note, however, that this is by no means an easy to use,

intuitive method. In fact, the practitioner has to chose two further parameters which

are essential for the success of the method. Cowling and Hall (1996) defined the density

estimator at the boundaries as

f̂(x) =
1

nh

{ n∑
i=1

K

(
x−Xi

h

)
+

m∑
i=1

K

(
x−X−i

h

)}
, (16)

where m is such that O(nh) < O(m) < O(n), and X−i are pseudo data. More specific,

for positive constants A1, . . . , As, s ≥ r, where r is related to the smoothness of the

quantile function of X at the considered edge, and real numbers a1, . . . , as they define

X−i =
s∑
j=1

ajXAji, 1 ≤ i ≤ n

max{Ai}
, s. th.

s∑
k=1

akA
j
k = (−1)j, 1 ≤ j ≤ r.

(17)

For example, in their article they recommend the so called best three-point rule X−i =

−5X(i/3) − 4X(2i/3) + 10/3X(i), i = 1, 2, . . . , n with X(i) indicating order statistics.

Unfortunately, in Cowling and Hall (1996) there is nothing said about the choice of m

neither in general nor in their simulations. For more details and asymptotic behavior

we refer to the paper of Cowling and Hall (1996).

Finally we would like to mention that there exist certainly many other methods for

nonparametric regression estimation like different versions of splines, Fourier series,
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wavelets, etc. All these suffer a different kind of boundary effect. Fortunately, for our

approach it is clear how it can be applied / extended to these other methods.

3 Finite Sample Comparison

We separate the simulation study into two parts: a more detailed one for density

estimation, and a smaller study for regression. The reason is that in regression, the

boundary performance depends on too many factors to provide a really comprehensive

study; in fact, it depends on the distribution of the covariate(s), the functional form

of the conditional mean of the response, on the degree of the (local) polynomial, and

even on the heteroscedasticity. Therefore, the regression part of our simulation study

has rather an illustrative character. In our simulations we set ε = 0.001 in (7).

3.1 Density Estimation

To assess the effect of the correction methods near the boundaries, the following six

models are investigated:

1. uniform distribution on [0, 1];

2. gamma distribution Gamma(2.25, 1.5) applied on 5x;

3. log-normal distribution with µ = 0 and σ = 1;

4. log-normal distribution with µ = 0 and σ = 1.5;

5. log-normal distribution with µ = 0 and σ = 2;

6. exponential distribution with λ = µ = 5.

The density estimator was defined as in (1) with the Epanechnikov kernel K(u) =

3/4(1− u2)11{|u| < 1}. For illustration issues we chose hglobal = 0.3 provoking thereby
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serious boundary effects. We estimated f(•) on a grid of 25 equidistant points x1 <

x2 < . . . < x25, where x1 = 0 and x25 = 1. Then, the first 8 points lie in the left

boundary region. The simulated sample sizes were n = 50, n = 100 (not shown for

brevity) and n = 200. All results were calculated from 1000 simulation runs.
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Figure 1: The estimates for the six densities (upper left to the lower right) for n=50.
Black line is the true density, black long dashes indicate the density estimate without
boundary correction, grey long dashed is the method with fixed window size (5), black
short dashed is our adjusted window method (7), grey dashed & dotted is the pseudo
data method (16), and grey dotted line is Jones’ estimate.

In Figures 1 and 2 are given the true density and the expectation of its kernel estimates,

i.e. the averages over 1000 simulation runs. To highlight the behavior in the boundary

region, we plotted the estimates in [0, 0.6] for designs 2 to 5, and in [0, 1] for design 1.

Maybe not surprisingly, see discussion in Section 2, our new method has the smallest

bias and reflects best the true boundary behavior of the underlying densities. For both,

moderate sample size (n = 50) and relatively large samples (n = 200) our method

outperforms the others, while Jones’ method seems to be uniformly the second best.

It should be remarked that Jones’ estimator shows exactly the behavior indicated in
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Figure 2: The estimates for the six densities (upper left to the lower right) for n=200.
Black line is the true density, black long dashes indicate the density estimate without
boundary correction, grey long dashed is the method with fixed window size (5), black
short dashed is our adjusted window method (7), grey dashed & dotted is the pseudo
data method (16), and grey dotted line is Jones’ estimate.

