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a b s t r a c t

Contrary to a widespread assumption, a recent study suggested that adults do not solve very small addi-
tions by directly retrieving their answer from memory, but rely instead on highly automated and fast
counting procedures (Barrouillet & Thevenot, 2013). The aim of the present study was to test the hypoth-
esis that these automated compiled procedures are restricted to small quantities that do not exceed the
size of the focus of attention (i.e., 4 elements). For this purpose, we analyzed the response times of ninety
adult participants when solving the 81 additions with operands from 1 to 9. Even when focusing on small
problems (i.e. with sums 610) reported by participants as being solved by direct retrieval, chronometric
analyses revealed a strong size effect. Response times increased linearly with the magnitude of the oper-
ands testifying for the involvement of a sequential multistep procedure. However, this size effect was
restricted to the problems involving operands from 1 to 4, whereas the pattern of response times for
other small problems was compatible with a retrieval hypothesis. These findings suggest that very fast
responses routinely interpreted as reflecting direct retrieval of the answer from memory actually sub-
sume compiled automated procedures that are faster than retrieval and deliver their answer while the
subject remains unaware of their process, mistaking them for direct retrieval from long-term memory.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The associative nature of memory is the object of a large con-
sensus in cognitive psychology. As Anderson (1974) noted, the idea
that objects or thoughts that have been experienced in close conti-
guity become associated in memory (Thorndike, 1922), and that
these associations govern the subsequent recollection of these
objects or thoughts can be traced back to Aristotle in his essay
‘‘On memory and reminiscence”. Nonetheless, modern theories
went further than Aristotle’s insights and no longer view memory
as a muddled depository of imprints left by experienced contigui-
ties, but as hierarchically structured systems that store organized
bundles of associations (e.g., Anderson, 1974; Anderson, 1993;
Collins & Quillian, 1972). These neo-associationist theories also
suppose that associations can bind together elements that are
not necessarily perceived, but also produced by mental computa-
tion (Anderson, 1993). The recurrent solving of a problem is
assumed to lead to the association in memory of this problem with

its answer, an associative process seen as highly adaptive because
it is assumed that directly retrieving answers from memory would
provide us with faster and more accurate responses than any algo-
rithmic reconstructive process (Logan, 1988).

This theoretical framework has found one of its most perfect
fields of application in the domain of mental arithmetic and simple
addition problem solving. Before any systematic tuition in primary
school, children develop a variety of counting strategies for solving
simple additions. These strategies that initially rely on manipula-
tives (objects or fingers) become rapidly internalized as verbal
counting. Eventually, solving frequently encountered problems
by counting procedures leads to their association in long-term
memory with the computed answers, adult performance being
characterized by the subsequent retrieval of these problem-
answer associations. Consequently, development would take the
form of a progressive shift from algorithmic problem solving to
direct retrieval. The aim of this article is to put this conventional
wisdom of cognitive psychology under scrutiny.

1.1. Retrieval of associations in mental arithmetic

A popular application of the associationist framework outlined
above is probably the distribution of associations model proposed
by Siegler and Shrager (1984). The model distinguishes between
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the representation of knowledge about particular problems and
strategies that operate on this knowledge to produce responses
that in turn modify representations. These representations are con-
ceived as associations of various strength between problems (e.g.,
5 + 3) and potential answers that can be correct but also incorrect
(e.g., 6, 7, 8, or 9). The determinant dimension of the strategy
choice is the peakedness of the distribution of associations for a
given problem. Some problems have a peaked distribution with
an answer, ordinarily the correct answer, that concentrates almost
all the associative strength. Other problems have a relatively flat
distribution in which the associative strength is distributed among
several answers. Retrieving a given problem-answer association
within this model depends on three parameters: its relative
strength over all the other associations, a confidence criterion that
determines the associative strength that must be exceeded for suc-
cessful retrieval, and a search length criterion that determines the
number of retrieval efforts the subject will make before moving to
another strategy. The problem is solved through retrieval if an
answer is found with an associative strength that exceeds the con-
fidence criterion before reaching the search length deadline. As a
consequence, retrieval is more probable for problems with a
peaked than a flat distribution.

More relevant for the present study is the assumption of the
authors about how children acquire these distributions. In line
with the associationist framework, Siegler and Shrager (1984)
assume that each time children answer a problem, the associative
strength linking this problem to that answer increases, whatever
this answer and the strategy used. Thus the probability of retrieval
is influenced by the frequency of exposure to the problem, which
determines the opportunities to learn answers, and the sum of
the two addends, with a greater probability to err when using
counting procedures on large numbers. A computational simula-
tion of the model integrating these factors showed that the choice
of strategy converges toward direct retrieval, especially for the
smallest problems that are more frequently and accurately solved
by preschoolers.

This model has received strong support from several studies
(Barrouillet & Fayol, 1998; Campbell & Timm, 2000; Geary
& Brown, 1991; Geary & Burlingham-Dubree, 1989; Hamann &
Ashcraft, 1986; Imbo & Vandierendonck, 2007; Imbo &
Vandierendonck, 2008; Reder, 1988) and has provided a theoretical
basis to the recurrent observation that adults retrieve from mem-
ory the answer of small additions instead of having to calculate it
(Ashcraft, 1982; Ashcraft, 1987; Ashcraft & Battaglia, 1978;
Ashcraft & Stazyk, 1981; Barrouillet & Fayol, 1998; Campbell,
1987a; Campbell, 1987b; LeFevre, Sadesky, & Bisanz, 1996;
Miller, Perlmutter, & Keating, 1984). Thus, it is almost universally
admitted that small additions have so often been encountered that
their answer is necessarily retrieved from memory in adults (see
Zbrodoff & Logan, 2005, for a review).

1.2. A discordant phenomenon: the problem-size effect

A straightforward prediction of the algorithmic computing/
direct retrieval transition model would be the progressive attenu-
ation and, at the end, the disappearance of the effects related with
factors that affect performance when problems are solved through
algorithmic computing. This is the case of the size of the operands
in addition solving. In a seminal study, Groen and Parkman (1972)
observed that the best predictor of the RTs in first graders asked to
solve small additions (the largest problem was 5 + 4) was the size
of the smaller of the two addends. This finding suggested the use of
a counting procedure by which children start from the larger
addend and then count on by ones for the value of the smaller
addend (e.g., for 2 + 4, counting 4, 5, 6, a procedure known as the
Min strategy). The observed slope of 410 ms per increment lent

strong support to this hypothesis. Interestingly, tie problems
(e.g., 3 + 3) seemed to remain immune to this problem-size effect.
Characterized by smaller RTs than the other problems, they were
assumed to be solved by direct retrieval of their answer from
long-term memory, an idea that is now universally admitted.
Groen and Parkman also investigated addition solving in adults.
The hypothesis of a transition from algorithmic computing to
direct retrieval would have predicted a generalization of the pat-
tern observed in tie problems to all the small problems that were
presented in the children study. However, the authors observed a
small but significant slope of 20 ms associated with the size of
the Min. Groen and Parkman judged these 20 ms an implausibly
fast rate for a counting procedure, and suggested that adults solve
small additions through retrieval, the remaining small size effect
being due to the sporadic use of slower counting strategies in rare
trials on which the retrieval strategy failed (approximately 5%).

This problem-size effect (i.e., the increase in latencies with the
size of the Min or the sum of the two operands) has been observed
in virtually all the studies, Zbrodoff and Logan (2005) entitling
their review on this phenomenon ‘‘What everyone finds”. The
hypothesis of a size effect due to the use of slower non-retrieval
strategies in some trials was buttressed by LeFevre et al. (1996)
who observed that adults reported using retrieval in more than
80% of the small additions (sum 6 10), but in only 47% of the large
additions (10 < sum 6 17) when ties were excluded. However, they
also noted that RTs increased with problem size even in those trials
that were reported as retrieved. This latter problem-size effect on
retrieved small problems was reduced when compared with the
effect on all the trials, but somewhat incompatible with the
reported process of retrieval. It has nonetheless received several
explanations. LeFevre et al. suggested that retrieval latencies could
reflect acquisition history, with problems often solved through
algorithmic strategies in the course of development resulting in
flatter distributions of associations and longer retrieval latencies
(e.g., Siegler & Shrager, 1984, contrasted the peaked distribution
of 4 + 1 with the flatter distribution of 4 + 5). In the same way,
Hamann and Ashcraft (1986, see also Ashcraft & Guillaume,
2009), suggested a memory strength model assuming that the fre-
quency with which additive problems are practiced by children
decreases as the size of the operands increases, leading to weaker
associations (recall that the frequency of exposure to problems was
one of the factors determining the probability of retrieval in the
distribution of associations model). Along with this frequency
hypothesis, structural properties of the problems have also been
advocated. Ashcraft and Battaglia (1978) and Ashcraft and Stazyk
(1981), who rejected Groen and Parkman’s (1972) hypothesis of
a size effect due to the sporadic recourse to slower non-retrieval
strategies, suggested that it resulted from the time-course of a
search through a tabular representation of the 100 basic addition
facts. Beginning at 0,0 and progressing outward along the rows
and columns until the intersection is reached, this search would
take longer for larger operands. Because the best predictor of
response times was the square of the sum in Ashcraft and
Battaglia (1978), they hypothesized some stretching of the table
in the region of the larger numbers resulting in a slowing down
of the search process with larger operands. By contrast,
Widaman, Geary, Cormier, and Little (1989), who found that the
product of the two addends was the best predictor, hypothesized
an equal spacing of the rows and columns of the table from 0 to
9. Assuming a process of spreading activation through the memory
network, the time needed to reach a given intersection (i.e., the
correct sum) would be proportional to the area of the network to
be traversed, hence the predictive power of the product of the
two addends. Zbrodoff (1995) and Zbrodoff and Logan (2005) pro-
posed a network interference model in which problem-answer
associations take longer to retrieve for larger problems because
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they suffer from more interference created by overlap of their
operands or answers.

