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Abstract

Income distribution embeds a large field of research subjects in economics.
It is important to study how incomes are distributed among the members of
a population in order for example to determine tax policies for redistribution
to decrease inequality, or to implement social policies to reduce poverty.
The available data come mostly from surveys (and not censuses as it is often
believed) and are often subject to long debates about their reliability because
the sources of errors are numerous. Moreover the forms in which the data
are available is not always as one would expect, i.e. complete and continuous
(micro data) but one also can only have data in a grouped form (in income
classes) and/or truncated data where a portion of the original data has been
omitted from the sample or simply not recorded.

Because of these data features, it is important to complement classical
statistical procedures with robust ones. In this paper such methods are pre-
sented, especially for model selection, model fitting with several types of data,
inequality and poverty analysis and ordering tools. The approach is based on
the Influence Function (IF') developed by Hampel (1974) and further devel-
oped by Hampel, Ronchetti, Rousseeuw, and Stahel (1986). It is also shown
through the analysis of real UK and Tunisian data, that robust techniques
can give another picture of income distribution, inequality or poverty when
compared to classical ones.

Key words: income distribution, inequality, poverty, robust sta-
tistics, influence function, model choice, grouped data, censored
data, stochastic dominance.



Résumé

La distribution des revenus comporte une importante quantité de do-
maines de recherche en économie. Il est important de pouvoir étudier com-
ment les revenus sont répartis au sein des membres d'une population pour
pouvoir par exemple définir une politique de taxation et de redistribution afin
de diminuer 'inégalité, ou implémenter des actions sociales pour diminuer la
pauvreté. Les données a disposition proviennent essentiellement d’enquétes
(et non pas de rencensemment comme on pourrait le croire) et leur fiabilité
souleve de grands débats car les sources d’erreur sont nombreuses. En plus,
les données peuvent ne pas se présenter sous la forme habituelle de données
continues et complétes, mais sous forme groupée (revenus par classe) et/ou
sous forme censurée a savoir qu'une partie des revenus a été enlevée de
I’échantillon ou simplement non enregistrée.

A cause de la particularité des données, il est important de compléter
les analyses statistiques classiques au moyen d’analyses robustes. Dans cet
articles de telles méthodes sont présentées, spécialement pour la sélection de
modele, I'estimation de modele avec différents types de données, ’analyse
de l'inégalité et de la pauvreté, et pour les outils de comparaison de distri-
butions. L’approache est basée sur la fonction d’influence (IF') développée
par Hampel (1974) et ensuite par Hampel, Ronchetti, Rousseeuw, and Sta-
hel (1986). On montre aussi a travers l'analyse de données réelles Britan-
niques et Tunisiennes que les procédures robustes peuvent donner une autre
représentation de la distribution des revenues, de I'inégalité et de la pauvreté
lorsqu’elles sont comparées a des procédures classiques.



1 Introduction

In the field of welfare economics, income distribution plays a central role.
The different possible analysis are for example the data fitting with appro-
priate models that describe the distribution of incomes, the choice of the
appropriate model, testing its goodness of fit, the computation of inequality
indices, comparisons of distributions using ordering tools such as the Lorenz
curve, and the evaluation of poverty. Statistical inference is an essential is-
sue, since one deals with data that mostly come from surveys and by the way
it is done will influence the resulting economic policies, such as fiscal policies,
investment policies, labour policies and redistribution policies.

Survey data are often subject to long debates about their reliability be-
cause the sources of errors are numerous (see e.g. Groves (1989). In the
context of income distribution, it often happens that data providers will
modify raw data to eliminate negative incomes or zeros (Jenkins (1997) or
to censor high incomes for confidentiality reasons (Fichtenbaum and Shahidi
(1988). Moreover, what constitutes an “income” is not always well perceived
by people filling in the questionnaires. The time span during which the in-
come is received is also a source of confusion (weekly, monthly, annual?)
which might produce for example for some respondents monthly incomes
when weekly incomes are in fact expected. The economic unit (person, nu-
clear family, household) doesn’t include the same type of people depending
on the country. The impact on estimates can be really serious (see e.g.
Van Praag, Hagenaars, and Van Eck (1983).

Apart from the sources of “errors” for incomes, there might also be legiti-
mate but extreme incomes that do not “fit” into the picture presented by the
majority of the data. These incomes might be very small (from people whose
beliefs make them choose to live with very little) or exceptionally very large,
for example lottery winners (see e.g. Prieto Alaiz and Victoria-Feser (1996)
or the famous German farmer who reported an income of 1000000 DM per
month in the Luxembourg Income Study 1981 (German dataset). Though
extreme incomes are clearly important from the point of view of the political
authority, one can argue that they should have a limited influence when the
goal of the study is to derive inequality or poverty measures or even other
economic indicators that should reflect the economic and social situation of a
given region as a whole. This is even more important when these indicators
are fed (automatically) as parameters in more complex econometric models



which are used to compare different countries possibly over time.

It should also be stressed that on top of the problem of reliability, the
forms in which the data are available is not always as one would expect,
i.e. complete and continuous (micro data) but one also can only have data
in a grouped form (in income classes) and/or truncated data where a por-
tion of the original data has been omitted from the sample or simply not
recorded. This produces serious difficulties when it comes to estimation (see
e.g. Ben Horim (1990, Nelson and Pope (1990).

