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Abstract.
Background: Oral microbiota has largely escaped attention in Parkinson’s disease (PD), despite its pivotal role in maintaining
oral and systemic health.
Objective: The aim of our study was to examine the composition of the oral microbiota and the degree of oral inflammation
in PD.
Methods: Twenty PD patients were compared to 20 healthy controls. Neurological, periodontal and dental examinations were
performed as well as dental scaling and gingival crevicular fluid sampling for cytokines measurement (interleukine (IL)-1�,
IL-6, IL-1 receptor antagonist (RA), interferon-� and tumor necrosis factor (TNF)-�). Two months later, oral microbiota
was sampled from saliva and subgingival dental plaque. A 16S rRNA gene amplicon sequencing was used to assess bacterial
communities.
Results: PD patients were in the early and mid-stage phases of their disease (Hoehn & Yahr 2–2.5). Dental and periodontal
parameters did not differ between groups. The levels of IL-1� and IL-1RA were significantly increased in patients compared
to controls with a trend for an increased level of TNF-� in patients. Both saliva and subgingival dental plaque microbiota
differed between patients and controls. Streptococcus mutans, Kingella oralis, Actinomyces AFQC s, Veillonella AFUJ s,
Scardovia, Lactobacillaceae, Negativicutes and Firmicutes were more abundant in patients, whereas Treponema KE332528 s,
Lachnospiraceae AM420052 s, and phylum SR1 were less abundant.
Conclusion: Our findings show that the oral microbiome is altered in early and mid-stage PD. Although PD patients had
good dental and periodontal status, local inflammation was already present in the oral cavity. The relationship between oral
dysbiosis, inflammation and the pathogenesis of PD requires further study.
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INTRODUCTION

The etiology of Parkinson’s disease (PD) is un-
known in the vast majority of cases but probably
involves a complex interaction between genetic
predisposition, environmental contributors and age-
related processes [1]. The hypothesis that the
periphery of the body could be an early site of
PD comes from the observation that phosphorylated
(phos-) �-synuclein aggregates [2], the histopatho-
logical hallmark of PD, are found not only in the
central nervous system (CNS) but also within neurons
of the olfactory bulb and in the peripheral autonomic
nervous system of the upper aerodigestive [3] and
gastrointestinal tracts, very early in the course of the
disease, before the classic motor symptoms emerge
[4–6]. Consequently, PD patients frequently present
a history of hyposmia, oral difficulties and/or gas-
trointestinal dysfunction [7], sometimes years before
being diagnosed with PD.

Little attention has been paid to the role of the
mouth in the PD literature. However, a rostro-caudal
gradient of decreasing phos-�-synuclein histopa-
thology has been demonstrated, with the highest
density being found in the submandibular glands
and the lower esophagus, and the lowest density in
the colon and the rectum [8]. Hence, submandibu-
lar gland needle biopsies have recently been proposed
as a method for the diagnosis of PD [9–11]. Oral
phos-�-synuclein deposits may underlie non-motor
symptoms (NMS) [12] such as decreased salivary
production and dysphagia [7]. These symptoms typ-
ically become troublesome in more advanced PD,
but they can develop early, occasionally as the pre-
senting feature [13, 14]. A higher frequency of
poor oral health, caries and periodontal disease, and
fewer remaining teeth have been reported in PD
[15–17].

Recently, attention has increasingly been focused
on the microbiota as a new player in PD pathogen-
esis because of its key role in the protection of the
host from pathogenic organisms [18]. Several studies
showed changes in PD patients’ gut microbiota with
an important variation in the reported taxa [19–24].
Gut dysbiosis promotes intestinal inflammation and
increased mucosal permeability [25–29], inducing or
maintaining excessive phos-�-synuclein expression
and misfolding [25, 30–35]. Phos-�-synuclein aggre-
gates could then migrate, from the peripheral nervous
system to the CNS through trans-synaptic transmis-
sion and from cell-to-cell in a prion-like fashion [36],
eventually leading to PD degeneration.