(14), it strongly underestimates the curvature e.g. for design 2 and 4. The method with

fixed window size is even worse than not correcting at all. As indicated, for the density

estimation at the boundary we tried also the method of Cowling and Hall (1996) with

the best three-point rule and the maximal possible m resulting out of it. This maximal

number seems to be n − 1, but it turned out that the performance improves (except

for density 6) when we ignore all pseudo data X−i lying in the support of X, cf. p. 555

of Cowling and Hall (1996). We also tried other choices like m = n9/10 but got worse

results. Apart from the choice of pseudo generator and m it is computationally easy

but its performance can only compete with Jones’ or ours when the original data are

uniformly distributed.
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Figure 3: The simulated confidence bands corresponding to Figure 1 with coverage
probability of 80%.

Clearly, as said in Section 2, our method is tailored to reduce bias but may have

awful large variance. If so, it can not really be considered as an improvement since

the outcome would be rather random. To check this we constructed - again out of

our 1000 simulation runs - point wise confidence bands with a coverage probability of

80%. These bands are given in Figures 3 and 4. First, we have to admit that at the

boundaries our method has often the widest intervals. A closer look, however, reveals

that they are not much wider and sometimes even tighter than the bands corresponding

to Jones’ method; and they are the only confidence bands including always the true

function, except for design 2. For n = 200 the widths of all the confidence bands is

almost the same for our and Jones’ method.

To better quantify the gain in bias and mean squared error, we calculated the absolute

bias and mean squared error averaged over the grid of 8 equidistant points xl over the
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Figure 4: The confidence bands corresponding to Figure 2 with coverage probability
of 80%.

left boundary region, i.e. we calculated

|Bias{f̂h(x)}| =
1

8

8∑
l=1

∣∣∣ 1

1000

1000∑
M=1

(
f̂Mh (xl)− f(xl)

)∣∣∣, (18)

and MSE{f̂h(x)} =
1

8

8∑
l=1

1

1000

1000∑
M=1

(
f̂Mh (xl)− f(xl)

)2

. (19)

The results are displayed in Table 1. It can be seen from this table that, as expected,

our method beats by far the competitors when looking at the bias. For the variance this

is different, at least for small sample sizes (except for the U [0, 1] design). For n = 100

(not shown) the mean squared error is about the same for our and Jones’ method; for

n = 200 our new method outperforms all (except for the U [0, 1] and Log − N(0, 2)

design when comparing with Jones).

Before coming to the regression we should briefly summarize. We have looked for a

rather simple, easy to implement and to interpret method for mitigating the boundary
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n M1 M2 M3 M4 M5 M6
50 |Bias| no correction .2022 .5673 .0975 .1895 .2405 .7830

Jones .0013 .4696 .0678 .1280 .0765 .2370
adjusted .0105 .2093 .0474 .0365 .0518 .1436
fixed .2577 .7572 .1158 .2477 .3352 1.096
pseudo .0147 .6003 .1373 .1345 .1266 .4355

MSE no correction .0596 .3384 .0208 .0527 .0776 .6261
Jones .0835 .3053 .0227 .0693 .0681 .1421
adjusted .6816 .1446 .0236 .0718 .1037 .2082
fixed .0776 .5811 .0215 .0723 .1239 1.206
pseudo .0708 .4053 .0354 .0522 .0516 .2512

200 |Bias| no correction .2014 .5665 .0951 .1888 .2428 .7811
Jones .0053 .4668 .0618 .1278 .0745 .2360
adjusted .0295 .2080 .0392 .0341 .0500 .1440
fixed .2575 .7563 .1142 .2460 .3365 1.096
pseudo .0142 .5962 .1109 .1528 .1168 .4498

MSE no correction .0450 .3251 .0120 .0399 .0639 .6136
Jones .0195 .2383 .0085 .0292 .0203 .0780
adjusted .1484 .0670 .0071 .0158 .0259 .0678
fixed .0691 .5739 .0151 .0633 .1161 1.202
pseudo .0281 .3647 .0162 .0405 .0271 .2371

Table 1: Absolute bias and MSE of density estimates in left boundary region for sample
size n = 50 and n = 200, based on 1000 repetitions: adjusted refers to our method (7);
fixed refers to a fixed window size (5); pseudo refers to (16).

effects which in practice can cause rather serious problems and nuisance. As has

been shown in Section 2, equations (7), our method complies with these requirements.

Among all methods we have seen it is even the one with the simplest implementation.

