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Abstract

In 1952, Alan Turing published the reaction-diffusion (RD) mathematical
framework, laying the foundations of morphogenesis as a self-organized
process emerging from physicochemical first principles. Regrettably, this
approach has been widely doubted in the field of developmental biology.
First, we summarize Turing’s line of thoughts to alleviate the misconcep-
tion that RD is an artificial mathematical construct. Second, we discuss why
phenomenological RD models are particularly effective for understanding
skin color patterning at the meso/macroscopic scales, without the need to
parameterize the profusion of variables at lower scales. More specifically, we
discuss how RD models (#) recapitulate the diversity of actual skin patterns,
(b) capture the underlying dynamics of cellular interactions, (c) interact with
tissue size and shape, (d) can lead to ordered sequential patterning, (¢) gen-
erate cellular automaton dynamics in lizards and snakes, (f) predict actual
patterns beyond their statistical features, and (g) are robust to model vari-
ations. Third, we discuss the utility of linear stability analysis and perform
numerical simulations to demonstrate how deterministic RD emerges from
the underlying chaotic microscopic agents.
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1. INTRODUCTION
1.1. Alan Turing

Alan M. Turing (1912-1954) was undoubtedly one of the greatest scientists of the twentieth cen-
tury. His research was pivotal in computer science as he formalized the concepts of a computer
algorithm and of a Turing machine (i.e., an automaton able to implement any algorithm). Tur-
ing’s initial theoretical work, as well as circuit and memory design by John von Neumann, led to
the development of the first programmable electronic general-purpose digital computers. Turing
made other key contributions to logic and computer science, and he is arguably (again, together
with John von Neumann) the founder of artificial intelligence. Notably, Turing worked for the
British code-breaking center in Bletchley Park during World War II, and he led the famous Hut
8 section that improved Polish special-purpose machines, eventually breaking the German naval
Enigma cipher, thereby shortening the war and saving countless lives. Turing’s contribution to
modern cryptoanalysis is probably what made him most famous in the public eye, although this
public recognition occurred many years after his death as most of his research and discoveries in
that field remained a British state secret until 2012.

In 1951, Turing became interested in morphogenesis, i.e., how living organisms develop their
shape and form. He had the remarkable intuition that morphogenesis might emerge from simple
physicochemical first principles that could be described mathematically. In 1952, he published a
masterpiece article (Turing 1952) establishing the reaction-diffusion (RD) mathematical frame-
work! in which concentrations of two (or more) diffusing® and reacting molecular species (RD

n the framework of population genetics, Ronald Fisher as well as Andrey Kolmogorov, Ivan Petrovskii, and
Nikolai Piskunov previously introduced an RD equation (Fisher 1937, Kolmogorov et al. 1937) with only
one component (the frequency of an allele): The resulting dynamics can exhibit front propagation but not a
stationary pattern.

?As discussed in Supplemental Appendix 4.7, spatial symmetry breaking due to Turing instability requires a
minimum of two morphogens, which must also diffuse at different effective rates. Periodic spatial patterning
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components) are computed through time and space and form temporal and/or spatial patterns.
Turing reflected, long before modern cell and molecular developmental biology, that spatial pat-
terning of these chemical morphogens could then be translated into forms; i.e., it would lead to
morphological patterning. Turing died a few days before turning 42, shortly before completing an-
other mathematical biology article on phyllotaxis, i.e., lateral-organ spatial arrangements in plants.

1.2. Objectives of This Review

As we elaborate on in Section 2, it is clear today that skin color patterning in vertebrates consists
of the symmetry-breaking self-organizational spatial segregation of chromatophores during de-
velopment through short- and long-range cell-cell interactions that can be efficiently described
at the continuum limit with partial differential equations (PDEs) in Alan Turing’s RD framework.
The terminology and jargon in the previous sentence illustrate that the concepts of biological
self-organized patterning are deeply rooted within dynamical systems theory (arguably founded
by the work of the polymath Henri Poincaré at the brink of the twentieth century), a field of
mathematics that became hugely important in modern physics. Unfortunately, the teaching of dy-
namical system theory is absent in most biology curricula, possibly explaining that fundamental
self-organizational concepts, such as RD, are still viewed today with suspicion by a substantial pro-
portion of developmental biologists. This cultural gap between biology and physics might explain
why Turing’s RD framework, despite its foundational and groundbreaking nature, was ignored for
20 years after its publication, before it was promoted by Alfred Gierer and Hans Meinhardt (Gierer
& Meinhardt 1972, Meinhardt & Gierer 1974). After three more decades of being largely ostra-
cized in developmental biology due to philosophical and historical reasons (reviewed in Green &
Sharpe 2015), Turing’s concept of RD as a genuine and fundamental morphogenetic patterning
mechanism recently experienced a highly deserved revival.

Instead of exhaustively reviewing the literature on RD [several excellent reviews are already
available on the topic (e.g., Cross & Hohenberg 1993, Epstein & Xu 2016, Green & Sharpe 2015,
Kondo & Miura 2010, Kondo etal. 2021, Murray 2003, Schweisguth & Corson 2019)], the present
article aims to mitigate the misunderstanding between reductionists and phenomenologists. The
former, who currently dominate in number in the field of developmental biology, aim at describ-
ing the most intricate molecular details of gene expression and signaling underlying patterning,
whereas the latter (smaller) crowd favors effective models that ignore much of the underlying
molecular details (Milinkovitch 2021). We view these two approaches as complementary.

Our specific objectives in this review are threefold. First, we summarize in Supplemental Ap-
pendix 1 our perception of Turing’s line of thought—as with many foundational pieces of work,
Turing’s (1952) article is very much cited but rarely read. We think that highlighting Turing’s cen-
tral focus on the biological question of morphogenesis (as a symmetry-breaking process grounded
in first principles) can help alleviate the misconception that RD is an artificial mathematical con-
struct irrelevant to the real world. We also stress the outstanding vision of Turing, not only in
identifying and formalizing the dominating principles of chemical-based self-organized morpho-
genesis, but also regarding the limitations and future perspectives of his theory. We strongly advise
readers not to skip Supplemental Appendix 1 as it greatly helps with understanding the main text.

Second, we discuss in Section 2 how RD became recognized as remarkably efficient for de-
scribing the diversity and complexity of skin color patterning, hence the title of this review.

with a single morphogen (Wang et al. 2022) or with two morphogens exhibiting identical diffusion coefficients
(Marcon et al. 2016) has been recently claimed. However, both models integrate an additional nondiffusing
morphogen. We argue that the full set of concentrations should be considered when evaluating diffusion
asymmetry. In both studies, this asymmetry is large as one of the two (or more) RD components is nondiffusive.
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Mathematicians and physicists will recognize that our title is inspired by the famous 1959 New
York lecture [published 1 year later (Wigner 1960)] by the Nobel Prize laureate Eugene Wigner,
titled “The Unreasonable Effectiveness of Mathematics in the Natural Sciences.” The effective-
ness of mathematics in science remains a puzzle “bordering on the mysterious” (Wigner 1960,
p- 2) that will undoubtedly keep philosophers busy for a long time. The effectiveness of RD is
admittedly less grandiose, but we discuss in Section 2.1 how it started to be seriously considered
when Hans Meinhardt and Alfred Gierer at the Max Planck Institute in Tiibingen, as well as James
Murray at the University of Oxford, demonstrated that RD computer simulations recapitulate the
diversity of skin patterns observed in real animals (Gierer & Meinhardt 1972; Meinhardt & Gierer
1974; Murray 1980, 1981a,b). In Section 2.2, we illustrate that the unreasonable effectiveness of
RD in vertebrate skin color patterning originates from two main sources: (#) contrary to mor-
phogenetic processes generating changes in local tissue geometry, skin color patterning does not
require coupling RD with a mechanical model, and (§) real-life morphogens diffuse (literally or
effectively) and react. Indeed, we argue that phenomenological effective RD models (focusing on
the meso/macroscopic scales at which the color pattern occurs) capture most of the underlying
dynamical system of cell-cell interactions because these interactions occur through the effective
diffusion of morphogens (Romanova-Michaelides et al. 2022)* or, more precisely, through short-
and long-range cell-cell contacts that can be readily translated into small and large diffusion co-
efficients. This effective phenomenological approach was championed by Shigeru Kondo and his
collaborators at the University of Osaka in Japan. In a series of influential papers (Inaba etal. 2012,
Kondo & Asal 1995, Nakamasu et al. 2009, Yamaguchi et al. 2007), Kondo and his team demon-
strated that biological experiments (including laser ablation of specific chromatophores) allowed
identification of the signs (activation or inhibition) and range (short or long) of the interactions
among chromatophores. This led to the reconstruction of a cell—cell interaction network that
could then be translated into a simple set of three PDEs (Nakamasu et al. 2009), called hereafter
the NTKK-2009 (Nakamasu et al. 2009) model, adeptly recapitulating the skin color patterning
process in wild-type and mutant zebrafish morphs, as well as in related species, despite that it does
not integrate the interactions involving iridophores (Frohnhofer et al. 2013, Owen et al. 2020,
Patterson & Parichy 2013, Singh et al. 2014, Volkening & Sandstede 2018).

RD can reproduce a large diversity of skin color patterns observed in nature (Gierer &
Meinhardt 1972; Meinhardt & Gierer 1974; Murray 1980, 1981a,b), from spatially homogeneous
to spatially periodic (the so-called Turing patterns) and even time cyclic [i.e., traveling waves
(Suzuki et al. 2003)]. In Sections 2.3 to 2.6, we discuss additional aspects of RD effectiveness
in vertebrate skin color patterning: Numerical simulations implementing RD in skin domains of
nontrivial geometry predict unsuspected emerging patterns and dynamics. In Section 2.3, we elab-
orate on the effects of tissue size and shape [touched upon early on by Murray (1981a,b)] on RD
patterning, as well as conditions that can lead to ordered sequential patterning. In particular, we
examine how mild extensions of the simple two-morphogen RD system can generate new rich and
spectacular (but poorly studied) behaviors that are likely involved in key biological morphogenetic
processes, such as animal segmentation.