In contrast to gut microbiota, data on oral micro-
biota in PD are scarce [37, 38]. However, the study of
the oral microbiota may offer several advantages: 1)
sampling is easy; 2) it represents the second largest
and second most diverse microbiota after the gut,
harboring over 700 species of bacteria [39]; 3) it is
one of the microbiota which has the least intraper-
sonal variability, enabling broader conclusions [40];
4) it is strategically located at the crossroads between
the outside environment, the respiratory and diges-
tive tracts. As such, the mouth is one of the first
structures to be exposed to the external environ-
ment, such as airborne and diet-contained organisms,
and is consequently one of the primary sites of
entry for pathogenic microorganisms; and 5) oral
microbiota is essential to maintain oral and systemic
health [41]. Oral dysbiosis is associated with oral
diseases such as dental caries and periodontal dis-
ease, but also with systemic diseases such as infective
endocarditis, atherosclerosis [42] and with multi-
factorial neurodegenerative conditions such as glau-
coma [43].

Considering the early involvement of the upper
aerodigestive tract in terms of PD non-motor symp-
toms and �-synuclein deposits, we speculated that
the study of the mouth could be central to improved
understanding of PD pathophysiology. We studied the
salivary and subgingival dental plaque microbiota, by
comparing bacterial diversity and taxonomic compo-
sition in PD patients and matched healthy subjects.
We also compared the level of oral inflammation
between patients and controls, which was assessed
both clinically and biologically.

METHODS

The study was approved by the Geneva Ethics
Committee (EC-2016-01680). All participants gave
written informed consent.

Study population

Patients were recruited from the Movement Dis-
orders Unit of Geneva University Hospital. Selection
criteria were a diagnosis of PD [44] made after 50
years of age (Supplementary Material A). Patients
were compared with age-, sex-, and body mass index-
matched healthy controls. Exclusion criteria included
conditions that could independently affect the oral
microbiome (Supplementary Material A).
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Clinical data

The clinical assessment included the Movement
Disorder Society-Unified Parkinson’s Disease Rat-
ing Scale [45] part III for motor PD symptoms
and the Hoehn & Yahr (H&Y) scale [46] for PD
staging, the NMS Quest [47] for non-motor PD symp-
toms, the Hospital Anxiety and Depression scale
[48] for the levels of anxiety and depression and
the Montreal Cognitive Assessment (MoCA) [49]
for the degree of cognitive impairment. The degree
of drooling was assessed by the Sialorrhea Clinical
Scale for PD [50], the degree of hyposialorrhea by
the paraffin-stimulated salivary flow rate [51], the
level of dysphagia by the Swallowing Disturbance
Questionnaire [52] and the degree of constipation
by the Bristol Stool Form Scale [53]. The den-
tal and periodontal screening included an interview
to assess oral hygiene, dental history, and socioe-
conomic background. The clinical oral assessment
included counting the number of decayed, missing
and filled teeth [54] (which determines the prevalence
of dental caries as well as dental treatment needs) and
the plaque index [55], which records the presence and
quantity of dental biofilm that accumulates on the sur-
face of the tooth. The periodontal inflammatory status
was clinically assessed by probing pocket depth and
the bleeding on probing [56]. A standardized dental
scaling was performed at the end of the session in
all participants (“reset” of the oral cavity) in order to
control for oral hygiene. Advice about dental hygiene,
teeth brushing and avoidance of oral antiseptics was
given. All participants received the same toothbrush
and toothpaste.

Cytokine dosage

Oral inflammation was also assessed by measuring
interleukin (IL)-1�, IL-6, IL-1 receptor antagonist
(IL-1RA), interferon (IFN)-� and tumor necrosis fac-
tor (TNF)-� concentrations in the gingival crevicular
fluid using Bio-Plex cytokine multiplex assays [57].

Analysis of oral microbiota

Two months after the “reset” of the oral cavity,
microbiota sampling was performed from two differ-
ent oral sites: the saliva and the subgingival dental
plaque (i.e., tooth biofilm below the gum). Partici-
pants were asked to avoid teeth brushing the morning
of the sampling. Unstimulated saliva was obtained
by spitting into a sterile plastic 50 mL tube in the