The ease of interpretation comes along with the insight that the statistical behavior

is the same as for the interior points; it is a local bandwidth which - this we admit

- can become rather small numerically although not in its rate. Fortunately, it has

turned out in our simulation study that this method is not just the simplest one but

also shows an excellent performance. In fact, it outperforms even the popular method

of Jones. The further discussed alternatives seem not to work in our density examples.
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3.2 Regression Estimation

We recommend our new method not only for density estimation but also for kernel

regression. As mentioned above, due to the fact that the boundary effects depend on

too many factors, we have limited the following study to a brief illustrative simulation

with only one design for the one dimensional covariateX, and a simple cubic polynomial

for the regression function. That is, we consider random samples {(Yi, Xi)}ni=1 from

the nonlinear model

Yi = m(Xi) + εi , where m(x) = −(10/3)x3 + 5x2 − 1.275x (20)

is a smooth regression function, X ∼ U [0, 1] i.i.d. and ε ∼ N(0, 0.1) i.i.d. We estimated

m(•) with the Nadaraya-Watson and the local linear estimator, i.e. (3) with α = 0 or

α = 1 respectively. We used the Quartic kernel K(u) = 15/16(1− u2)211{|u| < 1} on a

grid of 25 equidistant points x1 < x2 < . . . < x25, where x1 = 0 and x25 = 1, as we did

above. Then again, for a global bandwidth of hglobal = 0.3 the first 8 points form an

equidistant grid in the left boundary region. Note that the design choice favors now

Jones’ method, recall the results of Section 3.1. Like before, we did simulations for

sample sizes n = 50 and n = 200.

As it was true for the density estimation context, a most serious problem is the bias

at the boundary, and this is exactly what our method tries to mitigate. It can be seen

from Figure 5, that the bias is corrected best by our method. Jones’ method improves

the Nadaraya-Watson but not the local linear estimator (not shown). It turned out

that also our method can cause problems in combination with the local linear estimator

(not shown), see our discussion about local polynomial estimation when data are sparse.

Again, the method with fixed window size performs worst. We also tried Rice’ (1984)

more complex procedure, see (6), and found that it could not uniformly compete with

simple local linear nor with ours. Additionally, it does not really count to the set

of “simple and practical” methods. The local linear estimator turned out to be the
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estimate with fixed window size, and grey short dashed is the local linear estimator.
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Figure 6: The confidence bands for the left boundary, corresponding to Figure 5 for
the non corrected Nadaraya-Watson, the non corrected local linear, and our method.

strongest competitor compared to our method.

To have an idea about the variance of the estimators, we again constructed point wise

confidence bands with an 80% coverage probability, see Figure 6. As for the density
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estimation, the bands for our corrector are getting wider at the boundaries than for the

other methods. This time, the confidence bands are still much wider when increasing

the sample size from n = 50 to n = 200. However, again it is only our method that

really captures the curvature of the true data generating function such that the true

function is almost always inside the 80% point wise confidence bands, especially in the

boundary region.

Our simulations conclude with Table 2 showing the average absolute biases and mean

squared errors of the left boundary region. As we did for density estimation, we

calculated

|Bias{m̂h(x)}| =
1

8

8∑
l=1

∣∣∣ 1

1000

1000∑
M=1

(
m̂M
h (xl)−m(xl)

)∣∣∣, (21)

and MSE{m̂h(x)} =
1

8

8∑
l=1

1

1000

1000∑
M=1

(
m̂M
h (xl)−m(xl)

)2

. (22)

The results confirm what we have seen in Figures 5 and 6. Our method beats the others

by far concerning bias reduction at the boundary. Due to its large variance, however,

its mean squared errors (in average) are clearly larger than for all in the small sample

n = 50 and is still larger than others with sample size n = 200.

|Bias| MSE
n = 50 n = 200 n = 50 n = 200

adjusted .0146 .0125 .0028 .0016
NW (no correction) .0317 .0308 .0018 .0011

Jones .0272 .0247 .0408 .0010
LL(no correction) .0259 .0246 .0022 .0009

fixed .0447 .0435 .0027 .0021

Table 2: Absolute bias and MSE of regression estimates in left boundary region for
sample size 50 and 200 based on 1000 repetitions.
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4 World Income Distribution and Engel Curve Es-

timation

The potential of our method and the need of boundary correction can easily be seen in

the two following applications. First we estimate the world income distribution, and

second we estimate the Engel regression curves for food expenditure in Indonesia.

