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Abstract

Large cities produce more output per capita than small cities. This higher pro-

ductivity may occur because more talented individuals sort into large cities, because

large cities select more productive entrepreneurs and firms, or because of agglomeration

economies. We develop a model of systems of cities that combines all three elements and

suggests interesting complementarities between them. The model can replicate stylised

facts about sorting, agglomeration, and selection in cities. It also generates Zipf’s law

for cities under empirically plausible parameter values. Finally, it provides a useful

framework within which to reinterpret extant empirical evidence.
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1 Introduction

Output per capita is higher in larger cities. For instance, across 276 US metropolitan areas

in 2000, the measured elasticity of average city earnings with respect to city population is

8.2%. This paper proposes a model that integrates three main reasons for this fact. The

first is agglomeration economies: economies external to firms taking place within cities lead

to citywide increasing returns. The second is sorting: more talented individuals may ex ante

choose to locate in larger cities. The third is selection: larger cities make for larger markets

where selection is tougher so that only the most productive firms may ex post profitably

operate there.1

Integrating these three explanations of the urban premium into a theoretical framework

where cities are determined endogenously is important for three reasons. First, it yields

a better understanding of how sorting, selection, and agglomeration interact. Our results

emphasise some interesting complementarities between these three forces. Tougher selection

in larger cities implies that only more talented individuals will locate there in the first place:

selection induces sorting. Conversely, the presence of more talented individuals reinforces

selection. Cities with more talented individuals, where selection is tougher, also end up

with more productive firms paying higher wages. In turn, this wage premium attracts more

individuals and makes these cities larger, thereby strengthening agglomeration economies.

Second, our model matches a number of key qualitative stylised facts about cities. The

literature strongly suggests the existence of a causal effect of city population on productivity,

1We ignore a fourth possible reason: natural advantage. While fundamental for early urban development,

the role of natural advantage in mature urban systems may be more limited. Ellison and Glaeser (1999)

conclude that it only accounts for a small fraction of industrial concentration in the US. Combes, Duranton,

and Gobillon (2008) find that sorting and agglomeration account for the bulk of spatial wage disparities in

France.
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even after controlling for sorting and selection. There is also evidence that the returns to

talent increase with city population which leads to the sorting of more talented individuals into

larger cities. At the same time, there is a non-degenerate distribution of firm productivities

in any city. There are fewer less productive firms in larger cities but there is no evidence of

stronger selection after conditioning out agglomeration and sorting. Finally, the population

distribution of cities is well described by a Pareto distribution with a unitary shape parameter.

We discuss these facts in greater detail after deriving our results.

Third, our model provides a useful framework within which to interpret extant quantitative

evidence. As already mentioned, in a city earnings regression for the US the coefficient on

log city population is 8.2%. In our model, and in part because of sorting, this coefficient

actually reflects the intensity of urban costs. Our estimate drops to 5.1% when conditioning

out sorting, using the log share of city college graduates as a proxy for talent. In that case,

the coefficient on population measures our key agglomeration parameter. In our model, the

small difference between 8.2% and 5.1% should also be equal to the elasticity of city talent

with respect to city population. Our data for the US are consistent with this result.

Formally, we extend the monopolistic competition framework of Dixit and Stiglitz (1977)

to a two-stage production process, as in Ethier (1982), with heterogeneous entrepreneurs,

borrowing from Lucas (1978) and Melitz (2003), to generate local increasing returns.2 Fol-

lowing Henderson (1974), we then embed this production structure in a system of cities where

urban costs increase with city population. The key to our model is that firms are operated by

entrepreneurs whose productivity is revealed in two stages. Each individual initially knows

about her talent and chooses a location. Upon moving, she gets a draw, which we call luck or

2We work with a single sector. For the issues at stake here, we believe this simplification is appropriate.

Hendricks (2011) shows that about 80% of cross-city variations in skills are accounted for by variations within

sectors and only 20% by sectoral composition effects.
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serendipity. Productivity is a combination of talent and serendipity and more productive in-

dividuals have a comparative advantage in entrepreneurship. In equilibrium, individuals sort

across cities ex ante depending on their talent, and they select ex post into entrepreneurship

or become workers depending on their productivity.3

Cities result from a tradeoff between agglomeration economies and urban costs. En-

trepreneurial profit increases with productivity and city population. Hence, more talented

individuals, who stand a higher chance of becoming highly productive entrepreneurs, have

more to gain from locating in larger cities. This complementarity between talent and city

population leads to the sorting of more talented individuals into larger cities. Then, tougher

selection in more talented cities increases observed average firm productivity. A higher pro-

ductivity, in turn, complements the agglomeration benefits of cities which justifies why more

talented cities are larger in equilibrium.

Integrating sorting, selection, and agglomeration economies in a model with endogenous

cities is the main innovation of our paper. Our model builds on and expands the large theoret-

ical literature in urban economics on agglomeration economies (see Duranton and Puga, 2004,

for a review). There is also a large literature about sorting on income and preferences within

cities and its fiscal implications (see Epple and Nechyba, 2004, for a review). The theoretical

literature about ability sorting across cities is more limited. In an important paper, Nocke

(2006), like us, assumes that entrepreneurs are heterogeneous in talent but, unlike us, he

ignores serendipity and maps talent directly into productivity in a partial equilibrium setting.

3The choice of cities by individuals can be conceived as an assignment problem. The difficulty with regards

to standard assignment theory (e.g., Sattinger, 1993) is that cities are endogenous and their characteristics de-

pend on the location choices of everyone in a general equilibrium framework. Monte (2011) also takes a general

equilibrium assignment approach. He considers the assignment of heterogeneous managers to heterogeneous

firms to explore the relationship between trade integration and skill-biased technological change.
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He shows that perfect productivity sorting across exogenously determined cities occurs under

weak conditions, a strong but counterfactual result.4

In more recent work, Eeckhout, Pinheiro, and Schmidheiny (2013) show how a mix of

skills can occur in cities when skills complement each other. More specifically, they can

generate an over-representation of high- and low-skill workers in the largest cities when skills

complementarities are stronger between more extreme skills. Finally, Davis and Dingel (2012)

develop an original model of learning in cities where more skilled individuals learn more from

each other. In equilibrium, the most skilled individuals sort into the largest city where they

devote more time to learning from each other while less skilled individuals are better off in

the small city where the cost of living is much lower.

We know of only two papers on selection in cities. Behrens and Robert-Nicoud (2013)

propose a multi-region framework that builds on Melitz and Ottaviano (2008) where ex ante

identical individuals can move from a rural hinterland to cities. In cities, they benefit from

agglomeration but may get a poor entrepreneurial draw so that urbanisation also generates

inequalities. Gennaioli, La Porta, Lopez-de-Silanes, and Shleifer (2013) use a simple frame-

work featuring agglomeration, sorting, and selection to assess empirically the effect of human

capital on regional development. We return to their findings later in the paper.

A second innovation of our model is to generate Zipf’s law within a static setting. Zipf’s

law and the size distribution of cities have attracted much attention recently. In random

growth models, the population of a city reflects its balance of past shocks (see Gabaix and

4In earlier work, Abdel-Rahman and Wang (1997) consider the sorting of skilled workers in core cities

and that of unskilled workers in peripheral satellite cities. Sorting by talent also occurs in Mori and Turrini

(2005) in a two-region setting. Baldwin and Okubo (2006) develop a model with immobile workers where ex

ante identical firms can relocate at a cost after receiving their productivity draw. This timing leads to the

relocation of the most productive firms from the small market to the large one and incomplete productivity

sorting.
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Ioannides, 2004, for a review). Our approach is radically different. It builds on a static

model of cities. In equilibrium, the population of a city depends on the productivity of its

entrepreneurs, magnified by the tradeoff between agglomeration economies and urban costs.

More specifically, city population is a power function of the talent of its residents where the

power is inversely related to the difference between the intensity of agglomeration economies

and that of urban costs. When this difference is small, as is the case in the data, small

productivity differences caused by sorting lead to large differences in city population sizes

and the resulting size distribution of cities is approximately Zipf.5

In what follows, Section 2 presents the model. Section 3 solves for its equilibrium taking

the distribution of population as given. Section 4 solves for location choices and Section 5

derives our results about the size distribution of cities. Section 6 proposes two extensions of

our model, and Section 7 discusses its quantitative implications. Finally, Section 8 concludes.

2 The model

There is a continuum of individuals of mass Λ in the economy, each choosing a location and

an occupation. Individuals are identical except for their ‘talent’, t, and their ‘serendipity’, s.

There is also a continuum of homogeneous sites that can be used as cities. The number of

cities, their population size, and their composition are endogenous.

Each individual initially knows her talent and chooses where to locate. Upon moving to

a city, serendipity occurs. We model it as a draw of luck. The product of an individual’s

talent and serendipity determines her productivity: ϕ ≡ t× s. ‘Serendipity’ subsumes many

5We know of two other papers that generate Zipf’s law from a static model. The argument of Lee and Li

(2013) is the static equivalent of random growth models where population is determined by the multiplicative

aggregation of many randomly distributed local characteristics. Hsu (2012) relies on central place theory.
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local interactions that are uncertain and affect productivity such as being acquainted with

the right people at the right time. Knowing her productivity, each individual then selects

into an occupation, entrepreneur or worker. An entrepreneur sets up a firm that produces

with productivity ϕ a variety of a differentiated intermediate good using labour. A worker

supplies ϕa efficiency units of labour, with a ≥ 0.6

Empirically, there are frictions to mobility. In our static model we formalise these frictions

in a parsimonious and tractable way by assuming free mobility before serendipity occurs and

prohibitive mobility costs afterwards.7 The knowledge of their talent allows individuals to

sort across cities. The full revelation of their productivity after choosing a city leads to their

selection into occupations. That is, our two-step revelation process enables us to consider

both the spatial sorting of individuals and the productivity selection of firms. Selection

without sorting would lead all cities to be symmetric in equilibrium. Sorting without selection

would imply that all firms in any one city have the same productivity. Both predictions are

counterfactual.

To avoid the introduction of arbitrary productivity differences across cities, the cumulative

distribution of serendipity is assumed to be the same in all cities. The distributions of talent

and serendipity are summarised by the continuously differentiable cumulative probability

distribution functions Gt over [t, t] ⊂ R+∗ and Gs over R+, respectively. We also note F (ϕ) =

F (t× s) the joint distribution of the product t× s.

Individuals consume two goods: a final good and land. For simplicity, they require one unit

of land for accommodation and do not increase their utility by consuming more land. They

are also risk-neutral so that their utility can be taken to be linear in final good consumption.

6We allow for heterogenous worker productivity while most models in the traditions of Lucas (1978) or

Dixit and Stiglitz (1977), which we relate to, assume homogenous labour.
7In Section 6, we develop an extension where individuals can obtain additional draws of luck at a cost and

show that this generalization does not affect the main properties of our model.
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To produce the final good, competitive final producers in each city use locally produced

differentiated intermediate inputs, which enter into their technology with constant elasticity

of substitution 1 + 1/ε, with ε > 0. Aggregate output in city c is given by

Yc =

[∫

Ωc

xc(i)
1

1+εdi

]1+ε

, (1)

where xc(i) is the amount of variety i used, and Ωc is the endogenously determined set

of varieties of intermediate inputs produced in city c. Without loss of generality and for

simplicity, we make the final good Y freely tradeable to use it as numéraire.

As in Ethier (1982), intermediate inputs are produced by monopolistically competitive

firms à la Dixit and Stiglitz (1977). Each entrepreneur sets up a firm which employs labour

to produce a different variety. Hence Ωc, the set of varieties, also denotes the set of en-

trepreneurs and i refers equivalently to an entrepreneur, her firm, or the variety she produces.

Entrepreneurs differ in their productivity as in Lucas (1978) and Melitz (2003).8 Output of

variety i is

xc(i) = ϕc(i) lc(i), (2)

where lc(i) is labour demand (in efficiency units) for the production of variety i and ϕc(i) is

entrepreneur i’s productivity, which, in turn, depends on her talent, t, and her serendipity, s.

Turning to the urban structure of our model, we assume that each resident of a city

of population L pays θLγ as urban cost to reside in that city. In a separate web appendix

(Appendix F) we develop micro-economic foundations that justify this functional form. These

8As in Lucas (1978), firms only differ in the productivity of their entrepreneur. Because differentiated

varieties are imperfect substitutes we do not need to impose limits on entrepreneurial span of control for firms

to remain of finite size. We nonetheless consider this extension in Section 7 below. As in Melitz (2003), we

embed heterogeneous firms in a constant-elasticity-of-substitution demand system. Unlike in Melitz (2003),

there is no sunk cost to create a firm and receive a productivity draw: individuals know their productivity

when they decide whether or not to start a firm.

9



foundations rely on a standard monocentric urban framework, where an increase in population

leads to greater commuting costs. For cities to remain of finite size in equilibrium we require

γ, the elasticity of urban costs, to be larger than ε, which turns out to be the equilibrium

elasticity of agglomeration economies.

To use the terminology of Henderson and Becker (2000), cities arise under ‘self-organisation’,

i.e., they are the outcome of the mutually compatible optimal choices of a continuum of indi-

viduals. The talent composition and population size of a city c ∈ C ≡ [0, c] are endogenously

determined. The population of each city c, Lc, is given by

Lc ≡

∫ t

t

Lc(t)dt , (3)

where Lc(t) is the population with talent t in city c. In equilibrium all individuals must live

in a city. With a slight abuse of notation, the adding-up constraint for each type of talent

thus requires that

Λ gt(t) =

∫ c

0

Lc(t)dc, ∀t ∈ [t, t], (4)

where gt is the probability distribution function of talent. Equation (4) states that the mass

of individuals of talent t across all cities must be equal to the mass of individuals of talent

t in the population. Summing equation (4) across all talents then implies satisfying the full

population condition of the model.

3 Selection and agglomeration

In equilibrium, each individual optimally chooses a city based on her talent. After serendip-

ity occurs and learning her productivity, she optimally chooses an occupation, worker or

entrepreneur. Entrepreneurs then maximise their profit with respect to the price of their

variety. Markets for intermediate goods, final goods, and labour clear, and the population

adding-up constraints are satisfied.
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For expositional purposes, it is convenient to solve for the equilibrium in steps. In this

section, we study each city in isolation and take its population and its productivity distribution

as given. Thus, individuals know their own productivity, the cumulative distribution of

productivity in their city, Fc(·), which we assume for now to be continuously differentiable

over a closed support, and their city population size, Lc. The focus in this section is on

selection (the occupational choice between worker and entrepreneur) and agglomeration (the

increase in productive efficiency caused by an increase in city population and city talent). In

the next section, we solve for the sorting of individuals across endogenously determined cities

based on their talent.