morning, at least 1.5 h after eating. Subgingival den-
tal plaque was obtained by a pooled sample from the
deepest pocket in each quadrant using sterile paper
points. Within the following 3 h, samples were trans-
ferred for storage and kept at a temperature of –80◦C
until further processing. The principal steps in our
analysis of bacterial communities in saliva and den-
tal plaque were [58]: 1) DNA extraction; 2) bacterial
DNA quantification using quantitative polymerase
chain reaction (qPCR); and 3) Illumina sequencing of
amplicons generated from the V3–4 region of the bac-
terial 16S ribosomal RNA genes. Merged sequence
reads were clustered into zero-radius operational tax-
onomic units (zOTUs) with a method [59] resolving
differences as small as one nucleotide and providing
taxonomic resolution superior to conventional 97%
OTUs [60]; 4) comparison of zOTUs to the EzBio-
Cloud [61] 16S rRNA gene database for taxonomic
assignments; 5) microbial communities comparisons
in regards to ecological indices (richness, diversity)
and abundance of taxa from phylum to zOTU level;
and 6) assessment of correlations between microbial
composition and clinical outcomes (Supplementary
Material A).

Statistical analysis

For univariate comparisons, we used the Wilcoxon
rank sum test, unless otherwise indicated. For multi-
variate analyses of the microbiota, we constructed the
Bray-Curtis similarity [62] matrix based on square
root transformed relative abundance of zOTUs. In
principal coordinates analysis (PCoA, PRIMER)
each sample was visualized in a multidimensional
space as a point whose location reflected its microbial
composition (i.e., percentage of different zOTUs).
To assess differences in overall microbiota tax-
onomic composition between groups defined by
categorical variables (e.g., PD vs. controls), we
used permutational multivariate analysis of variance
(PERMANOVA; PRIMER v7, PRIMER-E Ltd, Ply-
mouth, UK) with 9,999 permutations. Canonical
analysis of principal coordinates (CAP, PRIMER)
was used to test the success of allocating subjects
to PD and controls from specific microbial profiles.
This method maximizes the group differences in the
multivariate cloud of points (constrained ordination)
[63], and calculates the proportion of correct classifi-
cations of the groups according to the PD or control
status. The permutational analysis of multivariate
dispersions (PERMDISP, PRIMER) was performed
(with 9,999 permutations) to examine homogeneity
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of multivariate dispersion (distances to centroids) of
microbial communities between patients and con-
trols. To analyze the relationship between bacterial
community profiles and quantitative clinical contin-
uous variables, we used a distance-based linear model
(DISTLM, PRIMER) with 9,999 permutations.

To assess statistical significance of differences in
the relative abundance of individual taxa according
to the PD status, we used DESeq2 [64]. The taxa
found in less than 25% (n = 10) of compared samples
were excluded. FDR corrected p values < 0.05 were
considered significant. DESeq2 models were addi-
tionally run with adjustment for age category and sex.
Age was categorized in two groups: above-median
and below-median.

RESULTS

Clinical data

A total of 40 participants were recruited, including
20 PD patients and 20 healthy controls. Demographic
and clinical characteristics of each group are reported
in Table 1 and Supplementary Material B. Partici-
pants were similar regarding the level of education,
comorbidities, cognitive status and anxiety level. No
clinical differences were identified in terms of dental
or periodontal status. PD patients were predomi-
nantly within the early and mid-stage phases of their
disease (median from PD diagnosis = 4.7 years, H&Y
range from 2 to 2.5). As expected, PD patients had
more severe motor and non-motor PD symptoms
compared with controls. PD patients had signifi-
cantly higher swallowing and saliva disturbances
scores than controls, although their scores them-
selves did not reach pathological cut-offs. All but
two PD patients were taking dopaminergic replace-
ment therapy. One patient was treated with deep brain
stimulation (Table 1 and Supplementary Material B).

Cytokines in the gingival crevicular fluid

The levels of cytokines IL-1� and IL-1RA were
significantly increased in PD patients compared to
controls, with a trend for an increased level of TNF-�
in PD patients. No difference was found in the con-
centrations of IL-6 and IFN-� between the two groups
(Table 2).