Given the structure of the data and the possible “unusual features”, the
models that are supposed to describe them can only be thought of as ap-
proximations to the reality. Robust techniques appear therefore as natural
candidates to try to partially alleviate the problems associated with income
data. In this paper we review some aspects of the application of such tech-
niques to the problem of the analysis of income distribution, inequality and
poverty. More details can be found in Cowell and Victoria-Feser (1996a,
1996b, 1996¢), Victoria-Feser (1993,1997) and Victoria-Feser and Ronchetti
(1994,1997).

2 Model formulation

Let F' € § be the true income distribution which belongs to the family §
of distribution functions. The income distribution might depend on a set
of parameters ¢ and in that case we would write Fy. What we observe is
a sample of n incomes denoted by xi,...,z, generated independently by
an approximation of F. In order to represent the impact of contamination
on an income distribution we need a specific model of the contamination.
Consider the elementary distribution G*) € § which has a unit point mass
at an arbitrary point z and zero mass elsewhere:

G (z) = o[z > 2). (1)

where ¢ is the indicator function defined by

1 if D is true
(D)= { 0 if D is false .

We may use this to model an elementary form of contamination. Suppose
that there is a small amount of undetectable contamination at point z in



the income distribution. Then the sample which is actually observed will
of course not be a realization of the true distribution F' but of a mixture
distribution F*) where

F9(z) :=[1 — e]F(z) + eG¥(x). (2)

The parameter ¢ is used to capture the importance of the contamination rela-
tive to the true data. Hence, an observation drawn from Fg(z) has probability
(1—¢) of being generated by F' and probability ¢ of being equal to z. It should
be noted that F1¥ is a particular case of a more general mixture distribution
of the type [1 — ¢]F(x) 4+ eG(x) where G is any distribution. However, for
our purpose, this particular mixture distribution is not restrictive.

The central issue with which we are concerned can then be stated as
follows. Suppose we wish to fit the model F' to the data or choose among
possible models in § to fit the data, or compute an inequality index, or rank
two distributions F'1 and F2 € § , or compare the poor in populations F'1
and F2 € §. Will the resulting analysis which will actually be based on F' 1)
(and F 2&2)) give very misleading answers? If the amount of contamination
is large relative to the true data then we might reasonably conclude that
nothing much can be expected from the statistical analysis. However, if
the amount of contamination is relatively small, we might reasonably expect
that statistical inference should be robust under contamination, and might
be concerned when this is not the case.

For any statistic 7' this idea can be made more precise by introducing the
influence function I F. This is obtained by taking the derivative with respect
to £ of the statistic at X when ¢ — 0 thus:

0

IF(z;T,F) = %T(Fg@) : (3)

e—0

The IF for the statistic T' measures the impact upon the estimate of an
infinitesimal amount of contamination at the point z. It is a function of
z, the point at which the contamination occurs. If the I F is unbounded for
some value of z it means that the T-statistic may be catastrophically affected
by data-contamination at income values close to z.

The IF was first introduced by Hampel (1968 (Hampel (1968, Hampel
(1974) and can be thought of as a first-order approximation of the bias on
the statistic due to the introduction of the contamination. In other words,
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if one plots the maximum (absolute) bias of the statistic as a function of ¢,
then the maximum (absolute) value of the I'F' is the slope of the tangent
at ¢ = 0. This means that if the [F' can be infinite, then so can be the
bias of the statistic (see Hampel, Ronchetti, Rousseeuw, and Stahel (1986).
Moreover, the IF' describes the worst bias upon 7" when contamination of
any kind (i.e. not restricted to G*) but say G, where G is any distribution)
is introduced in the model (see Hampel, Ronchetti, Rousseeuw, and Stahel
(1986).

The [F' has two main functions: it can be used to study robustness prop-
erties of statistics and to build robust estimators and robust test procedures.
In the context of income distribution it has been used in particular to assess
the robustness properties of inequality and poverty measures and ranking
tools (see Cowell and Victoria-Feser 1996a, 1996b, 1996¢). In the general
context of parametric estimation, the I F' has been used to define robust es-
timators. Indeed, the problem is first to find a general class of estimator
and then within this class choose a robust one in an optimal way as it will
be explained below. The class of M-estimators (Huber (1964) constitutes a
good basis. It is given for a general parametric model Fy and for a sample of
n independent incomes x1,...,x, by the solution in 6 of

Z W(zi;0) =0
i—1

where 1) is a very general function. A particular case is given by the MLE
when (z;0) = s(x;0). Another particular case is given by the optimal
B-robust estimator (OBRE) of Hampel, Ronchetti, Rousseeuw, and Stahel
(1986). The OBRE is optimal because it has the minimum (trace of the)
asymptotic covariance matrix among the M-estimators with bounded (by a
constant ¢) IF. There are actually several OBRE depending on the way the
IF' is bounded. The standardised OBRE is defined as the solution in 6 of

n

Z [s(x;0) — a] we(zi;0,A) =0 (4)

1=1

where

wdad) =min{ s e )



are the weights of the Huber function (Huber 1964, 1981), s(+; #) is the score
function and the vector a = a(f) and matrix A = A(f) are defined implicitly
by

E [[s(z;0) — a][s(z;0) — a]"we(z;a,A)*] = ATTATT (6)

E [s(z;0)we(x;a, A)] = a (7)

A and a insure efficiency and consistency of the estimator. One can see
in (4) that the robust estimator is relatively simple. It can be seen as a
weighted MLE with weights given by (5) for data lying far from the bulk.
It should be stressed that the OBRE is by construction robust not only to
gross errors (outliers) but also to slight model misspecifications. Indeed, it
has a bounded IF which measures the influence upon the estimator of any
type of model misspecification. The degree of robustness is controlled by
c. To gain robustness one should lower ¢ and it is easy to see that when
¢ — 00, we(zr;a,A) — 1, then a — 0, ¥(x;0) — s(x;0) and one gets the
MLE. However, there is a price to pay and this price is an efficiency loss. In
practice one can choose ¢ so that the OBRE has 95% efficiency compared to
the MLE and still has good robustness properties.