To ease notation, we drop the city subscript c wherever possible. Minimising production

costs in the final goods sector subject to the technology described by equation (1) yields the

demand for intermediates inputs:

x(i) =

[
p(i)

P

]− 1+ε
ε Y

P
, where P ≡

[∫

Ω

p(j)−
1
εdj

]−ε

(5)

is the appropriate price index. It is immediate from equation (5) that the own-price elasticity

of demand is −(1 + ε)/ε. Hence, the profit-maximising price for each intermediate displays a

constant markup over marginal cost:

p(i) = (1 + ε)
w

ϕ(i)
, (6)

where w is the wage per efficiency unit of labour. This expression allows us to re-write the

demand (5) as:

x(i) =

[
ϕ(i)

Φ

]1+ 1
εY

P
, where Φ ≡

[∫

Ω

ϕ(j)
1
εdj

]ε
(7)

is the appropriate measure of aggregate productivity in the city. More entrepreneurs in a city

(i.e., a larger measure of Ω) and/or better entrepreneurs (i.e., on average larger ϕ’s) imply a

larger aggregate productivity, Φ. In turn, individual sales are negatively affected by aggregate
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productivity through a market crowding effect. Using expressions (6) and (7), we rewrite the

price index P in (5) as a function of aggregate productivity, Φ, and obtain

P = (1 + ε)
w

Φ
. (8)

After combining this equation with (6) and (7), operating profit becomes

π(i) =
ε

1 + ε
p(i) x(i) =

ε

1 + ε
Y

[
ϕ(i)

Φ

] 1
ε

. (9)

This expression shows that the profit of entrepreneurs increases with the economic size of

their city, Y , and with their own productivity relative to aggregate productivity, ϕ(i)/Φ.

Put differently, holding her own productivity constant an entrepreneur would like to be in an

economically large city with low aggregate productivity. As this combination does not happen

in equilibrium, equation (9) contains the germ of our main tradeoff which occurs below when

individuals need to choose a location.

Individuals choose their occupation by comparing their prospective entrepreneurial profit,

as given by (9), with their labour income w × ϕa. We assume a < 1/ε for more produc-

tive individuals to have a comparative advantage in entrepreneurship. Then, there exists a

productivity cutoff for selection into entrepreneurship ϕ, defined by π(ϕ) = w ϕa, such that

all individuals with productivity above ϕ become entrepreneurs and all individuals with pro-

ductivity below ϕ become workers. Because the set of individual productivities in the city

is convex (as serendipity is distributed over R+), this selection cutoff is unique and, using

equation (9), given by

ϕ ≡

[
Φ

(
1 + ε

ε

w

Y

)ε] 1
1−a ε

. (10)

Selection is tougher when aggregate productivity is higher (∂ϕ/∂Φ > 0), for it is more difficult

to compete against more productive and numerous entrepreneurs. Selection is also tougher

when demand is lower (∂ϕ/∂Y < 0) and when wages are higher (∂ϕ/∂w > 0).
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Labour in a city is supplied by all individuals with productivity below ϕ. In efficiency

units, city labour supply is equal to: LS ≡ L
∫ ϕ

0 ϕadF (ϕ). From equation (2), labour demand

for an entrepreneur with productivity ϕ is l(ϕ) = x(ϕ)/ϕ. Combining this expression with

equations (7) and (8) and aggregating over all entrepreneurs, we obtain city labour demand:

LD = L
∫ +∞

ϕ l(ϕ)dF (ϕ) = (1 + ε)−1Y/w. Equating labour supply and demand implies that

workers receive a share 1
1+ε of city output:

wL

∫ ϕ

0

ϕadF (ϕ) =
Y

1 + ε
. (11)

That workers (and thus entrepreneurs) receive a constant share of output plays a key role to

facilitate the analysis below.

The marginal cost of final good producers is equal to P. Then, perfect competition among

final good producers yields P = 1 by our choice of the final good as the numéraire. Hence,

equation (8) implies

w =
1

1 + ε
Φ, (12)

where aggregate productivity, Φ, as defined in equation (7) can be rewritten as

Φ =

[

L

∫ +∞

ϕ

ϕ
1
εdF (ϕ)

]ε
. (13)

Expressions (10) to (13) fully characterise the equilibrium tuple {ϕ,Φ, w, Y }.

Proposition 1 (Existence and selection) Given population, L, and its productivity dis-

tribution, F (·), the equilibrium in a city is characterised by equations (10) to (13), ex-

ists, is unique, and the productivity cutoff for selection does not depend on city population.

In addition, in any two cities 1 and 2 with ‘scaled’ distributions of productivity such that

F1(ϕ) = F2(λϕ) with λ > 0, the selection cutoffs are such that ϕ
2
= λϕ

1

Proof. Using equations (10), (11), and (13) to eliminate w, Y , and Φ yields an implicit
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solution for ϕ:

ϕ
1
ε
−a

∫ ϕ

0

ϕadF (ϕ) =
1

ε

∫ +∞

ϕ

ϕ
1
εdF (ϕ). (14)

Since a < 1/ε, the left-hand side of this expression is monotonically increasing in ϕ, starting

from 0 and strictly positive when ϕ → +∞. The right-hand side is monotonically decreasing

in ϕ and equal to 0 when ϕ → +∞. By continuity, this argument establishes the existence

of a unique equilibrium. Next, by inspection of equation (14), ϕ does not depend on city

population.

To prove the last part of the proposition assume that equation (14) holds for city 1. Since

F1(ϕ) = F2(λϕ) we have dF1(ϕ) = dF2(λϕ) and we can write the equilibrium condition for

city 1 as:

ϕ
1
ε
−a

1

∫ ϕ
1

0

ϕadF2(λϕ) =
1

ε

∫ ∞

ϕ
1

ϕ
1
εdF2(λϕ) .

The change of variable λϕ = z and λdϕ = dz implies that the previous equation can be

rewritten as:

(λϕ
1
)
1
ε
−a

∫ λϕ
1

0

zadF2(z) =
1

ε

∫ ∞

λϕ
1

z
1
εdF2(z) .

It is then immediate to verify that ϕ
2
= λϕ

1
.

Aside from existence and uniqueness, Proposition 1 shows that the equilibrium selection

cutoff does not depend on city population, conditional on the distribution of productivity

(ignoring for now any general equilibrium connection between city size and productivity).

This result is the outcome of two offsetting forces. Larger cities have both a higher demand

(which lowers the selection cutoff) and more entrepreneurs (which raises it). These two effects

exactly offset each other in our framework.9 The reason behind this exact offset can be found

9There are at least two ways to make the productivity cutoff vary with city population conditional on the

distribution of productivity. The first is to impose a different demand structure for varieties. In the spirit

of Melitz and Ottaviano (2008), Behrens and Robert-Nicoud (2013) use non-CES preferences to generate
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in equation (11) which shows that labour market clearing implies a constant aggregate en-

trepreneurial income as a share of city output. Hence, keeping the distribution of individual

productivity constant, a city hosts the same proportion of workers and entrepreneurs regard-

less of its size. As we show in a separate web appendix (Appendix G), equilibrium selection

is also optimal as a result of constant mark-ups.

Proposition 1 also demonstrates that scaling up the distribution of productivity by a factor

λ scales up the selection cut-off by the same factor. Again, this property occurs because

aggregate entrepreneurial income is a constant share of city output. Simply put, a city whose

residents are twice as productive has a selection cutoff twice as high. This case is of particular

empirical relevance since Combes, Duranton, Gobillon, Puga and Roux (2012) find that the

distribution of log productivity in larger cities in France is, to a first approximation, a shifted

version of its counterpart in smaller cities.10 In addition, the share of entrepreneurs should

also be constant across cities. Empirically, the share of self-employed workers – a proxy for

entrepreneurship – is uncorrelated with city population in the US. Regressing the employment

share of self-employed workers on log city population in 276 US MSAs using 2000 Census data

yields a coefficient of 0.0003 with a standard error of 0.001.

Proposition 1 has two further implications. First, sorting induces selection. If larger cities

markups that decrease with the number of local varieties. This feature naturally leads to tougher selection

in larger markets. The second possibility is to change the supply side and have the ratio of fixed to variable

costs for firms depend on city population. On the one hand, a fixed cost (in addition to the entrepreneur’s

foregone labour) paid in numéraire would be relatively less costly in larger cities where productivity is higher

and would thus imply a greater proportion of entrepreneurs in larger cities. On the other hand, a fixed cost

paid with a factor that is in fixed supply locally (such as land) would increase faster than operating profit as

cities get larger and, in turn, would mean a lower proportion of entrepreneurs in larger cities.
10Scaling up the distribution of productivity across cities implies a shift when comparing the distribution

of log productivity across cities.
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attract more talented individuals, they will be tougher markets. As emphasised by Sinatra in

his 1979 New York, New York song: “If I can make it there, I’ll make it anywhere”. Second,

conditional on sorting there are no differences in selection across cities. This result is also

compatible with the findings of Combes, Duranton, Gobillon, Puga and Roux (2012) for the

productivity of French firms. They find no differences in selection cutoffs across cities of

different population sizes after accounting for common productivity differences that affect all

firms. Put differently, there are no differences in selection between large and small French

cities after controlling for sorting and agglomeration.

Proposition 2 (Agglomeration) Given the productivity distribution, F (·), the elasticity of

aggregate productivity, per capita income, and the wage rate with respect to city population is

ε. Scaling up the distribution of talent by a factor λ scales up output per worker by a factor

λ1+a and the wage rate by a factor λ.

Proof. By equations (12) and (13), the wage can be written as:

w =
1

1 + ε

(∫ +∞

ϕ

ϕ
1

εdF (ϕ)

)ε

Lε . (15)

Since by equation (14), ϕ does not depend on L, w is proportional to Lε. In turn, by equation

(11), we find:

Y =

(∫ +∞

ϕ

ϕ
1
εdF (ϕ)

)ε(∫ ϕ

0

ϕadF (ϕ)

)
L1+ε , (16)

which shows that Y/L is also proportional to Lε.

By the same change of variable as in Proposition 1, it is easy to show from equations (15)

and (16) that scaling the talent of every individual by a factor λ multiplies wages by the same

factor and multiplies total output by a factor λ1+a.

Our model thus displays agglomeration economies. They first take the form of scale

externalities since per capita income increases with city population keeping the distribution
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of talent constant. The reason is that an increase in population increases the number of

entrepreneurs and thus the number of intermediate inputs. Final producers become more

productive as they have access to a wider range of varieties. Sharing local differentiated

inputs produced under increasing returns is a popular way to generate scale externalities in

the literature (Duranton and Puga, 2004). Our innovation here is to enrich the standard

framework by considering heterogeneous firms.

The empirical evidence in favour of scale externalities is very strong. According to Rosen-

thal and Strange (2004) and Melo, Graham, and Noland (2009), in many countries the esti-

mates for the elasticity of wages or productivity with respect to city population are close to

the 8% we report for US MSAs in the introduction. Recent research suggests that about half

of this estimate actually reflects the causal effect of a greater population size of cities on their

wages (see Combes, Gobillon, and Duranton, 2011, for a recent discussion of identification

issues in the estimation of agglomeration economies). Consistent with our modelling strategy,

recent evidence also points at input-output linkages as an important source of agglomeration

economies (see Puga, 2010, for a discussion).

In our model, agglomeration economies also take the form of talent externalities since

scaling up the talent of everyone in a city raises the selection cutoff, which leads to more

productive firms and increases the wage rate. The literature often refers to these externalities

as human capital externalities. While they are often conceived as a consequence of direct

spillovers, we show here that they can also arise from the same mechanism used to model

scale externalities.

Empirically, we can think of education as a noisy proxy for talent. Higher earnings in more

educated cities is another salient feature of the data. This form of agglomeration economies

has been documented in many countries and the best evidence suggests that average education

in a city has a causal effect on earnings in this city (see Moretti, 2004, for a review).
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Last, observe that we make the final good tradable to monetise the benefits of agglomer-

ation easily. While this working assumption simplifies the quantitative exercise we conduct

below, it is unimportant for our theory. In a separate web appendix (Appendix H) we show

that our model is isomorphic to one where individuals consume a continuum of a nontraded

local final good. Hence, our approach also subsumes the ‘consumer city’ model of urban

economics where the benefits from local diversity cannot be traded (as in, e.g., Lee, 2010).

Before turning to location choices, it is useful to show that talent and city population are

complements. This complementarity is the main force pushing towards sorting in our model.

Proposition 3 (Complementarity between talent and city population) More talented

individuals benefit more from being located in larger cities. Expected indirect utility is such

that:

∂2EV (t)

∂t∂L

∣∣∣
F (.)

≥ 0.

Proof. Using equations (9) and (10) and the selection cutoff condition π(ϕ) = w× (t s)a,

the expected indirect utility of an individual with talent t in her city before her productivity

is fully revealed is

EV (t) =

∫ +∞

0

max{w × (ts)a, π(ts)}dGs(s)− θLγ

= w ta
[∫ ϕ/t

0

sadGs(s) +

(
t

ϕ

) 1
ε
−a∫ +∞

ϕ/t

s
1
εdGs(s)

]
− θLγ , (17)

where ϕ is the solution to equation (14). Using equation (15), it is easy to see that the

wage in the first term of equation (17) is proportional to Lε as a result of agglomeration

economies. The wage also increases with ϕ as a result of election. In turn, by Proposition 1,

ϕ is independent of L conditional on F . The product of ta and the term in square brackets in

(17) is the expected premium associated with being of talent t. This premium increases with

talent.
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The cross-partial derivative of EV (t) in L and t sums the cross partials of the first and

second terms in (17). The first is positive since the wage increases with L and does not depend

on t, whereas the rest of that term increases with t and does not depend on L. The second

term of (17), urban costs, does not depend on t and thus vanishes. These facts jointly prove

our claim.

The earnings of both entrepreneurs and workers increase with their talent and with city

population. For workers, earnings increase with population through the wage rate because of

the scale externalities highlighted above. Earnings also increase with talent because a higher

talent implies a larger effective supply of labour for an individual. For entrepreneurs, profits

increase with individual productivity (and thus talent) and city income (and thus population)

as highlighted in equation (9).

This complementarity between talent and city population is underscored by the empirical

literature. Taking education as a proxy for talent, Wheeler (2001) and Glaeser and Resseger

(2010) find stronger agglomeration benefits for more educated workers relative to less educated

workers. Taking cognitive and people skills as another proxy for talent, Bacolod, Blum, and

Strange (2009) find a similar result for individuals with better cognitive and people skills.

For future reference, we also note that the cross-partial derivative in Proposition 3 resem-

bles a single-crossing condition. Such condition pushes towards sorting along talent. In our

case, however, this cross-partial holds only conditionally on the distribution of productivity

F (.), which is itself endogenous. Hence, the sign of this cross-partial derivative does not

immediately ensure the existence of a perfect sorting equilibrium since different cities may

face different distributions of talent and thus productivity. Contrary to standard assignment

problems, cities are endogenous and their equilibrium characteristics depend on the location

choices of everyone.
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4 Sorting and cities

Until now, we have taken the distribution of talent across cities as given. We now turn to

location choices and the sorting of individuals across cities depending on their talent. To this

end, we define the assignment function M : [t, t] → C which maps talents into cities. An

equilibrium choice of cities is such that

M(t) = {c ∈ C : EVc(t) ≥ EVc′(t), ∀c
′ ∈ C} (18)

for all t ∈ [t, t], i.e., each individual is located in the city that maximises her utility. Since

individuals initially differ by their talent only, this location choice is a mapping from [t, t] to

C (a distinctive characteristic of our framework is that the destination set, C, is endogenous).