Microbiome data

The number of reads obtained by sequencing of
bacterial 16S rRNA gene amplicons is provided in

Supplementary Material C. The relative abundance
of 1,613 zOTUs identified was used to calculate sim-
ilarities between bacterial communities, which we
visualized using PCoA. Saliva and plaque samples
were clearly separated in the first two PCo axes
(Supplementary Material D, Supplementary Figure 1,
Supplementary Table 1). The inter-site (i.e., saliva
vs. plaque) microbiota Bray-Curtis similarity, in the
same individual mouth was somewhat higher in
patients than in controls [median (Q1; Q3) 47.9
(45.9; 56.9) vs. 43.7 (40.7; 50.5)], and this difference
was close to the threshold of statistical significance
(p = 0.056). Bacterial load expressed as the number of
16S rRNA copies in DNA extract did not show signif-
icant differences between PD and control groups in
either saliva [median (Q1; Q3) 2.73 (1.17; 5.5) × 107

vs. 4.81 (1.44; 15.72) × 107; p = 0.14)] or plaque
[2.4 (1.4; 4.13) × 107 vs. 2.57 (1.84; 3.52) × 107;
p = 0.98)] samples.

We assessed microbiota differences between con-
trols and patients separately for saliva and dental
plaque samples. Salivary microbiota profiles were
different between patients and controls (PER-
MANOVA, p = 0.006) (Fig. 1A). The two arbitrarily
defined non-overlapping clusters respectively con-
tained 75% (15/20) of samples from patients and
80% (16/20) of control samples. Differences in den-
tal plaque microbial communities between PD and
control subjects were also present (PERMANOVA
p = 0.03) with two separate clusters in PCoA, each
formed by 75% (15/20) of samples from individuals
with the same disease status (Fig. 1B). CAP, which
is a constrained ordination method, allowed to allo-
cate samples according to the PD status with 72.5%
success for both saliva (correct classification of 75%
PD patients and 70% controls) and plaque (correct
classification of 65% PD patients and 80% controls)
microbiota. Of note, saliva and plaque microbiota
from 5 patients (#3, #4, #5, #10, #11) were misal-
located to the control group using CAP. The results
of the PERMDISP analysis showed that multivari-
ate dispersion of microbial communities of patients
and controls were not significantly different. No sig-
nificant differences of oral microbiota were found
between sexes in either sample type.

Compared with controls, PD patients presented
with a lower alpha-diversity, as measured by species
richness (Fig. 2A) and Shannon diversity index
(Fig. 2B) in the dental plaque. The same trend was
also observed in saliva samples.

Relative bacterial taxa composition was signifi-
cantly different between PD patients and controls.



V. Fleury et al. / Oral Microbiota in Parkinson’s Disease 623

Table 1
Selected demographic and clinical characteristics of participants including all parameters that showed significantly different distributions

between groups

PD Patients Controls p

Demographics
Number of participants [men (%)] 20 [9 (45%)] 20 [9 (45%)] 1 (F)
Age (y) 62.8 (60.1; 67.0) 64.3 (59.2; 68.3) 0.8
Education level I, II, ≥ III) 0, 3, 17 (0%, 15%, 85%) 1, 2, 17 (5%,10%,85%) 0.5 (C)
Body Mass Index (kg/m2) 24.8 (20.8; 28.8) 25.8 (23.8; 26.9) 0.8
Current smokers (%) 0 (0%) 0 (0%) 1 (F)
Former smokers (%) 4 (20%) 5 (25%) 1 (F)
Parkinson’s disease duration (y) 4.7 (3; 7.4)
Hoehn & Yahr stage (/4) 2 (2; 2.5)
Clinical symptoms
Motor score MDS-UPDRS III (/132) 15 (11.5; 20.5) 0 (0; 0) < 0.001
Non-motor score NMSQ (/30) 11 (6.7; 14) 3 (2; 4.2) < 0.001
Swallowing Disturbance Questionnaire (SDQ) score (/45) 3 (1.5; 5.5) 0.5 (0.5; 0.5) < 0.001
Sialorrhea Clinical Scale score (/21) 1.5 (0; 3.2) 0 (0; 0) < 0.001
Paraffin-stimulated salivary flow rate (ml/min) 1.6 (0.8; 1.7) 6 (6; 6) < 0.001
Constipation level Bristol Stool Form Scale score (/7) 3 (1.7; 3) 4 (3; 4) < 0.001
Cognitive score MoCA (/30) 29 (28.7; 30) 30 (28; 30) 0.4
Anxiety HAD score (/21) 4 (3; 7.2) 4.5 (2.7; 6.2) 0.5
Depression HAD score (/21) 3 (2.7; 6.2) 2 (1; 4) 0.02
Dental and periodontal parameters
Participants with tooth brushing > once/day (%) 20 (100%) 20 (100%) 1 (F)
Participants with dental visits ≥ once/year (%) 20 (100%) 20 (100%) 1 (F)
Participants with decayed teeth (%) 2 (10%) 2 (10%) 1 (F)
Percentage of filled teeth 49.05 (33.3; 55.6) 55.5 (34; 64.1) 0.425
PPD (mm) 2.99 (2.9; 3.1) 3 (2.8; 3.1) 0.766
Plaque index 1.29 (0.8; 1.4) 0.97 (0.8; 1.2) 0.218
BOP 57.91 (34.1; 69.9) 51.52 (34.6; 59.7) 0.725
Percentage of PPD ≥ 4 sites 13.12 (7.6; 20.7) 8.04 (5.4; 17.1) 0.465
Percentage of PPD ≥ 4 BOP + sites 11.11 (5.6; 19.5) 6.85 (1.8; 15.1) 0.351
Medication
Levodopa-equivalent daily dose (mg/d) 522.5 (296.9; 720.6) 0 (0; 0) < 0.001
Number of patients on Levodopa (%) 16 (80%) 0 < 0.001 (F)
Number of patients on Dopamine agonist 12 (60%) 0 < 0.001 (F)
Number of patients on MAO Inhibitor 6 (30%) 0 0.02 (F)