When analysing income data, one doesn’t always have continuous and
complete data. In these cases, it was necessary to develop new robust esti-
mators and a similar approach to Hampel, Ronchetti, Rousseeuw, and Stahel
(1986) was used leading to robust estimators of the same type as in (4). The
same can be said about testing procedures. In the following sections we
review some of the recent developments in robust statistics for income dis-
tribution by type of data and/or type of analysis.

3 Fitting continuous and complete data

The problem here is how to estimate 6 given a parametric model Fy that
supposedly describes the distribution of incomes. It is now widely known
that the maximum likelihood estimator (MLE) is in general not a robust
estimator. This is true for all the known models for income distribution (see
Victoria-Feser (1993). With continuous and complete data, the OBRE is a
suitable candidate for the parameters of income models such as the Gamma
distribution which depends on two parameters and the Dagum type I (Dagum
(1980) which depends on three parameters. The first parameter is usually for



the scale, the second is for the shape of the distribution and a third parameter
is sometimes added to model the thickness of the right tail.

As an example, we try to fit one data set to the income distributions
mentioned above using the MLE and the standardized OBRE. Our data set
is based upon a subsample (n = 746) of a standard data set of disposable
income in the UK, 1979, where the income receiver is the household in receipt
of social benefits (see Department of Social Security (1992). A Gamma dis-
tribution is first fitted. The histogram of the data and the estimated densities
(MLE and OBRE, ¢ = 2) are presented in Figure 1.

Figure 1 here

We can see that the MLE based on the Gamma model provides a very
poor fit, whereas the OBRE captures the bulk of the data in the center of
the distribution. It better estimates the mode of the distribution, but at
the cost of underestimating the masses at the extremes (i.e. high incomes).
These extreme incomes represent a small proportion of all incomes and while
the MLE tries (not too successfully) to accommodate them, the OBRE con-
centrates on the more probable incomes, i.e. the ones around the mode of
the distribution. One could argue that two parameters are not sufficient to
describe this dataset, and that a third one is needed. The question is then: is
it worthwhile to add a parameter to model a few extreme values and are we
really safe with one more parameter? To give an element of answer to this
problem, we choose to fit a Dagum type I distribution to the same data set.
The histogram of the data and the estimated densities (MLE and OBRE,
¢ = 2) are presented in Figure 2. We can see that with an extra parame-
ter for the thickness of the right tail (to model extreme values), the MLE
based on three parameters provides a better fit to these data as with a two
parameters model, but it still underestimates the mode of the data, which is
not the case with the OBRE. With a three parameters model however, the
difference between the two estimators is reduced.

Figure 2 here

With this example we showed that the use of a robust estimator to fit a
distribution can at least give another picture. This is of course possible pro-
vided that a correct (approximate) model can be specified. In the following
section we discuss a testing procedure that allows one to select robustly a
model among competing ones.



4 Choosing between two models

The problem here is that of choosing a model which, according to certain
criteria, best represents the data. With income distribution models we can
follow two approaches. One is to first fit a super model to the data, that
is one with four parameters such as the generalized Beta distributions (see
McDonald and Ransom (1979) which includes most of the models proposed to
describe the distribution of incomes, and then test for the significance of the
parameters. However, we found that in practice, estimating four parameters
models is numerically very difficult even for the MLE, and becomes nearly
impossible with the OBRE. Moreover, this procedure supposes that we have a
super model at hand and this is not always the case in other types of analysis.
We therefore follow the approach of Cox (1961, 1962) to test between two
non-nested hypotheses.

In general, it is assumed under H, (the hypothesis under test) that the
model is F? and that under H; (the alternative hypothesis) the model is F 51
with @ and (8 being two sets of parameters. Atkinson (1970) and others have
shown that the Cox test statistics can be interpreted as a Lagrange multiplier
or score test on Hy : A = 1 (against Hy : A # 1) for the comprehensive model

-1

fo(zsa,8) = fOz;a) - fHa; B) U oy ) fHy; B) Ny

where f* and f! are the densities of F) and F. In practice one needs to
estimate o and (8 which is done using the MLE (or pseudo MLE, i.e. the
MLE under one of the hypothesis). The asymptotic null distribution of the
test statistic is the Normal distribution.