We then present in Section 2.4 the recent and surprising realization (Fofonjka & Milinkovitch
2021, Jahanbakhsh & Milinkovitch 2022, Manukyan et al. 2017, Zakany et al. 2022) that the super-
position of RD with periodic variation of skin geometry (in the form of reptilian skin scales) can

3Note that effective diffusion can involve multiple processes such as binding/unbinding to receptors, intracel-
lular recycling, and transcytosis. Hence, the reader might find it useful to substitute the term effective diffusion
by range of action.
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generate spatial discretization of the pattern, as well as cellular automaton (CA) (von Neumann
1951) or Lenz-Ising (Ising 1925, Lenz 1920) dynamics of the patterning process. These results
illustrate how effective phenomenological models can readily integrate new geometrical param-
eters and efficiently capture these unexpected dynamics without the need to parameterize the
unmanageable profusion of variables at the nanoscopic and microscopic scales (Milinkovitch
2021).

Section 2.5 outlines how RD predicts actual patterns beyond their statistical features and how
natural selection tends to keep skin color patterning (and probably many other self-organizational
processes in actual biological systems) out of the chaotic regime, hence making its trajectories
largely predictable (Jahanbakhsh & Milinkovitch 2022). We also illustrate in Section 2.5 that RD
not only predicts the CA-like scale-by-scale color patterning of the skin in multiple lizard species
but also predicts unsuspected and subtle color subclustering that correlates with the colors of
the scales’ neighbors. We then show in Section 2.6 that, irrespective of their form, discretization,
and spatial dimensionality, phenomenological RD models are highly robust in predicting mul-
tiple features of the skin color patterning process. It is our hope that the results summarized in
Sections 2.1-2.6 will convince the reader that RD should not be viewed with suspicion despite
our lack of knowledge regarding the relevant activator and inhibitor molecules. Indeed, we con-
jecture that the identity of these molecular actors is mostly irrelevant if one aims to understand
the meso/macroscopic behavior of the dynamical system (Milinkovitch 2021).

Third, we provide more technical information in the Supplemental Appendices. In Supple-
mental Appendix 2, we describe the original NTKK-2009 model as well as an extension of it
that we use to model traveling waves of patterning. In Supplemental Appendix 3, we describe
conditions that generate the combined expression of stationary Turing patterns and sustained os-
cillations leading to sequential patterning, a combination that may be involved in somitogenesis
(as discussed in Section 2.3).

We then discuss in Supplemental Appendix 4 the very convenient fact that RD is amenable
to linear stability analysis. Because complexity-generating RD systems are fundamentally nonlin-
ear, their behavior cannot, generally, be assessed analytically and must be, instead, investigated
through cumbersome and computer-intensive numerical simulations. Fortunately, linearized RD
equations allow us to quickly specify the range of RD parameter values that will lead to temporal
or spatial patterns. Numerical simulations can then be restricted to this so-called Turing space.
Linear stability analysis is technical; the less mathematically inclined reader can omit it as it is not
required to understand any of the other sections of this review.

Finally, we discuss in Supplemental Appendix 5 the advantages of the deterministic nature
of the RD mathematical model. Indeed, biological pattern formation processes are deterministic
because they are unlikely to involve quantum mechanical effects. This does not necessarily mean
that they are fully predictable, as the nonlinearity of interactions among components can make
the dynamical system highly sensitive to initial conditions—this is the essence of deterministic
chaos (Lorenz 1963). However, despite the auspicious results summarized in Section 2, using a
deterministic model might seem counterintuitive because of the unpredictability of reactions and
diffusion at the microscopic scale. To alleviate this (spurious) concern, we perform, in Supple-
mental Appendix 5, numerical simulations recapitulating the microscopic molecular collisions
required for both molecular diffusion and chemical reactions. We show that deterministic macro-
scopic spatial patterning emerges from such a microscopic system of interactions, even though
the exact behavior of individual particles cannot be predicted; i.e., we show that macroscopic
fluctuations tend toward zero when the number of microscopic particles is increased. We are
confident that these numerical experiments will help illustrate how deterministic RD (described
by Turing’s PDEs)—as well as a substantial dose of predictability (see Section 2.5)—emerges at

www.annualreviews.org o RD and Vertebrate Skin Color Patterning

Supplemental Material >

149


https://www.annualreviews.org/doi/suppl/10.1146/annurev-cellbio-120319-024414

Supplemental Material >

150

the continuum limit (i.e., at the meso- and macroscales) despite the chaotic, seemingly stochastic,
behavior of the underlying microscopic agents. This demonstration also helps to appreciate the
highly counterintuitive contribution of diffusion to RD patterning: Although diffusion (when
taken in isolation) is a homogenizing force, it can drive instabilities (hence, patterning) in the
context of reacting morphogens whose diffusivities differ. We hope this exercise emphasizes the
validity of first-principle thinking, which is at the basis of the mathematical simplicity and ele-
gance of Turing’s equations. In essence, our demonstration, grounded in nonequilibrium physics
(Prigogine 1955), is comparable to simpler and more familiar equilibrium thermodynamics in
which deterministic macroscopic quantities (such as the temperature and pressure of a gas in
a container) emerge from the microscopic and chaotic collisions of molecules. Supplemental
Appendix 5 is technical and can be omitted by readers ready to take our word for it.
We end this review with some conclusions in Section 3.

2. THE UNREASONABLE EFFECTIVENESS OF REACTION
DIFFUSION IN SKIN COLOR PATTERNING

2.1. Reaction Diffusion Recapitulates the Diversity of Skin Color Patterns
Observed in Real Animals

Skin color and color patterns vary extensively among species and populations and play crucial
adaptive functions associated with thermoregulation, photoprotection, camouflage, mimicry, and
visual communication (Kronforst et al. 2012, Olsson et al. 2013, Protas & Patel 2008, Stuart-Fox
& Moussalli 2008, Teyssier et al. 2015). Fishes, amphibians, and squamates (lizards and snakes)
exhibit a particularly spectacular range of colors, essentially generated by three types of neural
crest—derived chromatophore cells (Bagnara & Matsumoto 2006, Kuriyama et al. 2006, Saenko
et al. 2013, Singh & Niisslein-Volhard 2015, Ullate-Agote et al. 2020): (#) melanophores, which
produce brown/black melanins; (b)) xanthophores and erythrophores that, respectively, contain
yellow and red pteridine/carotenoid pigments; and (c) iridophores that contain quasi-ordered
arrays of guanine inclusions, forming 3D photonic crystals that generate structural coloration
through light interference. The spatial arrangement of these three cell types produces a variety of
patterns (such as stripes, spots, and labyrinths) but also a broad range of colors through nontrivial
optical interactions. In other words, the challenge of understanding a specific skin color pattern
corresponds to elucidating the developmental mechanisms that establish the spatial variation of
chromatophore combinations.

After Hans Meinhardt and Alfred Gierer at the Max Planck Institute in Tiibingen reexamined
Turing’s RD mathematical framework (Gierer & Meinhardt 1972, Meinhardt & Gierer 1974),
James Murray at the University of Oxford proposed RD as a universal pattern formation mecha-
nism for animal coat markings (Murray 1980, 1981a,b) on the basis that RD computer simulations
recapitulate the diversity of skin patterns observed in real animals. The application of RD mathe-
matical models to the question of skin color patterning had an obvious practical appeal to scientists:
Besides being readily observable in real animals, the skin can be approximated as a plane. Hence,
most numerical simulations have been performed in two dimensions, avoiding the much heavier
computational cost of 3D simulations.

Murray observed that RD also accounts for the spatial variation of patterns on different
body parts with different sizes and geometries. He illustrated the effect of domain geometry on
the steady-state motifs by the gradual transformation, on the tail of many species, of spots into
circular bands (i.e., rings around the circumference of the tail). Although Murray used a tapered
planar domain for numerical convenience, his argument remains valid on the surface of a cone.
Figure 1 shows RD numerical simulations with a model generating spots on the plane. We show
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Figure 1

Effect of geometry on RD patterns generated on 3D surfaces. (#) Four modes generated with the same
NTKK-2009 RD model on cylinders of different sizes. We perform successive reductions of the cylinder
diameter by a scale factor s but show, for convenience, all cylinders at the same size. All other parameters,
including the ratio of diffusion coefficients (D,, = 12D,,,), are as in Manukyan et al. (2017), except for

¢y = 0.03 in order to obtain a spotted (instead of a labyrinthine) pattern on the plane. () The same
transitions among the four modes shown in panel # observed along a cone of decreasing diameter. The
correspondence between the four diameter values on the cone and the four sets of diffusion coefficients used
in panel # is shown. d represents the pattern length scale, which is approximately equal to the analytical
Turing length scale L (see Supplemental Appendix 4 on stability analysis); Cy;cal refers to the critical
circumference at which the pattern switches from spots to bands. (¢) Abrupt shift from mode 1 to mode 4
between the body and tail. All geometrical parameters are represented respective to L. Abbreviation: RD,
reaction diffusion.

the different modes obtained on cylinders of different sizes (Figure 1a). Similarly, we observe,
on a 3D surface conical domain (Figure 15), the successive transitions among the four modes of
Figure 1a. Note also how the spots abruptly transition to bands when the circamference (C) of
the tail becomes smaller than a critical value (Cuigear); i-€., 2 2D pattern (spots) transforms into
a 1D pattern (bands) because there is not enough space for accommodating both the circular
boundary of a spot and its surrounding inhibitory region in the angular direction of the tail. As
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the size of the spot is defined by the arbitrary threshold of the morphogen concentration at which
we choose to show black instead of yellow, Cyscar is better defined as a function of the intrinsic
pattern length scale d. We reason that Cyc, must be <d because as two motifs do not merge (by
definition) at a distance d, there is no reason for one motif to merge with itself in the direction
of the circumference if Ceyicy > d. This relation can be derived more formally from linear
stability analysis on the cylinder (Murray 1981a) and is confirmed by our numerical simulations
(Figure 1b). In real animals, as the tail is typically conical, the observed pattern can indeed exhibit
a shift between successive modes (as in Figure 15). Alternatively, because the connection between
the body and the tail can correspond to a sharp transition in geometry, the pattern can abruptly
shift from the first spotted mode on the body to rings around the tail (as in Figure 1c), while
intermediate modes are skipped. The former case is observed in the leopard (Panthera pardus),
jaguar (Punthera onca), and cheetah (Acinomyx jubatus), whereas the latter is observed in genets
(genus Genetta). Although the final pattern observed in the adult depends on the tail geometrical
parameters, i.e., length and angle of tapering at the embryonic stage at which the patterning takes
place, there are logical constraints that exclude some solutions; e.g., if the patterning processes
in the body and tail are the same (i.e., they involve the same molecular interactions and effective
parameters, and occur approximately at the same time), it is impossible to produce a striped
animal with a spotted tail.