For values expressed as median (Q1; Q3) scores, Wilcoxon rank sum test was used. When values were expressed as number of participants,
% of the participant’s group was indicated in brackets and Fisher’s exact test (F) or Chi-square test (C) were used. Education level: Level
I is defined as subjects who received a primary education, Level II a lower secondary education, and level 3 and above at least an upper
secondary education. A total Swallowing Disturbance Questionnaire SDQ score of ≥ 11/45, a paraffin-stimulated salivary flow rate value
< 0.7 ml/min and a HAD Depression score ≥ 8/21 were considered to be pathological cut-off values for dysphagia, hyposialorrhea, and
depression respectively. BOP, bleeding on probing; BOP +, presence of BOP; HAD, Hospital Anxiety and Depression scale; MDS-UPDRS
III score, motor scale of Movement Disorder Society Unified Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive Assessment;
NMSQ, Non-Motor Symptoms Quest; PD, Parkinson’s disease; PPD, probing pocket depth.

Table 2
Levels of cytokines in the gingival crevicular fluid in PD patients and controls

PD patients Healthy controls p

IL-1� (pg/ml) 61.6 (16.5; 107.4) 22.4 (8.8; 35.4) 0.05
IL-6 (pg/ml) 4.4 (2.3; 10.8) 2.5 (1.6; 4.6) 0.20
IL-1RA (pg/ml) 44,247.5 (28,736.7; 92,068.9) 29,153.0 (20,227.3; 42,257.5) 0.04
IFN-� (pg/ml) 2.0 (1.3; 2.8) 1.8 (1.4; 2.7) 0.93
TNF-� (pg/ml) 16.5 (9.1; 38.1) 9.1 (5.2; 18.8) 0.06

Values are expressed as median (Q1; Q3) scores.

Supplementary Table 2 summarizes the taxa sig-
nificantly different in abundance between patients
and controls, from phylum to zOTU level. When a

significant differential abundance according to the
PD status was found in one sample type (i.e., saliva
or dental plaque), the same trend (i.e., decrease or
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A

B

Fig. 1. Differential bacterial community composition between
controls and PD patients assessed in saliva (A) and dental plaque
samples (B). Participant’s number is indicated next to her/his loca-
tion point.

increase) was commonly (81.7%) observed in the
other sample type. This was notably the case for
23 of 25 taxa (92%), whose abundance was sig-
nificantly different between patients and controls in
both saliva and dental plaque (Fig. 3). The phylum
Firmicutes, class Negativicutes, family Lactobacil-
laceae/genus Lactobacillus and genus Scardovia
(Actinobacteria) had higher relative abundance in PD
patients. Of seven species or phylotypes (i.e., so far
uncultured species) discriminating between PD and
controls, four were more abundant in PD patients:
Actinomyces AFQC s, Veillonella AFUJ s, Kingella
oralis and Streptococcus mutans. Three zOTU from
these species/phylotypes, as well as one from each
unclassified Veillonella and Alloprevotella, also had
increased proportion in PD patients. The taxa that had

Fig. 2. zOTU richness (A) and Shannon bacterial diversity index
(B) in saliva and dental plaque samples in PD patients and controls.

significantly lower relative abundance in PD patients
included: zOTU290 (Leptotrichia), the phylotypes
AM420052 s (Lachnospiraceae), KE332528 s (Tre-
ponema) and, JX294356 s and the higher-level taxa
(up to the phylum SR1) to which the latter phylotype
belongs. The observed associations between micro-
bial taxa and PD status remained significant after
adjustment for age category and sex (Supplementary
Table 2) in the majority of cases.