In equilibrium, no individual wants to deviate to another city given the location choices of all

other individuals. Once in a city, individuals make their occupational choice as described in

Section 3. Entrepreneurs choose employment in their firm to maximise profit, and all markets

clear. Formally, an equilibrium satisfies the population adding-up constraint (4), selection and

agglomeration as described by equations (10)–(13), and optimal location choice as given by

equation (18).

Proposition 3 suggests that more talented individuals benefit more from being located in

larger cities. It does not, however, preclude the existence of a symmetric equilibrium where

all types of talents are equally represented in all cities. A first natural question to ask is,

therefore, under which conditions a symmetric equilibrium is stable. We show in Appendix A

that such an equilibrium is stable only if the variation in talent across the population is small

enough. In other words, ability sorting is a natural equilibrium outcome when individuals are

sufficiently heterogeneous.

Symmetric equilibria are both empirically counterfactual and theoretically not very illu-

minating. From now on, we thus focus on equilibria with sorting. Specifically, we construct
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an equilibrium with a single type of talent in each city. Because talent is sufficient to charac-

terise a city in that case, we now drop the subscript c and denote cities by their level of talent

instead.11 We refer to cities in this equilibrium as talent-homogeneous cities and note that

despite a single type of talent per city, there can still be enormous productivity heterogeneity

within cities due to serendipity.

Let S denote the common serendipity threshold to become an entrepreneur and σ the

share of efficiency units of labour used in production. By Proposition 1, these two quantities

are constant across talent-homogeneous cities:

ϕ = St and σ =

∫ S

0

(s/S)adGs(s) =
1

ε

∫ ∞

S

(s/S)
1
ε dGs(s), (19)

where the last equality follows from equation (14). When choosing a city of talent t, an indi-

vidual with talent t′ maximises expected utility, EV (t′, t), since serendipity has not occurred

yet. Inserting the first equality of (19) into equation (17), we can rewrite the expected utility

of a worker of talent t′ in a talent-homogeneous city of size L with wage w where individuals

are of talent t as:

EV (t′, t) = w t′a
[∫ St/t′

0

sadGs(s) +

(
t′

St

) 1
ε
−a∫ +∞

St/t′
s

1
εdGs(s)

]
− θLγ . (20)

Each agent takes the selection cutoff, equal to St, the wage w, and the size of the city, L, as

given when making her choice of location.

Observe that the support of talent is convex by assumption and that EV (t′, t), given by

(20), is continuously differentiable in L, t, and t′. An equilibrium with talent-homogeneous

cities is characterised by a function L(t) that assigns one city population to each talent such

that all individuals of talent t choose to locate in a city populated by L(t) individuals of

the same talent. In equilibrium, two cities with the same talent t will be of identical size

11We are implicitly assuming that all cities of talent t are identical, i.e., have the same population size.

This is without further loss of generality because it is true in equilibrium.
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so that L(t) is uniquely valued.12 Individuals thus choose their preferred city from a ‘menu’

of possible combinations of talent and population, knowing that the choice of a city talent t

implies the choice of a population L(t). We solve for the number of cities of different talents

in the next section. Here, we first derive the equilibrium sizes of talent homogeneous cities:

Proposition 4 (Equilibrium population of talent-homogeneous cities) If γ/ε is close

to unity, the talent-homogeneous equilibrium is unique and such that

L(t) =

(
1 + γ

1 + ε
ξ t1+a

) 1

γ−ε

where ξ ≡
(εσ)1+ε S1+a

γθ
. (21)

Equilibrium city population increases with city talent t, agglomeration economies ε, and worker

heterogeneity a, and decreases with urban costs θ and γ.

Proof. In equilibrium, each individual solves a constrained optimisation problem which

consists in picking the city with talent t that maximises her expected indirect utility from

the menu of possible cities. For an individual of talent t′ the first-order condition to the city

selection problem (18) with talent-homogeneous cities can be written as:

∂EV (t′, t)

∂L

∣∣∣∣
t′=t

dL+
∂EV (t′, t)

∂t

∣∣∣∣
t′=t

dt = 0. (22)

Using equations (12)–(14) and (20), equation (22) becomes:

[
(εσ)1+ε (S t)1+a Lε − θγLγ

] dL
L

+
1 + a

1 + ε
(εσ)1+ε (S t)1+a Lεdt

t
= 0.

12For a fixed level of talent, wages are proportional to Lε from (15), whereas urban costs are proportional

to Lγ . Since γ − ε > 0, EV (t, t) is bell-shaped. For any constant v, there are at most two solutions in

L(t) satisfying EV (t, t) = v. In this case, the first solution is below the level of population that maximises

EV (t, t) while the second is above. The first solution cannot be stable because an arbitrarily small increase

in population leads to an increase in expected utility. Only the second solution, which is in the region of

decreasing returns, is stable. See Duranton and Puga (2004) for further discussion.
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The previous equation yields a differential equation that determines the menu of talents and

populations that supports the talent-homogeneous equilibrium:

γθL(t)ε
[
ξt1+a − L(t)γ−ε

L(t)
dL(t) +

1 + a

1 + ε
ξtadt

]
= 0 , (23)

where ξ is defined in equation (21). To solve this differential equation, we can verify that L(t)

is of the form L(t) = (zξt1+a)1/(γ−ε), for some z. Plugging this into (23) yields an equation

involving the parameters of the model that is linear in z. Solving for z then gives

z =

[
(γ − ε)(1 + a)

1 + ε
+ 1

] 1
γ−ε

,

which satisfies (23) and allows us to obtain (21) after simplifications. The comparative static

results also follow directly from γ > ε.

Last, Appendix B shows that a necessary second-order condition for the talent-homogeneous

equilibrium to exist is given by

a(γ + εa) + γ(1 + a) >
(γ
ε
− 1
)[

1 +
Sg (S)

σ
(1− aε)

]
, (24)

which always holds if γ/ε is close to 1.

As made clear by equation (21), four elements determine equilibrium city population.

The first is the standard trade-off between agglomeration economies (as given by ε) and

urban costs (as given by γ and θ). Unsurprisingly, equilibrium population size increases with

agglomeration economies and decreases with urban costs. The second determinant of city

population is talent. More talented cities have a larger population because more talented

individuals are more productive as entrepreneurs on average and more efficient as workers.

Both features increase productivity and are magnified by agglomeration economies. Note

that more talented cities are larger even when the distribution of talent has a thin right tail.

This is because, as made clear below, the number of cities also adjusts. More talented cities
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will be larger but there will also be fewer of them when Gt, the cumulative distribution of

talent, is concave. The third determinant of city population is the distribution of serendipity

which affects both the serendipity threshold to become an entrepreneur (S) and the share of

efficiency units of labour used in production (σ). Last, heterogeneity among workers (a) also

affects city population size. With a higher a, more talented individuals are relatively more

productive as workers, which, again, gets magnified by agglomeration economies.

We may view the equilibrium function L(t) as describing an envelope of indifference curves

in (t, L) space. This function is represented by the bold curve in Figure 1. It is convex when

γ < 1 + ε, which is empirically the case as highlighted in Section 7. Consider an individual

with talent t′ choosing from the menu of equilibrium cities described by (t, L(t)). Assume

that she picks city c1, which offers (t1, L1). In that case, this individual faces the indifference

curve EV (t′, t1), which describes all the combinations of talent t and population L that offer

her the same expected utility as city t1 conditional on her talent t′. The lower indifference

curve EV (t′, t′) describes all the combinations of talent t and population L that offer the

same expected utility as city t′ conditional on a talent t′.13 Since expected indirect utility

is increasing as indifference curves move down and right, EV (t′, t′) maximises the expected

utility of an individual with talent t′ subject to the equilibrium menu of cities.14 Hence, for

this individual with talent t′ utility is maximised in a city where all individuals have the same

talent t′ as hers. More generally, the bold curve L(t) is the envelope of indifference curves

for all levels of talent. As we move up this curve, we progressively read the optimal choices

13Observe that this curve yields higher utility as it has smaller cities (lower urban costs) and more talent

(higher productivity). This feature is confirmed (locally at t′ = t) by computing ∂EV (t′, t)/∂L
∣∣
t′=t

> 0 and

∂EV (t′, t)/∂t
∣∣
t′=t

> 0, which yields the shape of the indifference curves.
14Cities are too large in equilibrium so that a marginally smaller city is better all else equal. Expected

utility also increase with talent because more talented cities offer higher wages and this more than offsets the

lower probability of becoming an entrepreneur.
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of individuals with higher talent. These are larger cities. The convexity of the relationship

implies that small differences in talent may translate into large differences in city size.

Insert Figure 1 about here.

Empirically, our equilibrium matches several of the key features of the data. That larger

cities host more talented individuals is documented extensively in the literature (e.g., Berry

and Glaeser, 2005; Bacolod, Blum, and Strange, 2009; Lee, 2010; Combes, Duranton, Go-

billon, and Roux, 2012; Diamond, 2013).15 For 276 US MSAs in 2000, the elasticity of the

share of college graduates with respect to population is 6.8%. For more talented individuals

to sort into larger cities where urban costs are higher, their rewards must be relatively higher

there. This property is exactly what the empirical literature finds (Wheeler, 2001; Bacolod,

Blum, and Strange, 2009; Glaeser and Resseger, 2010). It is also the case that more talented

individuals migrate to areas that offer them higher rewards (Dahl, 2002).

In our model, ability sorting does not imply perfect productivity sorting for firms or

workers. Large cities host on average more productive firms but they also contain lots of firms

with low productivity (Combes, Duranton, Gobillon, Puga, and Roux, 2012). The same, of

course, holds for worker productivity (Combes, Duranton, Gobillon, and Roux, 2012). More

specifically, these two papers find that the empirical distributions of log firm productivity,

worker fixed effects, and log wages in denser employment areas in France are, to a good first

15Consistent with our model, Diamond (2013) documents that increased sorting across US cities over 1980-

2000 also led to higher productivity and higher housing costs in more educated cities. Whereas sorting and

higher housing costs are driven by city size in our model, her findings also suggest an important role for ameni-

ties that arise endogenously from a greater concentration of skills and that are more highly valued by more

educated workers. Although we do not consider them in our model, adding endogenous amenities – fostered

by talent and more highly valued by more talented individuals – on top of the talent-size complementarity

that we already consider would only reinforce the sorting forces in our model.
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approximation, shifted to the right relative to their corresponding distribution in less dense

areas. Our equilibrium with talent-homogeneous cities also predicts these three shifts.

Finally, our results are consistent with a recurrent finding in the literature that the higher

per capita output in larger cities is in part a reflection of the sorting of more productive

individuals (Combes, Duranton, and Gobillon, 2008; Glaeser and Resseger, 2010; Baum-Snow

and Pavan, 2012). We develop this point further in Section 7.

5 The size distribution of cities

Our next proposition establishes a number of properties about the ‘number’ (or mass) of

cities and their population size distribution. In particular, we show that the latter converges

to Zipf’s law as the difference between γ and ε goes to zero. This result is striking because

it holds regardless of the underlying distribution of talent. In other words, provided that the

gap between urban costs and agglomeration economies is small – a condition that finds strong

empirical support, as highlighted in Section 7 – the size distribution of cities will be close to

log-linear with slope −1 no matter the distribution of talent in the population.

To establish this result, we need to impose mild technical restrictions. Namely, we assume

that the support of the distribution of talent gt(·) is compact and includes ξ̃−1/(1+a), where

ξ̃ ≡ ξ(1 + γ)/(1 + ε). We assume further that the distribution of talent is finite valued and

infinitely continuously differentiable around ξ̃−1/(1+a).

Proposition 5 (Number and size distribution of cities) The equilibrium ‘number’ of cities

is proportional to population size Λ. The size distribution of cities converges to Zipf ’s law as

η ≡ (γ − ε)/(1 + a) goes to zero.

Proof. Let µ(t) be the measure of cities with talent below t in the talent homogeneous
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case that we consider. The assignment of talents to cities is then such that

ΛGt(t) =

∫ t

t

µ′(ν)L(ν)dν.

Differentiating that expression, we have Λ gt(t) = µ′(t)L(t), that is, the size of a talent-t city

times the mass of such cities sums to the density of talent t in the population. Rearranging

yields

µ′(t) =
Λ gt(t)

L(t)
.

Solving this differential equation for µ(t) implies

µ(t) = κ+ Λ

∫ t

t

gt(ν)

L(ν)
dν = Λ

∫ t

t

gt(ν)

L(ν)
dν , (25)

where the second equality holds since the constant of integration κ is equal to µ(t) = 0. The

measure of the set of cities C is then given by

µ(t) = Λ

∫ t

t

gt(ν)

L(ν)
dν. (26)

This expression shows that the ‘number’ of cities increases proportionately with Λ and estab-

lishes the first part of the proposition.

Using equation (21), equations (25) and (26) may be rewritten as

µ(t) =

∫ t

t

gt(ν)

ν
1+a
γ−ε

dν and µ(t) =
Λ

ξ̃
1

γ−ε

∫ t

t

gt(ν)

ν
1+a
γ−ε

dν. (27)

Let η ≡ (γ − ε)/(1 + a). A change of variables from talent to equilibrium city size in

expression (27) then allows us to derive the probability distribution function for the population

size of cities:

GL(L; η) ≡
µ(L)

µ(L)
=

∫ L
L gt

(
ξ̃−

1
1+a ℓη

)
ℓη−2dℓ

∫ L
L gt

(
ξ̃−

1
1+a ℓη

)
ℓη−2dℓ

⇒ gL (L; η) =
gt
(
ξ̃−

1
1+aLη

)

∫ L
L gt

(
ξ̃−

1
1+a ℓη

)
ℓη−2dℓ

Lη−2,

(28)
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where L ≡ t(1+a)/(γ−ε) ξ̃1/(γ−ε) and L ≡ t
(1+a)/(γ−ε)

ξ̃1/(γ−ε). We note that the size of the

largest city, L, grows arbitrarily large as γ − ε tends to zero but remains finite since γ > ε.

Since we assume that the distribution of talent is finite-valued and infinitely continuously

differentiable around ξ̃−1/(1+a), the ith derivative of gL (·) with respect to η, evaluated at η = 0,

satisfies
∣∣∣g(i)L

∣∣∣ ≤ K for some K < ∞ and for all i. Then, using a Taylor expansion of the

second expression of (28) around η = 0 yields

gL (L; η) =
∞∑

i=0

g(i)L

i!
ηi =

LL

L− L
L−2 +O(η)

η→0
.

The second-order remainder term above converges to zero as η tends to zero.

That the number of cities should be proportional to total population is natural in a

context where cities are endogenous and there are no increasing aggregate returns. The

second part of Proposition 5 shows that the size distribution of cities converges to Zipf’s law

for any distribution of talent when η approaches zero. This property is an important result

since Zipf’s law is a reasonable first-order approximation for observed distributions of city

population sizes (Gabaix and Ioannides, 2004). As shown in Section 7, the difference γ − ε is

empirically small, around 3%. We show in Appendix C that for such values of the parameters,

the Zipf approximation works extremely well.