Cox’ test statistics have been often criticized for several reasons. One is
the lack of accuracy of the approximation of the sample distribution of the
statistic by its asymptotic distribution. Another reason but at least as impor-
tant is the lack of robustness of the testing procedure. Robustness in testing
has been introduced by Ronchetti (1982), Rousseeuw and Ronchetti (1979,
1981) who were the first to adapt Hampel’s optimality problem for estimators
to testing procedures. Hampel’s optimality problem for testing procedures
can be stated as: Under a bound on the influence of small contamination
on the test’s level and power (robustness requirement), the power of the
test at the ideal model is maximized (efficiency requirement). Victoria-Feser
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(1997) shows that Cox’ test statistic is not robust in that an infinitesimal
amount of contamination can lead to a significant test when the true model
is the one under Hy, or in other words that the I F on the level of the test
is unbounded. The interesting point is that it is not enough to use robust
estimators for o and 3 in order to get a robust testing procedure, one also
needs to downweight the influence of extreme data on the test statistic it-
self. Victoria-Feser (1997) therefore proposed a robust Cox-type test statistic
based on the results for general parametric models of Heritier and Ronchetti
(1994).

The asymptotically normal robust Cox-type or generalized Lagrange mul-
tiplier (GLM) test statistic is given by

n

1 . 0 . .
Ucim = - ; [A(m)so(l"i; &) + Agg) D log f€(zs; &, B)

- a(2)H we(zi; A, a)
A=1

where & is the MLE of «,

C
we(z; Aya) = min < 1; - -
{ | Aar)s°(25.6) + Ay [ 55 log fo(36, 8], — ae]| }

and the vector A(s1) (1 xdim(«)) and the scalars Az and a2) are determined
implicitly (see Victoria-Feser (1997). As with estimators, the robust test
statistic can be seen as a weighted classical Cox-type test statistic. In fact,
when ¢ — 00, we get the classical Cox-type test statistic. Note also that in
practice [ needs to be estimated consistently like by means of the MLE.

A simulation study shows the performance of the Ugpy when compared to
the classical Cox-type statistics. Contaminated and uncontaminated Pareto
samples of size 200 were simulated (with shape parameter o = 3 and fixed
scale parameter ) and the Pareto distribution against the truncated Ex-
ponential distribution was then tested using a classical and robust (¢ = 2)
Cox-type test statistic (see also Victoria-Feser (1997)). It should be noted
that the Pareto distribution is used to model zeromodal income distribu-
tions such as high incomes. The samples were contaminated by means of
(1 —¢/v/200)F, -, + £/+/200F, 19.,, where for each amount of contamination
1000 samples were generated. The amount of contamination here is of the
type €/y/n which is appropriate in testing procedures (see also Heritier and
Ronchetti (1994). Table 1 gives the actual levels of the classical and robust
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Atkinson statistic, i.e. the ones obtained by the simulations. These levels
are actually the proportion of times the test is significant when testing the
Pareto against the truncated Exponential and the test is not significant when
testing the truncated Exponential against the Pareto.

Classical statistic Robust statistic

Amount of Nominal levels Nominal levels

contamination ¢ | 1% 3% 5% 10% | 1% 3% 5% 10%
0% 2.1 3.1 3.5 521 1.3 3.5 55 10.2
3% 6.3 87 103 14.7| 1.2 33 51 10.3
6% 13.1 185 225 276| 14 36 54 107
10% 244 313 352 439 1.3 30 56 114
15% 356 446 499 581 14 41 79 145
20% 46.3 542 586 671 09 41 76 145

Table 1: Actual levels of the classical and robust (¢ = 2)
Cox-type test statistic (Pareto against Exponential)

We can observe that the classical statistic has a very strange behaviour
since when there is no contamination the null hypothesis is under-rejected
and with only small amounts of contamination, the null hypothesis is over-
rejected. The first phenomenon is probably due to the fact that the approx-
imation of the actual distribution of the Cox-type statistic by means of its
asymptotic distribution is not accurate and the second phenomenon is the
lack of robustness. On the other hand, we find that with the robustified test
statistic not only the asymptotic distribution is a good approximation of its
sample distribution, but also that the small departures from the model under
the null hypothesis do not influence the level of the test at least for amounts
of contamination up to about ¢ = 10%. With more contamination, the null
hypothesis tends to be slightly over-rejected at the 5% and 10% levels, but
this is not too drastic compared to the classical case. In other words, the
robust test is very stable.

5 Fitting truncated data

By truncated data is meant that for a subset of the space in which the
incomes are defined (typically the real line) no information is given about
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the nature of incomes that belong to that subset. The reasons why there is
no information can be different, like for example reasons of confidentiality
when high incomes (i.e. those exceeding a fixed level) are not disclosed by
data providers, or for practical reasons mentioned in the introduction. With
income data from surveys there might also be the problem of nonresponse
which is a more complex problem than the one supposed here. Indeed, it is
arguable that nonresponse rates may vary depending on the level of income
so that an appropriate model that takes into account this relationship is
needed: see for example Little and Rubin (1987).

To tackle the problem of truncated data, Victoria-Feser (1993) proposes to
use either the marginal distribution or a generalization of the EM algorithm
(Dempster, Laird, and Rubin (1977) for M-estimators (EMM algorithm). Let
X C R be the subset of values of income for which cases are observed and
X C R the subset for which they are not. The EMM algorithm defines an
OBRE-type estimator with truncated data and is given by the solution in
of

n

/_[s(x; 0) — al we(x; A, a)ng(x)—i-/ ng(x)l Z [s(x;0) — a] we(zi; Aya) =0

ES X N
(8)

where w,, A, and a are defined as in (5), (6) and (7). The first part of (8)
estimates the missing part (expectation step) while the second part of (8)
defines the maximization step.