We calculated the ‘absolute abundance’ of bacte-
rial taxa, by combining their relative abundance (from
the 16S sequencing data) with the number of 16S
rRNA gene copies (determined by qPCR). Compar-
ison between PD patients and controls revealed 194
differentially abundant taxa in either or both sam-
ple types (Supplementary Table 3). Importantly, of
44 taxa with significant differences (non-corrected
p values) in both saliva and plaque, 41 had higher
abundance in controls, while S. mutans, S. mutans
zOTU309 and Streptococcus zOTU112 were more
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abundant in PD patients. After correction for multiple
testing, the only differences that remained significant
were decreased abundances of phyla Tenericutes and
SR1 in saliva samples of PD patients.

Correlations between microbiota composition
and clinical data

Regarding correlations between whole micro-
biota composition and clinical data (Supplementary
Table 4), DISTLM analysis showed associations
between salivary microbiota of PD patients and
MoCA score, salivary flow rate, and parameters indi-
cating an increased risk of periodontal disease. A
trend for an association was found between PD sali-
vary microbiota and NMS Quest score, anxiety and
depression scores. PD dental plaque microbiota cor-
related with age at PD onset. In saliva samples from
PD patients, Spearman correlations showed a posi-
tive correlation between Actinomycetales and tremor
scores and between Veillonella and dysphagia (SDQ)
score (Supplementary Table 5).

DISCUSSION

PD patients exhibited a distinct microbiota pro-
file in their saliva and subgingival dental plaque
compared to controls. PD patients had a lower alpha-
diversity in plaque samples with a similar trend
observed in saliva. The level of pro-inflammatory
cytokine IL-1� measured in the gingival crevicular
fluid was significantly increased with a trend for an
increased level of TNF-� in PD patients compared
to controls, although PD patients had a good dental
and periodontal status. Microbial profiles in saliva
(but not in dental plaque) were associated with the
cognitive status, salivary flow rate and indexes indi-
cating an increased risk of periodontal disease. Dental
plaque microbiota was related to PD motor symptoms
severity.

To the best of our knowledge, this is the first time
that the subgingival dental plaque has been studied
in PD patients. To date, only two studies compared
oral microbiota in PD patients and controls [37, 38].
Pereira et al. [37] studied samples originating from
buccal and sublingual mucosa whereas Mihaila et al.
[38] used salivary samples. We performed a detailed
oral and periodontal examination, a good control of
oral hygiene by means of the “reset” of the oral cavity,
and cytokine measurement in the gingival crevicular
fluid which reflects the level of local inflammation, all

of which was not performed in the above mentioned
studies. This allowed us to precisely assess the inflam-
matory state of the oral cavity. In accordance with the
two previously mentioned studies, we demonstrated
that PD patients had a different oral bacterial ecol-
ogy than controls. We found similar results regarding
increases in the relative abundance of S. mutans [38,
65], Veillonella [37], Lactobacillaceae [37, 38] and
Scardovia [38] in PD. In addition, we found that K.
oralis and Negativicutes (a class withing the phylum
Firmicutes, represented in particular by Veillonella),
as well as the phylum Firmicutes were increased and
that the phylum SR1 was decreased in PD patients.
In vitro experiments have demonstrated that a species
from the genus Veillonella reduces the growth inhibi-
tion of S. mutans [66] by antagonistic streptococcal
species.