To understand the key intuitions behind this result, it is useful to proceed in steps. First,

it is easy to see that if talent follows a Pareto distribution, the size distribution of cities is

also Pareto because city size in equation (21) is a power function of talent in the city and any

power transformation of a Pareto distribution is also a Pareto distribution.

Second, to understand why the Pareto shape parameter of the size distribution of cities

is close to one, note that the ‘number’ of cities of talent t, gL(L), is given by the ‘number’

of individuals with this level of talent, gt(t), divided by the size of those cities, L (where the

equilibrium relationship between L and t is given by equation 21). This implies gL(L)dL =
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gt(t)dt/L. In turn, the size distribution of cities is obtained from a change in variables

using the fact that L(γ−ε)/(1+a) is proportional to t by equation (21). Hence, if talent is

Pareto distributed with shape parameter m, the size distribution of cities is Pareto with

shape parameter 1 + m(γ − ε)/(1 + a). Then, when γ − ε is small, the shape parameter of

the size distribution of cities is close to one, i.e. Zipf’s law.

Third, as shown by Proposition 5, Zipf’s law occurs for any (‘regular’) distribution of

talent provided γ− ε is small. The reason is that one can write the local Pareto shape of any

distribution as m(t), which implies that the ‘Pareto shape’ of the size distribution of cities

is 1 + m(t)(γ − ε)/(1 + a). Then, provided that γ − ε remains small, any deviation of the

distribution of talent from a Pareto distribution can be neglected.16

6 Two extensions

6.1 Discrete cities with heterogeneous talent and variable selection

The talent-homogeneous equilibrium we investigate above is consistent with key stylised facts

about agglomeration, sorting, selection, and the size distribution of cities. In particular, if we

take seriously the empirical results of Combes, Duranton, Gobillon, Puga, and Roux (2012)

that the intensity of selection is constant across cities, one should look for equilibria with

constant selection. The equilibrium with talent-homogeneous cities is a particular case within

16That the distribution of talent should not affect the size distribution of cities is in contrast with existing

assignment models. In Gabaix and Landier (2008) for instance, the distribution of CEO earnings reflects both

the size distribution of firms and the distribution of talent. The key difference is the following. In Gabaix

and Landier (2008), CEOs with heterogeneous managerial talent are assigned to an exogenous set of firms

of heterogeneous size (as measured by their market capitalisation). Instead, in our model, entrepreneurs of

heterogeneous talent are assigned to an endogenous set of cities, which allows us to obtain Zipf’s law under

mild conditions on the distribution of talent.
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this class of candidate equilibria.

In Appendix D we investigate an example of equilibrium with discrete cities. In this

case, analytical results cannot be obtained in general. Numerical computations are needed.

Because cities are in finite number while there is a continuum of talents, cities are no longer

talent homogeneous and selection differs across cities in equilibrium. Despite these important

differences, many of the key properties of the equilibrium with talent-homogeneous cities are

also properties of this equilibrium with variable selection including the links between city

size, productivity, and ‘city talent’. Interestingly, the selection cutoffs across cities differ only

marginally. These similarities are a good reason to focus on the simpler and analytically

tractable case of talent-homogeneous cities.

In a separate web appendix (Appendix G), we also provide some results about the opti-

mal allocation of talent across cities. Optimal and equilibrium agglomeration and selection

coincide. Turning to sorting, we show that a benevolent planner may also want to create

talent-homogeneous cities. Although the conditions under which talent-homogeneous cities

occur in equilibrium and at the social optimum do not perfectly overlap, talent-homogeneous

cities can also be an optimal outcome.

6.2 A dynamic version of the model with relocations

So far, our model is static and individuals are stuck in the city they initially chose. Though

convenient and useful, this assumption is extreme. As we underscore in Section 2, allowing

individuals to relocate at no cost once their productivity ϕ is fully revealed yields perfect

productivity sorting as in Nocke (2006), which is counterfactual. In an extension of the

model in which time runs indefinitely, we now allow agents to relocate at a cost.

The setting is as follows. We assume that time T runs discretely. Each individual has a

probability of dying δ ∈ (0, 1) at each period. A fraction δ of newborns also appear every
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period so that aggregate population, Λ, is constant. Individuals are endowed with a talent t

for life but serendipity s is modelled as several possible draws of luck. In all other respects

the setting is the same as in the model described above.

Consider some arbitrary time T . A newborn observes her talent t, makes a location

decision, and receives a first realisation of serendipity s for this location. Upon observing

her productivity ϕ = t × s, an individual may either ‘stay’ in the chosen city and select

an occupation (worker or entrepreneur) or ‘move’ to get another realisation of serendipity.

Getting another occurrence of serendipity is costly.17 It involves exiting the current location

at time T (hence the term ‘move’), wait in the hinterland for one period during which utility

is normalised to zero, and pick a new location at time T + 1 (possibly different from the one

at time T ). Likewise, individuals already alive at time T − 1 have the choice between staying

where they are and stick with their current productivity, and moving to get a new occurrence

of serendipity.

We define a talent-homogeneous steady state as an equilibrium in which the following two

conditions hold:

1. Individuals optimally choose to live in talent-homogeneous city t of the same talent as

theirs.

2. The lifetime value of staying with serendipity s is higher than the value of moving

M(s, t) (defined as waiting one period, choosing a location and getting another draw):

V (s, t)

δ
≥ M(s, t),

where V (s, t) denotes the instantaneous utility of an individual with talent t and current

serendipity s in talent-homogeneous city t; and M(s, t) is the value of moving out of

city t for that individual.

17If it was not, everybody would keep drawing a new s until getting the upper bound of s.
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Omitting time subscripts to ease notation since we are describing a steady state, we can write

the following proposition.

Proposition 6 (Existence and characterisation) A steady state with talent-homogeneous

cities with the following properties exists:

1. All cities are talent-homogeneous with population L (t) = [ξt1+a(1 + γ)/(1 + ε)]
1/(γ−ε)

as in the static model above.

2. There exists a unique threshold ŝ ∈ (0,∞) such that individuals with s ≥ ŝ stay in the

same city with the same productivity for the remainder of their lifetime while those with

s < ŝ move.

3. ŝ is a decreasing function of the death rate δ with limδ→1 ŝ (δ) = 0.

4. ŝ is the same in all cities.

5. The fraction of movers in the economy is constant and equal to δGs(ŝ)/ [1−Gs(ŝ)].

Proof. See Appendix E.

That is to say, a steady state with the same characteristics as the equilibrium with talent-

homogeneous cities described in Propositions 4 and 5 exists.

7 Quantitative implications

We now use our framework to revisit several empirical results. Although our model is highly

stylised, it is useful to interpret a variety of empirical findings within a unified framework.

Those empirical findings can be seriously misinterpreted using partial equilibrium reasoning.

Equation (16) provides an expression for output in each location. Dividing it by population

yields a measure of productivity, namely output per capita, yc ≡ Yc/Lc, which depends on

32



local population and a complex function f(·) of the distribution of talent. If we are willing to

proxy this complex function of the distribution of talent with average years of education, we

obtain the first key estimating equation of Gennaioli, La Porta, Lopez-de-Silanes, and Shleifer

(2013) who regress output per capita yc in 1,499 regions of 105 countries and find:

ln(yc) = ε lnLc + f (Gt,c(·), Gs(·)) ≈ 0.068 logLc + 0.257 Educc + controlsc + υc ,

where Gt,c(·) is the distribution of talent in c, Gs(·) is the distribution of serendipity, and f(·)

is a function that links them both to productivity. This regression implies a value of 0.068

for ε. It also points at the importance of human capital and education as determinants of

output per capita. However, their coefficient of 0.257 on average years of education does not

have a structural interpretation in our framework given the complexity of the function f(·)

and the unknown mapping between education and talent.

Gennaioli, La Porta, Lopez-de-Silanes, and Shleifer (2013) also work with micro data for

6,314 firms in 76 regions of 20 countries. More specifically, they regress firm revenue Zi on

its employment, the education of its ‘entrepreneur’, the average education of its workers, and,

as above, local population and local average education. Our model does not generate this

specification. However, we can extend it to allow for limited span of control of entrepreneurs in

the wake of Lucas (1978) and obtain this exact specification while leaving its other properties

unchanged.18 We develop this extension in a separate web appendix (Appendix I). Gennaioli,

La Porta, Lopez-de-Silanes, and Shleifer (2013) find

lnZi = 0.126 logLc(i)+0.073 Educc(i)+0.860Ni+0.017 EducWi +0.026EducEi +controlsc(i)+υi ,

18By an artefact of the constant elasticity of demand, a linear production function (as we use above) implies

that the productivity of entrepreneurs and workers cancel out when computing firm revenue. This knife-edge

property is easily avoided by imposing decreasing returns to scale in production using, for instance, a limited

span of control argument.
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where Ni is the employment count of firm i, EducWi the average years of education of its

workers, and EducEi the years of education of its entrepreneur. According to our extended

model, the coefficient on local population of 0.126 is another estimate of ε, our agglomeration

parameter. The coefficient on employment of 0.860 should be equal to (1− α)/(1 + ε) where

α is the span of control parameter (corresponding implicitly to the share of the entrepreneur

in production). Gennaioli, La Porta, Lopez-de-Silanes, and Shleifer (2013) take α to be about

0.1, which implies in our extended model a coefficient on employment very close to the one

they measure: (1 − α)/(1 + ε) = (1 − 0.1)/(1 + 0.126) = 0.800, instead of 0.860. Even

more interesting, the coefficient on entrepreneurial education is higher than that on worker

education. Gennaioli, La Porta, Lopez-de-Silanes, and Shleifer (2013) interpret this result

as evidence of extremely high returns to education for entrepreneurs.19 Our model suggests

an alternative explanation. Recall that our model indicates that only the most productive

individuals become entrepreneurs while the others become workers. Put differently, given

talent (or education in this empirical implementation), only individuals with particularly

good occurrences of serendipity become entrepreneurs whereas the others (with bad draws)

become workers. Put differently, the coefficient on entrepreneurial education is biased upwards

while that on worker education is biased downwards. Whether returns to education are

particularly high for entrepreneurs and managers after accounting for positive selection into

these occupations is an open question.

Next, we exploit the restrictions of our original model at the talent-homogeneous equilib-

rium. Observe that the expected indirect utility (17) can be written as EVc(tc) = σ1+ε(Stc)1+a(εLc)ε−

θLγ
c = yc − θLγ

c . Taking logs, we have

ln yc = κ1 + (1 + a) ln tc + ε lnLc, (29)

19With α = 0.1, the returns to education for entrepreneurs in the framework of Gennaioli, La Porta,

Lopez-de-Silanes, and Shleifer (2013) are 0.026/0.1 = 26%.
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where κ1 is a constant term. Expression (29) shows that regressing average earnings on

population, while controlling for talent, yields an estimate of agglomeration economies, ε.

Now, using the equilibrium relationship linking city population sizes to the distribution of

talent (21), Lγ−ε
c = ξt1+a

c (1 + γ)/(1 + ε), to control for the shift we get:

ln yc = κ2 + γ lnLc, (30)

where κ2 is another constant term. Hence, regressing average earnings on population without

controlling for talent yields an estimate of the urban costs parameter, γ.20

We estimate equations (29) and (30) using standard US Census data for 276 metropolitan

statistical areas in 2000. We measure yc with city average earnings and tc with the share

of the population older than 18 years with at least an associate degree, following standard

practice in labour economics. We obtain:21

ln yc = 8.59 + 0.082 lnLc , (31)

ln yc = 9.60 + 0.051 lnLc + 0.46 ln tc . (32)

These two regressions imply γ̂ = 0.082 and ε̂ = 0.051. These coefficients on log-population

are robust to alternative measures of yc and tc. For instance, if we take income per capita

instead of average earnings, we obtain estimates of 0.067 for γ and 0.039 for ε. Using the

share of population older than 18 years with a graduate or professional degree to measure tc

20The result that the elasticity of income with respect to city size equals the elasticity of urban costs seems

a priori surprising since utility is not equalised across cities in our framework. Yet, this result holds because

in our model at equilibrium EVc(tc) = σ1+ε(Stc)1+a(εLc)ε − θLγ
c = κ3Lγ

c where κ3 is a positive bundle of

parameters. As can be seen from this expression, the population elasticity of equilibrium utility is γ, which

is also the population elasticity of urban costs. We show in a separate web appendix (Appendix J) that this

result holds beyond our specific model although it will not be true in general.
21All coefficients, including the constant terms, are significant at the 1% confidence level in all estimations.
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in regression (32) yields a coefficient of 0.058 on log population.22 Note that we refrain from

interpreting the coefficient of ln tc as providing an estimate of 1+a since we do not know how

talent maps into education.

Our preferred estimate of the elasticity of earnings, ε̂ = 0.051, is within the usual range in

the literature. See Glaeser and Resseger (2010) for recent results on US data and Rosenthal

and Strange (2004) or Melo, Graham, and Noland (2009) for broader reviews.23 The sizable

drop in the coefficient for log population after adding a measure of city education is also

typical (Combes, Duranton, and Gobillon, 2008; Glaeser and Resseger, 2010). Our favourite

estimate for the elasticity of urban costs is γ̂ = 0.082. A monocentric model with linear

commuting costs implies much higher elasticities: between 0.66 (for a two dimensional city)

and 1 (for a one dimensional city as we use here). However, recent work on US cities (Albouy,

2009; Baum-Snow and Pavan, 2012) or French land markets (Combes, Duranton and Gobillon,

2013) reports estimates of γ between 0.04 and 0.12 that are close to ours.24

To corroborate our findings further, we also estimate the elasticity of urban costs with

respect to population size using housing rents, rc, to measure urban costs directly:

ln rc = 5.19 + 0.085 lnLc .

22We ran all regressions with combinations of four different measures for yc and three different proxies for tc.

The estimates of ε are between 0.039 and 0.078, with mean 0.043. The estimates of γ are between 0.066 and

0.082, with mean 0.074. Note that the average estimated difference γ − ε is 0.031, which is almost identical

to the value we obtain in our preferred case below.
23We use city aggregated data and few controls. Using micro-data and more controls typically results in

slightly lower estimates for the coefficient on city size (Combes, Duranton, and Gobillon, 2008; Glaeser and

Resseger, 2010). These small differences are not important for our purpose here.
24In a 2013 discussion of our paper, Fabien Candau used Carillo, Early, and Olsen’s (2012) data for a panel

of 380 US areas and regressed their housing price index on population; he obtains an elasticity of γ̂ = 0.077,

which is again very close to our estimate of 0.082.
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This coefficient of 0.085 is remarkably close to the coefficient of 0.082 estimated in regression

(31). Arguably, renters differ from homeowners and their rents may not reflect typical urban

costs. As a further robustness test, assume that the price index for housing in city c is given

by hc = vαc
c r1−αc

c , where vc is the value of owner-occupied housing and rc the rents paid

for renter occupied housing. We measure αc by MSA c’s share of owner-occupied housing.

Regressing the log of this housing price index, hc, on the log of population yields:

ln hc = 8.93 + 0.068 lnLc.

This estimate of 0.068 for urban costs remains reasonably close to that in (31) despite relying

on a different estimating equation.