Clearly, the early simulations performed by Hans Meinhardt and Alfred Gierer as well as by
James Murray convincingly demonstrate that RD has the capacity to qualitatively recapitulate the
diversity of skin color patterns observed in nature. However, as appealing and persuasive as all
these observations can be, they have sometimes been deemed inconclusive because other (non-
RD) more intricate self-organizational patterning mechanisms (Cross & Hohenberg 1993) could
arguably generate similar patterns. However, in the absence of mechanics and/or advection, such
alternatives to RD have not been explicitly proposed to date.

2.2. Cell Biology Validates Reaction Diffusion as an Effective
Description of Skin Color Patterning

It is arguably Christiane Niisslein-Volhard and her collaborators at the Max Planck Institute in
Tiibingen and Shigeru Kondo and his collaborators at the University of Osaka who kick-started
the difficult, sometimes heated, dialog between reductionists and phenomenologists on the mech-
anisms of skin color patterning. Early reports suggested that skin color patterns in amphibians
originated from cell—cell and cell-substrate interactions (Epperlein & Claviez 1982, Epperlein
etal. 1996, Macmillan 1976, Parichy 1996, Twitty 1945). However, it was the selection of a small
Asian freshwater Cyprinidae, the zebrafish, as an experimental system (Niisslein-Volhard 1994,
Streisinger etal. 1981) that unleashed a profusion of elegant developmental genetic studies investi-
gating the molecular and cellular mechanisms underlying the interactions among chromatophores
that produce the zebrafish’s characteristic pattern of longitudinal dark blue and yellow stripes on
both the body and fins (e.g., Eom et al. 2015, Frohnhofer et al. 2013, Maderspacher & Niisslein-
Volhard 2003, Mahalwar et al. 2014, Parichy 2003, Parichy & Turner 2003, Patterson & Parichy
2019, Patterson et al. 2014, Singh & Niisslein-Volhard 2015, Singh et al. 2014). These studies, as
well as in vitro analyses (Inaba et al. 2012, Yamanaka & Kondo 2014), indicated that the interac-
tions among melanophores, xanthophores, and iridophores occur not via diffusing molecules but
through cell-cell contacts. This result is illustrated by modifications in the wild type, or rescue in
color pattern mutants, of the zebrafish skin stripes, through controlled (mis)expression of genes
(e.g., cx41.8 or igsf11) whose products mediate chromatophore adhesive interactions (Eom et al.
2012, Watanabe & Kondo 2012).
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At first sight, all these results might sound incompatible with a Turing mechanism that re-
quires short-range but also long-range interactions through slow- and fast-diffusing morphogens.
Indeed, how could cell-cell contacts occur at long ranges? This conundrum was solved by the
group of David Parichy then at the University of Washington, Seattle, that discovered a class
of very thin and fast cellular projections (called airinemes) that allow xanthophores to signal to
melanophores at long distances, i.e., several cell lengths (Eom et al. 2015). Melanophores also
send long projections that interact with xanthophores through Delta-Notch signaling (Hamada
etal. 2014). Note that the RD framework additionally requires the signal transferred by airinemes
to be diffusive, at least in first approximation. While it is relatively easy to describe the ran-
dom displacement of cells as a short-range diffusion, it is much more difficult to envision an
autonomous random (i.e., diffusive) displacement of airineme tips. The answer to this question
came from the remarkable discovery of macrophage-like cells responsible for the production, dis-
placement, and delivery of airinemes emerging from xanthophores (Eom & Parichy 2017). Indeed,
xanthophores produce surface blebs (i.e., small, rounded outgrowths) that are identified, via phos-
pholipid phosphatidyl-serine signaling, and engulfed by macrophages. A bleb will then become
a vesicle while maintaining a thin connection (the airineme) with the xanthophore. Hence, the
vesicle is dragged by the subsequent displacement of the macrophage, and the airineme teth-
ers the vesicle to the originating xanthophore. The airineme extends as the macrophage moves
around until the vesicle is spat out and deposited on the surface of a melanophore. As the dis-
placements of macrophages are seemingly random, the corresponding long-range interactions
can be deemed a diffusive process at the continuum limit. Therefore, although several molecu-
lar actors involved in cell-cell and cell-substrate interactions undoubtedly remain undiscovered,
the signaling identified so far for skin color patterning is diffusive (because of the somewhat ran-
dom displacements of chromatophores and airinemes), and can be appropriately modeled in the
RD framework. Note that computational models that explicitly integrate protrusion-mediated
signaling have been shown to produce spatial patterns (Vasilopoulos & Painter 2016).

As an alternative to identifying the exact molecular components involved in the interaction
network among chromatophores, Kondo and his collaborators took a phenomenological ap-
proach that proved to be very effective. Whereas Murray highlighted the similarities between
RD-generated patterns and those observed in animals, Kondo & Asal (1995) went one step further
by studying the dynamics of the patterning process: They reported that new stripes are steadily
intercalated in between existing stripes in the skin pattern of Pomacanthus angelfishes as they grow,
such that the absolute length scale of the pattern remains invariant. In other words, the pattern
does not scale, which is a well-known property of RD patterns; i.e., the length scale of a pattern
is not affected by the size of the domain but is an intrinsic feature associated with the set of RD
parameter values (see Supplemental Appendix 4.3 for details on how the length scale is set by the
RD parameters, independent of the geometry of the domain). In the same article, the authors also
show that the angelfish patterns, especially during the introduction of new stripes, exhibit defects
(i.e., branching stripes and unconnected edges) that reorganize following dynamics reminiscent
of those observed in RD numerical simulations.

Contrary to the skin color pattern observed in angelfishes, many morphologies do scale with
the size of the animal (Barkai & Ben-Zvi 2009). Neither Lewis Wolpert’s positional information
model (Wolpert 1969, 1971) nor Turing RD patterning mechanisms can, in their traditional forms,
explain scaling. Note that, counterintuitively, some growth-controlling morphogens that form
a spatial gradient can anyway produce homogeneous growth within an organ. Indeed, elegant
molecular analyses (Mateus et al. 2020, Wartlick et al. 2011) have demonstrated that homogeneous
growth and growth arrest (Aguilar-Hidalgo et al. 2018) of the fruit fly imaginal disc or the zebrafish
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pectoral fin bud are controlled not by the absolute concentrations of the morphogen but by the
time derivative (temporal change) of the morphogen concentration within a scaling gradient.

Likewise, RD Turing patterns are not condemned to never scale. Indeed, although the Turing
length scale is intrinsic to the RD system, it depends not only on the diffusion constants but also
on the reaction function parameters. Hence, any mechanism that would appropriately scale these
parameters with the domain size would also make the Turing pattern scale. Such a situation would
occur if the reaction rates of a pattern-producing RD system depended on the concentration of an
external catalyst produced and degraded on subspaces of appropriate dimensionality (Ishihara &
Kaneko 2006). For example, if the catalyst is produced in a fixed subregion of a growing 3D vol-
ume and degraded on the surface of that volume, the Turing pattern can scale (for the appropriate
model) proportionally to the length (L) of the system. Natural selection is likely able to tune the
RD system to produce any kind (e.g., linear) of pattern scaling with domain size. An alternative
solution for Turing pattern scaling consists in conserving one quantity in the RD system, for
example, the total quantity (i.e., the integrated sum of concentrations) of all RD components in
the spatial domain (Ishihara & Kaneko 2006). In that case, the average concentration of this con-
served quantity turns out to be an extra parameter (i.e., it is determined by the initial conditions)
that affects the pattern length scale. By conservation, the average concentrations of morphogens
in three dimensions will scale with the inverse of the domain volume, whereas the scaling factor
of the pattern itself will depend on the dimension(s) affected by growth. For example, if the
volume grows in only one direction, the pattern will scale (e.g., linearly) in that same direction.

Contrary to both the nonscaling Turing systems (where the pattern is continuously updated
during growth) and the scaling Turing systems outlined above, the patterning process can sim-
ply become frozen at some point in development. In that case, heterochrony (i.e., differences in
the timing and/or rate) in pattern development and arrest can, in principle, account for large dif-
ferences in pattern length scales among species even if they share exactly the same patterning
process. It has been suggested (Bard 1977) that such a mechanism could explain why the plains
zebra (Equus quagga, formerly Equus burchellii) exhibits approximately half the number of stripes
in its coat pattern than the Grévy’s zebra (Equus grevyi): This difference is compatible with a pro-
cess producing the same pattern length scale and starting at 3 weeks of gestation in both species,
but terminating at the third and fifth week of development, respectively. In other words, a pattern
fixed earlier in development would produce a smaller number of stripes, and subsequent growth
would increase the absolute length scale of the pattern observed in the newborn and adult. More
generally, anisotropic growth distorts patterns established earlier in development and can explain
discrepancies such as the narrower stripes on body parts (e.g., the head) that exhibit a larger rel-
ative size in the embryo than in the adult. This heterochrony hypothesis explaining the patterns
observed in different species of zebras has not been confirmed to date because of the difficulties
in obtaining zebra embryos, and in performing molecular developmental analyses (e.g., in situ
hybridization targeting melanophore precursors) on such large samples.