In summary, these accounts converge on the idea that the size
effect on small additions results from structural or functional char-
acteristics of a process of retrieval from a memory network that
stores associations as described in Siegler and Shrager’s model
(1984). Within this conception, it has even been claimed that the
term ‘‘problem-size effect” is a misnomer (Ashcraft, 1992), because
it remains uncertain that the effect results from the size of the
operands per se. This size could coincidentally be predictive of
RTs in virtue of its relationships with more central variables like
problem difficulty and experience with the problems, which deter-
mine the strength of the stored associations and the amount of
interference at retrieval. Accordingly, Zbrodoff and Logan (2005)
observed that the RTs do not increase monotonically with oper-
ands magnitude, as it would be the case if this increase reflected
a genuine problem-size effect.

1.3. Recent evidence for a problem-size effect due to counting
strategies

Despite a large scientific consensus, some recent studies have
called into question the received view that adults solve small addi-
tions by direct retrieval. First, Fayol and Thevenot (2012) have
observed that the anticipated presentation of the sign for small
additions (+) or subtractions (�) 150 ms before the operands leads
to faster responses than when sign and operands are displayed
simultaneously on screen, an effect that is not observed with mul-
tiplications (see Roussel, Fayol, & Barrouillet, 2002, for a related
finding). Interestingly, this effect that occurs even with very small
problems (e.g., 2 + 3), does not seem to affect tie problems. The
authors accounted for this priming effect by suggesting that the
anticipated presentation of the sign activates some procedure for
additions and subtractions that does not exist for multiplications
that are mainly solved by retrieval as additions involving ties.
The existence of this type of compacted or compiled and highly
automated procedures was already evoked by Baroody (1994),
though this proposal was generally neglected.

The hypothesis of automated procedures was reinforced by a
recent study in which we had adult participants solving very small
additions with operands varying from 1 to 4 (Barrouillet &
Thevenot, 2013). This study revealed a quasi perfect monotonic
size effect in non-tie problems, with RTs increasing with the size
of both the first and the second operand (mean slopes of 16 ms
and 23 ms respectively). The best predictor of RTs for non-tie prob-
lems was the sum of the two operands (r = .89) with a slope of
20 ms. This linear trend is at odds with both the exponential
increase predicted by Ashcraft’s hypothesis (Ashcraft & Battaglia,
1978; Ashcraft & Stazyk, 1981) and Widaman et al.’s (1989) geo-
metric model that predicts an increase proportional to the product
of the two operands. It is also difficult to account for by a hypoth-
esis of exposure frequency. As we noted in Barrouillet and
Thevenot (2013), the potential effect of differences in frequency
has probably been overestimated in accounting for retrieval times
in the domain of mental arithmetic. In the linguistic domain, dra-
matic differences in word frequency (from about 3000 to 60 per
million) result in rather small differences in RTs (i.e., 15 ms in a
lexical decision task, Ferrand et al., 2011), whereas the observed
difference in RTs between probably very frequent additions such
as 2 + 1 and 2 + 4 was higher than 90 ms. Finally, the size effect
we observed does not seem to result from interferences in a mem-
ory network as Zbrodoff, 1995) suggested. An index we called
Overlap reflecting the number of problems sharing the same
answer as the problem under study was the worst among the eight
predictors of RTs that we entered in our analyses (r = .10, n.s.).
Thus, we concluded that the problem-size effect in these very

small additions was better explained by the use of automated fast
procedures as hypothesized by Baroody (1994). We suggested that
these procedures could consist of scrolling an ordered representa-
tion such as a number line or a verbal number sequence
(Barrouillet & Thevenot, 2013). For example, solving 3 + 2 would
involve moving forward of three and then two steps in the verbal
number sequence, the arrival point of the process giving the
answer. The speed of this process, which is so fast that it can be
mistaken for a direct retrieval by the subjects themselves, could
result from the fact that this scrolling would occur within a single
focus of attention, the size of which is according to Cowan (2001)
limited to four as the size of the operands we used.

1.4. The present study

The studies reported in the previous section called into question
the assumption of an inescapable transition from algorithmic com-
puting to direct retrieval in solving the smallest additions, which
have probably been practiced thousands of times by educated
adults. However, the widespread hypothesis of a solving of fre-
quent and simple additions by direct retrieval of problem-answer
associations cannot be jettisoned before a close investigation.
Although Barrouillet and Thevenot’s (2013) results seemed to point
toward the hypothesis of compiled procedures, their study had
limitations that make premature any firm conclusion. First, it
was assumed, but not verified, that the additions studied would
have been considered as solved through direct retrieval by defend-
ers of retrieval models. Of course, these additions involved very
small operands (from 1 to 4), but it remains possible that some
participants resorted to explicit and slow counting strategies that
produced the observed size effect, as Groen and Parkman (1972)
suggested. Because verbal reports of the strategies used were not
collected, this possibility cannot be rejected. Second, the study
was limited to a small subset of the 100 possible additions
between one-digit operands (i.e., the 16 problems with operands
from 1 to 4). It remains possible that the recursive presentation
of the same four numbers in all the problems led participants to
adopt a specific strategy to cope with the peculiar demands of
the task, thus limiting the generalizability of the results.

Thirdly, and more importantly, it remains to be established
whether the linear trend observed in RTs with the increase in size
of both operands extends beyond size 4. On the one hand, the
hypothesis of a rapid counting procedure to solve simple additions
would predict such an extension. Indeed, if the compiled auto-
mated procedure that we hypothesize in adults results from an
automatization of the algorithmic strategies used by children,
there is no reason that it cannot be applied to addends larger than
4. On the other hand, if we were correct in surmising that the speed
of this procedure is due to the fact that it processes portions of an
ordered representation or representations of quantities that can be
held in a single focus of attention, it is possible that the hypothe-
sized compiled procedure cannot operate on larger operands. Con-
vergent evidence suggests that the size of the focus of attention is
limited to four, which is also the maximum size of the quantities
that can be simultaneously grasped and processed in a single
attentional focusing by the subitizing process (Cowan, 2001). If this
is the case, this compiled procedure could not process quantities
larger than 4, and the nature of the processes involved in solving
these larger additions remains an open question. It is possible that
adults rely for these larger problems on some memory search of
stored associations or other less automatized counting procedures.
The pattern of response times for these larger problems should
inform us about the strategies used.

Thus, the present chronometric study extended Barrouillet and
Thevenot (2013) by presenting a large sample of 90 educated
adults with the entire set of the 81 possible additions with
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operands from 1 to 9, each addition being presented in 6 trials to
achieve precise estimates of response times. In order to put the
hypothesis of a retrieval of problem-answer associations under
close scrutiny, we aimed at investigating problem-size effects on
those problems that are usually considered in the literature as
being solved by direct retrieval. For this purpose, verbal reports
of the strategy used by each participant were collected. However,
because it has been observed that the method of verbal report
alters the strategies that participants would have spontaneously
used (Kirk & Ashcraft, 2001), verbal reports were collected in a sep-
arate session administered after the experimental sessions. Our
main analyses focused on those participants who reported retriev-
ing the answer of all the very small additions studied by Barrouillet
and Thevenot (2013) and almost all the small additions (i.e., with a
sum 6 10). To get the best possible estimate of the time needed to
solve each problem, registered RTs were corrected for the sensitiv-
ity of the vocal key, which was assessed in a number-naming task
in which participants were only asked to utter each possible
answer at signal. Moreover, as in Barrouillet and Thevenot
(2013), working memory capacities of each participant were mea-
sured. Analysing the RT patterns of individuals varying in working
memory capacity could shed light on the nature of the cognitive
processes underpinning problem solving. Because the duration of
even elementary steps of cognition is affected by working memory
capacities (Barrouillet, Lépine, & Camos, 2008), the use of either
multistep processes such as the rapid compiled procedure evoked
above or single-step processes such as direct retrieval should result
in contrasted patterns of size effects in high and low working
memory span individuals. The use of multistep algorithmic
processes in solving small additions would be revealed by quasi
perfect linear increases of mean RTs with the size of the operands,
along with pronounced interactions with working memory capac-
ities, individuals with lower capacities being more affected by
problem-size effects.

2. Method

2.1. Participants

Ninety undergraduate French-speaking students from the
Université de Genève (18 males, mean age: 21 years 6 months,
SD = 4 years 7 months) received course credit for their
participation.

2.2. Material and procedure

The experiment took place in two one-hour sessions adminis-
tered one week apart. During the first session, participants per-
formed the addition task that was preceded by a number-naming
task to control for voice-key sensitivity. During the second session,
participants performed an additional block of the addition task
with verbal report of the strategy they used. Working memory
capacities were assessed through three complex span tasks spread
out over the two sessions (a reading span task in the first session
and an operation span and a counting span task in the second
session).