The bacteria found in increased proportions in our
PD patients have been implicated in oral pathologies
such as dental caries (S. mutans [67], Lactobacil-
lus [68] and Scardovia [69]) and periodontitis (K.
oralis [70] and Negativicutes [71]). Our patients did
not present with more decayed teeth, nor more peri-
odontitis than controls, probably because they were
in the early and middle phases of their disease with
low motor scores, allowing good fine hand motor
skills [72] and no cognitive impairment nor signif-
icant depression, anxiety or apathy, all ensuring the
capacity to maintain good oral hygiene. However, a
higher frequency of caries and periodontal disease has
been reported in PD [15–17]. In that light, our results
could then suggest that the changes observed in PD
oral microbiota composition could correspond to a
transition phase in the development of oral diseases.
More importantly, we believe that our data support the
notion that an altered oral microbiome is unlikely a
consequence of dental or periodontal complications,
but rather may be a primary event, somehow related
to the pathogenesis of PD. This hypothesis, however,
requires further study for confirmation.

Interestingly, S. mutans, whose relative abundance
was increased in our patients, is capable of amyloid
formation [73]. Bacterial amyloid production con-
tributes to the biology of numerous micro-organisms,
with particular relevance for adhesion and biofilm
formation. While the link between microbial amyloid
formation and PD remains to be demonstrated [74], it
has been shown in animal models that bacterial amy-
loids may play a role in alpha-synuclein production
and aggregation, as well as cerebral inflammation.
Rats orally exposed to amyloid-producing bacteria
presented with enhanced alpha-synuclein produc-
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Fig. 3. Bacterial taxa significantly different in abundance between patients and controls in both saliva and dental plaque.

tion in the gut, as well as an increased production
and aggregation of alpha-synuclein in the brain.
Enhanced cerebral inflammation was also demon-
strated in rats orally exposed to amyloid-producing
E. coli when compared with animals exposed to
isogenic E. coli mutant lacking the ability to pro-
duce bacterial amyloid protein [75]. Using a mice
model for PD, Sampson et al. showed that gut
microbiota was needed for motor impairment, alpha-
synuclein pathology and microglia activation [30],
and all of these were improved by the use of antibi-
otics and worsened by microbial re-colonization. The
pathway of the innate immune system recognizing
bacterial amyloid as a pathogen-associated molecu-
lar pattern [76], is also involved in the recognition
of misfolded alpha-synuclein [77]. Fecal transplants
from PD patients performed in alpha-synuclein-
overexpressing mice enhanced physical impairments
compared to microbiota transplants from healthy
human donors [30]. Recently, a Finnish nationwide
case-control study demonstrated that prior exposure
to certain antibiotics was associated with an increased
risk of PD with a delay consistent with the duration of
the prodromal period. Changes in microbiota compo-
sition secondary to the exposure to certain antibiotics
could explain the increased risk of PD [78].

Pro-inflammatory cytokine levels were signifi-
cantly increased in PD gingival crevicular fluid. The
level of IL-1RA was also increased. The level of
this anti-inflammatory cytokine goes up in response
to increased levels of IL-1 [79]. To the best of
our knowledge, levels of cytokines measured in the
subgingival fluid have never been studied in PD
patients. A significant correlation has been demon-
strated between the level of certain pro-inflammatory
cytokines in the serum and the gingival crevicular
fluid in periodontitis subjects [80]. Many studies have
shown an increased peripheral and central inflam-
matory response in PD [81] with higher level of
pro-inflammatory cytokines in the serum [82, 83],
colon biopsies [27], the cerebrospinal fluid [84]
and the brain [84, 85]. Inflammation has been sug-
gested to mediate neurodegeneration [86] but the
actual origin of the inflammation remains unclear.
Putative « proinflammatory » Proteobacteria were
more abundant in PD patients’ feces than controls,
whereas putative « anti-inflammatory » butyrate-
producing bacteria were more abundant in controls
[20]. Dysbiosis in PD could promote immune activa-
tion and systemic inflammation, which could in turn
exacerbate pathogenic processes (such as triggering
and maintenance of excessive �-synuclein expres-
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sion) by establishing a chronic neuroinflammatory
milieu.