Using equilibrium city size as given by expression (21), the elasticity of talent to city

population size should be equal to (γ − ε)/(1 + a). We obtain γ̂ − ε̂ = 0.031 using (31) and

(32). Regressing directly the log-share of college graduates on log-population yields

ln tc = −2.21 + 0.068 lnLc.

This elasticity 0.068 is larger than 0.031 in a statistical sense but economically close (keeping

in mind that we do not compute a). Using a weaker definition of talent, namely the share of

people who attended college irrespective of the degree they earned, yields a lower elasticity

of 0.024.

At first sight, small values for the elasticity of talent to city population size seem to argue

against the importance of ability sorting across cities. Our model shows instead that a small

value for the population elasticity of talent corresponds in equilibrium to the small difference

between the population elasticity of urban costs and that of agglomeration economies. Then,

the counterpart of a small population elasticity of talent is a large talent elasticity of popu-

lation. Put differently, city population size is proportional to t(1+a)/(γ−ε)
c . A small difference
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between γ and ε is then enough for small differences in talent to translate into large differ-

ences in city population size. For instance, if a = 0.1, L = 10, 000 inhabitants for the smallest

city in the economy, and L = 10 million for the largest, then the largest city is ‘only’ about

14% more talented than the smallest given our estimates of γ and ε. This result that small

differences in talent lead to large differences in city size is reminiscent of Gabaix and Landier

(2008), who find that small differences in CEO talent may translate into large pay differences

because the best CEOs are assigned to the largest firms at the competitive equilibrium.

Our model also predicts that the share of expenditure on housing is independent of city

population. To see this, we note that total land rents are given by θγL1+γ
c as shown in

a separate web appendix (Appendix F), whereas aggregate income is equal to Yc. Taking

the ratio of total land rent to aggregate income, using equations (16) and (21) for talent-

homogeneous cities, and the definitions of σ and ξ, we obtain

TLRc

Yc
=

(1 + γ)ε

1 + ε
,

after simplifications. This quantity does not depend on city population size and is equal to

0.052 for our preferred estimates of ε and γ. This result is important for two reasons. First,

it is in line with findings by Davis and Ortalo-Magné (2011). They show that expenditure

shares on housing are constant over time and across us msas at around 24%. If we take a

share of land in housing of 25% as in Combes, Duranton, and Gobillon (2013), we find an

empirical value of TLR/Y equal to 0.24 × 0.25 = 0.06, which is close to 0.052. Second, this

result of a constant share of land is obtained with an additively separable utility function.

Hence, Cobb-Douglas preferences are not required to generate constant expenditure shares

on housing across cities.

Finally, we turn to the inefficiency of the talent-homogeneous equilibrium and quantify its

economic costs. Using, equations (12)–(14) and (17), the first-order condition with respect
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to L only and evaluated at t = tc implies that the optimal population of talent-homogeneous

cities is:

Lo(tc) = (ξ t1+a
c )

1
γ−ε . (33)

Put differently, optimal city size is the solution to an equation identical to equation (23)

for equilibrium city size without the second term in the square bracket. A direct comparison

between equations (33) and (21) shows that cities are oversized in equilibrium. To understand

why, consider the following hypothetical situation of a small isolated city and a mass of

individuals outside. Provided the reservation level of the latter is low enough, they should

gradually move to the city. Because γ > ε, there exists an optimal city size and the expected

utility of all individuals in the city, as it grows, should first increase before decreasing after

the city passes its optimal size. In standard models of urban systems (e.g., Henderson, 1974),

an equilibrium with cities that are too large is reached when expected utility inside the city

is equal to the reservation level.

Because individuals differ in talent, things are more complicated in our case. Heuristically,

as shown by Proposition 3, more talented workers benefit more from the city being larger.

Hence, as the city grows, we reach a situation where the expected utility of more talented

individuals keeps growing while that of less talented individuals declines. This situation

leads to further in-migration of more talented individuals and out-migration of less talented

individuals. Eventually, the city ends up being too large and populated only by the most

talented individuals. Taking these individuals out, we can repeat the same thought experiment

for the city with the most talented individuals among those that remain.25

25Interestingly, city sizes are uniquely determined in equilibrium. The trade-off between agglomeration

economies and urban costs leads to net output per resident being a bell-shaped function of city population.

With homogeneous individuals, there is a coordination failure in city formation so that any population size

between optimal city size and grossly oversized cities – leaving their residents with zero consumption – can
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Using again ε̂ = 0.051 and γ̂ = 0.082, we can compute that equilibrium cities are oversized

by a factor of:

L̂c

L̂o
c

=

(
1 + γ̂

1 + ε̂

) 1
γ̂−ε̂

= 2.55. (34)

Figure 2 plots the oversize of cities as computed in equation (34) for varying values of γ and

three values of ε. This plot indicates that an oversize of 145 to 165% is to be expected.

Consistent with the comparative statics of equation (34), the figure also shows that city

oversize decreases in γ and ε (< γ). Using a first-order linear approximation of equation (34)

when γ − ε is small, we obtain Lc/Lo
c ≈ exp(1/(1 + ε)) which tends to Euler’s number when

ε and γ go to zero. Given that ε and γ are empirically small, cities are ‘naturally’ oversized

by a factor close to e ≈ 2.72.

Insert Figures 2 and 3 about here.

This oversize may seem like a considerable inefficiency. However, the associated welfare

loss in consumption is tiny. To see this, we use equations (21), (33), and (34) to compute an

estimate of the indirect utility (consumption) loss:

∆̂EV ≡
EV (L̂)− EV (L̂o)

EV (L̂o)
=

1

1 + γ̂

(
L̂

L̂o

)γ̂

− 1 = −0.2%.

This loss in consumption is economically small, about one-fifth of a percentage point. To

confirm the robustness of this magnitude, Figure 3 plots the economic loss associated with

this oversize for the same parameter values as Figure 2. It is less than half a percentage point.

occur in equilibrium (Henderson and Becker, 2000). In our model, the sorting of heterogeneous individuals

makes this indeterminacy disappear entirely. Formally, this property of our model follows from Proposition 3

and from the uniqueness of the solution to the differential equation. Intuitively, more talented cities must

be larger in equilibrium to attract more talented individuals and discourage less talented individuals. At the

same time, they cannot be so much larger without discouraging more talented individuals as well. At the

limit with a continuum of talents and talent-homogeneous cities, equilibrium city population sizes are uniquely

determined.
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The reason why losses from oversized cities are so small is the following. Recall first that

cities are oversized by a factor close to e ≈ 2.72. Imagine next that earnings (Yc/Lc) are of

the same magnitude as urban costs (θLγ
c ). Then, the maximum loss from oversize would be

1 − e−(γ−ε) or about 2.8% for our preferred value of γ̂ − ε̂ = 0.031. However, equilibrium

urban costs are only about 5% of earnings as shown above. Hence, the actual loss is much

smaller than 2.8%. These results are consistent with those of Au and Henderson (2006) for

Chinese cities. Using the fact that Chinese migration policies have limited the growth of

Chinese cities, they estimate the shape of net benefits from cities as a function of their size.

Like us, they find a very flat curve past the optimum. Restricting the size and growth of

cities is unlikely to deliver substantial welfare improvements.

8 Conclusion

Although abundant empirical research in urban economics has substantiated a significant

positive correlation between skills and city population, theory has had much less to say about

the spatial sorting of heterogeneous individuals across an urban hierarchy until now. Our

paper is an attempt to make progress in this direction. We have shown that ex ante sorting

along talent and ex post selection along productivity, when coupled with an otherwise standard

model of agglomeration economies and monocentric cities, allow us to replicate key stylised

facts: larger cities host more talented individuals, have more productive (but not a greater

proportion of) entrepreneurs, pay higher wages, and have higher urban costs. Importantly,

even though firms in larger cities are on average more productive than in smaller cities,

there is considerable heterogeneity in firm productivity within each city. Finally, our sorting

mechanism and its interactions with agglomeration economies and urban costs provides a

simple static explanation for Zipf’s law.
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In addition to our theoretical contributions, our model also provides a unified setting

within which to interpret quantitative evidence obtained from various standard regressions.

It suggests, in particular, how regressions of measures of productivity, skills, and urban costs

on log population can be consistently interpreted and how they relate quite naturally to each

other. For instance, according to our model, regressing city wages on city size or density

alone provides an estimate of the congestion elasticity rather than, as sometimes claimed, an

estimate of the agglomeration elasticity. We believe that such an interpretative framework is

useful for guiding future empirical analysis.

A number of issues remain open for future work. Cities are essentially passive in our model.

In reality, cities, especially the most talented ones, actively limit their population growth

which may foster sorting even further (Gyourko, Mayer, and Sinai, 2013). Allowing cities to

play a more active role within our framework figures prominently on our research agenda.

In addition, we also note that our model departs from the standard modelling assumption

whereby utility for a given individual is equalised across all cities. Instead, individuals strictly

prefer a specific type of cities depending on their talent. We conjecture that this feature has

many further implications. For instance, when some individuals strictly prefer larger cities,

local policy makers have an additional degree of freedom since their ‘tax base’ becomes less

mobile. Our model may thus be useful for addressing questions related to the local provision

of public goods and local taxation. We hope future work will shed light on these issues.

Appendix A Symmetric equilibria of the model

In this appendix, we establish that symmetric equilibria exist provided population is homo-

geneous enough with respect to talent. We also show that there is generally a continuum of

symmetric equilibria, each one featuring a different ‘number’ of cities of different population
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size.

Proposition A.1 (Symmetric equilibria) There exists a continuum of stable equilibria

such that Fc(·) = F (·) and Lc = L for all cities c only if the variation in talent across the

population is small enough.

Proof. Assume for now that Fc(·) = F (·) for all c. By the uniqueness of the solution to

equation (14), which does not depend on Lc, we then have ϕ
c
= ϕ for all c. This property

implies that selection is constant across cities: Fc(ϕc
) = F (ϕ) for all c. Because all types of

talent are located in all cities, it must be that EVc(t) = EV (t) for all cities, c, and talents,

t. With Fc(·) = F (·), the condition in Proposition 3 is a true single-crossing condition: more

talented individuals benefit more from larger cities. Hence, it must be that Lc = L for all

c ∈ C for all talents to be indifferent across all cities.

Symmetry is a stable equilibrium only if EV (t) ≥ 0 and ∂EV (t)/∂L < 0 for all t ∈ [t, t].

The first condition ensures that individuals want to stay in existing cities since the outside

option of starting a new city yields zero utility. The second condition implies that no deviation

of any small mass of representative individuals to another city is profitable. Using (17), and

the fact that expected indirect utility is increasing in t, these two conditions will hold for all

t ∈ [t, t] if and only if

ε

γ

[∫ +∞

ϕ

ϕ
1
εdF (ϕ)

]ε [
t
a
∫ ϕ/t

0

sadGs(s) + ϕa

(
t

ϕ

) 1
ε
∫ +∞

ϕ/t

s
1
εdGs(s)

]
≤ θLγ−ε(1 + ε)

≤

[∫ +∞

ϕ

ϕ
1

εdF (ϕ)

]ε [

ta
∫ ϕ/t

0

sadGs(s) + ϕa

(
t

ϕ

) 1
ε
∫ +∞

ϕ/t

s
1

εdGs(s)

]

.(A.1)

In addition, it implies that

ε

γ
<
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∫ ϕ/t
0 sadGs(s) + ϕa

(
t
ϕ

) 1

ε∫ +∞
ϕ/t s

1
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(

t
ϕ

) 1
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ϕ/t s
1
εdGs(s)

(A.2)
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must hold at any stable symmetric equilibrium. Since γ > ε, the left-hand side of this

expression is smaller than unity. The right-hand side is increasing with t and decreasing

with t. Furthermore, it is also smaller than unity, but it tends to 1 as t → t. Hence, this

condition is fulfilled for a ‘sufficiently homogeneous’ population (t ≈ t). Additionally, when

t < t symmetric equilibria are never stable when γ ≈ ε, i.e., when ‘net urban costs’ are small.

Last, note that condition (A.1) bounds the population L of symmetric cities. It is then

easy to verify that when (A.2) holds there exists in general a continuum of pairs (L, c) of

city populations, L, and ‘number of cities’, c, such that (A.1) and the adding-up constraints

Λ gt(t) = cL(t), ∀t ∈ [t, t] hold (the latter implying, of course, that Λ = cL).

Proposition A.1 establishes that there generally exists a continuum of stable symmetric

equilibria when the variation of talent across the population is small enough, or when agglom-

eration economies, ε, are small compared to urban costs, γ. Neither case seems empirically

relevant. This fact suggests that ability sorting is a natural equilibrium outcome.

Appendix B Second-order conditions for the equilib-

rium with talent-homogeneous cities

Rewrite expression (20) as follows:

EV (t′, t) = θ−
ε

γ−ε

[
1 + γ

1 + ε

(εσ)1+ε

γ
(St)1+a

] γ
γ−ε [

γ

ε

1 + ε

1 + γ

σ (t′, t)

σ
− 1

]
, (B.1)

where

σ (t′, t) ≡
1

1 + ε

[(
t′

t

)a ∫ St/t′

0

( s
S

)a
dGs (s) +

(
t′

t

) 1
ε
∫ ∞

St/t′

( s
S

) 1
ε

dGs (s)

]
.

A sufficient condition for the talent-homogeneous case to be an equilibrium is that EV (t′, t) is

quasi-concave in t for all (t′, t) ∈ T×T . Imposing quasi-concavity on (B.1) yields an expression
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that is so unwieldy that it is impossible to assess how restrictive it is. Imposing concavity

on (B.1) at the talent-homogeneous equilibrium, a more stringent sufficient condition than

quasi-concavity also yields an expression that is still quite unwieldy in general. By contrast,

the following necessary second order condition is not. That is to say, we require the second

derivative of (B.1) with respect to t to be negative when evaluated at t′ = t. Straightforward

but tedious algebra yields

d2

dt2
EV (t′, t)

∣∣∣∣
t′=t

∝ −t−2+ γ
γ−ε

(1+a)σ

{
−
(γ
ε
− 1
)[

1 +
Sg (S)

σ
(1− aε)

]

+a(γ + εa) + γ(1 + a)} ,

where σ ≡ σ(t, t). Hence, if a talent-homogeneous equilibrium exists, then equation (24) in

the main text holds. Note that condition (24) is not overly restrictive. Indeed, as shown in

Section , γ/ε is close to unity so that the right-hand side of the foregoing equation is small.

Appendix C Zipf’s law

As shown in Section , the size distribution of cities converges to Zipf’s law when (γ−ε)/(1+a)

goes to zero, irrespective of the underlying distribution of talent. In this appendix, we quantify

the quality of this approximation when γ − ε is within the range of empirically plausible

estimates.26

Assume that talent, t, is distributed following gt(·) on [t, t]. As shown in Section , under

perfect sorting the equilibrium city population sizes are a power function of talent: L ∝

t1/η, where 1/η ≡ (1 + a)/(γ − ε) > 0 is the power that magnifies talent t to derive city

population size L. We are interested in the distribution gL of city population sizes. If talent

t occurs gt(t)dt times in the population, and if city sizes are linked to talent by L ∝ t1/η,

26We assume a = 0. Since we cannot reliably estimate this quantity, taking its lower bound allows us to

remain conservative when assessing the quality of the Zipf approximation.
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the mass gL(·) of cities of size L has to be gt(t)dt/L. Since in equilibrium dt ∝ ηLη−1dL, a

straightforward substitution yields gL(L; η) ∝ ηLη−2gt(Lη). This expression is (up to some

scaling factor) the probability distribution function of L conditional on η. As shown in

Section , limη→0 gL(L; η) ∝ L−2. In words, as η gets small, the power 1/η that magnifies

talent gets large and the distribution of city population size converges to a truncated Pareto

distribution over the support [L, L]. Writing the cumulative of the untruncated Pareto as P ,

we obtain:

lim
η→0

gL(L; η) → p(L; k) =
1

P (L)

k

L

(
L

L

)−k−1

, with k → 1.