Addition task – In this task, participants were asked to solve the
81 possible additions of one-digit numbers from 1 to 9, with six tri-
als for each addition for a total of 486 trials. Each trial began by a
ready signal (an asterisk) centered on screen for 500 ms, which was
immediately followed by an addition displayed horizontally in
black on a white background (font characters Déjà vu Serif 38). A
voice-key stopped the timer when participants gave their
response. This response, which was written down by the experi-
menter to record accuracy, removed the problem from screen,

the next trial beginning after a delay of 500 ms. Participants went
through six blocks in which the 81 additions were presented in six
different random orders, the order of presentation of these blocks
being counterbalanced between participants. An additional block
was presented at the beginning of the second session with the
same procedure except that participants were asked after each
addition to report the strategy they used, following LeFevre et al.
(1996) method. Participants were given explanations and exam-
ples for the retrieval (‘‘you remember the answer that comes spon-
taneously to your mind”), counting (the example of 7 + 4 solved
through the Min strategy was used for illustration), decomposition
(solving 7 + 4 by adding 1 to 7 + 3), and transformation (solving a
simpler addition and adjusting it to the problem at hand, solving
9 + 7 by subtracting 1 to the result of 10 + 7) strategies. After hav-
ing solved each addition, they were invited to describe the strategy
they used and to classify it with the help of the examples given by
the experimenter.

Number-naming task – The addition task was preceded by a
number-naming task to control for voice-key sensitivity to the 17
possible oral responses from deux (‘‘two” in French) to dix-huit
(‘‘eighteen” in French). Each trial began by a 300-ms ready signal
(‘‘$$$”) followed by a number from 2 to 18 in word format pre-
sented on screen for 1000 ms. Participants were asked to identify
this number word and prepare themselves to utter it at the onset
of a go signal (an asterisk) that appeared 2000 ms after the offset
of the number word. This delay was inserted to get the purest pos-
sible estimate of the sensitivity of the voice-key without any con-
tamination by the time needed to read number words or retrieve
their phonological image from long-term memory. Reaction times
were measured from the onset of the go signal to the onset of the
oral response that triggered the voice-key and stopped the timer.
Each number word was presented four times in random order.

Working memory span tasks –We used a reading span, an oper-
ation span and a counting span task inspired from Kane et al.
(2004). In the reading span task, participants were presented with
series of 2–5 digits for further recall with three series of each
length. Each digit was presented for 1000 ms and followed by a
sentence for semantic judgment (e.g., ‘‘The new mechanic advised
him to check more often the level of altruism”). Participants were
asked to read each sentence aloud, to give an oral response about
its soundness (‘‘yes” or ‘‘no”), and to press the space bar for pre-
senting the next digit. At the end of the series, the word ‘‘rappel”
(recall) appeared on screen for verbal recall of the digits in correct
order. The reading span was the total number of digits in the series
perfectly recalled in correct order. The operation span had exactly
the same structure, procedure, and scoring method except that the
memoranda were letters instead of digits and the sentences were
replaced by equations to be verified (e.g., ‘‘(4 + 2) � 1 = 5”). Finally,
the counting span required participants to recall series of 2 to 6 let-
ters, each letter being followed by four dices successively displayed
on screen at a rate of one dice every 800 ms for enumeration. The
three working-memory tasks significantly correlated with each
other (r’s > .55, p’s < .001). Thus, we added z scores to calculate a
compound score taken as an index of working memory capacity.

3. Results

Mean error rate for the total set of addition problems in the six
experimental blocks was 2.9%. This rate was positively correlated
with the size of the problems (r = .67, p < .01, between sums and
error rates), larger problems eliciting more errors. Participants
erred on 0.7% of trials on small additions (sum 6 10) and on 4.8%
of trials on large additions (sum > 10). Along with incorrect trials,
4.6% of trials were removed from reaction times (RTs) analyses
due to voice-key failures. Amongst the RTs on the correctly
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responded trials, 1.9% that differed from the individual mean by
more than three standard deviations were considered as outliers
and discarded from the analyses. After removal of errors, outliers,
and voice-key failures, five data points, all concerning large prob-
lems, were missing when looking at each of the 81 addition prob-
lems for all 90 participants. We imputed missing data points by
replacing them with the value that could be expected based on
the average speed of the participant and the average speed of the
missing problem for all other participants. More precisely, we
added to the mean RT observed for this problem in the other par-
ticipants the difference in overall mean response time between this
participant and the rest of the sample. The RT analysis was con-
ducted on the remaining 90.9% of trials (corresponding to a total
of 39,760 trials). Average individual RTs were subsequently cor-
rected according to sensitivity of the voice key by subtracting to
these RTs the deviation to the mean of the naming time corre-
sponding to the answer.

3.1. Overall analysis

Mean corrected RTs for each of the 81 problems are displayed in
Table 1. Our results replicate several findings usually reported in
the literature. Tie problems elicited shorter RTs than non-tie prob-
lems (831 ms and 1156 ms, respectively), F (1,89) = 239.83, p < .01,
gp2 = .73. Large problems involved slower responses than small
problems, something true for both tie (892 ms and 781 ms, respec-
tively), F (1,89) = 105.82, p < .01, gp2 = .54, and non-tie problems
(1450 ms and 921 ms, respectively), F (1,89) = 299.82, p < .01,
gp2 = .77. These longer response times on larger problems revealed
a strong problem-size effect.

The predictive power on the observed mean RTs of the same
predictors as those studied in Barrouillet and Thevenot (2013),
which are the predictors traditionally examined in mental arith-
metic studies, was investigated. Along with traditional structural
predictors (i.e., first and second operands, minimum addend, sum
and its square, as well as the product of the addends), we also
entered in the equation the percentage of retrieval use reported
by the participants. On the entire set of problems as well as when
tie problems were excluded, the best predictor of RTs was the rate
of reported retrievals, with more frequently retrieved answers cor-
responding to faster responses (Table 2).

The rates of reported retrievals in our participants were partic-
ularly high for tie and small problems (97% and 80% respectively),
whereas reported retrievals were rarer for large non-tie problems
(24%). These rates were close to those reported in LeFevre et al.’s
(1996) study (83%, 83% and 46% for ties, small and large problems
respectively), although reported retrievals on large problems were
rarer in our sample. Beyond the rate of reported retrievals, the best
structural predictor was the size of the sum for the entire set of
problems, but the magnitude of the minimum addend when con-
sidering non-tie problems only. A stepwise regression was per-
formed on the mean RTs for the entire set of problems and for
the non-tie problems with the previously mentioned factors as
predictors. These analyses revealed that the rate of reported retrie-
vals accounted for the larger part of variance in RTs for the entire
sample of problems, F = 341.89, R2 = .812, p < .01. The second, third,
and fourth predictors to enter the model were the minimum
addend, F = 275.21, DR2 = .064, p < .01, the squared sum,
F = 214.54, DR2 = .017, p < .01, and the sum, F = 178.91,
DR2 = .011, p < .01, respectively. When ties were removed, reported
retrieval still accounted for the larger part of variance, F = 290.5,
R2 = .806, p < .01, followed by the minimum addend, F = 254.12,
DR2 = .075, p < .01, the squared sum, F = 193.3, DR2 = .015, p < .01,
and the sum, F = 174.2, DR2 = .017, p < .01. These findings and the
strong relation between fast responses and the reported use of a

retrieval strategy corroborate previous studies about the size effect
(e.g., LeFevre et al., 1996).

However, when carefully analyzed, the size effect we observed
reveals unexpected characteristics that seem at odds with most of
the accounts that have been put forward (Zbrodoff & Logan, 2005).
As Fig. 1 makes clear, the overall problem size effect in our set of
data is mainly due to a sharp difference between large and small
problems, but the shape of the effect within these two categories
of problems when considered in isolation is quite counterintuitive.
Considering large problems, RTs strongly increase from sum 10 to
13, but larger problems do not involve longer RTs. In the same way,
when focusing on small problems, size effect seems especially pro-
nounced for the smallest problems (sum from 3 to 7), but disap-
pears from sum 7 onwards.

Moreover, the entirety of the size effect observed in our partic-
ipants cannot be simply explained by the more frequent recourse
to a faster strategy of retrieval in smaller problems as LeFevre
et al. (1996) suggested. Two findings contradict this straightfor-
ward explanation. First, when considered in isolation, small prob-
lems are affected by a strong size effect that cannot be attributed
to variations in the rate of reported retrieval. For example, this rate
for the small problems with a sum of 3 on the one hand and 10 on
the other is exactly the same (85%) whereas these problems
strongly differ in their mean RTs (756 ms and 960 ms respectively),
F (1,89) = 160.41, p < .01, gp2 = .64. Hence, when considering small
problems in isolation, the rate of reported retrievals is no longer
the best predictor (the correlation with RTs just reaching signifi-
cance, r = �.25, p < .05, Table 2), while the size of the minimum
addend, which is the best structural predictor of RTs for the entire
set of non-tie problems, is still the best predictor of RTs. Second, as
we will see, even when exclusively focusing on those problems
reported by the participants as having been solved by retrieval, a
large problem size effect remains. Thus, the problem size effect
observed in small problems cannot be attributed to variations in
the strategies used to solve them, with the smallest problems more
frequently solved through the presumed fastest strategy of
retrieval.