Evidently, in many cases, genetic mutations affecting RD parameters are responsible for dif-
ferences in pattern motifs among species, as evidenced by the occasional occurrence of individuals
with aberrant patterns, such as spotted zebras or striped cheetahs (Bottriell 1987, Larison et al.
2021). Similarly, it is likely that differences in pattern length scales among closely related species
with similar motifs (e.g., stripes) can also be caused by genetic mutations instead of heterochrony.
Unfortunately, testing the effects and prevalence of heterochrony and anisotropic growth in
nonmodel species is challenging because of both the limited access to embryos (Milinkovitch
& Tzika 2007, Tzika & Milinkovitch 2008) and the late development of pigments; i.e., the
(pre)pattern is established before it becomes visible. Finally, small differences in initial conditions
explain why different individuals of the same species exhibit slightly different patterns, albeit with
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identical adaptive statistical features such as the pattern length scale (Jahanbakhsh & Milinkovitch
2022).

Small uncontrolled fluctuations in initial conditions and/or in the developmental process can
be considered by using stochastic models, such as the simple two-parameters Lenz-Ising statis-
tical model which describes the patterning process as a time-dependent probability distribution
over possible patterns (Zakany et al. 2022). This time dependence manifests as a relaxation to-
wards the thermal equilibrium pattern distribution, characterized by Gibbs entropy maximization
at a given mean energy. Remarkably, the (ir)relevance of intraspecific differences then acquires a
statistical mechanical interpretation in the framework of the evolutionary process (Zakany et al.
2022). Indeed, patterns with different looks are explored during evolution through the occurrence
of genetic mutations, which can affect the link and/or site energies defined in the Lenz-Ising
model. Concurrently, the qualitative features of the patterns are subjected to natural selection,
which then channels the mean Lenz-Ising energy to a specific value. Despite that the variation of
pattern configurations among individuals (i.e., the Gibbs entropy) within the breeding population
are maximized at a given Lenz-Ising energy, the evolutionary process is robust because these in-
terindividual differences are virtually irrelevant: Only the mean energy (i.e., the general look of
the pattern) matters to selection (Zakany et al. 2022).

Additional observations, simulations, and experiments yet substantially increased the support
for an RD system underlying skin color patterning. For example, the hybridization of two East
Asian Salmonidae, the white-spotted char (Salvelinus leucomaenis) and the black-spotted masu
salmon (Oncorbynchus masou), generates a hybrid with a labyrinthine pattern (Miyazawa etal. 2010).
This result is appreciable as it is compatible with the RD framework: When a specific range of
values of a reaction parameter can generate spots of high concentration of one RD component
on a background of low concentration, but another specific range of values of the same param-
eter generates the reverse pattern (antispots, or holes, of low concentration on a background of
high concentration), then a labyrinthine pattern can usually be found at intermediate values of
that parameter (see Supplemental Figure 95). In other words, in RD phase space, labyrinthine
patterns are usually intercalated between zones with spots and zones with antispots. An extensive
phylogenetic analysis of patterns observed in 18,000 fish species suggested that some of the species
exhibiting a labyrinthine pattern (e.g., many pufferfishes) originated from hybridization between
spotted and antispotted species (Miyazawa 2020). We suggest here that these observations would
be especially compatible with effective RD parameters being quantitative traits (i.e., determined
by the expression of multiple genes).

RD features related to chromatophore interactions were uncovered through multiple key de-
velopmental genetic studies cited above but also in experiments involving in vivo laser ablations
of specific chromatophore types. Notably, local ablation of both melanophores and xanthophores
is followed by the autonomous regeneration (through chromatophores migrating from surround-
ing unaffected tissues) of the pattern with rearrangements while keeping the length scale of the
original stripes (Yamaguchi et al. 2007), i.e., following dynamics highly similar to those expected
from RD. In addition, these ablation experiments enabled identification of the signs (i.e., activa-
tion or inhibition) and the range (i.e., short or long) of the interactions between melanophores
and xanthophores, thereby providing the experimentally derived phenomenological effective
NTKK-2009 RD model (Nakamasu et al. 2009).

2.3. Geometry and Hysteresis Can Have Substantial Impacts
on Reaction-Diffusion Patterns

In the case of skin color patterning, the self-organizational process modeled by RD should be
deployed on a nontrivial spatial domain given by the geometry of the embryo (or, in some cases,
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subsequent stages of development; see Section 2.4). Although the RD process is local, the spatial
symmetry breaking that allows for patterns to emerge makes the process sensitive to the geometric
teatures of the spatial domain. This can lead to measurable qualitative phenomena. For example,
Murray (1981a,b) noted that the same dominating modes (fixed by the RD system) can produce
patterns that look different because of changes in the size and shape of the domain. For example, if
the absolute size of the domain in one of its dimensions is smaller than the pattern’s intrinsic length
scale, then the pattern will manifest itself along the other dimension(s). We already mentioned
this property above (see Section 2.1) when discussing the formation of rings around the tail in
some species with a spotted body pattern (Figure 1). Similarly, in some animals, the presence of
a pattern of two distinctive colors separating the body into two parts of the same size, such as
the Valais Blackneck (a Swiss domestic breed of goat exhibiting a black front half and a white
back half of its body), is explained by the skin domain shape and size at the embryonic time the
pattern develops: The length of the animal (from nose to tail) is sufficient to integrate only half a
wavelength of the pattern, whereas the circumference of the body is too small for any spatial color
pattern to form (Figure 24). Such a case illustrates that, contrary to what is most often implicit in
the literature (Capek & Miiller 2019), a simple gradient is not necessarily produced by a localized
morphogen source, but it can also be generated through RD.

Murray (1981a,b) extrapolates this reasoning to the zebra’s black and white coat pattern: Stripes
are oriented along the long axes of both the trunk and the legs. We think that this proposition is
incorrect because zebra stripes are patently narrow enough to be incorporated in both directions,
even on the legs. We propose that the robust pattern of zebras requires the sequential addition of
stripes. To illustrate our point, we perform simulations with an RD model generating stripes with
widths similar to those observed in Grévy’s zebras. If the simulation is started with small random
noise around the homogeneous steady state, the stripes do not exhibit any preferred orientation
(see the left side of Figure 2b; Supplemental Video 14). On the other hand, if the initial condition
corresponds to an oriented horizontal perturbation, this initial orientation spreads to most of the
trunk steady-state pattern (see the middle of Figure 2b; Supplemental Video 15). Likewise, if the
initial perturbation is oriented vertically (i.e., perpendicular to the trunk’s main axis), the steady-
state pattern reflects that orientation (see the right side of Figure 24; Supplemental Video 1¢).
Finally, collisions between two or more waves of sequential addition would explain the presence
of topological defects on the shoulders of zebras (as well as hips in the Grévy’s zebra) (Figure 2c;
Supplemental Video 2).

One remarkable observation deserves further discussion: The vertical stripes of the trunk
in plains zebras smoothly transition into horizontal stripes on the back legs (see the middle of
Figure 2¢). Numerical simulations recapitulate such reorientation (see the right side of Figure 25;
Supplemental Video 1¢) that can be understood in terms of signal propagation. Indeed, the pat-
tern forms sequentially from the initial perturbation. The speed of this patterning wave is invariant
in all directions (and can be derived from the diffusion coefficients). Hence, each stripe forms as
an isoline that corresponds to a specific geodesic distance (from the localization of the initial
perturbation), which is identical everywhere along that stripe (Figure 2d). This phenomenon is
observed both on shapes with zero Gaussian curvature, such as cylinders and cones (Figure 24),
and on manifolds with variable curvature, such as tori (Figure 2e).

One aspect of RD sequential patterning might be considered rather nonnatural: If the system
is in the Turing zone of the parameter space, any small random local perturbation will amplify
such that the resulting pattern is more likely to emerge everywhere simultaneously in the form of
labyrinthine stripes with no preferred orientation (see left side of Figure 25). To avoid this, the
RD components’ concentrations must be perfectly homogeneous across the whole spatial domain,
except where the initial oriented perturbation is located. This situation is nonnatural because noise
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in morphogens’ concentrations is likely to occur across the skin. However, much more robust se-
quential addition processes can take place. For example, one can simply consider the case where
the model parameters are such that they are located close to, but still outside of, the Turing zone.
In that case, small random perturbations do not cause the emergence of the pattern everywhere,

whereas a substantial perturbation can trigger sequential patterning. One such case can be made
for the adult zebrafish: Stripes are always horizontal in the wild type because of the initial con-
dition at the onset of pattern development. Indeed, the first adult light interstripe on the body is
made of dense iridophores that emerge along the horizontal myoseptum (Frohnhofer et al. 2013),
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Figure 2 (Figure appears on preceding page)