Another approach would be to consider the marginal distribution, i.e.

Fy

and consider its score function and use the OBRE for continuous data. This
approach and the EMM one are in general different (they are equivalent for
the MLE), but their difference is small and due to the assumptions on the
underlying model. Indeed, contrary to the marginal distribution approach,
the EMM algorithm assumes that the underlying model is the complete one
i.e. Fy and not (9). This leads to a difference in the way the weights as-
sociated to each observation are computed; see Victoria-Feser (1993). To
show the properties of the EMM approach with truncated data, we present
a simulation study. Table 2 gives the bias and the MSE for the MLE and
the OBRE (EMM) in the case of contaminated and truncated data (below a

9)
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minimum value), that where generated by a Gamma distribution with scale
parameter A = 1 and shape parameter &« = 3. The contamination consists
on 1% of randomly chosen data ten times their value.

Information | Parameter | OBRE MLE

loss (%) Bias ~ MSE | Bias MSE

7.5 Q 0.07 0.24 | -2.39 5.71
A 0.02 0.03 | -0.75  0.57

2.5 Q 0.06 0.17 | -2.39 5.71
A 0.02 0.0202 | -0.78 0.39

Table 2: Bias and MSE of the OBRE (c = 2)
for truncated Gamma data

The behaviour of the MLE is not satisfactory, whereas the OBRE has
a small bias. In fact, the MLE is even more biased than in the case of
complete data (see Victoria-Feser and Ronchetti (1994). This is not surpris-
ing, for truncating means incomplete information and robust estimators are
constructed to deal with approximate models.

6 Fitting grouped data

Another feature of income data is that they can be available only in a grouped
form, i.e. in the form of frequencies per class. In these cases the OBRE of
(Hampel, Ronchetti, Rousseeuw, and Stahel (1986) cannot be used as such.
The problem can be thought as a discrete data problem with a continu-
ous underlying model. In addition to the usual effects of contamination,
we have in this situation grouping effects where some observations may be
shifted from one class to another because of rounding errors or class defini-
tion. A general class of estimators (Minimum Power Divergence Estimators
or MPE) for the parameters of the underlying model based on grouped data
was defined by Cressie and Read (1984). It includes the MLE, the minimum
Hellinger distance estimator (MHDE), the estimator based on Pearson y?2,
etc. Though their [F is bounded, deviations from the underlying model can
cause a large bias especially in classes with low probabilities. Victoria-Feser
and Ronchetti (1997) propose a more general class of estimators contain-
ing the MPE, called MGP, which can be seen as M-estimators for grouped

14



data. An optimal estimator (OBRE) that minimizes the asymptotic covari-
ance matrix under a bound on its IF is derived, and it is shown that for
a small efficiency loss, it is more robust than its classical (MPE) counter-
part. Let p; be the observed relative frequencies in J non overlapping classes
L,...,I;and k;(0) = [ 1 dFy(z) the corresponding true relative frequencies,
the optimal MGP estimators are then given by the solution in € of

XJ: ( kﬁ’é)y A {%/@(9) - akj(e)] we,i(A,a) =0 (10)

J=1

where «y is an arbitrary constant (to be defined),

we,;(A, a) = min {1; | A [ logk;(0) — d] | }

and where the matrix A = A(f) and vector a = a(f) are determined implicitly
by the equations

> 55(0) = 0k (0)] (4, 0) =0

5 A 5yl0) — aks0)] g o Oy (o) = 1

Note that (10) defines a set of robust estimators. Each classical estimator
has its robust counterpart. For example, the robust version of the MLE is
obtained by setting v = 1 and the robust MHDE by setting v = 0.5. The
bound c allows the control over the degree of robustness. Lowering c increases
robustness but at the same time decreases efficiency. In practice we found
however that a good degree of robustness can be achieved without loosing
too much efficiency.

We illustrate the performance of MGP estimators with a small simulation
from a Pareto distribution. The data are contaminated by taking ¢ propor-
tion of randomly chosen observation and multiplying them by 10, and then
grouped in 22 classes. The MPE and OBRE (for the MLE and MHDE) are
computed and their Bias and MSE reported in Table 3 (the standard errors
for the values of the bias are less than 0.02).

15



€ MPE OBRE

MLE MHDE Rob MLE Rob MHDE
Bias MSE | Bias MSE | Bias MSE | Bias MSE
0% | 0.01 0.0101| 0.05 0.013 | 0.02 0.0202| 0.01 0.011
1% | -0.19 0.05 | -0.06 0.015 | -0.03 0.02 | -0.01 0.015
3% | -0.55 0.27 | -0.18 0.05 | -0.13 0.04 | -0.04 0.015
5% | -0.77 0.61 |-0.29 0.11 | -0.25 0.08 | -0.06 0.02

Table 3: Bias and MSE of classical and robust estimators
for grouped data on Pareto simulated data

We can see that although the IF of the MLE is bounded, when the un-
derlying model is contaminated, the MLE has a large bias. On the other
hand, with the corresponding robust estimator we can see that this bias and
the overall MSE are considerably smaller. The MHDE has better robustness
properties than the MLE, but it can be improved by using the corresponding
robust version which has the best bias and MSE overall in the example.