To further illustrate this latter point, we can compare the size
effect when non-tie problems are reported to be solved either by
retrieval or reconstructive strategies (i.e., counting and decomposi-
tion strategies, Fig. 2). As it could be expected, the use of recon-
structive strategies involves a strong size effect, RTs increasing
with the size of the sumwith a slope of 67 ms per increment. How-
ever, the corresponding slope for retrieved problems is far from
being null (40 ms), the functions relating mean RTs to sums pre-
senting striking similarities between retrieved and reconstructed
answers. However, the conclusions that can be drawn from this
analysis are limited, because the mean RTs reported in Fig. 2 do
not subsume the same participants. For example, there are far
more participants who reported having solved 7 + 9 than 4 + 2
through reconstructive strategies (89% and 19% respectively) and
the participants reporting retrieval on a given problem are not
the same as those reporting reconstructive strategies.

Our main research interest was on the small problems the
answer of which is assumed to be frequently retrieved from
long-term memory. In order to avoid the sample problems evoked
above, we concentrated our analyses on a sub-sample of partici-
pants who virtually retrieved, or more precisely reported to
retrieve, the answers of all the small problems. However, before
presenting these analyses, we comment the results obtained with
large problems.

3.2. Large problems

We have seen above that large problems were characterized by
longer solution times than small problems. Whereas large tie prob-
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lems (from 6 + 6 to 9 + 9) were reported to be solved through
retrieval (99%), this strategy was rather rare for the other large
problems (24%). However, variations between problems in the rate
of reported retrieval could shed light on the peculiarities of the size
effect affecting large problems, with a steep increase in RTs for
problems with a sum from 11 to 13, followed by a plateau. Fig. 3
reveals a striking parallel between reconstructive strategy use
and RTs (compare Figs. 1 and 3). Among the large problems, those
with sums of 11 and 12 are less often reconstructed (i.e., more
often retrieved) than the others, while there are very few varia-
tions in the rate of retrieval for the large problems with sums from

13 to 17. Thus, the pattern of the size effect on large problems illus-
trated by Fig. 1 can be at least partly explained by variations in the
strategies used.

Moreover, other factors contribute to the faster responses on
problems with sums 11 and 12. The most frequent reconstructive
strategy reported by participants was of decomposition (80% of
the problems solved through reconstructive strategies), most often
around 10. For example, solving 9 + 3 as (9 + 1) + 2 makes the prob-
lem easier by taking advantage of the facility of operations of the
form 10 + n. It can be assumed that this strategy should be easier
with a maximum addend closer to 10 and a small minimum
addend easy to decompose, in other words when the difference
between the two addends is larger. Accordingly, the mean RTs
for decomposition of the large non-tie problems were negatively
correlated with the difference between the two addends which
was their best predictor (r = �.78). It can be noted that the larger
differences (i.e., 7 and 6) are concentrated on the problems with
smallest sums of 11 (9 + 2; 8 + 3) and 12 (9 + 3), contributing to
increase the difference between these large problems and the
others. About 15% of the large problems were solved by counting
procedures for which the best predictor was the minimum addend
(r = .74). Finally, the RTs for the large problems solved through
retrieval did not exhibit any interpretable trend, as Fig. 4 makes
clear. We will see that this muddled pattern strongly contrasts
with what is observed with the smallest problems.

3.3. Retrieved small problems

Recall that our aim was to explore the nature of the cognitive
processes underpinning the production of answers that are

Table 1
Mean RTs (and standard deviations) for the 81 additions in the entire sample of 90 participants.

First operand Second operand

1 2 3 4 5 6 7 8 9

1 738 (83) 772 (99) 801 (125) 815 (121) 811 (131) 846 (170) 865 (162) 817 (143) 859 (129)
2 740 (97) 750 (99) 886 (184) 917 (213) 976 (207) 1025 (227) 1034 (261) 972 (193) 1059 (227)
3 756 (115) 885 (170) 817 (126) 1071 (390) 1078 (322) 1053 (326) 1075 (274) 1322 (353) 1311 (377)
4 819 (130) 920 (227) 1056 (356) 817 (143) 957 (269) 992 (296) 1543 (459) 1269 (419) 1337 (463)
5 777 (105) 942 (218) 1040 (359) 966 (265) 784 (92) 1231 (461) 1741 (709) 1736 (652) 1337 (463)
6 844 (150) 998 (276) 1033 (327) 1001 (327) 1222 (486) 842 (135) 1613 (604) 1726 (705) 1424 (579)
7 846 (146) 1021 (271) 1003 (336) 1427 (433) 1721 (683) 1692 (636) 831 (143) 1678 (624) 1568 (577)
8 795 (114) 936 (198) 1305 (343) 1238 (384) 1695 (652) 1698 (732) 1765 (667) 976 (244) 1497 (499)
9 847 (128) 1030 (228) 1290 (355) 1311 (363) 1334 (561) 1275 (449) 1525 (618) 1477 (537) 920 (179)

Table 2
Correlations between RTs and different predictors for different sets of problems in the
entire sample of participants.

Predictors Problems

Alla Non tiesb Tiesc Smalld (non ties) Largee (non ties)

First .49 .52 .87 .18 .12
Second .53 .58 _ .35 .24
Minimum .67 .87 _ .80 .62
Sum .72 .83 _ .58 .40
Sum2 .69 .83 .88 .54 .38
Product .71 .86 _ .80 .49
% Retrieval �.90 �.90 .59 �.25 �.61

Note: All values significant at p < .01 except those in italics.
a Number of problems was 81.
b Number of problems was 72.
c Number of problems was 9.
d Number of problems was 40.
e Number of problems was 32.
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reported by the participants as having been retrieved from long-
term memory. For this purpose, we decided to restrict our analyses
of the retrieved small problems to those participants who claimed
retrieving at least all the very small problems studied by Barrouillet
and Thevenot (2013), i.e., the 12 small problems with operands
from 1 to 4 when ties are excluded. There were 56 participants
in this case. However, we excluded from this sample five partici-
pants who had an overall rate of reported retrievals lower than
90% on the entire set of the 45 small problems. This procedure
led to the selection of 51 participants who can be considered as fre-
quent retrievers for small problems, with a rate of reported retrie-
vals of 98%. More precisely, apart from the very small problems on
which these participants were selected with a rate of reported
retrieval of 100%, this rate was also 100% on small tie problems
(from 1 + 1 to 5 + 5), 98% on the remaining n + 1 and 1 + n additions
(10 problems from n = 5 to n = 9, hereafter n + 1 problems, the
problems with n = 2 to n = 4 being included in the very small prob-
lems), and 97% on the remaining small problems (18 non-tie
problems with sums from 7 to 10 that do not involve 1 with at least
one operand larger than 4, hereafter medium small problems). The
following analyses were run on the mean RTs for the problems
reported as retrieved in this sample of 51 participants. Thus, this
trimming procedure allowed us to concentrate our analyses on a
sample of participants highly coherent on reporting retrieved

responses on almost all the small problems. In line with the con-
cordance often advocated between verbal reports and solution
times (e.g., LeFevre et al., 1996), these 51 frequent retrievers were
faster in solving small problems than the other participants (mean
RTs of 860 ms and 966 ms, respectively), t (88) = 3.34, p < .01, and
when considering the entire set of 81 additions, their responses
were faster when they reported having used retrieval than recon-
structive strategies (mean RTs of 907 ms and 1407 ms, respec-
tively), t (50) = 11.73, p < .001. Analyzing size effects on such a
sample and on problems reported to be solved by retrieval should
provide us with reliable information about the processes underpin-
ning these responses.

First of all, although exclusively focusing on responses reported
as retrieved, a strong size effect was nonetheless observable in the
45 small problems with a significant correlation between mean RTs
and the size of their sum (r = .63, p < .001), these RTs ranging from
720 ms for 2 + 1 to 994 ms for 3 + 7. More interestingly, this size
effect differently affected the four types of additions we distin-
guished above (i.e., ties, n + 1, very small and medium small prob-
lems). The size effect mainly concentrated on the very small
problems, whereas there was no size effect at all on the medium
small problems and only a small effect on ties and n + 1 problems
(Fig. 5).

In order to assess these size effects, for each of the 51 selected
participants, mean RTs per problem were regressed on the size of
the sum for each of the four types of additions. Quite counterintu-
itively, very small problems elicited the highest mean slope with an
increment of 47 ms per unit (SD = 37 ms) that differed significantly
from zero, t (50) = 9.14, p < .001. Ties exhibited lower slopes
(mean = 8 ms, SD = 7 ms) that nonetheless significantly differed
from 0, t (50) = 8.87, p < .001, as well as n + 1 problems
(mean = 7 ms, SD = 22 ms), t (50) = 2.26, p < .05. However, there
was no size effect on medium small problems (mean = �5 ms,
SD = 44 ms), t (50) = �0.74, p > .20. The slope for the size effect
associated with the very small problems was significantly steeper
than for the three other categories of small problems, ts (50)
> 5.85, ps < .001, whereas ties and n + 1 problems did not differ
from each other, t < 1, and had slopes slightly steeper than medium
small problems, t (50) = 2.07, p < .05, and t (50) = 1.95, p = .06,
respectively.