Effect of geometry on RD striped patterns generated on 3D surfaces. (#) Large wavelength striped patterns.
The slender cylinder (shown as an unwrapped surface on the /eft) accommodates only the first longitudinal
mode of the RD system, resulting in half a wavelength pattern aligned with its main axis. The thicker
cylinder (middle) is big enough to accommodate two modes (one longitudinal and one angular). A simulation
performed on the surface of a goat 3D model (right) separates the body into two parts as in the Valais
Blackneck real coat pattern. (5) Steady-state striped patterns on a zebra 3D model generated with different
initial conditions: random perturbations across the whole domain (/eft), a horizontal line of perturbation (red)
on each flank (center), and a vertical line of perturbation around the flanks and back (right). The two latter
patterns self-organize sequentially (see Supplemental Video 1b,c). (¢, /eft) RD simulation illustrating how a
topological defect on the stripe field can emerge from the collision of three wave fronts propagating from
oriented local perturbations. Similar defects are visible on the shoulders of plains zebras (mziddle) as well as
shoulders and hips of Grévy’ zebras (right). Note also that tail bud expansion, which occurs early in
development, would explain the oblique orientation of the most posterior body stripes in plains zebras.
Photograph of the Grévy’s zebra by B. Dupont (CC BY-SA 2.0). () Numerical simulations illustrating that
sequentially patterned stripes self-align perpendicular to the main axis of cones and cylinders. In all cases,
RD stripes align to the GIs computed from the initial perturbation. (¢) Numerical simulations as in panel ¢
but on two tori of different sizes. The GIs are shown for the smaller torus. All dimensions are represented
respective to the Turing length scale (L) of the model [NTKK-2009 with parameters as in Manukyan et al.
(2017), except for ¢, = 0.028 and ¢; = 0.02 in order to obtain a striped, instead of labyrinthine, pattern on
the plane]. For panels s, the initial condition is the HSS everywhere except at the initial perturbation (red).
Abbreviations: GIs, geodesic distance isolines; HSS, homogenous steady state; RD, reaction diffusion.

while melanophores distribute in the skin following different routes (Budi et al. 2008, Dooley
etal. 2013). Remarkably, the study of the choker mutant confirmed the relevance of this prepattern
(Frohnhofer et al. 2013). Indeed, choker zebrafishes lack a proper myoseptum because of defects in
somite formation, and they exhibit a labyrinthine pattern of stripes; i.e., the stripes are no more
predominantly horizontal.

Advocacy for the prevalence of either a prepattern established by the myoseptum or au-
tonomous self-organization has generated exchanges of opposed opinions (Mahalwar et al. 2014,
Watanabe & Kondo 2015). However, there is no incompatibility between the two points of view:
Initial conditions can substantially impact the resulting steady-state pattern, and they can easily
be implemented in numerical simulations. For example, when recapitulating the adult zebrafish
pattern, instead of using the classical initial condition of anisotropically distributed random
small perturbations, it might be more appropriate to start simulations—in or out of the Turing
zone—from a faint horizontal stripe of higher concentration of one of the RD components (to
kick-start the general orientation of the pattern). The simple fact that some fish species (e.g.,
Danio erythromicron), that are closely related to the zebrafish, exhibit vertical stripes indicates that
the myoseptum is not the only possible directional cue at the onset of adult pattern development.
Other, more recent, developmental studies have identified positional information that establishes
oriented patterns. For example, somitic mesoderm in birds can control the orientation of yellow
and black skin stripes (Haupaix & Manceau 2020, Haupaix et al. 2018).

Another robust sequential addition process can occur through the simultaneous expression of
stationary Turing patterns and sustained oscillations (e.g., due to a Hopf bifurcation) discussed
above: In some circumstances, they can combine and form a novel emergent patterning mecha-
nism where each new motif is added sequentially in time. For example, such systems have been
proposed (Cotterell et al. 2015, Meinhardt 1982) in the context of somitogenesis, as alterna-
tives to the classical clock and gradient model (Baker et al. 2006a,b; Cooke & Zeeman 1976;
Richmond & Oates 2012; Soroldoni et al. 2014). As elaborated upon in the Supplemental
Appendix 3.1, the two sequential addition models of Meinhardt (1982) and Cotterell et al. (2015)
are different in form but equivalent in essence, as they both belong to the short-range activation
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Standard Turing patterning versus sequential patterning with oscillations. (#) Linear stability analysis of Supplemental Equation 3.3
with parameters K, = K, = 0.4, wy = 0.2, D, = 1, and D, = 30 around its homogeneous steady state. The growth coefficient A(k) for
spatial perturbation with wavenumber # is shown (branch with the largest real part). Since ReA(0) ~ —0.1, the homogeneous steady
state is stable but there is a Turing instability: Perturbations with wavenumber 47 ~ 0.5 are unstable. (4, /eff) Time evolution of # (blue)
and v (red) for a simulation of this RD system in a 1D domain (x € [0,200]) with parameters as in panel #, showing the emergence of a
Turing pattern. Simulation parameters are given in Supplemental Appendix 6. (b, 7ight) Steady state of # in a 2D simulation

(512 x 512 grid with Ax = 0.5) with fixed (three green borders) or reflecting (unmarked left border) boundary conditions. Higher values of
u are shown in brighter levels of gray. Turing patterns far from the fixed borders are disordered stripes. (c,4) Same as in panels z and &
for K, = 0.2, everything else unchanged. Linear stability analysis in panel ¢ shows that the homogeneous steady state is unstable and
oscillating, since ReA(0) > 0 and [[74(0)| > 0. As concentrations always stay in the [0, 1] range, it implies the presence of sustained
oscillations. A range of perturbations with wavenumber &1 ~ 0.5 is even more unstable, indicating that patterns are linearly amplified.
Simulation of the RD system in one dimension (d, /eft) shows that oscillations are sustained but patterns are added sequentially until all
the domain is patterned. The simulation in two dimensions (d, 7ight) shows that patterns with very long-range order are produced.
Pattern typical length scales are shown in yellow: It is very close to the Turing length scale 277 /b in panel b, whereas its slightly larger
value (AX) in panel d is discussed in Supplemental Appendix 3.

plus long-range inhibition category of RD patterning systems. The latter model includes a pa-
rameter (here called wy) that may be interpreted as an external concentration acting as a catalyst
for the autoactivation of the activator and/or its interaction with the inhibitor. The parameter
wp can be set to a constant or it can be prepatterned, e.g., as a spatial gradient. Linear stability
analysis shows that, for appropriate choices of parameters, spatial perturbations around a stable
homogeneous steady state are amplified; i.e., a Turing instability occurs (Figure 3a,b), leading
to classical self-organized stable patterning as discussed above. However, other parameter values
can be found where both linear amplification of spatial perturbations and sustained oscillations
coexist (Figure 3c,d). Our numerical simulations in one and two spatial dimensions (Figure 34,
Supplemental Video 3) show that the compound effect of these two phenomena leads to peculiar
patterning dynamics: Each patterning unit is sequentially added next to the previously stabilized
unit, while regions that are unpatterned keep oscillating. Each new patterning unit is added after
the sustained oscillation has completed a full cycle. In Supplemental Appendix 3.1, we propose
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nonlinear regime to produce sequential patterning and (b)) how a spatial gradient of the external
concentration wy both dispenses for the need for a special boundary condition (e.g., the existence
of a first stripe, contrary to the case discussed above for the zebra) and allows for kinematic waves
to develop. This latter point is important because spontaneous sequential patterning and kine-
matic waves are observed in somitogenesis (e.g., in zebrafish), making RD a compelling paradigm
for understanding this morphogenetic process as a self-organized phenomenon.

Finally, we note here a nice property of this sequential patterning mechanism: The spatial
interval AX between pattern units depends to some extent on the period AT of the oscillating
region (Supplemental Figure Se), which, itself, depends on the value of wy (see Supplemental
Figure 5b). Hence, AX determines an extra length scale of self-organization that is distinct from
the Turing length scale of the system (Supplemental Figure 5f). In other words, changing the
oscillation period through variation of wy may provide an elegant mechanism for pattern length
size control (Supplemental Figure 5g) in some systems. Many additional details on sequential
patterning with sustained oscillations are available in Supplemental Appendix 3.1. Irrespective
of the exact process involved, the two types of sequential patterning described above are very
efficient at producing highly reproducible patterns ordered on much larger length scales (see the
middle and right side of Figure 25 and right side of Figure 34d) than in the Turing case (see the
left side of Figure 24 and right side of Figure 35).

The hexagonal lattice of avian feathers and snake latero-dorsal scales is brought about by an-
other type of sequential dynamics: Rows of feather primordia in birds and rows of scale placodes
in snakes are added one after the other in spreading waves (Ho et al. 2019, Tzika et al. 2023).
The resulting pattern is highly ordered and emerges from dimensionality reduction: The wave
front produces a quasi-1D process of placode development along the line separating patterned
and unpatterned skin; i.e., each new placode within a new row develops in a quasi-1D manner
out of register (i.e., in antiphase) with placodes from the previous row. Additional details on these
dynamics, and their molecular determinants, in birds and snakes are provided in Supplemental

Appendix 3.2.

2.4. Reaction Diffusion and Geometry Nontrivial Interactions:
Emergence of Cellular Automaton Dynamics

A cellular automaton (CA) is a mathematical construct invented by John von Neumann (1951) in
the 1940s. CAs not only are of immense conceptual interest (laying the foundation of the field of
artificial life), they also have practical applications in computer science as they are heavily used as
a discretizing technique for performing complex distributed computation in, among others, sta-
tistical mechanics, fluid dynamics, and nonequilibrium phase transitions (Chopard & Droz 2005,
Deutsch & Dormann 2005). However, CAs remained viewed as artificial mathematical constructs,
born in the genius mind of von Neumann; i.e., CAs are useful (in computer science) and fun, but
they do not actually exist in nature. Or do they? Our proposition that the quasi-hexagonal lattice
of ocellated lizard colored skin scales is a living CA (Fofonjka & Milinkovitch 2021, Jahanbakhsh
& Milinkovitch 2022, Manukyan et al. 2017) makes us reconsider this position.