The robust procedure is also applied to the UK data set presented above.
The data are grouped in 58 equally sized classes. The first class is extended
to 0 and the last class to co. The Gamma distribution is chosen as candidate
to model the data and the MLE, MHDE and robust MHDE (¢ = 175 which
corresponds to 95% efficiency) are computed. The histogram of the data and
the estimated densities are presented in Figure 3.

Figure 3 here

We can see that while the MLE tries to accommodate the tails of the
distribution, it misses the description of the bulk of the data in the center.
The MHDE improves the fit of the majority of the data but it is its robust
version which gives the best fit. The latter has an efficiency of 95% compared
to the classical MPE. Finally, Victoria-Feser and Ronchetti (1997) show that
the OBRE for grouped data has a bounded local shift sensitivity and therefore
it controls the effects of grouping errors as well. This is not the case with
classical MPE.

So far we have looked at statistical methods to describe the distribution of
incomes. The parameters’ estimates can be used to conduct further analyses
such as inequality or poverty analysis. This will be developed in the following
sections.
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7 Estimating inequality

Inequality measures and other related tools of income distribution analysis
are often used to summarize information about income distributions. They
play an important part in political debates about economic and social trends
and in welfare economics. At a theoretical level, inequality measures have
been derived by requiring a number of essential properties. The most im-
portant (and most accepted) property is the principle of transfers (Dalton
(1920), which states that the transfer of an arbitrary positive amount of
income from a poorer income receiver to a richer one (such that the mean
of the distribution is preserved) should increase the value of the inequality
measure. On the other hand, inequality measures are estimated from income
data. Therefore, it is important to understand the relationship between
the economic properties that the inequality measure should fulfil and the
statistical properties of the corresponding estimator. In this section we sum-
marize some of the results obtained in Victoria-Feser (1993) and Cowell and
Victoria-Feser (1996b) on the relationship between economic and robustness
properties of inequality measures. The aim is to find a simple and convenient
way to check if an inequality measure is resistant against data contamination
and draw conclusion about general classes of inequality indices. It can be
shown that the principle of transfers alone does not imply necessarily non
resistance of an inequality measure. However, if another property is added,
like the scale independence or decomposability of the index (see Cowell and
Victoria-Feser (1996b) which restricts the class but still encompasses most of
the widely used inequality indices, or if a more realistic specification of the
estimation problem is considered (like the mean income has to be estimated
rather than being specified a priori), then it can be shown that any inequality
index satisfying these properties is not robust in that its /F is unbounded.
In particular this is the case for the Kolm index (Kolm (1976a and Kolm
(1976b), the generalized entropy family (Cowell (1980) which includes the
Theil indices (Theil (1967), and the Gini index (Gini (1910).

To show the effect of data contamination on the estimator of the in-
equality, 100 samples of 200 observations from a Pareto distribution were
generated and contaminated by multiplying by 10 a proportion of randomly
chosen observations. Three indices are computed, the Gini index, the Theil
index and the coefficient of variation index (CV) and the average values of
these indices are given in Table 4. (The second row represents the true values
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of the indices and SD stands for standard deviation.)

Contamination Gini SD Theil SD CV SD
(0.2000) (0.0945) (0.1667)
0% 0.1974 0.002 0.0908 0.003 0.1545 0.02
1% 0.2577 0.002 0.2068 0.005 0.4974 0.02
2% 0.2845 0.002 0.2584 0.006 0.6466 0.03
3% 0.3319 0.002 | 0.3485 0.007 | 0.8993 0.04
4% 0.3542 0.002 | 0.3920 0.007 1.0180 0.04
5% 0.3891 0.002 | 0.4500 0.007 1.1150 0.04

Table 4: Average values of standard inequality indices from
simulated uncontaminated and contaminated Pareto data

We can see that the three indices are very sensitive to small contamina-
tion in the data. Cowell and Victoria-Feser (1996b) contains a more complete
study involving other income distribution models. To avoid the effect of con-
tamination on the estimated indices, one way is to estimate inequality from
robust estimates of the parameters of income distribution models. Cowell
and Victoria-Feser (1996b) show for example that for the generalized en-
tropy family indices, the I'F' of the members of this class is proportional to
the IF' of the estimators of the parameters of the underlying income model.
Therefore, if robust estimators for the parameters of the income model are
used, then the resulting inequality measure will also be robust. These ro-
bust estimators of inequality convey a lot of information in that they provide
a check against classical estimates; where discrepancies between the results
emerge and are attributable to small deviations from the assumed model, this
information should be taken into account in drawing conclusions about the
“true” picture of inequality. For example, using the UK dataset, the three in-
equality indices presented above are estimated through the MLE and OBRE
of the Gamma distribution and compared to direct (empirical) estimates on
the whole sample and on a truncated sample in which 2% of the top incomes
have been removed. This is to show to what extent the inequality measures
considered here are sensitive to extreme values. The results are presented in
Table 5. They reveal two interesting points. First we can see that the OBRE
produces a distribution that exhibits uniformly lower inequality than that
produced by the MLE (even by a factor 2!). Secondly, the same phenomenon
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can be observed by comparing the two direct estimates; the upper truncation
of the sample has an impact upon inequality that is similar to switching from
the MLE to the OBRE. This in not surprising when one recalls Figure 1.