It seems rather difficult to interpret the small but significant
size effect observed on tie problems, which seems mainly due to
very fast responses on 1 + 1 and 2 + 2. It is worth to note that the
slope associated with the small tie problems was not greatly
affected when also taking into account large tie problems up to
9 + 9. Whereas the slope was of 8 ms for the small tie problems,
it only increased to 12 ms when all the tie problems were taken
into account. In the same way, the irregular pattern that gives raise
to the small size effect that affects n + 1 problems remains unclear.
Note that it cannot be due to a differential sensitivity of the voice
key to the utterance of the different answers because this potential
source of variation was controlled in the present experiment. These
effects contrast with the clear size effect observed in very small
problems. It is worth to note that the larger size effect that affected
very small problems compared with medium small problems was
not due to the fact that very small problems included some prob-
lems known to elicit fast responses such as those involving 1.
When additions involving 1 (i.e., 2 + 1, 1 + 2, 3 + 1, 1 + 3, 4 + 1,
and 1 + 4) were removed from the very small problems, their slope
remained highly significant (34 ms, SD = 61 ms), t (50) = 4.06,
p < .001, and still steeper than the slope associated with the med-
ium small problems, t (50) = 3.87, p < .001. Interestingly, the very
small problems involving 1 exhibited themselves a steeper slope
than what we call the n + 1 problems (i.e., with n > 4, mean slopes
of 28 ms and 7 ms, respectively), t (50) = 3.18, p < .001. In other
words, there is a size effect intrinsically related with the problems
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involving operands that do not exceed 4 (i.e., the very small prob-
lems) that is significantly stronger than the size effect that can
affect any other type of small problems.

Thus, the present study totally confirms the results of
Barrouillet and Thevenot (2013) and the size effect they observed
on very small additions. As in this previous study, the RTs for very
small problems were highly correlated with the sum of the two
operands that was their best predictor (r = .95). As shown in
Fig. 6, RTs monotonically increased with the size of both the first
and the second operand.

The slopes related with the increase in size of the second oper-
and were of 17 ms, 54 ms, 53 ms, and 60 ms when the first operand
was 1, 2, 3, and 4 respectively for a mean of 46 ms, whereas the
slopes related with the increase in size of the first operand were
of 39 ms, 40 ms, 46 ms and 57 ms when the second operand was
1, 2, 3, and 4 respectively, for a mean of 45 ms. This pattern
strongly suggests some sequential mechanism taking about
50 ms per increment, whatever the incremented operand. This is
in sharp contrast with the medium small problems. Fig. 7 displays
their mean RTs in the same way as for the very small problems
(i.e., as a function of the size of both the first and the second oper-
and). No clear trend appears, except that medium small problems
take longer to solve than the very small problems with a mean RT
of 921 ms that corresponds to the RTs associated with the slowest
very small problems (907 ms and 918 ms for 3 + 4 and 4 + 3
respectively).

3.4. Individual differences on retrieved small problems

As we argued above, the analysis of individual differences can
shed light on the nature of the cognitive processes by which
answers are produced. Assuming that individual differences
related with working memory on a given task reflect the concate-
nation of differences elicited by its elementary constituents
(Barrouillet et al., 2008), these differences should be more and
more pronounced as the number of steps involved in the process
under study increases. Thus, size effects resulting from the
increased number of steps a multistep process involves should
be especially affected by differences in working memory capaci-
ties. Among the 51 participants previously classified as frequent
retrievers, and when focusing on problems reported as retrieved,
mean RTs on the small problems were negatively correlated with
working memory capacities (r = �.49, p < .01), the higher these

capacities, the faster the responses. This correlation was observed
in each of the four types of small additions we distinguished
above (r values of �.47, �.48, �.44, and �.47 for ties, very small,
n + 1, and medium small problems, respectively). More interest-
ingly, the slope associated with the size effect (i.e., the sum) on
the small problems was also negatively correlated with working
memory capacities (r = �.36, p < .01), indicating that the lower
these capacities, the steeper the slope and the stronger the size
effect. However, when considering the four types of small
problems that we distinguished above, this correlation was only
significant for the very small problems (r = �.43, p < .01), whereas
it did not reach significance in any of the other types of problems
(r values of �.14, .15, and .11 for ties, n + 1, and medium small
problems, respectively, ps > .10). To illustrate this point, we con-
trasted the third of the subsample of frequent retrievers (17 par-
ticipants hereafter referred to as high-span participants) who had
the highest compound working memory scores with the third
who achieved the lowest scores (hereafter referred to as low-
span participants). High-span participants were faster than low-
span participants in solving small problems (mean response times
of 779 ms and 936 ms respectively), t (32) = 4.42, p < .001, and
exhibited a smaller size effect (mean sum-related slopes of
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18 ms and 33 ms, respectively), t (32) = 3.35, p < .01. The differ-
ence in slopes was especially pronounced for very small problems
(mean slopes of 29 ms, SD = 22 ms, and 70 ms, SD = 36 ms, respec-
tively), t (32) = 3.97, p < .001. Whereas both groups exhibited a
significant size effect for tie problems, with mean slopes (9 ms
and 11 ms for high- and low-span individuals, respectively) that
differed significantly from 0, t (16) = 6.17 and 8.28, respectively,
ps < .001, these size effects did not significantly differ between
groups, t (32) = 1.40, p > .10. In the same way, there was no signif-
icant difference between the two groups in the slopes associated
with the sum of the n + 1 problems (11 ms and 9 ms for high- and
low-span individuals, respectively) or the medium small problems
(7 ms and �4 ms, respectively). Apart from the n + 1 problems in
high-span participants, t (16) = 3.21, p < .01, none of these size
effects reached significance. Interestingly, the difference in size
effect between the high- and the low-span groups was signifi-
cantly larger for very small than tie problems, as testified by the
significant interaction between groups and types of problems
revealed by an ANOVA on the slopes relating RTs to the sum of
the problems with the type of problems (very small vs. ties) as
within-subject factor and working memory capacities (high vs.
low) as between-subject factor, F (1,32) = 13.43, p < .001,
gp2 = .30 (Fig. 8).

When considering the very small problems, the pattern of RTs
was similar for high- and low-span individuals. In both groups,
RTs increased with the size of the first and the second operand.
In high-span individuals, the slopes related with the increase in
size of the second operand were of 6 ms, 32 ms, 32 ms, and
47 ms when the first operand was 1, 2, 3, and 4 respectively for a
mean of 30 ms, whereas the slopes related with the increase in size
of the first operand were of 17 ms, 24 ms, 35 ms and 32 ms when
the second operand was 1, 2, 3, and 4 respectively, for a mean of
27 ms. The pattern was the same in the low span group, except that
the slopes were far steeper (20 ms, 76 ms, 82 ms, and 97 ms for a
mean of 69 ms concerning the increase in size of the second oper-
and; 50 ms, 59 ms, 71 ms, and 90 ms for a mean of 67 ms concern-
ing the increase in size of the first operand). These findings suggest
that the sequential process that underpins the increase in RT with
the size of both operands of very small problems depends on work-
ing memory, this process being faster in individuals with higher
working memory capacities.

4. Discussion

The aim of this study was to test the commonly-held assump-
tion that the recurrent solving of problems through counting
strategies leads to associate these problems with their answer in
memory, and that, with practice, these associations become
strengthened to the point that their retrieval is faster than any
other strategy, leading to a developmental shift from algorithmic
solving to direct retrieval from memory. These key assumptions
were tested in the domain of additive problems solving. From a
sample of 90 undergraduate students who solved the 81 additions
from 1 + 1 to 9 + 9, we selected a sub-group of 51 participants who
reported using retrieval in almost all the small problems (i.e., mean
rate of 98%) and, for each of these frequent retrievers, we only
retained those problems he or she reported as having solved by
retrieval. The mean RT for small problems in this sub-group was
857 ms, far smaller than the mean RT for problems they reported
having solved by some algorithmic procedure (1048 ms), and also
smaller than the mean RT exhibited by less frequent retrievers
when solving small problems (i.e., 966 ms in the 39 remaining par-
ticipants). Thus, the database that we analyzed presents all the
characteristics that are usually taken as evidence for direct retrie-
val. Nonetheless, the observed pattern of RTs is at odds with the

hypothesis that all these problems were solved by direct retrieval
of their answer from memory. Three main findings contradict this
belief.