To evaluate the quality of the power law approximation of gL(·) for a given η, a first natural

metric is given by the distance between the two distributions:

d(gL, p; η) ≡

∫ L

L

{
ln[gL(L; η)]− ln[p(L; 1)]

}2

dL,

where L ≡ t
1+a
γ−ε ξ̃

1
γ−ε and L ≡ t

1+a
γ−ε ξ̃

1
γ−ε . A second way to judge the quality of the approx-

imation involves generating random samples from the approximation and to estimate the

parameters of the truncated Pareto distribution from those samples. The better the approx-

imation, the closer k̂ must be to 1.

Insert Table A1 about here.

We illustrate how the approximation converges to both a truncated and a complete Pareto

distribution by using for gt(·) a log-normal distribution with parameters (µt, σt) = (1.4, 1.4)

and with support [t, t] = [0.01, 5].27

Insert Figures 4 and 5 about here.

27Our results are robust to the underlying distribution and parametrization. As expected, the approximation

is better and convergence is faster when the underlying distribution of talent is more skewed to the right.

46



We evaluate the approximation using values of η = 1/2n, for n = 1, 2, . . . , 10. Figure 4

shows that the approximation rapidly converges to a (truncated) Pareto distribution with

shape parameter k close to one. This result can be seen more formally from Table A1, which

reports the maximum likelihood (ml) and the ordinary least squares (ols) estimates of the

shape parameter k of the truncated and the complete Pareto distribution. To estimate those

parameters, we sample 1,000 points from the approximation using inverse transform sampling.

The ml estimate of k is then obtained from that sample using the estimator developed by

Aban, Meerschaert, and Panorska (2006). As can be seen from Table A1, the distance between

the approximation and the truncated Pareto distribution vanishes quickly. The same occurs,

to almost the same degree, for a complete Pareto distribution. Furthermore, as can be seen

from the last column of Table A1, the estimates of the shape parameter converge to one

relatively quickly. In particular, for a value of η = 1/32 ≈ 0.031, which corresponds closely

to our empirical value γ̂ − ε̂, the approximation is already fairly close to one. Hence, even if

the underlying distribution of talent is lognormal, as in our example, the size distribution of

cities will be approximately Zipf with a shape parameter close to one.

Estimating the Pareto parameter from the data on our 276 msas yields a coefficient of

k̂ = 0.8716, whereas the parameter for a truncated distribution is k̂t = 0.4484. Figure 5

depicts the observed rank-size distribution for 276 msas in 2000 (black dots), as well as the

fits for the truncated (concave curve) and complete (straight line) Pareto.

47



Appendix D Example of equilibrium with discrete cities,

heterogeneous talent, and varying selec-

tion

Equilibria with constant selection across cities seem empirically relevant. They are, however,

special cases. While a complete analysis of all equilibria is beyond the scope of this appendix,

we now provide examples of equilibria with varying selection across a discrete number of

city-types. This situation is interesting because it shows that many of the properties of the

equilibrium with talent-homogeneous cities remain true or approximately true in more general

cases.

To keep things simple, we assume that a = 0 so that all workers have the same productivity

ϕa = 1. We also consider only three types of cities, type-1, type-2, and type-3 cities, and

subscript variables accordingly. We also specify the distributions of talent and serendipity to

be uniform over T = [t, t] and Σ = [s, s], respectively. Total population is fixed to Λ, and we

denote by ni the mass (the number) of type-i cities in the economy.

We first derive the distribution of the productivity variable ϕ ≡ t × s. Using Theorem 1

of Glen, Leemis, and Drew (2004) and assuming, without loss of generality for our purpose,

that ts < ts, the product of talent and serendipity is distributed as follows:

f(ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
(s−s)(t−t)

ln
(

ϕ
st

)
if ts ≤ ϕ ≤ ts

1
(s−s)(t−t)

ln
(

s
s

)
if ts ≤ ϕ ≤ ts

1
(s−s)(t−t)

ln
(

st
ϕ

)
if ts ≤ ϕ ≤ ts

(D.1)

Using equation (D.1), we can easily derive the cumulative productivity distribution F (·).

In what follows, we focus on equilibria with two talent thresholds t1 and t2 such that

48



all individuals with talent t ∈ [t, t1) choose to locate in type-1 cities; all individuals with

talent t ∈ [t1, t2) choose to locate in type-2 cities; and all individuals with talent t ∈ [t2, t]

choose to locate in type-3 cities. The thresholds t1 and t2, the number of type-i cities, their

populations Li and their selection cutoffs ϕ
i
for i = 1, 2, 3 are all endogenously determined.

Let∆EVi(t) = EVi(t)−maxj ̸=i EVj(t). A spatial equilibrium is such that every individual with

talent t picks the city that maximises her expected indirect utility. Formally, ∆EV1(t) ≥ 0

for all t ∈ [t, t1) (and negative otherwise); ∆EV2(t) ≥ 0 for all t ∈ [t1, t2) (and negative

otherwise); and ∆EV3(t) ≥ 0 for all t ∈ [t2, t] (and negative otherwise).

Insert Figure 6 about here.

Figure 6 depicts the expected indirect utility differentials for the three types of cities, as

well as the two talent cutoffs for: ε = 0.47, γ = 0.5, θ = 0.5, Λ = 5, 000, t = s = 1, t = 5 and

s = 2.28 In Figure 6 we also set the numbers of cities to n1 = 20, n2 = 6 and n3 = 2. We

note that the mass of cities of each type is not uniquely determined in equilibrium, as was

the case with talent-homogeneous cities. There exists instead a continuum of ni, i = 1, 2, 3

that can be sustained as an equilibrium.

The allocation we have chosen is in equilibrium for t1 and t2 as determined on Figure 6

since all individuals located in type-1 cities (i.e., to the left of t1) get an expected utility no

smaller than in type-2 or type-3 cities; all individuals in type-2 cities (i.e., between t1 and t2)

get an expected utility no smaller than in type-1 or type-3 cities; and all individuals in type-3

cities (i.e., to the right of t2) get an expected utility no smaller than in type-1 or type-2 cities.

In line with the results derived in the case of talent-homogeneous cities, more talented

cities are larger, more productive, and pay higher wages. We have L3 = 1660.42, ϕ
3
= 6.58

28Our values for agglomeration economies, ε, and urban costs, γ are much larger than empirically reasonable

to accentuate differences across cities in the figure.
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and w3 = 89.46, whereas the corresponding figures for type-2 cities are L2 = 240.38, ϕ
2
= 3.13

and w2 = 17.14 and for type-1 cities are L1 = 11.84, ϕ
1
= 1.88 and w1 = 2.45. In words,

type-3 cities are about 7 times larger than type-2 cities, which are themselves about 20 times

larger than type-1 cities. Furthermore, type-3 wages exceed type-2 wages by a factor of about

5, and type-2 wages exceed type-1 wages by a factor of 7. The selection cutoffs reflect a

similar ranking. Importantly, the strong right-skew in the size distribution of cities does not

stem from the right-skew in the distribution of talent. The latter is uniform. Instead, sorting,

agglomeration economies, and the population-talent complementarity generate these strong

asymmetries.

With talent-homogeneous cities, the degree of selection Fc(ϕc
) is the same for all cities,

a knife-edge result. However, and quite remarkably, although larger cities may have tougher

selection, the differences in the degree of selection are small in our example. We find that

F1(ϕ1
) = 0.720, whereas F2(ϕ2

) = 0.746 and F3(ϕ3
) = 0.749. Put differently, although the

selection cutoff in type-3 cities is about 110% higher than in type-2 cities, itself 66% higher

than in type-1 cities, selection differs by barely 4% between the two extremes. Larger cities

provide entrepreneurs with access to more and richer consumers which almost fully offsets the

tougher environment.

Insert Figure 7 about here.

Figure 7 depicts the distribution of entrepreneurial profits for type-2 and type-3 cities (a

similar figure can be drawn for type-1 and type-2 cities). The solid curve is for type-2 cities

(i.e., medium-sized cities) whereas the dashed curve is for type-3 cities (i.e., large cities). All

individuals with profit below the thresholds w2 and w3 choose to become workers instead of

entrepreneurs. Hence, entrepreneurs are to the right of w2 for type-2 cities and to the right of

w3 for type-3 cities. Comparing the two curves, two features are immediately apparent. First,
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entrepreneurial profits in the larger cities are significantly right-shifted relative to the ones in

smaller cities, which is due to both agglomeration and sorting. Second, there is substantial

dilation of profits in large cities relative to small cities. Large cities host, on average, more

productive individuals but the most productive of them benefit disproportionately from being

there. Large cities are thus more unequal than small cities by most conventional measures

of inequality. This property is consistent with the findings of the literature on inequalities

in cities (Baum-Snow and Pavan, 2013; Behrens and Robert-Nicoud, 2013; Glaeser, Tobio,

and Resseger, 2009). Interestingly, to map the distribution of profits in medium-sized cities

into that of large cities, we need to apply a tiny truncation (small differences in selection),

a large right-shift (for agglomeration and sorting) and a significant dilation (the interaction

between sorting and agglomeration). These features clearly reminiscent of the findings of

Combes, Duranton, Gobillon, Puga, and Roux (2012) regarding the distributions of firms’

productivities in small and large French cities.

Appendix E Proof of Proposition 6

Proof. Claim (1) holds by construction. We thus prove claims (2)-(4) imposing claim (1).

Let

EŝV (t′, t) ≡
1

1−Gs (ŝ)

∫ ∞

ŝ

V (st′, t) dGs (s) (E.1)

denote the expected utility conditional on drawing s ≥ ŝ, and let M (s, t′, t) denote the

value of moving from talent-homogeneous city t for an individual with talent t′ and current

serendipity s, with M(s, t) ≡ M(s, t, t). Then the value of moving is equal to

M(s, t) = 0 + (1− δ)

{
[1−Gs (ŝ)]

EŝV (t′, t)

δ
+Gs (ŝ) max

t
M(s, t′, t)

}

= (1− δ)

{
[1−Gs (ŝ)]

EŝV (t′, t)

δ
+Gs (ŝ) M(s, t)

}
,
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where the second line follows from the optimal location choice (in steady state, choosing a

city with talent t = t′ remains optimal at the current period if it was the optimal city to chose

at the previous period). Rearranging and using (E.1) yields the following expression for the

value of moving:

M(s, t) = M(t) ≡
1

1−Gs (ŝ) + δGs (ŝ)

1− δ

δ

∫ ∞

ŝ

V (s̃t, t) dGs (s̃) ,

that is, M(s, t) does not depend on s. Using this expression and (E.1), we may rewrite the

condition requiring that the net current value of staying is (weakly) positive for all s greater

than ŝ as:

0 ≤ V (st, t)− δM (t)

= V (st, t)−
1− δ

1− (1− δ)Gs (ŝ)

∫ ∞

ŝ

V (s̃t, t) dGs (s̃) , ∀s ≥ ŝ . (E.2)

By inspection, this value is increasing in s and the cutoff for serendipity ŝ is implicitly defined

as

V (ŝt, t) =
1− δ

1− (1− δ)Gs (ŝ)

∫ ∞

ŝ

V (s̃t, t) dGs (s̃) , (E.3)

that is, the opportunity cost of moving is equal to the expected value of moving for some

ŝ. The left-hand side (LHS) of equation (E.3) is strictly increasing in ŝ from 0 to +∞ over

(0,∞) by inspection. The right-hand side (RHS) of equation (E.3) evaluated at ŝ = 0 is equal

to (1− δ)E0V (t) = (1− δ)EV (t) > 0 and, at the limit ŝ → +∞, it is equal to zero. Thus, by

continuity and the intermediate value theorem, there exists ŝ ∈ (0,∞) that satisfies equation

(E.3). To prove the uniqueness of ŝ, differentiate the RHS of (E.3) to obtain

∂

∂ŝ
RHS =

(1− δ) gs (ŝ)

1− (1− δ)Gs (ŝ)
[RHS− V (ŝ, t)] ≤ 0,

where the last inequality follows from (E.2). This result establishes the uniqueness of ŝ and

thus claim (2).
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From (E.3), the LHS does not depend on δ, whereas the RHS is decreasing in δ by

inspection. Hence, ŝmust be a decreasing function of δ, which proves the first part of claim (3).

The second part of this claim immediately follows from the fact that that limδ→1 M (s, t) = 0

for all values of s > 0. When death is certain, waiting for better times is worthless.

To obtain claim (4), we use the definition of M (t) to rewrite (E.3) as 0 = V (ŝt, t)−δM (t).

We then use the definitions of V (·) and M(·) in order to get

0 = V (ŝt, t)− δM (t)

≡ w (St)a
[
max

{(
ŝ

S

)a

,

(
ŝ

S

) 1
ε

}
−

θLγ

w(St)a

]

−
1− δ

1 − (1− δ)Gs (ŝ)
w (St)a

{[∫ S

min{ŝ,S}

( s
S

)a
dGs (s) +

∫ ∞

max{ŝ,S}

( s
S

) 1
ε

dGs (s)

]
−

θLγ

w(St)a

}
.

Recall that w (St)a is proportional to Lεt1+a, where t1+a is itself proportional to Lγ−ε at the

equilibrium with talent-homogeneous cities (see equation (33) in the text). Hence, the final

condition at the equilibrium with talent-homogeneous cities is given by

0 = max

{(
ŝ

S

)a

,

(
ŝ

S

) 1

ε

}

− ζ

−
1− δ

1− (1− δ)Gs (ŝ)

{[∫ S

min{ŝ,S}

( s
S

)a
dGs (s) +

∫ ∞

max{ŝ,S}

( s
S

) 1
ε

dGs (s)

]
− ζ

}
,

where the term ζ collects parameters and variables that are constant across cities (like σ and

S). Consequently, the whole condition is independent of city-specific variables. Thus, ŝ = ŝ

for all c, which establishes claim (4).