The motivation of von Neumann in developing CAs was to define the requirements for a
machine (an automaton) to not only compute but also replicate itself, without losing any of its
original complexity (hence, von Neumann called it a universal constructor). It will not escape
the reader’s attention that this objective fundamentally pertains to uncovering the logical orga-
nization underpinning biological systems. In 1952 and 1953, von Neumann wrote a manuscript
entitled “The Theory of Automata: Construction, Reproduction, Homogeneity” in which, on the
basis of concepts developed in his earlier kinematic model, he developed an automaton that he
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qualified to be cellular because it consists of an infinite 2D square grid of discrete elements (or so-
called cells, although they are not meant to represent biological cells) that can each take any of 29
available states, such as dormant, dead, alive, and multiple transmission states (with different infor-
mation transfer abilities from and to neighbors). This discretized 2D organization was personally
suggested to von Neumann by Stanislaw Ulam (1952) following his own work, “Random Pro-
cesses and Transformations.” Starting from an initial condition, the states of all elements in a von
Neumann automaton are iteratively updated using a transition rule or rule table, which defines
the state of each element at iteration 7 + 1 as a function of both its own state and the states of its
four nearest neighbors at iteration i (Figure 4a).

Astonishingly, von Neumann showed that his CA behaves as a universal Turing machine
(Turing 1937) and as a universal constructor (although he noted that the former property is not
necessary for the latter). Indeed, von Neumann found, without the help of a computer, a particular
initial pattern of nearly 200,000 elements (a large proportion of which consists of a long tail of
elements that acts as the tape interpreted by the constructor) and a rule table that jointly allow
the initial pattern to reproduce itself, exactly and ad infinitum. Importantly, both the constructor
and the input tape (i.e., the description of the constructor) are reproduced in the process. Von
Neumann’s manuscript on CA remained a draft until his death in 1957. Remarkably, von Neu-
mann proposed these logical concepts before the discovery of real life’s (biological) transcription
and translation processes. Although Arthur Burks published in 1966 a careful reconstruction (von
Neumann & Burks 1966) of the 29-state universal copier and constructor on the basis of von
Neumann’s draft manuscript and notes, the whole enterprise was validated by numerical simu-
lations only in 1995 (Pesavento 1995) due to the insufficient computing power of earlier times.
More generally, von Neumann’s work on CA shows that biological processes, including repro-
duction, can be described algorithmically and can be achieved by machines. Later work by Edgar
Codd (1968) and Christopher Langton (1984) uncovered simpler self-replicating constructors,
whereas John Conway (Gardner 1970) and Stephen Wolfram (1984a,b,c, 2002) described simpler,
yet Turing-complete, CAs.

But what is the relation between CAs and skin color patterning? Many species of snakes and
lizards exhibit a pointillist (i.e., spatially discretized) skin color pattern consisting of the juxtapo-
sition of scales of different colors, with each scale being monochromatic (Figure 4b). Although,
in some species, such as the Madagascar giant day gecko (Phelsuma grandis), the scale-by-scale
pattern is established in ovo and remains invariant after birth, other species develop their adult
scale-by-scale pattern after hatching through dynamics that consist of individual scales flipping
their state between two (or sometimes three) possible colors. Such state- and time-discretized
dynamics seem at odd with the paradigmatic continuous (at the macroscale) RD process because
the juxtaposition of skin scales (typically 0.2-5 mm in size), rather than the segregation of chro-
matophores (typically 10-20 pm), establishes the pattern. This process was initially investigated
in the ocellated lizard (Timon lepidus) (Figure 4c) where scale color flipping generates the adult
labyrinthine pattern of contrasting black and green chains of scales (Fofonjka & Milinkovitch
2021, Manukyan et al. 2017). Crucially, these patterns are not random. If they were, they would
exhibit much more frequent random clumping of scales of the same color [as formally quantified
by Manukyan et al. (2017)]. In other words, as we do not observe these random green or black
patches of scales, one can safely conclude that the process is not scale autonomous; i.e., scales can-
not have a probability of flipping color solely based on their own color. One of us (M.C.M.) then
conjectured that these macroscopic patterns are dynamically computed by a stochastic extension
of the von Neumann CA on a discrete-state dynamical lattice of skin scales (Manukyan et al. 2017);
i.e., color flipping of each skin scale is governed by its own color and the colors of its neighbors.
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We validated this conjecture by extracting the rule table of the CA from high-resolution re-
constructions (Martins et al. 2015) of dorsal skin geometry and color texture of ocellated lizards
at multiple time points (Figure 4c), from hatching to sexual maturity (occurring when lizards are
3 to 4 years old). Schematically, the probability of color switching of a given scale turned out to
increase as a function of the number of its nearest neighbors that share its color (Figure 4d): For
example, a green scale has virtually a 0% probability of switching if it is surrounded only by black
neighbors, whereas it has a maximum probability of switching to the black state if it is surrounded
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Figure 4 (Figure appears on preceding page)

Lizard skin patterning and cellular automata. (g, Jeft) So-called cells in a CA change their state at each iteration according to rules that
depend on the current cell state and the current state of the four NN (in this example, the neighborhood of the square lattice is defined
according to the convention of von Neumann: north, south, east, and west). (7, 7ight) An example of a two-state CA at a given iteration.
(b) Details of adult skin patterns of four species of lizards exhibiting scale-by-scale patterning and color flipping dynamics. (c, /eft) The
dorsal pattern of an adult ocellated lizard. (c, 7ight) The skin color pattern at different time points (days posthatching are indicated).
The patterns change as individual scales flip from green to black and black to green; distributions of the number of isochromatic NNs
are shown below each pattern (green and black curves correspond to the statistics of green and black scales). The NN statistics for true
random patterns are shown in the last time point (shaded areas indicate five standard deviations in a sample of 10,000 random draws).
(d) The probabilities of flipping for black scales (/eff) and green scales (right) are measured (aggregated results for several individuals)
and correspond to the flipping rules of a stochastic CA with two states. (¢) Configurations in two-state (black and green) CAs where the
number of NN of the opposite color is maximized. On a square lattice (/eft), two such configurations exist, whereas, on a hexagonal
lattice (right), multiple equivalent configurations exist: For example, in the case shown, all possible configurations, where question
marks are replaced by green or black elements, are equivalent in terms of the maximization of opposite-color neighbors. Abbreviations:

CA, cellular automaton; NN, nearest neighbors.

only by green neighbors; intermediate numbers of green neighbors are associated with interme-
diate probabilities of color flipping. A similar relation exists for black scales: Their probabilities
of switching to green increase with the number of black neighbors. The lattice of scales in real
lizards is not strictly hexagonal, such that any scale can have 0-7 isochromatic scales, generating
2 x 8 = 16 probabilities of color switching. Because scales of the juvenile pattern have many
isochromatic neighbors, the corresponding rate of color flips is high. Essentially, the CA per-
forms a minimization of the global scale-by-scale color flip rate. For the two-state CA on the
square lattice with four (north, east, south, and west) neighbors, two global minima are easily
defined: the two alternative regular checkerboard patterns (see left side of Figure 4€). On the
other hand, the hexagonal lattice is said to be “frustrated” because it is impossible for all hexago-
nal elements to have zero isochromatic neighbors (see right side of Figure 4¢). Hence, the global
minimization process, brought about by the CA, transforms the juvenile pattern into a labyrinthine
pattern for which the rate of scale color flipping becomes small but does not vanish (Figure 4¢,d).
These CA dynamics are conveniently mapped to the simpler antiferromagnetic Lenz-Ising model
(Jahanbakhsh & Milinkovitch 2022, Zakany et al. 2022).

But how is the CA generated? Surely, the CA cannot be the ultimate generative mechanism. It
must emerge from lower (microscopic) spatial scales. Given the large amount of data indicating,
as discussed above, that skin color patterns are produced by cell-cell interactions generating an
RD dynamical system, one of us (M.C.M.) proposed that the CA emerges from the superposition
of the RD dynamics with the 3D geometry of the lizard skin. Indeed, all skin scales develop prior
to hatching, such that the RD patterning process in juvenile ocellated lizards occurs in a field with
periodic variation of thickness (between scales and interscale skin). This, in turn, suggests that
contacts between chromatophores are substantially reduced between scales, compared to contacts
within scales, possibly transforming a continuous RD into a discrete CA. To test this RD-to-CA
conjecture, we first performed (Manukyan et al. 2017) continuous RD numerical simulations on
a 2D hexagonal lattice (with each hexagon representing the projection of a scale) (Figure 54) in
which we reduced all RD diffusion coefficients along the 1D edges of the hexagons (hence, edges
represent interscale skin). These analyses demonstrated that such a system does indeed gener-
ate not only a scale-by-scale pattern (Figure 54) but also effective CA dynamics (Supplemental
Video 4): Color switching of individual hexagons is much faster than the overall patterning pro-
cess (this is nearly equivalent to state and time discretization of a CA), and any given hexagon is es-
sentially monochromatic at any time point (this is equivalent to the spatial discretization of a CA).