First of all, although our analysis focused on trials that exhibited
all the characteristics usually considered as reflecting a process of
retrieval, a strong size effect was observed in small problems, with
mean RTs on non-tie problems ranging from 720 ms to 994 ms. It is
difficult to imagine that a one step process like direct retrieval
would exhibit such variations in duration. More intriguingly, this
size effect was restricted to the smallest problems, those we called
very small problems, with operands from 1 to 4. The slope associ-
ated with the sum of these problems was steeper than the slope
for any other type of small problems we distinguished (ties, n
+ 1, or medium small problems). This finding contradicts the
retrieval-based theories that account for the size effect on presum-
ably retrieved problems by evoking acquisition history (LeFevre
et al., 1996; Siegler & Shrager, 1984), frequency of exposure
(Hamann & Ashcraft, 1986), or interference (Zbrodoff & Logan,
2005). Indeed, very small problems are precisely the first to be
solved by children, the most frequently encountered, and those
that involve the lowest amount of interference. Second, and con-
trary to Zbrodoff and Logan (2005) who claimed that there is no
genuine problem-size effect in mental arithmetic because RTs do
not increase monotonically with operand magnitude, we observed
an almost perfect monotonic increase in RTs with the size of both
the first and the second operands (Fig. 6). Each increment in both
operands resulted in an increase in RT of about 45 ms. This finding
replicates what Barrouillet and Thevenot (2013) observed in
another sample of adults when only presented with the very small
additions. Third, this size effect and the slope associated with the
increase in magnitude of the operands of very small problems
appeared to be related to working memory capacities, something
that was not observed for the other types of small problems such
as ties, n + 1, or medium small problems. This finding strongly sug-
gests that very small problems are solved by some sequential
multi-step process that differs in nature from the process underly-
ing tie, n + 1, or medium small problem solving.

Overall, our findings are difficult to reconcile with the hypoth-
esis that when solving the very small problems, which are the easi-
est, the most frequently solved, the first to be practiced in
preschool age, those that involve the smallest operands and elicit
the fastest responses, educated adults retrieve answers from
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associations stored in long-term memory.1 An alternative account
is clearly needed. Our hypothesis is that these answers are not
retrieved but reconstructed through a rapid sequential procedure
the duration of which is determined by the magnitude of the oper-
ands. Interestingly, this rapid procedure seems to be limited in its
application to very small operands that do not exceed 4. Beyond this
limit, a variety of mechanisms might contribute to produce
responses. We have seen that solution times to medium small prob-
lems do not increase with the size of the operands, RTs varying in an
uninterpretable way from problem to problem (Fig. 7). This insensi-
tivity to the size of the operands is fully compatible with a process of
retrieval of the answers from long-term memory, as it was initially
assumed by Groen and Parkman (1972) who suggested that the time
for retrieving answers should be independent of the problem. In the
same way, since Groen and Parkman (1972), it is usually assumed
that ties are solved by retrieval (e.g., Campbell, Chen, & Maslany,
2013; Campbell & Gunter, 2002; Fayol & Thevenot, 2012). Our
results corroborate this common assumption. Ties exhibited a small
size effect, with a slope significantly lower than for very small prob-
lems, even when the analysis was extended to large problems from
6 + 6 to 9 + 9. It is also commonly assumed that n + 1 problems can
be solved using a rule consisting of producing the number after n
in the counting sequence (Sokol, McCloskey, Cohen, & Aliminosa,
1991). We have seen that whereas problems involving 1 were
affected by a strong size effect with a slope of 28 ms when belonging
to the very small problems (i.e., with n varying from 2 to 4), this slope
dropped to 7 ms when n varied from 5 to 9, suggesting that two
different strategies are used depending on the magnitude of n.
Nonetheless, the slope of 7 ms is totally compatible with the hypoth-
esis that what we called n + 1 problems (i.e., with n > 4) were solved
using such a one-greater rule.

However, the hypothesis that very small problems are solved by
a rapid sequential procedure whereas medium small and ties prob-
lems are solved through retrieval and n + 1 problems with a rule
raises three questions. The first concerns the nature of this rapid
procedure that is faster than a retrieval process or a rule. It is actu-
ally so fast that participants mistake it with retrieval, answer pop-
ping to their mind while they remain unaware of the process itself.
The second concerns its formation. It is usually assumed, as in
Siegler and Shrager (1984), that the repeated practice of algorith-
mic computing has its effects in the storage and reinforcement of
problem-answer associations, and not in the increased automatic-
ity of the algorithm, the finishing time (distribution) of which is
assumed to ‘‘stay the same while the finishing time for the retrieval
process decreases” (Logan, 1988, p. 496). The third concerns its
limitations. This rapid procedure seems to be limited to small

numbers up to four, the cognitive system resorting to other
strategies like retrieval or rules only when this limit is exceeded.
In the following, we address these three questions in turn.

4.1. Rapid automatized procedures

The hypothesis that, after extensive practice, the answer of
small additions is delivered by highly automated and compiled
procedures was first introduced by Baroody (1983, 1984, 1994).
He suggested that the key change in number fact efficiency does
not result from a shift from slow counting procedures to memory
retrieval, but rather from slow to automatized and faster proce-
dures. He stated ‘‘as the child learns rules, heuristics and principles,
these supplant less efficient procedural processes such as informal
counting algorithms. Moreover, as these rules, heuristic and princi-
ples become more secure and interconnected, their use becomes
automatic. As a result, problem solving becomes more efficient’’
(1983, p. 227). However, Baroody did not precisely describe these
automated procedures, and his hypothesis remained in neglect.
Nonetheless, fine-grained descriptions of this type of automated
and fast cognitive process have been proposed, such as the decision
cycle described by Newell (1990) in his Soar model. Newell distin-
guishes four levels of cognition from productions to decision
cycles, primitive operators and finally goal attainment. We will
concentrate on the first two levels. The lowest level is made, in
Soar system, of productions relating conditions to actions. Condi-
tions correspond to elements in working memory, whereas actions
enter into the working memory new elements corresponding to
encoded knowledge in long-term memory. In some sense, all the
long-term memory in Soar can be seen as a single production sys-
tem acting as a recognition system. From the elements currently
held in working memory, which constitute retrieval cues, produc-
tions recognize patterns of knowledge in long-term memory and
respond by providing the content of these patterns that enter
working memory. These productions that access long-term mem-
ory and retrieve information from it are assumed to be involuntary
and very fast, of the order of tens of milliseconds.

The next level, the decision cycle, corresponds to the smallest
deliberate act as well as the smallest unit of serial operations. Basi-
cally, the decision cycle accumulates knowledge for act by
repeated accessings of knowledge (productions) during an elabora-
tion phase and decides. Its duration is of the order of hundreds of
milliseconds and depends on the number of productions involved.
Interestingly, the decision cycle is involuntary and automatic. It
runs to quiescence and delivers the response, the subject being
only aware of the product of the decision cycle, not its process.
An example of a process happening within a decision cycle is,
according to Newell (1990), that underpinning the response in a
basic Sternberg task in which a sequence of target digits is pre-
sented to the subject followed by a probe, the task consisting of
deciding whether the probe was a member of the set or not
(Sternberg, 1966). Typically, response times in this task increase
linearly with the size of the set for both positive and negative
responses, with a slope of about 40 ms. A finding that has attracted
interest for decades is that response times do not depend on the
serial position of the probe when present in the set, indicating that
the task is not performed using some terminating search that
would stop as soon as the probe is encountered. In a nutshell, Soar
accounts for this task by assuming that a production is sequentially
instantiated that compares each target with the probe. Because the
process is automatic, the decision cycle runs to quiescence and
delivers a response at the end of the cycle (‘‘yes, the probe is mem-
ber of the set”, or ‘‘no, it is not”). Soar accounts for several phenom-
ena related with this task in the following way. The linear trend
results from the sequential instantiation of the production. The
process is fast (a slope of about 40 ms) because it happens at

1 It could be argued that recent neuroscientific investigations such as Qin et al.
(2014) who observed hippocampal-neocortical reorganization related with the
developmental shift from procedural- to retrieval-based addition solving lend strong
support to the hypothesis of addition solving through direct retrieval. Despite their
interest for brain functioning and reorganization over development, this type of
findings could be less constraining than usually assumed for theories of cognitive
arithmetic. First of all, Qin et al. (2014) did not aim at demonstrating that there is a
procedural-retrieval shift in development. They take this shift for granted based on
verbal reports and RT analyses, their investigations and the selection of ROI being
oriented by this postulate. However, we have seen that verbal reports and fast RTs are
not necessarily reliable indices of genuine memory retrieval. Second, any procedural
rule including the compiled procedure we hypothesize relies on memory retrieval
(see Fig. 9). Thus, identifying brain activities aligned with memory processing could
not be necessarily indicative of memory retrieval of the answer. Third, more than a
higher activation of mnemonic systems like the hippocampus, what Qin et al. (2014)
have observed is that an increased hippocampal connectivity with prefrontal-parietal
circuits predicted longitudinal gain in retrieval fluency. This type of connectivity is
exactly what is needed for efficiently running procedures that update working
memory content with retrieved knowledge from long-term memory. Finally, we do
not deny that the answer of many simple additions is retrieved (e.g., themedium small
and some large additions), we simply argue that some small additions could be solved
by faster automated procedures.

298 K. Uittenhove et al. / Cognition 146 (2016) 289–303



production rate (i.e., some tens of ms). Response times do not
depend on the serial position of the probe when present because
the decision cycle is automatic, running to quiescence before deliv-
ering a response. Finally, people remain unaware of the process
itself because it takes place within a decision cycle.