Gini Theil | CV

MLE 0.1375 | 0.0299 | 0.0302
OBRE (c = 2) 0.0983 | 0.0152 | 0.0153
Direct estimates on whole sample 0.1287 | 0.0320 | 0.0358

Direct estimates on truncated sample | 0.1120 | 0.0222 | 0.0228

Table 5: Inequality indices on the UK data, using the
Gamma distribution

It should be stressed that the point here is not to say that the robust
estimates are better than the classical ones in estimating inequality, they give
however another picture. The assumption underlying the computation of the
indexes is that the data follow a Gamma distribution. This is obviously not
exactly the case, since there are differences between the MLE and the OBRE,
but one can argue that for the majority of the data, the Gamma distribution
is appropriate. Unfortunately, the data which are considered as “extreme” for
the Gamma distribution are also those which have an important influence on
the inequality measure, and also correspond to the truncated data, which
altogether explain the result presented in Table 5. The use of a robust
estimator in this particular case, reveals that a few incomes make a great
difference in the inequality measure, but which measure is more appropriate
is not an easy question to answer.

8 Evaluating poverty

Since the pioneering article by Sen (1976) poverty evaluation has become a
prolific area of research in economics. The important theoretical issues are
the determination of the poverty line below which an economic unit such
as a household is considered as poor, the functions (indices) that should be
used for aggregating the incomes of the poor, and how statistical inference
can be conducted. All these issues are of course linked. We focus here on
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the robustness properties of poverty measures as developed in Cowell and
Victoria-Feser (1996a.).

A very important class of poverty indices (additively separable poverty
indices) is defined at the distribution of income F' by the functional

P(F;2) = / p (2(F), ) dF(z)

where z(F) is the poverty line which is determined by the income distribution
itself (endogenous). Several important poverty measures emerge from this
class. One simple but well known measure is the headcount ratio (proportion
of poor) when p(z(F),z) = t(x < z(F)), another is the poverty gap (a
modified proportion of poor which takes into account the relative size of
poverty) when p(z(F),z) = t(z < 2(F))(2(F)—=z)/z(F'), and an more general
one is the Foster-Greer-Thorbeke poverty index (Foster, Greer, and Thorbeke
(1984) when p(z(F),z) = o(z < 2(F))[(2(F) — 2)/2(F)]" (see also Cowell
and Victoria-Feser (1994).

In practice poverty is estimated using the empirical distribution F(™ and
one might wonder whether the effect of contaminated data can have an im-
portant influence on the estimated level of poverty. Cowell and Victoria-
Feser (1996a) have tackled the issue and found that an infinitesimal amount
of contamination can have a catastrophic effect on the poverty measure only
through the evaluation of the poverty line. Therefore, if the latter is robustly
estimated, then the analyst is quite safe.

Ayadi, Matoussi, and Victoria-Feser (1998) have implemented this result
in a poverty analysis in Tunisia. The central issues of the research was to
evaluate the poverty differential between urban and rural regions in differ-
ent economic parts in Tunisia in a robust fashion. This lies heavily on a
correct specification of the poverty line. The data at hand were on house-
hold consumption (survey of 1990) so that the approach of Ravallion and
Bidani (1994) which permits to evaluate poverty with this type of data was
followed. Tunisia is divided in 3 major economic regions, namely the Grand
Tunis (around the capital), the littoral at the Mediterranean see, which has
known since the independence an economic prosperity, and the interior (west-
ern part) which has several acute social and economic problems. The littoral
and interior can also be divided into a rural and urban part. To determine
poverty, the poverty line is divided into two parts, namely the amount of
income to satisfy the food and the non food needs (such as housing, clothing,
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etc.). To take into account regional differences, consumption behaviour of the
poor is estimated by determining the “average” food products or consumer’s
basket by using the data on quantity of different food products. This consists
in finding the center of multivariate data. It is important to estimate this
center in a robust fashion, because the consumer’s basket is then evaluated
in local market prices and constitutes an important part of the poverty line.
The non food part is then estimated using a so-called AIDS model (Ravallion
(1993) which is a regression model of income food share on total income and
socio-economic variables related to the household. Here again, in order to
avoid deviations due to a small number of extreme data, a robust approach
is adopted (see Ayadi, Matoussi, and Victoria-Feser (1998).

To summarise the analysis, Table 6 presents three poverty indices calcu-
lated for each region of Tunisia following a robust approach to the evaluation
of the poverty line compared to a classical one (they are the so-called lower
poverty lines, see Ayadi, Matoussi, and Victoria-Feser (1998). The indices
are the headcount ratio (HCR), the poverty gap (PG) and the Foster-Greer-
Thorbeke (FGT) poverty index with parameter v = 2. We can draw the
following conclusions. In the more developed regions (Grand Tunis and Ur-
ban Littoral) not only poverty is less intense but also there is no real differ-
ence between the classical and robust approach. This is because the classical
and robust estimators of the poverty lines give very similar values. In the
other regions the differences between the classical and robust approaches are
quite substantial (up to 45%), because the classical and robust estimators
of the poverty lines differ substantially (see Ayadi, Matoussi, and Victoria-
Feser (1998). When urban and littoral regions are compared, one can see
that poverty is mainly rural which goes against some previous beliefs about
the location of the poor. This difference is less important when the robust
analysis is considered.
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Robust Analysis Classical Analysis
HCR | PG | FGT | HCR | PG | FGT
Grand Tunis 441 081 0.24 4.3 | 0.79 0.24
Urban littoral 3.6 0.57| 0.15 3.6 061 0.16
Urban interior 91212 075 131 3.36| 1.26
Rural littoral 84| 1.63| 054 | 10.9| 242 | 0.82
Rural interior 119 3.15| 1.18 | 16.0 | 4.28 1.66