Last, define the fraction of movers at time T as mT . Then the stock of movers varies

according to mT+1 = G(ŝ) (mT + δ), where δ is the exogenous fraction of newborns. At

steady state, the fraction of movers is constant and equal to Gs(ŝ)
1−Gs(ŝ)

δ, which establishes claim

(5) and completes the proof.
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Table A1: Quality of the numerical approximation of the Pareto distributions.

distance d(gL; η) distance d(gL; η) ml estimate of k̂ ols estimate of k̂

η truncated Pareto Pareto truncated Paretoa Paretob

1 62.9127 62.9815 -0.2521 0.7175

1/2 21.0455 21.0858 0.3690 0.6840

1/4 4.4038 4.4222 0.7371 0.8362

1/8 0.9314 0.9399 0.8688 0.9701

1/16 0.2104 0.2144 0.9514 1.0362

1/32 0.0498 0.0518 0.9843 1.0144

1/64 0.0121 0.0131 0.9403 0.9901

1/128 0.0030 0.0035 0.9764 1.0802

1/256 0.0007 0.0010 1.0216 1.0392

1/512 0.0002 0.0003 0.9926 1.0328

a Maximum likelihood (ML) estimates for the truncated Pareto distribution follow

Aban, Meerschaert, and Panorska (2006) and are computed from random samples of

1,000 observations that are generated using inverse transform sampling.

b Ordinary least squares (OLS) estimates of k for the Pareto distribution are computed

using the same random samples as for the ML etimates. Following Gabaix and

Ibragimov (2011), we use log(rank− 1/2) as the dependent variable in that case.
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Figure 1: Equilibrium with talent-homogeneous cities.
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Figure 4: Quality of the numerical approximation of the Pareto distribution.
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SERC, London School of Economics, UK; and CEPR, UK.

1



Abstract

This document contains a set of appendices with supplemental material. Appendix

F provides microeconomic foundations for our specification of urban costs. Appendix

G presents results regarding the planner’s problem. Appendix H establishes the equiv-

alence between our model and a ‘consumer-city’ version of that model. Appendix I

shows how the main estimating equations of Gennaioli, La Porta, Lopez-de-Silanes, and

Shleifer (2013) can be derived from a simple extension of our model. Finally, Appendix

J shows that the interpretation of the estimation results of Section relies on principles

more general than the assumptions made in the model.
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Appendix F City structure and urban costs

We model cities in a simple way that builds on the pioneering work of Alonso (1964), Muth

(1969), and Mills (1967). See Fujita (1989), Zenou (2011), or Duranton and Puga (2013) for

more recent treatments. In each city, production takes place at a single point, defined as

the central business district (cbd). Surrounding a city’s cbd, there is a line with residences

of unit length. Residents commute from their residence to the cbd and back at a cost.

Commuting costs are paid in numéraire, and we assume that the cost of a resident’s round-

trip from a location at distance x to the cbd is t(x) = τ xγ where τ and γ are positive

parameters.1 To keep matters simple and avoid making the differential land rent disappear to

absentee landowners, we assume that this rent is taxed in each city and redistributed equally

to current residents.

Each resident chooses her location of residence so as to maximise utility given her income

and the land rent schedule in the city. Because of fixed lot size, this assumption is equivalent

to choosing a location to minimise the sum of the differential land rent and commuting,

r(x) + t(x), with respect to x. At the residential equilibrium, the lack of arbitrage across

residential locations ensures that this sum is the same for all residents. Lack of arbitrage also

implies that the city is symmetric with respect to its edges at a distance L/2 from the cbd.

1In practice, commuting costs include both the direct monetary cost of travelling and the opportunity cost

of the time spent on the journey (Small and Verhoef, 2007). Ignoring the time cost of commuting avoids

having to deal with residential choices for individuals with heterogeneous values of time. The location of

workers and entrepreneurs within cities is not a focus of this paper. Observe further that the literature often

imposes γ = 1. Recent evidence (e.g., Albouy, 2009; Baum-Snow and Pavan, 2012; Combes, Duranton, and

Gobillon, 2013) suggests that, empirically, the elasticity of urban costs to city population is well below unity.

We confirm this finding in Section of the paper and show that a small value of γ has important implications

regarding the size distribution of cities.
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The equilibrium land rent schedule is thus such that

τxγ + r(x) = τ ×

(
L

2

)γ

+ r

(
L

2

)
, ∀x ∈ [0, L/2]. (F.1)

Without loss of generality, the rent at the city edges can be normalised to zero. This normal-

isation yields the land rent schedule

r(x) = τ

[(
L

2

)γ

− xγ

]
,

with ∂r(x)/∂x < 0, that is land rents fall with distance to the cbd. Integrating land rent

over the entire city after making use of its symmetry yields total land rent:

TLR = 2

∫ L/2

0

r(x)dx =
2τγ

γ + 1

(
L

2

)γ+1

. (F.2)

For a resident living at distance x from the cbd, urban costs are the sum of her differential

rent and her commuting costs minus her share of total land rent. Using equations (F.1) and

(F.2) and the normalisation r(L/2) = 0 we find, after simplifications, that urban cost for each

resident is given by

UC(x) ≡ t(x) + r(x)−
TLR

N
= θLγ , (F.3)

where θ ≡ 2−γτ(γ + 1)−1 is a bundle of parameters. The expression in (F.3) corresponds to

the reduced-form proposed in the main text in Section .

Appendix G The planner’s problem

We consider a planner seeking to maximise aggregate output net of urban costs. The planner’s

problem is to create cities and allocate individuals to them. We denote C the set of potential

sites suitable for cities (we assume C to be sufficiently large relative to Λ for some sites to be

left empty at the socially optimal allocation). We also let T ≡ [t, t]. Thus we may write the
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utilitarian planner’s objective as

max
{T (c),ϕW (c),ϕE(c),L(c)}c∈C

∫

c∈C

[
Y (c)− θL (c)γ+1] dc

such that

Y (c) =

[∫

ϕ∈ϕW (c)

ϕadF (ϕ, c)

] [∫

ϕ∈ϕE(c)

ϕ
1
εdF (ϕ, c)

]ε
L (c)1+ε

f (ϕ, c) =

∫

t∈T (c)

1

t
gt,s,c

(
t,
ϕ

t

)
dt

Λ =

∫

c∈C

L (c) dc,

where T (c) ⊆ T is the set of talents allocated to c, gt,s,c (t, s) is the joint probability density

function of talents and serendipity in c, L (t, c) is the mass of workers of talent t allocated

to c, L (c) ≡
∫
t∈T (c) L (t, c) dt is the population of c, f (ϕ, c) is the density distribution of

productivity in c, ϕW (c) is the set of productivities in c allocated to production work, and

ϕE (c) is the complement set of productivities allocated to entrepreneurship.

The first constraint in the maximisation programme above is city c’s output, which depends

on its productivity distribution. The second constraint relates the density distribution of

productivity to the joint distribution function of talent t and serendipity s, where t is taken

over T (c) with density gt (t, c) and s is taken over [0,+∞) with density gs (s). The third

constraint is the full-population condition.

Characterising the solution(s) to the problem above is a complex task: the set and compo-

sition of cities and the productivity distribution of each city are all endogenous. We proceed

in steps.

Optimal selection. We note that the planner will allocate the most productive individuals

of each city to entrepreneurship and the least productive to production work since a < 1/ε.

Thus, there exists a productivity cutoff in each city, ϕ (c), such that ϕW (c) =
[
0,ϕ (c)

]
and

ϕE (c) =
(
ϕ (c) ,+∞

)
.
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Maximising Y (c) conditional on L(c) and F (ϕ, c) requires solving

max
ϕ(c)

Y (c) =

[∫ ϕ(c)

0

ϕadF (ϕ, c)

][∫ ∞

ϕ(c)

ϕ
1
εdF (ϕ, c)

]ε
L(c)1+ε.

The unique solution to this problem is the fixed point of:

ϕ0(c)
1
ε
−a

∫ ϕ0(c)

0

ϕadF (ϕ, c) =
1

ε

∫ ∞

ϕ0(c)

ϕ
1
εdF (ϕ, c).

Note that this expression is identical to its equilibrium counterpart (equation 14 in the main

text) despite entrepreneurs charging a (constant) markup. This property arises because the

market and the optimal share of profits and labour wages coincide under Dixit-Stiglitz mo-

nopolistic competition as a result of constant and identical markups.

Optimal city population size. We work with a continuum of cities. Thus, each city can

be sliced into any arbitrary ‘number’ of smaller cities, and conversely. Since the location of c

is immaterial by assumption (we are ruling out natural advantages), the planner may choose

the population of city c to maximise its per capita output net of urban costs, conditional on

its composition, namely:

max
L(c)

Y (c)− θL(c)γ+1

L(c)
= A(c)L(c)ε − θL(c)γ ,

where

A (c) ≡

[∫ ϕ0(c)

0

ϕadF (ϕ, c)

][∫ ∞

ϕ0(c)

ϕ
1

εdF (ϕ, c)

]ε

is a measure of city productivity that takes into account both workers’ and entrepreneurs’

productivity net of agglomeration economies. The term in the first bracket above adjusts for

the effective units of labour held by the city’s workforce. The term in the second bracket is

the unconditional average productivity of entrepreneurs. The unique solution to this problem

is

L0(c) =

[
ε

γθ
A(c)

] 1
γ−ε

.
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Note again the similarity with the market solution. With talent-homogeneous cities, this

expression boils down to expression (33) in the main text. In addition, optimal city size

increases with the measure of city productivity defined above with an elasticity of 1/(γ − ε)

and this measure of productivity is entirely driven by the talent composition of c. Thus, cities

endowed with more talented individuals are larger at the optimal allocation, just as they are

in equilibrium.

Optimal sorting (or city composition). Optimal city composition cannot be charac-

terised precisely without making specific assumptions about the distribution of talent Gt (·)

and the distribution of serendipity Gs (·) in the economy because (i) talent and serendipity

interact to determine productivity ϕ and (ii) serendipity occurs after the planner’s location

decisions. Relaxing either would solve the problem entirely. Equivalently, we may instead

assume that the distribution of serendipity is degenerate and can take only one value so

that there is a one-to-one mapping between talent and productivity. Without further loss of

generality, let us normalise s = 1.

Our first result here emphasises a key inefficiency at work in our model. Consider two

possible talents t1 and t2, with t1 > t2. Does the planner prefer creating talent-homogeneous

cities or mixed cities with entrepreneurs of talent t1 and workers of talent t2? Consider now

two talent-homogeneous cities, c = 1 and c = 2 with sizes and talent (L1, t1) and (L2, t2),

respectively. Here the share of efficiency units of labour used in production, σ, is simply equal

to σ = 1/ (1 + ε). Define V (tc) as the indirect utility enjoyed by an individual with talent tc

in talent-homogeneous cities c. Using the expressions above and simplifying, we get:

V (tc) = D
(
t1+a
c

) γ
γ−ε ,

for c = 1, 2 and where D > 0 collects parameters.

Next, consider forming cities with both types of individuals, selecting type-1 individuals
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as entrepreneurs and type-2 individuals as production workers. The optimal composition of

mixed cities has a fraction 1/ (1 + ε) of workers and the complementary fraction ε/ (1 + ε) of

entrepreneurs. Let V t12 denote the average indirect utility prevailing in such a heterogeneous

city. It is equal to:

V12 = D (t1t
a
2)

γ
γ−ε .

Forming talent-homogeneous cities is optimal if

0 <
ε

1 + ε
V (t1) +

1

1 + ε
V (t2)− V12

= D
1

1 + ε
(t1t

a
2)

γ
γ−ε S (t1, t2, a, ε) ,

where

S (t1, t2, a, ε) ≡ ε

[(
t1
t2

)a γ
γ−ε

− 1

]

+

[(
t1
t2

)− γ
γ−ε

− 1

]

.

Note that S (t1, t2, a, ε) is increasing in a and in ε, and that S (t1, t2, 0, ε) < 0 and S (t1, t2, a, 0) <

0 hold by t1 > t2. Thus, there exists a function f : t1 × t2 × a → ε defined from T × T ×R+

to R+ such that S (t1, t2, a, f (t1, t2, a)) = 0 and ∂f (·) /∂a < 0. Second,

lim
t1→t2

∂

∂t1
(t1t

a
2)

γ
γ−ε S (t1, t2, a, ε) = − (1− a)

γ

γ − ε
t−1+(1+a)/(γ−ε)
2

< 0,

where the inequality holds by a ∈ (0, 1). Thus, the planner prefers to create talent-homogeneous

cities instead of mixed cities if and only if ε > f (t1, t2, a).

We show in the text (and especially in Appendix B) that an equilibrium with talent-

homogeneous cities exists under some conditions. A necessary condition for talent-homogeneous

cities to be optimal is that t1 − t2 > κ, for some κ ∈ R+∗. This condition is violated if T is

a compact subset of R+, as we assume in the text. Thus, talent-homogeneous cities may be

suboptimal and yet arise in equilibrium.
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Appendix H A consumer city version of the model

In the main text, we use a specification with local intermediates as in Ethier (1982). We now

show that all our results continue to hold true in a ‘consumer city’ version of the model with

non-tradable varieties of a differentiated consumption good.

Assume that residents consume inelastically one unit of land and a continuum of local

varieties of a differentiated consumption good. The consumer problem in city c is given by

max Uc ≡

[∫

Ωc

xc(i)
1

1+εdi

]1+ε

s.t. yc =

∫

Ωc

xc(i)pc(i)di ,

where yc denotes the disposable income of an individual after paying for land and commuting.

Solving the consumer problem yields the same aggregate demand xc(i) for each variety and the

same price index as in equation (5). To produce their variety of the final good, entrepreneurs

operate using 1/ϕ(i) units of labour paid wc to produce each unit of their variety. Maximising

profits

π(i) =

[
pc(i)−

wc

ϕc(i)

]
x(i)

yields the same constant markup pricing rule as in equation (6). Hence, expressions (7), (8),

and (9) continue to hold true in the consumer city version of the model. As all varieties

are local to the city where they are produced, and since consumers in city c all face the

same price index irrespective of their productivity, the occupational choice is still determined

by π(ϕ
c
) = wcϕa

c
. Consequently, labour supply and demand, as well as the wage bill, are

unchanged.

Since consumption varieties are local to each city, and since there is no trade, we no longer

have a single price index that can serve as a natural numéraire. Put differently, Pc ≡ 1 for all c

no longer holds. Instead, we now have city-specific price differences in the (final) consumption

bundle as given by cross-city differences in the price index. It implies that the nominal wage
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relationship (12) no longer holds either. Instead, we now have

wc

Pc
=

Φc

1 + ε
,

which pins down real wages. Observe that more productive cities still have higher Φ and,

therefore, higher real wages.

To close the model, we assume that commuting costs are incurred in terms of the local

consumption aggregate, i.e., the price of commuting is equal to the local price index. The

cost of a resident’s round-trip from a location at distance x from the cbd is then equal to

tc(x) = Pcτxγ . Per capita commuting costs are TCCc/Lc = PcθLγ
c , where θ denotes the same

bundle of parameters as in Appendix F.2

Recalling that ϕ ≡ t× s, utility net of urban costs can finally be expressed as

Uc =
max{wcϕa − PcθLγ

c , πc − PcθLγ
c}

Pc
=

max{wc(ts)a, πc}

Pc
− θLγ

c .