The automated procedure that we assume underlying very small
additions solving shares several characteristics with Soar’s decision
cycle. The linear trend relating RTs to the sum of the operands
might result from the sequential instantiation of a production, with
the number of instantiations being determined by the magnitude
of the operands. The procedure is fast, the slope of the linear
function (i.e., about 45 ms) falling within the range of production
rate. Like the decision cycle, the procedure is automatic, running
to quiescence out of the control of the subject who remains una-
ware of the process itself, having only access to its outcome. This
is why participants so often report having retrieved the answer
from memory. Our results do not allow definite hypotheses about
the exact nature of the procedure itself, but only speculations illus-
trated in Fig. 9. Taking into account that the process seems to be
limited to small numbers up to four, a point that we will address
below, it could be imagined that both operands are successively
encoded using some analogical representation that captures the
meaning of the numbers to be added. This type of semantic
representation could be privileged by the subject when focusing
on cardinality, pursuing the goal of manipulating numerical values
for sake of transformation in arithmetic operations. In Fig. 9, the
analogical representation of the first operand triggers the next-
token-next-value production that recursively accesses knowledge
related with the number chain stored in long-term memory, suc-
cessively tagging each token within the representation with the
next numerical value retrieved from long-term memory. This pro-
cedure would successively scan the representation of the first and
then the second operand, running to quiescence and delivering the
last accessed value as a response. Response time would be a func-
tion of the number of production instantiations, which corresponds
to the sum of the two operands, resulting in a linear trend with a
slope reflecting production rate (about 45 ms in our experiment).

4.2. Acquisition

The fact that very small additions are solved by a sequential
multi-step process, as the linear size effect that we observed

testifies, suggests either that extended practice does not necessar-
ily result in associating problems with their answer in long-term
memory or, if such associations do exist, that their retrieval is
slower than this multi-step process that consequently determines
performance. This raises the question of the acquisition of this kind
of automated procedure. Baroody (1983) suggested that the slow
informal counting algorithms used by young children are progres-
sively supplanted by rules, heuristics, and principles, the use of
which becomes automatic. One of the main characteristics of these
counting algorithms is that young children use their fingers or
objects for modeling the problems (Carpenter & Moser, 1983),
these manipulatives being progressively internalized, resulting in
verbal counting. Of course, these algorithms are at the beginning
slow, requiring control and awareness of each of their steps. The
traditional associationist approach (e.g. Ashcraft & Fierman,
1982; Siegler & Shrager, 1984), which assumes that automation
results from the progressive abandonment of these algorithms
for the retrieval of problem-answer associations, is actually based
on two questionable assumptions. The first is that any algorithmic
solving necessarily results in the association in memory of the
problem with the answer obtained. However, Thevenot,
Barrouillet, and Fayol (2001) showed that this could not always
be the case, especially when algorithmic solutions involve impor-
tant delays between operands encoding and answer production,
as it is the case in children’s problem solving. Long delays between
operands encoding and response lead to the degradation of the
memory trace of the operands and could prevent their association
with the answer. The second questionable assumption is that algo-
rithmic solving reinforces operand-answer associations more than
the algorithm itself. We saw for example that Logan (1988)
assumes that the distributions of the finishing times of algorithms
stay the same through practice. It might alternatively be assumed
that algorithmic solving primarily reinforces the algorithm itself,
its implementation becoming faster and faster through a process
of compilation as described by Anderson (1983) and Anderson
(1993) in his ACT model. The overt enumeration of each manipula-
tive would be progressively compiled into the recursive next-
token-next-value production described above, that no longer needs
verbalizing of each counting step, only the output being accessible
to consciousness.

The automation of such a compiled procedure could be a rather
slow and delayed developmental process. We hypothesized that

Fig. 9. Hypothetical timeline of events during the implementation of the automatized procedure for solving additions involving small numbers from 1 to 4. The first operand
is encoded in working memory in an analogical representation that triggers a next-token-next-value production (represented by solid lines) that accesses the number chain in
long-termmemory, the retrieved numerical value entering working memory and tagging the corresponding token. The production is successively fired by each element of the
representation of the first and then the second operand, running into quiescence and delivering the answer. The time elapsed between two successive vertical dashed lines
corresponds to a production cycle and is assumed to be of the order of tens of milliseconds. The process is limited to small quantities that can be represented analogically in a
single focus of attention (i.e., no more than four elements). It is so fast that the subject is only aware of its product, hence the subjective experience of a direct retrieval from
memory.
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the procedure operates on analogical representations of the quan-
tities the operands refer to (Fig. 9). This means that a prerequisite
for the automatic triggering of this procedure is the capacity to
automatically convert digits into their analogical representations.
However, it has been shown that, although the Arabic code is easily
learnt and used by young children, the automatic access to ana-
logue representations from digits does not seem to occur before
age 9 or 10 (Girelli, Lucangeli, & Butterworth, 2000; Rubinsten,
Henik, Berger, & Shahar-Shalev, 2002). This would explain why
the developmental shift from algorithmic computing to direct
retrieval has been described as occurring around these ages
(Ashcraft & Fierman, 1982).

It could be argued that small addition solving is too fast a pro-
cess to be carried out by a multistep procedure, as compiled as it
may be. However, other numerical processes reach the same speed
as the additive procedure with, intriguingly, approximately the
same rate. This is the case for subitizing, the capacity to apprehend
and enumerate small sets of items up to 4 in an effortless and per-
fectly accurate way (Kaufman, Lord, Reese, & Volkmann, 1949).
Although it exhibits some variability from one study to another,
the rate of this process varies in the range of the production rate
evoked above (from 25 ms to 60 ms in Klahr & Wallace, 1976).
Interestingly, Klahr (1973) associated the subitizing slope with
the rate of memory scanning in the Sternberg task, and proposed
an account for this slope germane to the next-token-next-value pro-
duction we hypothesize, assuming that it comes partly from the
need to map items onto memory representations for number
names. Of course, the limitations of the subitizing process and its
slope have received various explanations (e.g., Cowan, 2001;
Gallistel & Gelman, 2000; Trick, 1992), and its existence has even
been called into doubt (Balakrishnan & Ashby, 1992). However,
whatever its nature, the mechanism underlying the enumeration
of small sets up to four is a good example of a fast numerical pro-
cess delivering responses that are not necessarily retrieved from
memory (but see Logan & Zbrodoff, 2003, or Mandler & Shebo,
1982, for a divergent point of view).

4.3. Procedure limitations

The most striking finding of our study is probably that the size
effect in small additions does not exhibit amonotonic increase with
the magnitude of the operands, affecting primarily what we called
the very small problems, but not themedium small or the n + 1 prob-
lems. What distinguishes these latter types of problems from the
very small additions is the fact that they involve operands larger
than four. If the size effect in very small additions reflects, as we
assume, the use of the compiled procedure that we described
above, this means that this procedure cannot operate on operands
larger than four. Interestingly, the limit to four is ubiquitous in
numerical cognition and more generally in cognitive processes. In
the domain of numerical cognition, this limit has been observed
in animals (Boysen & Berntson, 1989; Brannon & Terrace, 1998),
in human infants when discriminating (Antell & Keating, 1983;
Starkey & Cooper, 1980; Strauss & Curtis, 1981) or comparing sets
of objects (Feigenson, Carey, & Hauser, 2002), in toddlers and young
children when anticipating the result of numerical transformations
(Hughes, 1986; Starkey, 1992), as well as in adults when subitizing
collections (Mandler & Shebo, 1982; Trick & Pylyshyn, 1994). It has
been suggested that this boundary reflects a broader capacity limit
of the human cognitive system due to the limitation of the focus of
attention to four chunks (Cowan, 2001; Cowan, 2005).

The limitation to four of the number of elements that can be
individuated within a single representation and made readily
available for further treatment could account for the limitations
of the compiled procedure we described above. We have suggested
that such a procedure would scan some analogical representation

of each of the operands, recursively accessing knowledge related
with the number chain and tagging each representational element
with the next numerical value retrieved from long-term memory
(Fig. 9). Such a non-verbal counting has been evoked by Gallistel
and Gelman (1992), Gallistel and Gelman (2000; see also Gelman
& Tucker, 1975), with the difference that these authors assume a
scalar variability in the magnitudes that would represent discrete
(countable) quantities in the same way as continuous uncountable
quantities (see below for a discussion of this view). Instead, the
representations we hypothesize are closer to an object file in which
each object is individuated (Feigenson et al., 2002; Simon, 1997). It
is known that the use of object-file representations yields a set-size
signature with success at representing sets up to four objects and
failure with larger numbers (Kahneman, Treisman, & Gibbs,
1992; Pylyshyn, 1989; Pylyshyn, 1994). The involvement of this
type of representation in very small problems would explain why
their solving was affected by a strong size-effect, whereas RTs for
small problems involving operands larger than four (the medium
small problems) remained immune to size effect. In the same
way as 12-month-old infants are no longer able to reliably com-
pare two sets of objects when one of them involves more than
three objects (Feigenson et al., 2002), any operand larger than four
could not give rise to the precise analogue representation on which
the fast compiled procedure operates, and subjects would be
obliged to switch to another strategy. This limitation makes that
the fast procedure we assume for very small additions differs from
theMin strategy described by Groen and Parkman (1972). Whereas
theMin strategy can be used for any pair of operands as long as one
of them is sufficiently small, the use of the compiled procedure is
restricted to problems in which both operands can be automati-
cally converted into analogical representations (i.e., no larger than
four).