Table 6: Robust and classical poverty indices for the
regions of Tunisia

9 Ordering income distributions

The use of inequality measures is thought by many as being rather restrictive
since the whole information about the distribution of incomes is summarized
in a single number. To compare two or more income distributions one there-
fore often use ordering tools of which the Lorenz curve is certainly the most
well known. These tools are mainly based on quantiles and cumulative dis-
tributions. For example, so-called first-order dominance criteria are simply
defined for a distribution F' by the quantile functional @ = Q(F,q), i.e. by
q'" quantiles of the distribution F'. For example Q(F,0.5) is the median. Two
(or more) distributions F'1 and F2 are then compared at each level of ¢ and
if for F'1 all the quantiles are larger or equal to those for F'2, then it is said
that F'1 first-order dominates F'2. The economic implication is that given a
welfare function (with some rather mild conditions on it), the level of welfare
in the population with income distribution F'1 is higher. In practice, one can
get three conclusions: dominance of one or the other distribution, and also
no dominance of either because the order is reversed at some ¢’s. A stronger
concept of dominance (in terms of conditions on the welfare function) are the
so-called second-order dominance tools based on the cumulative distribution
functional C'

Q(F.q)
CRa)= [ adFa)
In words, C(F, q) is the total income earned by the ¢ proportion of the poor-

est. The function ¢ — C(F,q)/u(F) = L, defines the Lorenz curve which
for each proportion ¢ plots the proportion of total income of the population
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earned the ¢ proportion of the poorest.

The issue which is of interest here is to investigate whether ordering tools
can be influenced by data contamination as to lead to reversed orders when
comparing empirical distributions. Cowell and Victoria-Feser (1996¢) make
this investigation using the I F' and conclude that infinitesimal amounts of
contaminations (in the tails of the distribution) can completely distort the
picture given by second-order dominance criteria. How the problem is solved
in practice is not obvious. The recourse to parametric models is not a good
solution since one can prove that with some models, the resulting ordering
curves never cross. Cowell and Victoria-Feser (2000a,b) propose two ap-
proaches, a pragmatic one based on trimmed samples and a semi-parametric
one. The first one needs some more investigation into it, whereas the semi-
parametric one seems very promising. The idea is to use a parametric model
to fit the tail of the distribution and then construct an empirical ordering
curve for the bulk of the distribution mixed with a parametric ordering tool
for the tail of the distribution. The appropriate model is the Pareto model
and the fit should be robust. One question that is left open is what propor-
tion of the data in the tail should be considered?

To illustrate the point, Cowell and Victoria-Feser (2000a) made the fol-
lowing simulation exercise. Two samples of 10 000 observations where sim-
ulated from a Dagum I distribution which has the property that for large
incomes the distribution converges to the Pareto distribution. The para-
meters were chosen in order to get two distributions such that one exactly
dominates the other. Let F'1™ be the empirical distribution that dominates
and F2( the one which is dominated. F1(™ was contaminated by multi-
plying 0.25% of the largest observations by 10 giving the empirical mixture
distribution F1”. The three empirical distributions are given in Figure 4.

Figure 4 here

We can see that with only 0.25% of extreme data, the ordering of the dis-
tributions is completely reversed. When the upper tail is modelled using the
Pareto distribution (5% of the upper tail), the situation changes. Figure 5
depicts the empirical Lorenz curve of F2(" together with the semiparametric
Lorenz curves of F' 1§n), using the classical MLE and a robust estimator for
the parameter of the Pareto model (see Cowell and Victoria-Feser (2000a)).
We can see that with a robust semiparametric Lorenz curve the ordering is
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preserved. Actually there is no visual difference between the robust semipara-
metric Lorenz curve on contaminated data and the empirical Lorenz curve
on non contaminated data for the same original distribution (see Cowell and
Victoria-Feser (2000a)). The semiparametric Lorenz curve using the MLE
is also distorted by the extreme data, although it is less distorted than the
empirical Lorenz curve on contaminated data. This is not surprising since it
is well known that the MLE is not robust.

Figure 5 here

10 Conclusions

We showed that robust techniques can play a useful role in income distribu-
tion analysis by providing more reliable fits and tests, more stable inequality
measures and ordering tools. We don’t advocate the unique use of robust
techniques but we believe that they provide very useful information when
combined together with a classical approach. They also have the advantage
of being rather objective methods in that they do not rely on the judgment
of the analyst in deciding often by eye which of the data could be considered
as extreme. There are however still some developments to be made in this
field of research, especially on the computational aspects. Indeed, although
robust techniques are very important they are rather cumbersome to pro-
gram and very computer intensive. A solution could be found in developing
less efficient robust estimators which are easier to compute. But this another
story.
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Figure 1: Gamma fitting of UK data
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Figure 2: Dagum-I fitting of UK data
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Figure 3: Gamma modelling of UK grouped data
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Figure 4: Lorenz curves comparisons of uncontaminated and contaminated
emprirical distributions
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Figure 5: Semiparametric Lorenz curves: classical and robust
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