Hence, these analyses demonstrated thata CA, as a distributed computational system, is not just
an abstract construct from the genius mind of von Neumann: It manifests itself upon a lizard’s back
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Figure 5

The geometry of scaled skin produces a CA. () The production of CA dynamics (Supplemental Video 4) by the 2D continuous RD
model relies on the assumption that the diffusion coefficients are scaled at 1D borders of 2D polygons by a factor P. (b) Scale-by-scale
color patterns and CA dynamics also emerge with homogeneous diffusion coefficients if continuous RD simulations are performed (lef?)
in a 3D domain of hexagonal prisms with the domain thickness reduced at the sharp borders of the prisms (Fofonjka & Milinkovitch
2021) or (right) in a 3D domain made of super-Gaussian bumps mimicking the smooth transition of height at the border of scales,
similar to the real skin geometry of lizards (Jahanbakhsh & Milinkovitch 2022). (¢) Simulation in a growing domain of super-Gaussian
bumps, showing the pattern at four stages corresponding to successive domain sizes isotropically increased by a factor of +/2. Growth
affects the scale color flipping dynamics such that the labyrinthine pattern becomes progressively more intricate because additional
elements are introduced as the absolute length scale of the pattern is conserved. Readers are referred to the Supplemental Appendices
for details on the simulations. Abbreviations: CA, cellular automaton; RD, reaction diffusion.

as a direct product of biological evolution. Importantly, Lenz-Ising, lattice Boltzmann, and CA
models (among others) have been used as computational discretization techniques of continuous
systems (Chopard et al. 2002, Deutsch & Dormann 2005, Wolfram 2002), including for animal
pattern formation (Cocho et al. 1987a,b). However, these techniques are based on the principle
that a discretized system, representing elements at the nano- or microscopic scale, can describe

Supplemental Material >

the continuous system at a larger spatial scale. What we describe here is fundamentally different:
The discrete CA of lizard’s colored skin scales emerges at the macroscopic spatial scale from the
continuous RD system at the smaller spatial scale.
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Given the resulting strong decoupling of RD behavior within and between scales, Stanislav
Smirnov at the University of Geneva, Switzerland, proposed and derived a 2D discrete RD model
on the hexagonal lattice in which diffusion is ignored (i.e., chromatophore densities are homo-
geneous) within scales but occurs at scale borders. In more technical terms, the model involves
applying the RD equations to the triangulation of the hexagons’ centers while replacing the Lapla-
cian with its renormalized discrete counterpart (Manukyan etal. 2017). Our numerical simulations
confirmed that the dynamics and probability distributions of both the continuous and discrete RD
models reduce to the stochastic CA observed on the real animals (Manukyan et al. 2017). Impor-
tantly, the 2D discrete RD model constitutes a formal link between two seemingly disconnected
dynamical systems: RD and CAs. We subsequently generalized the 2D discrete RD model by de-
riving the corresponding equations for arbitrary polygons (Jahanbakhsh & Milinkovitch 2022) to
simulate color change dynamics on realistic (nonstrictly hexagonal) lattices of skin scales.

As persuasive as all these observations can be, the mapping between CAs and 2D RD models
(where scales are projected on the plane in the form of polygons) must explicitly assume that the
reduction of skin thickness in interscale skin justifies the scaling (by a factor P) of diffusion coeffi-
cients at the 1D borders of the polygonal scales (Manukyan et al. 2017). Although the equivalence
between the factor P in two dimensions and the thickness reduction in three dimensions can be
derived (Fofonjka & Milinkovitch 2021; S. Zakany & M.C. Milinkovitch, manuscript in revision),
it would be more appropriate to let the CA dynamics emerge in a 3D domain with homogeneous
diffusion coefficients. In other words, although 3D simulations are much more computationally
intensive, they are required to let the geometry do the job without the need to introduce an ad
hoc diffusion-reduction factor at scale borders. By performing continuous RD simulations in 3D
lattices of hexagonal prisms, and also in 3D domains recapitulating the skin geometry of actual
lizards reconstructed with episcopic microscopy (Fofonjka & Milinkovitch 2021, Jahanbakhsh
& Milinkovitch 2022), we confirmed that geometry alone indeed does the job (Figure 5b;
Supplemental Video 5): Scale-by-scale color patterns and CA dynamics of skin color patterning
emerge from the underlying RD system.

RD numerical simulations also highlight the importance of considering growth of the domain.
As discussed above, when patterning is ongoing during growth, as is the case for angelfishes, but
not for zebras (because the pattern is frozen in embryos of the latter), new motifs are introduced as
a direct consequence of growth; i.e., bigger angelfishes have more stripes than smaller angelfishes
because the absolute distance between stripes is intrinsically set by the effective diffusion co-
efficients. More technically speaking, RD equations are not scale invariant (see Supplemental
Appendix 4 for details). By definition, we should observe a similar phenomenon in ocellated
lizards. And, indeed, we do (Fofonjka & Milinkovitch 2021) as growth affects the scale color
flipping dynamics such that the labyrinthine pattern of ocellated lizards becomes progressively
more intricate (Figure 5¢). In other words, as scales become larger but the pattern length scale
must remain invariant, the absolute width (in millimeters) of green stripes does not change, but
their relative width (measured in the number of scale diameters) decreases while additional, more
circumvolved, stripes are introduced.

The effective space and state discretization of the ocellated lizard skin color pattern makes the
patterning dynamics particularly prone to unambiguous quantitative investigation because, as the
topology of the lattice does not change throughout the life of a lizard (i.e., no new scale is intro-
duced or removed), one can unequivocally identify the position of black scales and green scales
at any given time point of the dynamics. But the ocellated lizard is not an isolated idiosyncrasy:
We have recently shown (Jahanbakhsh & Milinkovitch 2022) that a similar process of geometry-
constrained RD can generate very different scale-by-scale macroscopic motifs in different lizard
species (Figure 4b), such as the black and white banding of the Argentine tegu (Salvator merianae),
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the large black and orange/pink meanders of the Gila monster (Heloderma suspectum), or the yellow
speckles on a black background exhibited by the mangrove monitor (Varanus indicus). Indeed, we
have shown that both a stochastic CA and a Lenz-Ising model predict neighborhood statistics of
adult patterns in these species with similar efficiencies as in the ocellated lizard.

Additionally, we conjecture that other properties of skin color patterning in reptiles emerge
from the presence of skin scales. For example, we propose here that reptilian scales facilitate the
development of some specific motifs by their stabilization under a larger range of RD parameter
values. To illustrate this effect, we search for RD parameters of the NTKK-2009 RD model that
generate the large polygonal black contours characteristic of the throat and belly pattern of the
perentie monitor (Varanus giganteus) (Figure 6a). We find that this stationary pattern occupies a
very limited portion of the parameter space (Figure 6b). It could be argued that this observation
makes the validity of the model suspicious (as far as the perentie monitor pattern is concerned)
because fine-tuning is poorly compatible with evolutionary stability. Indeed, as genetic mutations
can affect RD parameters, a pattern that is associated with a very limited range of parameter values
is unlikely to evolve and/or to be easily maintained across many generations (i.e., the trait would
need to be under very strong selection and/or very low mutation rates). However, we find that
a much larger range of parameter values produces similar polygons but they are nonstationary:
Edges move across the RD field in an ever-changing pattern until the field eventually homoge-
nizes. In other words, the pattern is perentie-like at some time points, but it does not stabilize
in time (contrary to what we assume to occur in real perentie monitors). We show here that, re-
markably, a large portion of this unstable zone in parameter space readily stabilizes (and produces
stationary perentie patterns) when periodic variation of the skin thickness is introduced in the
form of skin scales (Figure 6¢). Hence, we propose that the presence of scales in squamate reptiles
makes some stationary patterns more likely to evolve and more robust against mutational noise.
Alternatively, one could argue that the perentie pattern is nonstationary but it becomes frozen
at some point during development (as discussed above for zebras). However, we do not favor, a
priori, this alternative explanation because it would make the existence of the pattern sensitive to
variation of the time of freezing.

2.5. Reaction Diffusion Predicts the Positions of Dark and Light Scales
in Lizards

The description of the skin color patterning of the ocellated lizard, the Argentine tegu, the Gila
monster, the mangrove monitor, and many other species as a stochastic CA captures three essential
features: the spatial discretization of the pattern, as well as the time and state near discretization
of the dynamics. However, the underlying RD process is clearly continuous in time: Scale color
switching is fast but not instantaneous. Hence, the approximation brought about by state dis-
cretization might be a source of the stochastic character of the CA derived from the observations
of color patterning in real lizards. In other words, one could argue that the deterministic and
continuous-state RD framework might capture some scale-by-scale skin color patterning features
better than the stochastic discrete-state CA and Lenz-Ising models. We have seen above that this
is not the case for general statistical features of the pattern: RD, CAs, and the Lenz-Ising model all
predict with very similar efficiencies the neighborhood distributions of very different steady-state
patterns observed in different species.

On the other hand, because RD (#) implicitly integrates (whereas CA and Lenz-Ising models do
not) a relation between the pattern and growth and (b) can exploit the continuous-state distribu-
tion of scale colors both at the initial condition and during patterning, RD might better predict the
exact positions of black and of green/yellow scales in specific individuals for which the initial con-
dition (juvenile pattern) has been recorded. Such an ambition might sound unreasonable because
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Figure 6

The skin pattern of perentie monitors is likely stabilized by the presence of scales. (#) Perentie monitors
(Varanus giganteus) exhibit large polygonal black contours on their throat and belly. The magnified image on
the right shows that the pattern is discretized scale by scale. (4, top) Two snapshots from simulation of the
NTKK-2009 RD model with diffusion coefficient ratio d = D,,/D,, = 12. Transient perentie-like patterns
(snapshot T'1) emerge, but they are not stationary and disappear at steady state. (b, bottonz) Transient and
stationary patterns obtained with continuous RD in two dimensions when varying the diffusion coefficient
ratio d (logarithmic scale): Stationary patterns are obtained only for d > 65 (red arrow), whereas
nonstationary patterns are obtained for d < 65 (blue arrow); hence, no stationary pattern is obtained for

d = 12 (blue line), i.e., the value used at the top. (c) Same continuous RD simulations as in panel  but with a
superimposed hexagonal lattice of scales, and diffusion coefficients are scaled by P = 0.15 at scale borders. In
that case, stationary steady-state perentie-like patterns emerge for a much larger range of d (red arrow),
including for d = 12, i.e., the value used at the top. Nonstationary patterns are obtained for d < 11 (blue
arrow). Readers are referred to the Supplemental Appendices for simulation details. Abbreviation: RD,
reaction diffusion.