It is worth to note that, in line with models of working memory
which suppose that only one item can be processed at a time
(Barrouillet & Camos, 2015; Oberauer, 2002), our model assumes
that the two operands are successively, and not simultaneously,
converted into the analogical representation on which the com-
piled procedure operates. This explains why problems with oper-
ands that do not exceed 4 can be processed by the compiled
procedure even when their sum exceeds 4. Indeed, it could be
argued that encoding the first operand of the problem 4 + 3, for
example, would exhaust working memory capacity, preventing
the conversion of the second operand and blocking the compiled
procedure. However, we conceive working memory as a dynamic
system the content of which is continuously updated. Thus, once
the first operand has been converted into its analogical representa-
tion and processed, this representation is no longer needed and
attention can move to the second operand for encoding purpose
with the entire working memory capacity (limited to 4) available
anew (see Fig. 9).

The involvement of working memory on the construction and
processing of these analogical representations explains why the
functioning of the compiled procedure is constrained by working
memory capacity, individuals with lower capacity exhibiting stee-
per size-related slopes. It could be surprising that a compiled and
automated procedure is constrained by working memory capacity.
However, it has been shown that the speed of even very elemen-
tary cognitive processes such as retrieving overlearned information
(e.g., reading Arabic digits) or subitizing small sets of objects is
constrained by working memory capacity (Barrouillet et al.,
2008). The compiled procedure we hypothesize involves encoding
numbers, scanning representations, and the recursive access to
long-term knowledge, all processes that are faster in high-
capacity individuals, the concatenation of small differences on
each of these processing steps underpinning the individual differ-
ences reported on Section 3.4 above.
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4.4. Nature of strategies and strategy choice

A pending question concerns the nature of the strategies used
for solving the other small problems like medium small or n + 1
problems. The absence of any identifiable size-effect in these two
categories of problems led us to assume that medium small
problems are solved through direct retrieval of their answer from
memory, whereas n + 1 problems would involve a one-greater rule.
A striking and probably meaningful phenomenon is that these two
types of problems have mean RTs corresponding to the slowest
very small problems with the same structure. More precisely, in
the subset of the 51 frequent retrievers, n + 1 problems (with
n > 4) have a mean RT of 817 ms which is close to the mean RT
of the slowest very small problems involving 1 (i.e., 1 + 4 and 4
+ 1, mean RT of 796 ms). In the same subset of participants, the
mean RT for medium small problems (928 ms) was very close to
the mean RT of the slowest very small problems (i.e., 3 + 4 and 4
+ 3, mean RT of 912 ms). It is as though solving times for small
problems increased linearly with the size of the operands up to
four, then plateauing (see Fig. 5). Though we have no explanation
for this phenomenon, some leads can be suggested.

A first possibility is to assume some strict order in the strategies
successively implemented by problem solvers when encountering
a problem, as Siegler and Shrager (1984) did in their distribution of
associations model, but in a different order. Siegler and Shrager
(1984) proposed that retrieval was first attempted, a representa-
tion of the problem being elaborated when retrieval fails. If no
answer can be read out from this representation, problem solvers
would use some back up algorithmic strategy. It could be imagined
instead that the first attempt consists of constructing the analogue
representation on which the next-token-next-value production is
applied. This type of encoding could be privileged when numbers
are encoded for transformation purpose, as it is the case in
arithmetic operations (Thevenot & Barrouillet, 2006). When this
representation cannot be constructed because at least one of the
operands is larger than four, the decision cycle corresponding to
the fast procedure does not deliver any answer, and the subject
would try to retrieve this answer from associations stored in
long-term memory. This would explain why problems solved by
direct retrieval such as the medium small problems do not result
in faster responses than the very small problems solved using the
prioritized fast procedure.

Another possibility, inspired by Logan’s (1988) race model,
could be that algorithmic procedures race against the direct retrie-
val strategy, algorithms winning the race as long as they reach
their goal before retrieval. This would be the case for very small
additions that can be solved by the compiled procedure imple-
mented in the analogue representations evoked above. However,
for problems involving operands larger than four and for which
the compiled procedure cannot be used, retrieval would at the
end be the fastest strategy because the algorithmic procedures
used for solving these problems in the first place cannot reach a
sufficient level of automation. Overall, the surprising size-effect
pattern displayed in Fig. 5 with a strong size-related increase of
RTs followed by a plateau remains difficult to explain within the
traditional explanatory frameworks of cognitive arithmetic.

4.5. Alternative accounts

We have assumed that the strong size-effect affecting very small
additions reflects a procedural solving. We discarded above several
accounts of this effect revolving around the idea that a unique
retrieval process could vary in latency from problem to problem
due to history of acquisition, frequency of exposure, or susceptibil-
ity to interference. None of these factors can reasonably produce
the linear trends we observed with steep slopes of more than

45 ms per increment. However, the size effect affecting small
additive problems has received other explanations that aimed at
preserving the retrieval hypothesis. This is the case of the hypothe-
ses of a tabular search, of a mediation of retrieval via mappings
from written numbers to preverbal magnitudes, and of a sporadic
use of slow counting strategies when retrieval fails.

Let us begin by the tabular search hypothesis. It is often
assumed in the literature that problem-answer associations do
not remain unorganized in long-term memory, but take place
within some square table with entry nodes for the digits 0–9 on
two adjacent sides (Ashcraft & Battaglia, 1978). Response times
would correspond to the time required to search the point of inter-
section corresponding to the operands. Searching this kind of table
could account for a linear increase of RTs with operands magni-
tude. However, we saw thatmedium small additions did not exhibit
the size effect that this hypothesis would predict.

The second hypothesis, closer to our model of an automated
compiled procedure, was proposed by Gallistel and Gelman
(1992) within their model of pre-verbal counting. Following a
hypothesis from Restle (1970), Gallistel and Gelman assume that
number facts are retrieved by mapping numerical values to magni-
tudes corresponding to positions on the number line. First, each
addend would be mapped onto magnitude representations, these
magnitudes being preverbally added to obtain a new magnitude
corresponding to the sum of the addends. Mapping this resulting
magnitude back to the verbal domain would provide the answer.
The explanation of the size effect runs as follows. It is assumed that
numerosities are represented by magnitudes of an increasing
variability that obeys Weber’s law: the larger the numerosity, the
greater the variability of the preverbal representation, a
phenomenon referred to as ‘‘scalar variability”. This increasing
variability makes that the greater the numerosities represented,
the higher the variability of the corresponding magnitudes, and
the more difficult their accurate mapping onto the corresponding
numerical value. Thus, the larger the sum, the higher the scalar
variability of the represented magnitude, and the longer the map-
ping process must wait in order to obtain a mapping of acceptable
reliability. In other words, the size effect in additions would result
from a speed-accuracy trade-off in mapping back added magni-
tudes to the corresponding numerosity (i.e., the answer). Although
this account relies on a pre-verbal counting hypothesis akin to the
process we described above, the predictions of this model are at
odds with our data. Indeed, contrary to the object file hypothesis,
the models based on scalar variability cannot predict any disconti-
nuity in magnitude effects. Thus, it predicts a monotonic increase
in RTs with the size of the problem whereas we observed a non-
monotonic size effect with a plateau when operands are larger
than four.

Another way of explaining how retrieval-based solving could
produce a size effect is to assume, as Groen and Parkman (1972)
did, that the size-related slope of RTs is due to an artefact of aver-
aging. They explained the size-related slope of some tens of mil-
liseconds observed in adults by assuming that they solve
additions by fast retrieval, but occasionally revert with some prob-
ability p to a childish way of solving additions and use a slow
counting procedure such as theMin strategy. A uniform probability
p over problems would result in the linear trend we observed. It is
fairly possible that a retrieval process fails for some undetermined
reason in a small proportion of trials. However, this hypothesis
cannot account for our results. First, like the tabular search
hypotheses, the sporadic slow counting hypothesis predicts a
monotonic size effect that we did not observe. There is indeed no
reason to suppose that retrieval would sometimes fail for very
small additions, but never for medium small additions that did
not exhibit any sizeable slope related with magnitude. Moreover,
it is difficult to explain within this account that very small additions
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exhibited a slope significantly steeper than ties that are most prob-
ably solved through retrieval without the additional ad hoc
assumption that the probability p of reverting to slow counting is
far lower for ties than very small additions. As a consequence, it
seems that it is impossible to reconcile our findings with the
hypothesis that very small additions are solved through retrieval
of their answer from memory.

5. Conclusions

Chronometric analyses contradict the hypothesis that educated
adults solve the smallest and most frequent additions by retrieving
their answer from long-termmemory. This finding does not under-
mine the hypothesis that problem-answer associations are stored
in long-term memory and we have seen that among small addi-
tions, many problems are probably solved by retrieval. However,
it challenges the received view that retrieving answers from mem-
ory is necessarily faster than any other process in problem solving,
and as such the hallmark of expertise. As Baroody (1983) surmised
many years ago, automated compiled procedures can be so fast in
their execution that people remain unaware of their process, mis-
taking them with a retrieval from memory. This speed of imple-
mentation along with the lack of awareness creates a misleading
convergence of indices that led psychologists to trust on partici-
pants’ verbal reports and endorse the retrieval hypothesis without
further enquiry. However, a detailed analysis of RTs based on a
large set of data reveals that trials reported as retrieved subsume
a variety of strategies in which genuine retrieval from long-term
memory coexists with fast procedures resulting in strong size
effects and probably rules such as that used for n + 1 problems.
Thus, the prevailing description of development as a progressive
shift from algorithmic computing to direct retrieval is probably
an oversimplification.
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