Many studies have reported gut dysbiosis in PD
patients [87]. The oral microbiota may have a great
impact on the composition of gut microbiota and the
health of the gastrointestinal tract [88]. Indeed, oral
acid-resistant bacteria can colonize the gut through
swallowed saliva. Swallowed dead oral bacteria can
also be a nutritional source for gut microbiota growth
(necrotrophy). Oral bacteria are poor colonizers of the
healthy digestive tract [89]. However, under patho-
logical circumstances, it has been demonstrated that
oral pathogens could colonize the gut, and influence
colonic composition and functions, particularly in
non-alcoholic fatty liver disease, rheumatoid arthri-
tis, and periodontitis [90–93]. In PD, no studies have
specifically examined the relationship between oral
and gut dysbiosis. In accordance with several studies
investigating gut microbiota [19, 21, 23, 94–96], we
reported an increase in the family Lactobacillaceae.
An increased relative abundance of the genus Pre-
votella and Prevotellaceae family in PD buccal and
sublingual mucosa samples has been reported [37].
In line with these findings, we found significantly
increased levels of four bacterial species of the family
Prevotellaceae (Aloprevotella AM420222 s, Allopre-
votella PAC001345 s, Prevotella PAC001346 s and
Prevotella histicola) in the dental plaque samples of
PD patients. In saliva, the only differentially abun-
dant Prevotellaceae species was Prevotella shahii,
but with a higher proportion in controls. A previ-
ous study performed on stool samples showed that
members of the Prevotellaceae family were found
at significantly lower levels in PD patients’ gut
microbiota compared to controls [19]. Associations
between microbial profiles and a given pathology
are not necessarily expected to be the same across
body locations. Differences in changes of the rela-
tive abundance of Prevotellaceae and/or their specific
members, observed from different body sites when
PD patients are compared to control subjects, may
reflect differences in colonization of body sites by
bacterial strains and species [37]. Mechanisms by
which gut and oral dysbiosis are linked and may be a
contributing factor to the pathophysiology of Parkin-
son’s disease remains a subject of active research.

Our study presents several limitations. Firstly, the
sample size was relatively small to draw defini-
tive conclusions. However, participants were well
examined with a detailed neurological, dental and
periodontal testings. Secondly, our patient sample
included early and mid-stage PD patients. We cannot

exclude the possibility of the microbiota profile being
different in different stages of the disease and also
potentially being associated with a different progno-
sis. Our sample was however homogeneous in terms
of the motor and the non-motor clinical signs. In addi-
tion, it has been demonstrated that gut microbiota
is remarkably stable in PD patients over a 2-year
period [97, 98]. Thirdly, no information about the
dietary habits of our subjects were presented in our
study. We cannot exclude the possibility that diet may
have influenced the oral microbiome composition and
inflammation level. There is still conflicting evidence
regarding the relationship between dietary factors, the
oral microbiome and inflammation [99–101]. Some
recent studies, employing microarray and metatax-
onomic approaches, concluded that diet has little
influence on salivary bacterial profiles [102, 103].
The primary substrates for oral bacterial growth
are endogenous nutrients provided by saliva, tis-
sue exudates, crevicular fluids, degenerating host
cells, or metabolites from other bacteria [104], not
directly derived from the food ingested. However,
dietary intake is an important factor that influences
these endogenous nutritional environments through
systemic circulation. No significant difference was
found in body-mass-index between study groups,
arguing against major dietary differences. Given the
assortment of potential health effects of oral micro-
biome, an increase in knowledge concerning how
host lifestyle factors influence human oral micro-
bial composition is warranted. Fourthly, most of
our patients were taking dopamine replacement ther-
apy and we did not have adequate representation
of unmedicated subjects to fully evaluate the con-
sequences of treatment on the outcomes. Fifthly,
while our study focused on the taxonomic compo-
sition of the microbiota, PD might be associated with
changes in microbial metabolic pathways that can
be investigated by means of metagenomics, meta-
transcriptomics, metaproteomics and metabolomics.
However, the use of 16S rRNA-gene based metatax-
onomic approach made comparisons with previously
published data easier, since the majority of published
studies used this method. Finally, we only assessed
the oral microbiome on a single occasion, and it
would be interesting to follow patients over time in
order to investigate the influence of PD progression
on microbiota composition.

In conclusion, our findings suggest that the oral
microbiome is altered in PD. Oral inflammation is
present in PD and probably precedes poor oral health.
Additional studies are warranted to further elucidate
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the causal relationships between oral dysbiosis and
the pathogenesis and clinical manifestations of PD, as
well as the suitability of an analysis of oral microbiota
as a potential biomarker or therapeutic target for PD.
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