We then successively get:

EV (t) =

∫ +∞

0

max{wc × (ts)a, π(ts)}

Pc
dGs(s)− θLγ

c

= ta
wc

Pc

∫ ϕ
c
/t

0

sadGs,c(s) +
wc

P
ϕa
c

(
t

ϕ
c

) 1

ε ∫ +∞

ϕ
c
/t

s
1

εdGs,c(s)− θLγ
c

=
Φc

1 + ε
ta

⎡

⎣
∫ ϕ

c
/t

0

sadGs,c(s) +

(
t

ϕ
c

) 1
ε
−a ∫ +∞

ϕ
c
/t

s
1

εdGs,c(s)

⎤

⎦− θLγ

which is the same as equation (17) in the main text because wc and wc/Pc are identical in

the intermediate good and the final good version of the model. It then follows that all of our

equilibrium results hold true in the consumer city version of the model.

2Observe that this formulation implies that per unit distance commuting costs are city specific. Indeed,

per unit distance commuting costs will be lower (in nominal terms) in larger cities with lower price indices.

An alternative interpretation is that commuting causes (pure) disutility.
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Appendix I Entrepreneurial span of control

In this appendix, we show that our model can be extended to include limited span of control

for entrepreneurs as in Lucas (1978)by adding an extra parameter to capture entrepreneurial

span of control in the production function. As we show in this appendix, this extension does

not change the nature of our results. However, it allows us to generate the same estimating

equations as Gennaioli, La Porta, Lopez-de-Silanes, and Shleifer (2013) but leads to different

interpretations of their results.3

Let the output of an intermediate variety be given by

x(ϕ) = ϕ l(ϕ)1−α, (I.1)

where 1 − α ∈ (0, 1) is a measure of entrepreneurial span of control. When 1 − α is close

to zero, firms operate under sharply decreasing returns (entrepreneurs have a low span of

control) whereas when 1 − α is close to one, firms operate close to constant returns and can

get much larger (entrepreneurs have a high span of control). We note that equation (I.1)

replaces equation (2) in the main text. Then, profits are given by

π(ϕ) = Y P
1
εp−

1
ε − w(Y P

1
ε )

1
1−αϕ− 1

1−αp−
1+ε
1−α

1
ε , (I.2)

where P is equal to unity by marginal cost pricing in sector Y as in the main text. The

first-order condition for profit maximisation implies that

p(ϕ)
1
ε(

1+ε
1−α

−1) =
1 + ε

1− α
wY

1

1−α
−1ϕ− 1

1−α . (I.3)

3In the version of our model that appears in the main text, firm revenue does not depend directly on

entrepreneurial productivity. This features arises because with a production function linear in labour, the

equalisation of marginal products across firms implies that ϕ p(ϕ) must be constant. Since the product of

these two terms also appears to determine firm revenue, entrepreneurial productivity ϕ disappears from the

expression giving firm revenue. A simple way to prevent this pathological simplification from occurring is to

impose instead decreasing returns in production in the form of limits on entrepreneurial span of control.
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At the limit α → 0 we verify that p(ϕ) = (1 + ε)w/ϕ, as in the main text. Using equations

(I.1), (I.2), and (I.3), profits can be rewritten as

π(ϕ) = Y
ε

1+ε
α + ε

1 + ε
ϕ

1
1+ε l(ϕ)

1−α
1+ε . (I.4)

Given that Gennaioli, La Porta, Lopez-de-Silanes, and Shleifer (2013) use log firm revenue as

dependent variable, it is also useful to write this quantity:

lnZ(ϕ) =
ε

1 + ε
lnY +

1

1 + ε
lnϕ+

1− α

1 + ε
ln l(ϕ) , (I.5)

where we keep in mind that firm employment l(ϕ) is measured in efficiency units of labour.

Hence, log employment must be corrected for the productivity of employees (as Gennaioli,

La Porta, Lopez-de-Silanes, and Shleifer, 2013, do). We also note that the entrepreneur’s

productivity enters expression (I.5) both directly and indirectly since more entrepreneurs

manage more productive firms and hire more workers.

As in the main model, the productivity cutoff ϕ solves π(ϕ) = wϕa. Using equations (I.1),

(I.3), and (I.4), we obtain:

ϕ
1

α+ε
−a = A− ε

α+εw
1+ε
α+ε

1 + ε

α + ε

(
1 + ε

1− α

) 1−α
α+ε

. (I.6)

By definition of the price index:

1 = P− 1
ε =

∫

Ω+

p(ϕ)−
1
εdϕ =

(
1 + ε

1− α
w

)− 1−α
α+ε

Y − α
α+εL

∫ ∞

ϕ

ϕ
1

α+εdF (ϕ), (I.7)

where the last equality follows from (I.3), the definition of F (·) as the cumulative distribution

function of ϕ, and rearranging terms.

Next, by definition of Y :

Y ≡ wL

∫ ϕ

0

ϕadF (ϕ) + L

∫ ∞

ϕ

π(ϕ)dF (ϕ)

= wL

[∫ ϕ

0

ϕadF (ϕ) + ϕa− 1
α+ε

∫ ∞

ϕ

ϕ
1

α+εdF (ϕ)

]
, (I.8)
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where the last equality follows from rewriting π(ϕ) as π(ϕ) ×
(
ϕ/ϕ

) 1
α+ε and π(ϕ) = wϕa.

Plugging this expression back into (I.7) and simplifying, we obtain an expression for the

equilibrium wage:

w =

(
1− α

1 + ε

)1−α
[∫ ϕ

0

ϕadF (ϕ) + ϕa− 1
α+ε

∫ ∞

ϕ

ϕ
1

α+εdF (ϕ)

]−α [∫ ∞

ϕ

ϕ
1

α+εdF (ϕ)

]α+ε

Lε,

(I.9)

which clearly shows that ε still captures agglomeration economies in the model extended to

allow for entrepreneurial span of control.

Turning to the full-employment condition, the labour supply (in effective labour units) is

equal to L
∫ ϕ
0 ϕadF (ϕ) and the labour demand is equal to L

∫∞
ϕ l(ϕ)dF (ϕ). These yield

∫ ϕ

0

ϕadF (ϕ) =

∫ ∞

ϕ

l(ϕ)dF (ϕ) =
1− α

α + ε

1

ϕ
1

α+ε
−a

∫ ∞

ϕ

ϕ
1

α+εdF (ϕ),

where the last equality follows from equating production (I.1) with demand x (p(ϕ)) =

Y p(ϕ)−
1+ε
ε , equations (I.3) and (I.6), and simplifying. Imposing the comparative advantage

condition

1

α + ε
> a,

the cutoff is the unique fixed point of

ϕ
1

α+ε
−a

∫ ϕ

0

ϕadF (ϕ) =
1− α

α + ε

∫ ∞

ϕ

ϕ
1

α+εdF (ϕ). (I.10)

Like with the corresponding expression (14) in the model, the selection cutoff does not depend

on city size. Plugging this expression back into (I.9) yields

w = Lε

(
1− α

1 + ε

)1−α

ϕ−α(a− 1

α+ε)
(
1 + ε

α + ε

)−α
[∫ ∞

ϕ

ϕ
1

α+εdF (ϕ)

]ε
.

Using equation (I.8), we obtain the following expression for per-capita output:

Y

L
= Lε

(
1− α

α + ε

)−α

ϕ−α(a− 1
α+ε)

[∫ ϕ

0

ϕadF (ϕ)

][∫ ∞

ϕ

ϕ
1

α+εdF (ϕ)

]ε
.
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At the limit α → 0 we get Y/L =
[∫ ϕ

0 ϕadF (ϕ)
] [∫∞

ϕ ϕ
1

α+εdF (ϕ)
]ε

Lε, which is expression

(16) in the main text.

To characterise the equilibrium with talent-homogeneous cities, we note first that expected

indirect utility is given by:

EVc(t) =

∫ +∞

0

max{wc × (ts)a, π(ts)}dGs(s)− θLγ
c

= wc (St)
a

[∫ Stc/t

0

( s
S

)a
dGs(s) +

(
t

tc

) 1
α+ε

−a∫ +∞

Stc/t

( s
S

) 1
α+ε

dGs(s)

]
− θLγ ,

where the wage is given by

wc = Lε
c

(
1− α

1 + ε

)1−α

(Stc)
−α(a− 1

α+ε)
(
1 + ε

α+ ε

)−α [
t

1

α+ε
c

∫ ∞

S

s
1

α+εdGs(s)

]ε

= Lε
c (Stc)

1−αa (1 + ε)−1 (1− α)

(
α + ε

1− α

)ε+α

σε ,

with (using equation I.10),

σ ≡

∫ S

0

( s
S

)a
dGs(s) =

1− α

α + ε

∫ ∞

S

( s
S

) 1
α+ε

dGs(s) .

With talent-homogeneous cities the first-order condition becomes

0 =
∂EVc(t)

∂Lc

∣∣∣∣
t=tc

dLc +
∂EVc(t)

∂tc

∣∣∣∣
t=tc

dtc

=

[
εwc (Stc)

a 1 + ε

1− α
σ − γθLγ

]
dLc

Lc
+ wc (Stc)

a

[
(1− aα)

1 + ε

1− α
−

(
1

α + ε
− a

)
α+ ε

1− α

]
σ
dtc
tc

.

As a result, L(tc) is of the form:

L(tc) =
[
ξ2t

1+a(1−α)
c

] 1
γ−ε ,

for some ξ2 > 0, and the size distribution of cities can be shown to have the same form as

given by (28) in the main text:

gL (L) =
LL

L− L
L−2 +O (η) , where η ≡

γ − ε

1 + a (1− α)
.
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Appendix J Measuring agglomeration effects in a more

general context

Consider the general case where agglomeration benefits, y, and urban costs, z, determine

equilibrium utility: Uc ≡ y(tc, Lc) − z(xc, Lc). Both y and z depend on population size,

Lc, and specific shifters, tc and xc, that may differ across cities (and in turn depend on

population). Most models with a spatial equilibrium assume that Uc is equalised across cities.

Let us start by imposing that assumption. We also assume that all functions are continuously

differentiable. In equilibrium we then have
(

∂y

∂Lc
−

∂z

∂Lc

)
dLc +

(
∂y

∂tc

∂tc
∂Lc

−
∂z

∂xc

∂xc

∂Lc

)
dLc = 0. (J.1)

The first term is the common net marginal benefit from agglomeration within each city,

whereas the second term is the marginal change in the net benefits from agglomeration across

cities. For cities of different population sizes to coexist, it must be that an increase in city size

is offset by a corresponding shift in tc and xc that leaves individuals indifferent. Since urban

costs dominate agglomeration economies at any stable equilibrium (∂y/∂Lc < ∂z/∂Lc), larger

cities must have higher net shifts. Differentiating y and z, we readily obtain

dy =
∂y

∂tc

∂tc
∂Lc

dLc +
∂y

∂Lc
dLc and dz =

∂z

∂xc

∂xc

∂Lc
dLc +

∂z

∂Lc
dLc. (J.2)

Assume that urban costs differ across cities only because of differences in population but not

because of systematic differences in the shift parameter (∂xc/∂Lc = 0). In that case, equation

(J.1) reduces to (∂y/∂tc)/(∂tc/∂Lc) = − (∂y/∂Lc − ∂z/∂Lc), which, together with equation

(J.2) yields

dy = −

(
∂y

∂Lc
−

∂z

∂Lc

)
dLc +

∂y

∂Lc
dLc ⇒

dy

dLc
=

∂z

∂Lc
. (J.3)

In words, at equilibrium the impact of a change in population on income just equals the

change in urban costs. To understand why it is so, recall that cities result from a tradeoff
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between agglomeration benefits and urban costs. Cities can be of different population sizes

either because they differ in how agglomeration benefits are affected by their size or in how

urban costs are affected by their size. Here, we assume that urban costs are the same across

cities, whereas expected earnings depend on tc. As a result, if we do not control for tc, we

are looking at a situation where all cities face the same urban cost function but differ in how

they benefit from agglomeration. Regressing log average earnings against log population then

estimates the population elasticity of urban costs.

Insert Figure 8 about here.

Since the first term in (J.3) is positive at equilibrium, regressing log income on log pop-

ulation leads to an upward biased estimate of agglomeration economies (dy/dLc ≥ ∂y/∂Lc).

However, it delivers the correct estimate for urban costs. Observe from equation (J.2) that

regressing y on L will only give an estimate of the agglomeration economies, ∂y/∂Lc, when

the cross-city shift tc is controlled for. Put differently, we have to take out the equilibrium

shift that naturally arises in the presence of sorting along talent across cities, for instance.

Figure 8 illustrates these results for the case where there is no shift in urban costs.4

Stronger results can be obtained if both agglomeration benefits and urban costs are log-

linear: y(tc, L) = ln tc + ε lnLc and z(xc, Lc) = ln xc + γ lnLc. In that case, when there

is no shift in urban costs across cities we readily obtain that a log-linear regression of the

4In a symmetric way, assume that the gross benefits from agglomeration depends only on size but not

on the shift parameter (∂tc/∂Lc = 0). In that case, it is easy to see that dz/dLc = ∂y/∂Lc. Hence, at

equilibrium the impact of a change in population on urban costs just equals the agglomeration economies,

whereas regressing log urban costs on log population leads to an downward biased estimate. The in-between

cases, where both agglomeration benefits and urban costs shift, do not generally deliver clear results. In

that case, estimating either relationship in equation (J.2) will deliver biased estimates of agglomeration and

dispersion forces, as a mix of both is captured. However, the direction of the bias can be signed.

16



productivity measure on urban population yields the elasticity of urban costs, γ.

The foregoing discussion builds on the assumption that there is a common equilibrium

utility level across cities. Matters may be more complicated because expected indirect utility

need not be equalised across cities. It is the case in the model at hand as shown by Proposition

4. In larger cities, where more talented individuals locate, expected indirect utility is higher.

Hence, not only do cities differ in their production function but they also differ in how much

they offer to individuals. Assume hence that, in equilibrium, U(Lc) = y(tc, Lc) − z(xc, Lc).

We then have
(

∂y

∂Lc
−

∂z

∂Lc

)
dLc +

(
∂y

∂tc

∂tc
∂Lc

−
∂z

∂xc

∂xc

∂Lc

)
dLc = dU.

The term on the left is the same as in (J.1). The term on the right captures how equilibrium

utility changes with city population size. Assume that urban costs depend only on city size

(∂xc/∂Lc = 0) so that (∂y/∂tc)/(∂tc/∂Lc) = − (∂y/∂Lc − ∂z/∂Lc) + dUc/dLc. In words, at

equilibrium the change in the shift equals the opposite of the net agglomeration benefits plus

the increase in utility across cities of different sizes. The former is negative at any stable

equilibrium, whereas the latter is usually positive. Replacing into (J.2) then yields

dy = −

(
∂y

∂Lc
−

∂z

∂Lc

)
dLc + dUc +

∂y

∂Lc
dLc = dUc +

∂z

∂Lc
dLc

Hence, the impact of a change in population on productivity equals the change in urban costs

augmented by the utility shift across cities. Any positive shift thus yields an upward biased

estimate of urban costs, while a negative shift biases the estimate downwards. Observe that,

when compared to the equal utility case, the bias gets stronger when utility is not equalised.

Figure 9 illustrates this case.5

Insert Figure 9 about here.

5The case with ∂tc/∂Lc = 0 yields analogous results and we do not discuss it in more detail.
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Figure 8: Estimating ∂y/∂L with constant equilibrium utility.
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Figure 9: Estimating ∂y/∂L with varying equilibrium utility.
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