many of the underlying cellular and molecular variables are ignored in the phenomenological
RD model. Yet, we previously revealed (Jahanbakhsh & Milinkovitch 2022) that continuous-state
color measured in real individual juvenile lizards indeed allows us to predict the corresponding
adult patterns much better with RD (mean residual scale-by-scale error of 23.6% in ocellated
lizards) than with CA or Lenz-Ising models (mean residual error of 38.9%). Further analyses
indicated that, because not all scales are identical in geometry, one-third of the RD residual
unpredictability is caused by skin geometry variation. Indeed, when the standard deviations of
thickness, both among scales and among scale borders, measured in real lizards with episcopic mi-
croscopy, are introduced in 3D RD simulations, the mean unexplained residual unpredictability of
real individual scale-by-scale patterns by RD falls to 15.1% (Jahanbakhsh & Milinkovitch 2022).
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We then reasoned that the most likely remaining source of unpredictability corresponds to the
sensitivity of the nonlinear dynamical system to initial conditions: Initial uncertainties of color
measurements (transferred to the space of RD component concentrations using an appropriate
transformation matrix) in a juvenile are likely to grow as an RD simulation of the patterning pro-
cess progresses in time. To quantitatively assess this effect, we used Lyapunov spectrum analyses to
compute the expected scale-by-scale error at the adult stage given a range of arbitrary uncertain-
ties at the initial condition (Jahanbakhsh & Milinkovitch 2022). We then judged that the decision
to define the color of a scale (from high-resolution color pictures) as the mean among pixels within
that scale is arbitrary. We then identified that using the mode, the median, or the mean among
the pixels within each juvenile scale yields colors that are indistinguishable by eye, yet the differ-
ences between these values generate a mean scale-by-scale error in the adult of 16.1%, therefore
explaining most, if not all, of the 15.1% mean residual unpredictability of the actual adult lizard
patterns. Note that residual unpredictability is not sensitive to fine-tuning of the RD model pa-
rameter values: Perturbing these values generates much smaller mean scale-by-scale errors than
uncertainties in skin geometry and in juvenile colors (Jahanbakhsh & Milinkovitch 2022). Re-
markably, these results in ocellated lizards can be generalized to the Argentine black and white
tegu, the Gila monster, and the mangrove monitor: The mean residual error in each of these
species is explained by a combination of uncertainty in the spatial distribution of skin thickness
and in color measurement at the initial condition (Jahanbakhsh & Milinkovitch 2022). Hence, the
phenomenological deterministic RD model itself is not the source of the residual error: It does
generate high predictability of dark and light scale positions in individual adult patterns, without
the need to parameterize the system down to its many cellular and molecular variables.

2.6. Phenomenological Reaction-Diffusion Models Are Unreasonably Robust

Possibly the most frequent criticism toward the use of effective phenomenological models is that
they are necessarily wrong in the sense that they ignore much of the underlying molecular de-
tails. However, this is an ill-defined criticism. Indeed, such an argument would make wrong any
scientific hypothesis ignoring the smallest spatial and temporal scales. After all, nobody seriously
challenges cell biology or molecular biology approaches because they ignore quantum mechanics,
despite the efficiency and relevancy of this framework at very small spatial scales. The important
question for evaluating the efficiency of any model/theory is how robustly it predicts observations.
If the topic of interest lies in understanding the meso- and macroscopic skin color patterning pro-
cess in vertebrates, we can safely consider that RD is very, possibly “unreasonably,” efficient and
robust at multiple levels. First, as discussed above, the NTKK-2009 RD model developed to pre-
dict skin color patterns in wild-type and mutant zebrafishes (Nakamasu et al. 2009) captures most
of the underlying dynamical processes shared among vertebrates (and possibly beyond) such that it
also predicts the CA-like scale-by-scale color patterning of the skin in multiple lizard species when
it is combined with the periodic variation of skin thickness introduced by skin scales in multiple
species of lizards (Fofonjka & Milinkovitch 2021, Jahanbakhsh & Milinkovitch 2022, Manukyan
et al. 2017). Second, as far as the discretized dynamics observed in lizard skin color patterning is
concerned, not only the unmanageable profusion of variables at the nanoscopic and microscopic
scales but also the specificities of the NTKK-2009 model become irrelevant. Indeed, snapping of
the pattern to the borders of the scales and the CA-like behavior are robust to very large varia-
tions of the model as they both occur irrespective of the system of nonlinear PDEs that is used
(Fofonjka & Milinkovitch 2021). Third, the emergence of a CA behavior is also robust to alter-
ations of the real skin geometry (Fofonjka & Milinkovitch 2021, Jahanbakhsh & Milinkovitch
2022): A transition between continuous and discrete patterns is triggered in basically any 3D lat-
tice where some nontrivial reduction of skin thickness occurs at scale boundaries. These second
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and third points indicate that the effect of 3D geometry on pattern formation is likely to be very
general.

Finally, a model/theory is particularly useful if it can robustly predict unknown results
attainable through experiments. Such a case recently occurred during our investigations of scale-
by-scale RD patterning. Although we always assumed that such a process generates only two
discrete states (e.g., green and black in ocellated lizards), numerical simulations on the regular
hexagonal lattice unexpectedly identified steady-state subclusters in color distribution within the
two large clusters of green and black scales (S. Zakany & M.C. Milinkovitch, manuscript in revi-
sion). The differences of greenness or blackness (expressed in RD component densities) between
scales belonging to different green or black subclusters are typically small, but they are unambigu-
ously defined by the general state (green or black) of the scales’ nearest neighbors; i.e., green scales
surrounded by zero, one, two, three, four, five, or six green neighbors exhibit distinct (nonoverlap-
ping) values of green. Similarly, seven levels of black are associated with black scales surrounded
by zero to six black scales. Again, the relevant question is whether this feature (subclustering) is
an oddity specific to the RD model (hence, has no relevance with the real biological patterning
system), or whether it reflects an undetected reality. As real lizards do not exhibit a perfectly reg-
ular hexagonal lattice of scales, we first evaluated if the dependence of color on the number of
isochromatic nearest neighbors would stand in lattices where the hexagon centers are randomly
displaced with various levels of noise. These analyses indicated that the greenness of a green scale,
or the blackness of a black scale, strongly correlates with L, i.e., the sum of side lengths L,; that
the polygonal scale k shares with its first-neighbor polygons % of the same general color (green or
black) (S. Zakany & M.C. Milinkovitch, manuscript in revision). As a consequence, the correla-
tion between the color of scales and their neighborhood configuration is maintained in perturbed
lattices (even in quasi-hexagonal networks of skin scales reconstructed from real ocellated lizards),
but the subclusters increasingly overlap as the noise in the positions of polygon centers is made
larger. The color subclustering phenomenon occurs with continuous and discrete RD models as
well as in bona fide 3D domains of skin scales. Similar to the robustness of the scale-by-scale CA
dynamics discussed above, subclustering is robust to very large modifications of the RD model
and even occurs in one-component models with nonlinear competition between two stable steady
states (S. Zakany & M.C. Milinkovitch, manuscript in revision).

To assess whether such subclustering occurs in actual lizards, we analyzed the colors of in-
dividual scales with hyperspectral imaging in adult ocellated lizards and revealed that subtle
neighborhood-dependent color subclustering (not visible with the naked eye) is indeed present
in these animals (S. Zakany & M.C. Milinkovitch, manuscript in revision). Confirming in real an-
imals this nontrivial prediction of the numerical model demonstrates, as for the prediction of the
CA dynamics, that phenomenological RD models robustly capture relevant underlying dynamics.
Possibly even more surprising is the ability of these models to capture features that can be identi-
fied at the cellular scale. Indeed, using histological serial sections, we have shown that the positions
of melanophores within a given scale correlate with () the corresponding numerically predicted
color subcluster of that scale, hence (b) the number of its isochromatic neighbors. In conclusion,
irrespective of their form, discretization, and spatial dimensionality, phenomenological RD mod-
els are unreasonably robust in predicting some specific features of the dynamical self-organization
system, such as CA dynamics, as well as much more subtle color subclustering.

3. CONCLUSIONS

Given the data available to date, the “unreasonable effectiveness of RD” becomes less surpris-
ing for the following five reasons. First, all experimental results strongly support the notion that
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skin color patterning in vertebrates is a self-organized process; i.e., skin patterns autonomously
emerge from specific interactions among the chromatophores themselves. These interactions have
been shown to affect cell-specific processes such as migration/dispersal, survival, proliferation,
and differentiation. Second, the presence of short- and long-range cell—cell interactions (the lat-
ter occurring via long thin cell projections) is effectively equivalent to slow- and fast-diffusing
morphogens, making the RD mathematical framework appropriate. Third, patterning of skin col-
ors does not seem to involve any dominating mechanical component. This must be contrasted
with multiple mechano-chemical morphogenetic processes (Ho et al. 2019, Stooke-Vaughan &
Campas 2018) that cannot be effectively described with RD alone. Fourth, although the under-
lying molecular and cellular dynamics occur at the nano- and microscopic scales, the trait of
interest (skin color patterns) and its dynamics of development occur at the meso- or macroscale.
A continuous deterministic model such as RD is therefore pertinent because it describes
how averages of chromatophore densities vary at the macroscopic scale (as discussed in de-
tail in Supplemental Appendix 5). Fifth, growth can readily be integrated into RD models
(Fofonjka & Milinkovitch 2021, Jahanbakhsh & Milinkovitch 2022). Indeed, as RD implicitly
integrates a relation between the pattern absolute length scale and the size of the domain in which
it occurs, this mathematical framework allows the effective recapitulation of skin color pattern
dynamics that usually do not scale as body size increases. We, however, also discussed the fact
that mechanisms appropriately scaling reaction parameters may generate scaling Turing patterns
(Ishihara & Kaneko 2006). Hence, we conclude that RD systems can indeed capture most of the
functionally relevant behavior of skin color patterning without the need to parameterize the un-
manageable profusion of variables at the nanoscopic and microscopic scales (Milinkovitch 2021).
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