The world income distribution is an ongoing concern for economists and scholars world-

wide, see e.g. Acemoglu and Ventura (2002) and Sala-I-Martin (2006). The discussion

of a two or even three mode shape (cf. Holzmann et al. 2007) of the world income

distribution has been challenging the conventional findings of growth empirics. As

a consequence, for example, the convergence literature established divergence among

countries but found different convergence clubs. Further, from this world income dis-

tribution one can obtain measures for global inequality and poverty as well as global

growth incidence curves.

An often discussed question is how many convergence clubs do we find world wide,

what should be certainly reflected in the shape of the income density function. The

typical problem here is the one of a proper modeling, for example should one use a

normal mixture or a log-normal mixture, and how should we bound the number of

components (from above) or the variances (from below). This problem even appears

in nonparametrics: when Holzmann et al. (2007) used the income, they had serious

problems at the left boundary; when they considered log-income, the ’convergence club’

of the rich countries (i.e. a bump on the right) was no longer visible. This can be seen

quite well in our application in Figure 7. It shows kernel density estimates based on

all available worlds real PPP GDP per capita for the year 2003 from the Penn World

Table, Version 6.2. The available and here used income data comprise 174 countries.

In this analysis we estimate density f(•) with lower bound a = 0 on a grid of 200

equidistant points.
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Figure 7: Comparison of kernel density estimates for cross-country income distribution
in 2003 with hglobal = 5.37 (1.5 times Silverman’s rule-of-thumb bandwidth): black
solid line is kernel density estimate without boundary correction, black dashed is our
method (’adjusted’), grey dashed is Jones’ estimate, and grey dotted line is kernel
estimate on log-transformed data with hglobal = 0.76 (1.5 times Silverman’s rule-of-
thumb bandwidth). Scale: x-axis 103, y-axis: 10−3.

The black line is the usual kernel estimate without boundary correction. The compar-

ison with all other methods shows that we face a serious boundary problem at 0. The

global bandwidth has been chosen such that we could replicate the graphical results

of Holzmann et al. (2007) where the bandwidth choice is not mentioned. The density

estimation based on the log incomes and therefore facing no boundaries nicely resolves

the very sharp peak at income ≈ 880 (very poor countries) and also makes visible a

second convergence club of developing countries showing a plateau and a flat slope (to

the left) at around income ≈ 3500. However, it does not exhibit the mode on the heavy

right tail, i.e. the rich countries’ mode. Jones method linearizes the slope until zero

(from the right) what causes several problems in practice (density does not start at

zero in zero nor it does exhibit the two first convergence clubs). Our simple boundary

correction method is the only one that allows the estimator to reveal all interesting

characteristics of this density. We refer to Vollmer (2009) for more discussion on the

behavior of the cross-country income distribution.
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The second application requires a nonparametric but boundary corrected regression.

Since almost the beginning of econometrics, the specification and estimation of Engel

curves has attracted the attention of many economists and applied econometricians.

A detailed discussion and review of the parametric approaches to these problems are

given in Deaton and Muellbauer (1980); an analysis of the cross-sectional consumer

behavior in the context of fully nonparametric models can be found in Bierens and

Pott-Buter (1990) or Engel and Kneip (1996). Still today, Engel curves are of special

interest in welfare analysis, and especially affected by a boundary problem at the left in

poor countries like Indonesia. In Figure 8, we see n = 6242 observations of household

annual food and total consumption expenditures per capita for the whole country (left),

and among them n = 502 observations for the province North Sumatra (right). The

source of these data is the second wave of Indonesia Family Life Survey (IFLS) in

1997. Graphically, we fit an Engel curve to the left scatter plot of food versus total

expenditure on a grid of 200 equidistant points with a natural left boundary at a = 0.

Certainly, for poverty, welfare, and development analysis we pay special attention to

the poorest, and these are exactly at the boundary. Again, the usefulness of our

correction method is evident but one might argue that the local linear estimator does

as well. There are several pro and cons and we do not want to enter the question

which estimator has to be preferred. What we can say is that it seems that with our

boundary correction the Nadaraya-Watson can compete with local linear estimation.
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Figure 8: Comparison of Engel curve estimates in 1997 with hglobal = 1.5 (left, for
Indonesia) and hglobal = 2.4 (right, for North Sumatra) which is Silverman’s rule-of-
thumb times 3. Black dashed line is Nadaraya-Watson estimate without boundary
correction, black solid is our method, and dotted line is local linear. Scale: x-axis 106,
y-axis: 106.
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